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Abstract
In this paper, we study the fattening effect of points over the complex numbers for del
Pezzo surfaces Sr arising by blowing-up of P

2 at r general points, with r ∈ {1, . . . , 8}.
Basic questions when studying the problem of points fattening on an arbitrary variety
arewhat is theminimal growth of the initial sequence and howare the sets onwhich this
minimal growth happens characterized geometrically. We provide a complete answer
for del Pezzo surfaces.

Keywords Initial degree · Initial sequence · Blow-up · Alpha problem ·
Chudnovsky-type results
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1 Introduction

In this paper, we follow the approach to fat point schemes initiated by Bocci and
Chiantini in [3]. The initial degree α(I ) of a homogeneous ideal I ⊂ C[Pn] is the least
degree t such that the homogeneous component It in degree t is nonzero. Although
this notion was known since 1981 (see [4]), Bocci and Chiantini used this invariant
for the first time in order to study fat point subschemes in the projective plane.

This definition can be extended to symbolic powers I (m) of I ; namely, α(I (m)) is
the least degree t such that the homogeneous component (I (m))t in degree t is nonzero.

Let Z ⊂ P
2(C) be a set of points and I be its radical ideal. By Nagata–Zariski

theorem ([7], Theorem 3.14), the ideal of scheme mZ is the mth symbolic power of
I . Bocci and Chiantini proved, among others, that sets of points Z in P

2(C) such that

α(I (2)) − α(I ) = 1,
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are either contained in a single line or form the so-called star configuration.
Results of Bocci andChiantini have been generalized in [6] byDumnicki, Szemberg

and Tutaj-Gasińska. They were studying configurations of points in P
2(C) with

α(I (m+1)) − α(I (m)) = 1

for some m ≥ 2 and obtained their full characterization (see [6], Theorem 3.4).
These considerations were extended for another types of spaces. Except for spaces

P
n , the problem of points fattening was considered among others by me in [1] for

the space P
1 × P

1 and by Di Rocco, Lundman and Szemberg in [5] for Hirzebruch
surfaces (with appropriately modified definition of the initial degree).

The aimof this paper is tomake similar classificationwith respect to points fattening
on del Pezzo surfaces. In this paper, a del Pezzo surface is a smooth complex surface
X with the ample anticanonical bundle −KX .

In fact, considerations on points fattening effect were initiated on del Pezzo surface
P
2(C) and this path of research was continued to another one, namely P

1 × P
1. Over

C, there are exactly ten del Pezzo surfaces:P2,P1×P
1 and eight surfaces Sr arising by

blowing-up of P
2 in r general points, where 1 ≤ r ≤ 8. In this paper, we complete the

picture for the last eight del Pezzo surfaces. More precisely, for each of the surfaces
Sr we establish the maximal integer m, such that

α(I ) = α(I (2)) = · · · = α(I (m)) = 1

holds and we describe subschemes realizing this sequence of equalities. We focus
mainly on the smallest possible value of α(I ), namely 1. In the case of the surfaces S1
and S2, we additionally give characterization of subschemes satisfying a more general
condition, namely

α(I (m)) = α(I (m+1)) · · · = α(I (m+a))

for some integers m and a. We conclude our paper presenting a Chudnovsky-type
inequality.

2 Basic Notions and Auxiliary Facts

The original definition of the initial degree given in [3] was extended in [5] for an
arbitrary smooth projective variety with an ample class.

Definition 2.1 (Initial degree) Let X be a smooth projective variety with an ample
line bundle L on X and let Z be a reduced subscheme of X defined by the ideal
sheaf IZ ⊂ OZ . For a positive integer m, the initial degree (with respect to L) of the
subscheme mZ is the integer

α(mZ) = α(I(m)
Z ) := min

{
d : H0(X , dL ⊗ I(m)

Z ) �= 0
}

.
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The Effect of Points Fattening on del Pezzo Surfaces 1545

Analogously, the initial sequence (with respect to L) of a subscheme Z is the sequence

α(Z), α(2Z), α(3Z), . . . .

