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Abstract
In this paper, we study an age-structured hepatitis B virusmodelwithDNA-containing
capsids. We obtain the well-posedness of the model by reformulate the model as an
abstract Cauchy problem, and we find a threshold number �0 for the existence of the
steady states. The local stability of each steady states is established by linearizing the
system and analyze the corresponding characteristic equation. Furthermore, we inves-
tigate the uniform persistence of the system and constructing Lyapunov functionals to
show the global stability of each steady states. We observe that the virus-free steady
state is globally asymptotically stable when�0 < 1, while the infection steady state is
globally asymptotically stablewhen�0 > 1.Numerical simulations are also presented
to support the analytical results.
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1 Introduction

Viral hepatitis causes a life-threatening liver infection. World Health Organization
estimated that there were about 325 millions people who living with chronic hepatitis
infection or carriers and about 1.34million deaths in 2015,where hepatitis B accounted
for 80% of all hepatitis infection and 66% of all hepatitis mortality, respectively [44].
HBV infection can be acute or chronic in nature. Acute infection could last for several
weeks and the acute patients eventually recover with immunity. However, chronic
infection which lasts for several decades can potentially cause severe symptoms such
as liver cirrhosis and hepatocellular carcinoma [36]. Therefore, HBV infection is a
major concern for public health in the world.

Over the past two decades, many researchers have used mathematical models to
describe the within-host viral infection of HBV. In 1996, Nowak et al. [33] proposed
a simple ODE model to analyze the dynamical property of HBV. Their basic model
consists of uninfected hepatocytes, infected hepatocytes and HBV. Uninfected hepato-
cytes are assumed to be produced at a constant rate and die at a constant rate. Infection
between uninfected hepatocytes and free virus is assumed to satisfy the mass-action
principle and infected hepatocytes die at a constant rate. To better understanding the
viral dynamics of HBV infection, many authors have generalized the basic model of
Nowark et al. by taking into account of some factors such as the delay during virion
production, the therapeutic efficacy, the growth rate of uninfected cell and infection
rate between uninfected cell and virus (see [9,12,15–17,28]).

During the process of hepatocyte infection, the HBV virions enter into hepatocyte,
uncoat and transform relaxed circular DNA (rcDNA). The rcDNA is delivered into
the nucleus and converted into covalently closed circular DNA (cccDNA) which is
the template for the production of viral mRNA. After encapsidation, the full-length
unspliced mRNA is reverse transcribed into DNA with the help of viral polymerase,
whichhas reverse transcriptase function, for the formationof rcDNA.Aftermaturation,
a part of newly synthesized rcDNAs with nucleocapsid is transported to the nucleus
to increase the pool size of cccDNA. The other part of rcDNA with nucleocapsid
is released from the cytoplasm which implies new virion is developed [31,39]. In
2005, considering HBV DNA-containing capsids as an important factor, Murray et
al. [30] constructed a multi-infection stage ODE model which consisted of infected
hepatocyteswith different copies of cccDNA, the amount of pregenomeRNA(pgRNA)
in the liver, the number ofHBVDNA-containing capsids and free virus. They observed
that their model fitted the experimental data in Chimpanzees very well. Murray et
al. [29] also considered a simplified model consisted only the number of infected
hepatocytes, the number of intracelluarHBVDNA-containing capsids, and the number
of virions in plasma and used themodel to estimate the half-life ofHBVvirions.Manna
andChakrabarty [24] combined the basicmodel ofNowark et al. [33] and the simplified
model of Murray et al. [29] by adding the intracelluar HBV DNA-containing capsids,
the corresponding mathematical model is as follows:
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Table 1 The description of
parameters of the HBV model
(1)

Parameter Description

� The recruitment rate of
uninfected cells

β The rate of infection between
uninfected cell and virus

μ1 The natural death rate of
uninfected cell

μ2 The natural death rate of HBV
DNA-containing capsid and
the infected hepatocytes

μ3 The natural death rate of virus

k The production rate of virus
from HBV DNA-containing
capsid

ν The rate of production of
intracellular HBV
DNA-containing capsids
associated with infection
age a

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT (t)

dt
= � − μ1T (t) − βT (t)V (t),

dI (t)

dt
= βT (t)V (t) − μ2 I (t),

dD(t)

dt
= ν I (t) − (μ2 + k)D,

dV (t)

dt
= k D(t) − μ3V (t),

(1)

where T (t), I (t), D(t) and V (t) denote the density of uninfected hepatocytes, infected
hepatocytes, intracellular HBV DNA-containing capsids and the virions at time t ,
respectively. All parameters are assumed to be positive, and the description of param-
eters is listed in Table 1.