The initial sequence is a sequence of positive integers with the following properties:

Fact 2.2

1) The initial sequence is weakly growing, i.e., α(mZ) ≤ α(nZ) for n ≥ m.
2) The initial sequence is subadditive, i.e., α((m + n)Z) ≤ α(mZ) + α(nZ).
3) The initial sequence is monotonic with respect to the subscheme, i.e., if Z ⊂ W ,

then α(mZ) ≤ α(mW ).

Properties in Fact 2.2 are generally known facts; thus, we take them for granted.
The choice of a line bundle L strictly depends on the variety X . In the projective

plane, the initial degree was taken with respect to the line bundle OP2(1). This line
bundle is 1

3 of the anticanonical bundle −KP2 = OP2(3). Similarly, on P
1 × P

1 it is
natural to workwith the α-invariant takenwith respect to the line bundleOP1×P1(1, 1).
In this case, the line bundle is half of the anticanonical divisor as on P

1 × P
1 we have

−KP1×P1 = OP1×P1(2, 2).
The most natural choice of an ample line bundle on del Pezzo surfaces Sr seems to

be the anticanonical bundle

−KSr = 3H − E1 − · · · − Er ,

which for r ≥ 1 is not divisible in the Picard group Pic(Sr ).
The fattening effect can be also considered more generally for graded linear series.
Let V• = ⊕

d≥0Vd ⊆ ⊕
d≥0H

0(X , dL) be a graded linear system. We define

αV•(mZ) = min{d : ∃s ∈ Vd : multZ (s) ≥ m}.

Then, we have the following property.

Lemma 2.3 Let V• ⊆ W• be graded linear systems. Then,

αV•(mZ) ≥ αW•(mZ).

Proof It follows immediately from the fact that W• has more sections than V•. 
�
Corollary 2.4 Let t ≥ s and let V• = ⊕

Vd and W• = ⊕
Wd, where

Vd = H0

(
St , 3dH − d ·

s∑
i=1

Ei

)
⊆ H0(St , 3dH),

Wd = H0

(
St , 3dH − d ·

t∑
i=1

Ei

)
⊆ H0(St , 3dH).
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Then, Wd ⊆ Vd for all d ≥ 0. Lemma 2.3 implies that

αW•(mZ) ≥ αV•(mZ).

Remark 2.5 Note that if Z ⊆ St \{Es+1, . . . , Et }, then αW•(mZ) is α(mZ) counted on
the surface St , whereas αV•(mZ) can be regarded as either α(mZ) on St or α(mZ) on
Ss . This allows us to compare α’s computed on various del Pezzo surfaces, provided
that it makes sense to consider the underlying set Z on both surfaces.

The study of sequences of minimal growth can be paralleled by the investigation
of ratios of the type

α(mZ)

m
.

There are some estimates for such quotients. The first result of this kind,

α(mZ)

m
≥ α(Z) + 1

2

appears in awork ofChudnovsky, and it concerns finite sets of points Z in the projective
plane (see [9], Proposition 3.1 and [8]). It was generalized to other spaces, i.e., P

3,
P
1 × P

1 and Hirzebruch surfaces (see [1,2,5,6,10]). All these inequalities are known
under the common name Chudnovsky-type results. In Section 4, we present our result
of this kind for del Pezzo surfaces Sr with r ≤ 6.

Our paper is concluded by a comparison of points fattening effect for surface S1
considered as a del Pezzo surface and on the other hand as a Hirzebruch surface.

3 The Points Fattening Effect on Sr

In this section, we present some results concerning the fattening effect on Sr . Let us
recall thatSr arises as the blowing-up of the complex projective plane in fixed r general
points P1, . . . , Pr . We denote by fr : Sr → P

2 the blow-up, where E1, . . . , Er are
the exceptional divisors. If r is fixed, then we write simply f instead of fr .

In further considerations, we will use the following observations about blow-ups.

Remark 3.1 If F is a plane curve of degree 3k inP
2 passing through points P1, . . . , Pr ,

so that multPi (F) = mi ≥ k for i ∈ {1, . . . , r}, then Ei is a (mi −k)-tuple component
of the divisor f ∗

r (F) − kE1 − · · · − kEr in the system

|3kH − kE1 − · · · − kEr | = | − kKSr |.

Definition 3.2 (Adapted transform) We keep the notation as in Remark 3.1. The
adapted transform of F is the divisor

A(F) := f ∗
r (F) − kE1 − · · · − kEr = F̃ +

∑r

i=1
(mi − k)Ei ,
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The Effect of Points Fattening on del Pezzo Surfaces 1547

where F̃ denotes the proper transform of F .

Lemma 3.3 Let D ∈ | − kKSr | for fixed 1 ≤ r ≤ 8 and let Q ∈ Sr . Then,

multQ(D) ≤ 2 · mult fr (Q)( fr (D)) − k, (1)

if Q ∈ E1 ∪ . . . ∪ Er and

multQ(D) = mult fr (Q)( fr (D)) ≤ 3k, (2)

if Q /∈ E1 ∪ . . . ∪ Er . Furthermore, if equality holds in (2), then fr (D) is a union of
lines through fr (Q).

Proof Let D ∈ | − kKSr | and Q ∈ Sr . Then, deg( fr (D)) = 3k. Let us denote by
m = multQ(D).

First, we consider the situation, when Q /∈ E1∪. . .∪Er . Since fr is an isomorphism
away of points {P1, . . . , Pr }, mult fr (Q)( fr (D)) = m. The multiplicity of the singular
point of the plane curve can be at most the degree of this curve; thus, fr (D) may have
at most 3k-tuple points, which finishes the proof of statement (2).

We assume now that Q ∈ Ei for some i ∈ {1, . . . , r}. Let us denote by F = fr (D).
Then,

multQ(D) = multPi (F) − k + multQ(F̃).

But multQ(F̃) ≤ multPi (F); thus, we finally obtain statement (1). 
�
A natural consequence of Lemma 3.3 is the following property for surfaces Sr .

Corollary 3.4 If Z ⊂ Sr for 1 ≤ r ≤ 8 satisfies the condition

α(mZ) = · · · = α((m + t)Z)

for some positive integers m and t ≥ 3, then Z ⊂ E1 ∪ · · · ∪ Er .

Now we turn to the main subject of this paper, namely a characterization of sub-
schemes Z with

α(Z) = α(2Z) · · · = α(mZ) = 1.

We begin with surfaces S1 and S2.

3.1 Surfaces S1 and S2

Theorem 3.5 Let Z ⊂ S1 be a finite set of points. Then, the following conditions are
equivalent

i) Z = {Q} ⊂ E1,
i i) α(Z) = α(2Z) = α(3Z) = α(4Z) = α(5Z) = 1.
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Proof The implication from i) to i i) is obvious. It is enough to consider the nonreduced
curve F = 3L ⊂ P

2 for some line passing through point P1. Indeed, it gives rise to

A(F) = f ∗F − E1 = 3L̃ + 2E1

in S1, which vanishes to order 5 at Q ∈ L̃ ∩ E1.
In order to prove the reverse implication, let Z = {Q1, . . . , Qs} and we assume

that D ∈ | − KS1 | is a divisor satisfying multQi (D) ≥ 5 for all points Qi ∈ Z . By
Corollary 3.4, we have that Z ⊂ E1.

Let us consider possible types of cubic curves in the projective plane and their
adapted transforms. The curve F has to pass through point P1, and in order to get
the highest possible multiplicities along the exceptional divisor E1, it should have the
highest possible multiplicity at P1. We have the following types of cubic curves in P

2:

a) an irreducible cubic (possibly singular);
b) a union of an irreducible conic and a line;
c) a union of three lines (possibly not distinct).

In case a), the divisor A(F) on S1 has points of multiplicity at most two. In case b),
the highest possible multiplicity of a point on E1 is three, and this happens in the case
when the line is tangent to the conic at point P1.

Let us pass to the case c).Weknow that the adapted transformof a curve F consisting
of some triple line L has a quintuple point. Except this arrangement of three lines, we
never get the quintuple points, which completes the proof. 
�
Remark 3.6 In fact, one can weaken condition i i) in Theorem 3.5. Assuming

α(mZ) = α((m + 1)Z) = α((m + 2)Z) = α((m + 3)Z) = α((m + 4)Z)

for some m ≥ 1, implies that Z = {Q} ⊂ S1.

Proof Let Z = {Q1, . . . , Qt } be such that α(mZ) = · · · = α((m + 4)Z) = k for
some integers k and t , and let D ∈ |−kKS1 | be a divisor such that multQi (D) ≥ m+4
for any point Qi ∈ Z . Firstly, by Corollary 3.4 we conclude that Z ⊂ E1.

Let us denote by F = f (D). Since F is of degree 3k, its multiplicity at P1 is at most
3k. Hence, themultiplicity of E1 in D is at most 2k. This contributes to themultiplicity
of D at every point Q1, . . . , Qt . The remaining multiplicity at these points must come
from components of F passing through P1 at directions corresponding to Q1, . . . , Qt .
We have

t(m + 4) ≤
t∑

i=1

multQi D ≤ 3k + 2kt . (3)

On the other hand, since α(mZ) = k, it must be

3(k − 1) + 2(k − 1)t < t · m, (4)

123



The Effect of Points Fattening on del Pezzo Surfaces 1549

since otherwise one could find 3(k − 1) lines through P1. Their images in P
2 would

show α(mZ) ≤ k − 1 contradicting the assumption. Combining (3) and (4), we get
that

3k − 3 + 2kt − 2t + 4t < 3k + 2kt

and thus t < 3
2 , which finally means that Z is a single point. 
�

On S1, there also exist infinitely many sets satisfying a weaker condition, namely

α(mZ) = · · · = α((m + 3)Z),

and these sets are not necessarily the same as in Theorem 3.5.

Theorem 3.7 Let Z ⊂ S1 be a finite set of points and let m be a positive integer. Then,
the following conditions are equivalent:

i) α(mZ) = · · · = α((m + 3)Z);
i i) Z = {Q} ⊂ E1 or Z = {Q1, Q2} ⊂ E1, where Q1 �= Q2.

Proof The sets in i i) satisfy the condition

α(mZ) = · · · = α((m + 3)Z),

for example, with m = 1 and m = 4, respectively. We will prove the opposite impli-
cation. Suppose now that Z = {Q1, . . . , Qt } is a set such that α(mZ) = · · · =
α((m + 3)Z) = k for some integers k and t and let D ∈ | − kKS1 | be a divisor such
that multQi (D) ≥ m + 3 for any point Qi ∈ Z . Let us denote by F = f (D), with
deg(F) = 3k.

In fact, we can repeat reasoning used in the proof of Remark 3.6, but this time with
the following estimates

t(m + 3) ≤
t∑

i=1

multQi D ≤ 3k + 2kt, (5)

3(k − 1) + 2(k − 1)t < t · m. (6)

By (5) combined with (6), we get

3k − 3 + 2kt − 2t + 3t < 3k + 2kt,

which gives t < 3. 
�
Corollary 3.8 For a finite set of points Z ⊂ S1 and a positive integer m, we have

α(mZ) < α((m + 5)Z).
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Proof Suppose to the contrary that Z = {Q1, . . . , Qt } is such that α(mZ) = · · · =
α((m + 5)Z) = k for some integers k and t , and let D ∈ | − kKS1 | be a divisor such
that multQi (D) ≥ m + 3 for Qi ∈ Z . Let F = f (D), with deg(F) = 3k. In the spirit
of the proof of Remark 3.6, we get estimates

t(m + 5) ≤
t∑

i=1

multQi D ≤ 3k + 2kt, (7)

3(k − 1) + 2(k − 1)t < t · m. (8)

Combining (7) and (8), we obtain t < 1, but t is a positive integer, a contradiction. 
�
One may also consider sets with three initial values equal to 1. The list of possible

types gets much longer, but the arguments used to obtain their classification are similar
to those used above. We refer the interested reader to [11] (Subchapter 6.1).

In further considerations, lines joining points P1, . . . , Pr play an important role.
From now on, we denote by Li j the line passing through points Pi and Pj for fixed
distinct i, j ∈ {1, . . . , r}. We are ready to formulate analogous results concerning the
fattening effect on S2.

Theorem 3.9 The following conditions are equivalent:

i) Z ⊂ L̃12 ∩ (E1 ∪ E2);
ii) α(Z) = · · · = α(5Z) = 1.

Theorem 3.10 The following conditions are equivalent:

i) Z = {Q} ⊂ (E1 ∪ E2) \ L̃12;
ii) α(Z) = · · · = α(4Z) = 1 and α(5Z) > 1.

Theorem 3.11 For any finite set of points Z ⊂ S2 and any positive integer m, we have
α(mZ) < α((m + 5)Z).

Theorem 3.12 For any finite set of point Z ⊂ S2, the following conditions are equiv-
alent:

i) there exists a positive integer m such that α(mZ) = · · · = α((m + 4)Z);
ii) Z ⊂ (E1 ∪ E2) ∩ L̃12.

Theorem 3.13 Let Z ⊂ S2 be a finite set of points such that Z ⊂ Ei for i ∈ {1, 2}.
Then, Z satisfies the condition

α(mZ) = · · · = α((m + 3)Z) < α((m + 4)Z), (9)

for some positive integer m if and only if Z has the following form: either

a) Z = {Q} ⊂ Ei \ L̃12 for i ∈ {1, 2}, or
b) Z = {Q, Q′} ⊂ Ei for i ∈ {1, 2}, where Q′ ∈ L̃12.
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All theorems from 3.9 to 3.13 can be proved analogously as in the case of surface
S1, or the reader can find alternative proofs in [11]. In subchapter 2.4 of [11], reader
can also find a description of sets satisfying the condition

α(Z) = α(2Z) = α(3Z) = 1.

Question about the maximal integer a satisfying condition

α(mZ) = α((m + 1)Z) · · · = α((m + a)Z)

is not trivial, and it is still an open problem for some of studied before surfaces. For
example, fattening effect for the Hirzebruch surfaces is described in [5] only with
respect to the condition

α(Z) = · · · = α(mZ) = 1.

The available tools are not useful in the case of greater r , in particular when considered
sets have some points on the exceptional divisors. For that reason, for remaining
surfaces Sr we only establish maximal m, for which α(Z) = · · · = α(mZ) = 1 hold
and we describe sets Z with that property.

3.2 Surfaces Sr for r ≥ 3

The natural sequence of inclusions between linear systems

| − KS1 | ⊃ | − KS2 | ⊃ | − KS3 | ⊃ | − KS4 | ⊃ | − KS5 | ⊃ | − KS6 | ⊃ | − KS7 | ⊃ | − KS8 |

suggests that the sequence of equalities

α(Z) = α(2Z) = · · · = 1

should become shorter with r growing. In the case of r = 1 and r = 2, we had
α(5Z) = 1 and we proved, moreover, that there it is not possible to obtain more than
five consecutive initial values equal.

We present now such a characterization for remaining surfaces Sr .

Theorem 3.14 Let Z ⊂ S3 be a finite set of points. The following conditions are
equivalent:

i) α(Z) = · · · = α(4Z) = 1;
i i) Z = {Q} = Ei ∩ L̃i j for distinct i, j ∈ {1, 2, 3}.

Theorem 3.15 Let Z ⊂ S4 be a finite set of points. Then, Z satisfies equality α(Z) =
α(2Z) = α(3Z) = 1, if and only if it is one of the following sets:

a) Z = {Q} ⊂ L̃i j for distinct i, j ∈ {1, 2, 3, 4},
b) Z ⊂ {Q, Q1, Q2} ⊂ L̃i j , where Q1 ∈ Ei , Q2 ∈ E j and Q = L̃i j ∩ L̃kl for

pairwise distinct i, j, k, l ∈ {1, 2, 3, 4},
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1552 M. Lampa-Baczyńska

c) Z ⊂ Ei ∩ (L̃i j ∪ L̃il ∪ L̃ik) for pairwise distinct i, j, k, l ∈ {1, 2, 3, 4},
d) Z = {Q} ⊂ Ei and Q ∈ C̃ ∩ L̃, where C is an irreducible conic curve passing

through points P1, P2, P3, P4 and L is the line tangent to C at point Pi for i ∈
{1, 2, 3, 4}.

Theorem 3.16 Let Z ⊂ S5 be a finite set of points. Then, the condition α(Z) =
α(2Z) = α(3Z) = 1 is fulfilled if and only if Z = {Q} and point Q satisfies one of
the following two conditions:

a) Q ∈ Ei ∩ L̃i ∩ C̃ for i ∈ {1, 2, 3, 4, 5}, where C is a conic passing through points
P1, . . . , P5 and Li is a line tangent to C at point Pi ,

b) Q ∈ L̃i j ∩ L̃kl for pairwise distinct i, j, k, l ∈ {1, 2, 3, 4, 5}.
Theorem 3.17 Let Z ⊂ S6 be a finite set of points. Then, Z satisfies equality α(Z) =
α(2Z) = α(3Z) = 1, if and only if Z = {Q} and point Q fulfills one of the following
two conditions:

a) Q ∈ L̃i j ∩ L̃kl ∩ L̃mn for pairwise distinct i, j, k, l,m, n ∈ {1, 2, 3, 4, 5, 6},
b) Q ∈ Ei ∩ L̃i j ∩ C̃ j for distinct i, j ∈ {1, 2, 3, 4, 5, 6}, where C j is a conic curve

determined by five points of P1, . . . , P6 excluding Pj and Li j is of course the line
passing through points Pi and Pj , but simultaneously Li j is the tangent line to the
curve C j at point Pi .

Let us note that S6 is the first example of surfaces Sr , where the existence of a set Z
satisfying the condition

α(Z) = α(2Z) = α(3Z) = 1

depends on the geometry of points P1, . . . , P6. For given six points in general position
in the projective plane, there always exists a cubic curve consisting of three lines,
passing through these points. But these lines do not have to intersect at one point
(Fig. 1). It is a rather strong condition.

Similarly, when the cubic splits into a conic and a line, each five points determine a
conic curve in a uniqueway. But the line joining the sixth point with one of the previous
five does not necessarily need to be tangent to this conic (Fig. 2). It is also a situation,
which may happen or not, and it depends on the arrangement of the starting six points
(although they are always in general position). It is a quite interesting phenomenon.
Especially that for remaining two surfaces Sr , i.e., S7 and S8, the condition

α(Z) = α(2Z) = α(3Z) = 1

is never satisfied.

Theorem 3.18 Let Z ⊂ S7 be a finite set of points. The equality α(Z) = α(2Z) = 1
holds if and only if Z is one of the following sets:

a) Z ⊂ {Q1, Q2} ⊂ Ei ∩ F̃ , where F is an irreducible singular cubic curve with the
singularity at point Pi for some i ∈ {1, . . . , 7},
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The Effect of Points Fattening on del Pezzo Surfaces 1553

Fig. 1 The three lines
intersecting at a single point

Fig. 2 The line tangent to a
conic

b) Z = {Q}, where f (Q) is the double point of a singular cubic passing through
points P1, . . . , P7 and Q /∈ E1 ∪ · · · ∪ E7,

c) Z ⊂ L̃i j ∩ C̃i j for distinct i, j ∈ {1, . . . , 7}, where Ci j is the irreducible conic
passing through the five points of P1, . . . , P7, distinct from Pi and Pj .

Proofs of Theorems 3.14 to 3.18 are based on a review of plane cubics passing
through points P1, . . . , Pr (analogously as in the proof of Theorem 3.5). Thus, we
skip details here. We refer the curious reader to [11].

The line bundle −KS8 has the least number of sections of all line bundles −KSr

considered so far, namely h0(−KS8) = 1. For that reason, we expected that

α(2Z) ≥ 2

123



1554 M. Lampa-Baczyńska

here. Thus, the fact that there exists a set Z , where α(Z) = α(2Z) = 1, was surprising.

Theorem 3.19 If Z ⊂ S8, then the equality α(Z) = α(2Z) = 1 holds iff Z = {Q},
where f (Q) is the singular point of an irreducible cubic curve F passing through
points P1, . . . , P8 and f (Q) is distinct of any point Pi for i ∈ {1, . . . , 8}.
Proof If Z = {Q} and f (Q) is double point on a cubic, distinct of any Pi , then it is
obvious that Q has multiplicity 2 on S8 and of course α(Z) = α(2Z) = 1.

Let us focus on the opposite implication. Let D ∈ |−KS8 | be such thatmultQ(D) ≥
2 for any point Q ∈ Z . The curve F = f (D) has degree 3 and passes through eight
distinct points P1, . . . , P8 in general position. Then, F is irreducible. Irreducible cubic
has at most one singular point, and it cannot be any of P ′

i s (general points). Thus, it
must be f (Q).

To finish the proof, we need to show that there always exists a singular cubic curve
passing through eight given general points.

Recall that cubics passing through eight fixed points form a pencil, if no four points
lie on a line and no seven lie on a conic. Since P1, . . . , P8 are in general position, the
family of cubics passing through these points is a pencil. We denote it by S. Every
two cubics in S meet in nine points; thus, the set {P1, . . . , P8} determines a new point.
This point is determined uniquely (Cayley–Bacharach theorem, see [12], Theorem 1).
Let us denote it by P9.

Let S̃ be a blow-up of P
2 in all nine points P1, . . . , P9. Then, S̃ is the total space of

the pencil S, and we have the morphism

ϕ : S̃ → P
1,

whose fibers are the elements of S. Let e(·) be the topological Euler characteristic.
Thus, we have

e(S) = e(P2) + 9 = 12.

Suppose now, to the contrary, that ϕ has only smooth fibers. Then, from the topo-
logical point of view we have

S̃ = P
1 × E,

where E is an elliptic curve. We have then

e(S) = e(P1) · e(E) = 2 · 0 = 0.

Thus, S must contain singular fibers. Since points P1, . . . , P8 are in general position,
these singular fibers are irreducible cubics, which ends the proof. 
�

4 The Chudnovsky-Type Result for Surfaces Sr

We conclude our considerations by a lower bound on the growth rate of the initial
sequence for surfaces Sr . We present a general estimate for sets Z satisfying the
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condition α(Z) ≥ 2. The assumption of very ampleness of line bundle −KSr is
significant; thus, our result concerns surfaces Sr with r ≤ 6.

Theorem 4.1 Let 1 ≤ r ≤ 6 and Z ⊂ Sr be a finite set of points such that α :=
α(Z) ≥ 2. Then, we have

α(mZ)

m
≥ α − 1

2
.

Proof We have

h0(−mKSr ) =
(
3m + 2

2

)
− r ·

(
m + 1

2

)
= (9 − r)m2 + (9 − r)m + 2

2
.

We choose a minimal subset W ⊆ Z , such that α(W ) = α, i.e., there is no element in
(α − 1) · (−KSr ). The minimality of W is taken with respect to the inclusion. (Thus,
there can be several sets satisfying this condition.) It follows that the points in W
impose independent conditions on the space of sections in |(α − 1) · (−KSr )|. Then,

#W = t =
(
3α − 1

2

)
− r ·

(
α

2

)
= (9 − r)α2 − (9 − r)α + 2

2
.

We claim that |α ·(−KSr )⊗ IW | has no additional base points on Sr , i.e., not contained
inW . LetW = {Q1, . . . , Qt }. For any Qi , there exists a curve Ci ∈ (α −1) · (−KSr ),
such that Ci does not vanish at Qi and it does vanish at all points in W \ {Qi }. Let si
denote the section in H0(Sr , (α−1) ·(−KSr )) corresponding toCi . Then, the sections
s1, . . . , st form a basis of H0(Sr , (α − 1) · (−KSr )).

Suppose that R ∈ Sr \ W is a base point of |α · (−KSr ) ⊗ IW |. There exists a
section si ∈ {s1, . . . , st } not vanishing at R. Indeed, otherwise R would be a common
zero of |(α − 1) · (−KSr )|, which is not possible by the choice of W . Since −KSr is
very ample, the system | − KSr ⊗ IQi | is then base point free away from Qi . Hence,
there exists a section s ∈ H0(Sr ,−KSr ⊗ IQi ) not vanishing at R. Then, in particular,
|α · (−KSr ) ⊗ IW | has no base component. Thus,

si · s ∈ H0(Sr , (α − 1) · (−KSr ) ⊗ IW\{Q} ⊗ (−KSr ) ⊗ IQi ) = H0(Sr , α · (−KSr ) ⊗ IW )

is a section not vanishing at R. Let A ∈ |α · (−KSr )| and B ∈ |α(mZ) · (−KSr )|.
Using Bezout theorem, we obtain

α · α(mZ) · (−KSr )
2 = A · B ≥ (9 − r)α2 − (9 − r)α + 2

2
· m,

which finally implies

α(mZ)

m
≥ (9 − r)α2 − (9 − r)α + 2

2α(9 − r)
>

(9 − r)α2 − (9 − r)α

2α(9 − r)
>

α − 1

2
.

This ends the proof. 
�
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Remark 4.2 Let us notice that if α(Z) = 1, then α(mZ)
m ≥ 1

5 . Firstly, let us observe
that if Z is the set from Theorem 3.5, then its initial sequence is of the form

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, . . . .

The divisor F = 3kL for the line L passing through P1 and corresponding to point
Q ∈ E1 gives rise to D = 3k L̃ + 2kE1 ∈ |3kH − kE1| on the blow-up S1 and
multQ(D) = 5k for any Q ∈ Z . Hence, α(5kZ) ≤ k for any positive integer k.

For k = 1, we then obtain α(5Z) ≤ 1, whichmeans that α(Z) = · · · = α(5Z) = 1.
Moreover, by Remark 3.6 we conclude

α(6Z) ≥ 2. (10)

On the other hand, for k = 2 we have

α(10Z) ≤ 2. (11)

From (10) and (11), we then obtain α(6Z) = · · · = α(10Z) = 2.
Using the same argumentation for the next k, we finally conclude that the initial

sequence in this case is α(mZ) = �m
5 � and indeed α(mZ)

m ≥ 1
5 .

Let {α′(mZ)} be another subadditive and weakly growing sequence of positive
integers with α′(Z) = 1. By Remark 3.6,

α′(mZ) ≥ α(mZ)

for any m, thus

α′(mZ)

m
≥ α(mZ)

m
≥ 1

5
.

By Lemma 2.3, we conclude that estimate α(mZ)
m ≥ 1

5 concerns any initial sequence
{α(mZ)}with α(Z) = 1 for all surfaces Sr . In the case of surfaces S1 and S2, we were
able to show that this estimate is optimal (in the sense that 1

5 is the borderline value).
Probably, this estimate is not sharp for r ≥ 3.

5 Surface S1 as a del Pezzo Surface and as a Hirzebruch Surface

The surfaceS1 was consideredwith respect to the fattening effect in [5] as aHirzebruch
surface. An interesting phenomenon is that from the point of view of Hirzebruch
surfaces, the most natural choice of the reference line bundle for S1 is

2H − E1,
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while if we consider it as a del Pezzo surface, we work with the anticanonical line
bundle, i.e.,

−KS1 = 3H − E1.

Di Rocco, Lundman, and Szemberg proved in [5] that on the Hirzebruch surface S1
(denoted there by F1) with 2H − E1, there does not exist any finite set Z , such that

α(Z) = α(2Z) = α(3Z) = α(4Z)

(see [5], Proposition 4.1). From point of view of del Pezzo surfaces with the bundle
−KS1 , we can even get

α(Z) = α(2Z) = α(3Z) = α(4Z) = α(5Z),

and moreover, there exist infinitely many sets satisfying it (all singletons Z = {Q}
with Q ∈ E1). Thus, the choice of line bundle is a fundamental factor affecting the
shape of the initial sequence.
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