In [24], the authors shown that the global dynamics of model (1) is completely
determined by the basic reproduction number, that is: the disease-free equilibrium is
globally asymptotically stable if the basic reproduction number is less than one, while
a positive endemic equilibrium exists and it is globally asymptotically stable if the
basic reproduction number is greater than one. Consider time delay effect, Manna and
Chakrabarty [25] investigated the Chronic hepatitis B infection models with one and
two discrete delays, and they showed the global stability of the steady states. Geng et
al. [6] studied a diffusive viral infection model with capsids and time delay, the global
dynamical behaviors of the original model and the discrete model are investigated by
constructing Lyapunov functionals, where the discrete model is obtained by applying
the nonstandard finite difference (NSFD) scheme to the original continuous model.
Guo et al. [7] formulated a diffusive and delayed HBV infection model with HBV
DNA-containing capsids and general incidence rate, and they also studied the stability
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of the model. In [26], Manna and Hattaf proposed a model incorporates the intracel-
lular HBV DNA-containing capsids, spatial diffusion in both capsids and viruses, and
adaptive immune response exerted by cytotoxic T lymphocytes and antibodies, and
they have shown the global stability and instability of equilibria by Lyapunovs direct
and indirect methods.

However, the above-mentioned models do not take into account the fact that the
mortality rate and virus production rate of infected cells depend on the infection age
of infected cells . Let i(t, a) represent the density of infected cells with infection age
a at time t . While the infection age a denotes the time since the infection began.
Then,

∫ a2
a1

i(t, a)da is the number of infected cells with infection age between a1 and
a2 where 0 ≤ a1 < a2 < +∞. Consider age as a continuous variable, writing the
production rate of viral particles and the death rate of productively infected cells as two
continuous functions of age, Nelson et al. [32] formulated a basic age-structured virus
model, which governed by the first-order partial differential equations system. Nelson
et al. analyzed the local stability of the model by evaluating eigenvalues and its related
characteristic equation. In [37], Rong et al. extended the model with combination
antiretroviral therapy and analyzed the local stability of the model. Huang et al. [14]
have been further investigated the global stability of the model proposed in [32] by
using Lyapunov direct method and LaSalle invariance principle. Hattaf and Yang [13]
proposed an age-structured viral infection model with general incidence function that
takes account of the loss of viral particles due to their absorption into susceptible cells,
the global behavior of themodel is investigated. For some recent works on viralmodels
(HIV, HBV, etc) with age structure, we refer readers to the papers ([34,40–42,45] and
the references therein).

Motivated by the above facts, in this paper, we establish a new within-host hepatitis
B virus infection model with age structure and HBV DNA-containing capsids:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT (t)

dt
= � − μ1T (t) − βT (t)V (t),

∂i(t, a)

∂t
+ ∂i(t, a)

∂a
= −δ(a)i(t, a),

dD(t)

dt
=
∫ ∞

0
p(a)i(t, a)da − (μ2 + k)D,

dV (t)

dt
= k D(t) − μ3V (t),

(2)

with boundary condition
i(t, 0) = βT (t)V (t), (3)

and initial condition

T (0) = T0 > 0, i(0, ·) = i0(a) ∈ L1+ (0,∞) , D(0) = D0 > 0, V (0) = V0 > 0.
(4)

where T (t), i(t, a), D(t) and V (t) represent the density of uninfected cells, infected
cells with infection age a, HBV DNA-containing capsids and infectious free virion at
time t , respectively; δ(a) is the removal rate of infected cells associated with infection

123



On an Age-Structured Hepatitis B Virus Infection Model with… 1349

age a and L1+ (0,∞) is the nonnegative cone of L1 (0,∞). The biological meaning of
all other parameters is the same with Model (1). At first, we make some assumptions
about the coefficients.

(A1) The function δ(a), p(a) ∈ L∞+ (0,∞). Denote

δ̄ = ess sup
a∈R+

δ(a), p̄ = ess sup
a∈R+

p(a), δ = ess inf
a∈R+

δ(a) and p = ess sup
a∈R+

p(a).

(A2) There exists a positive constant a† < +∞ such that i(t, a) = 0 for all a ≥ a†.
Here, L∞+ (0,∞) is the nonnegative cone of L∞ (0,∞). Biologically, Assumption
(A2) means that there is no individual can live forever. In addition, we denote the
following notions for convenience:

Φ(a) = ∫∞
a p(s)e− ∫ s

a δ(τ )dτds, Ω(a) = e− ∫ a
0 δ(τ )dτ , η = ∫∞

0 p(a)Ω(a)da. (5)

It is clear that

dΦ(a)

da
= δ(a)Φ(a) − p(a) and

dΩ(a)

da
= −δ(a)Ω(a).

The aim of this paper is to analyze the global properties of the infection-age model
(2). To analyze the global stability of steady states, we plan to construct some suitable
Lyapunov functionalswhich involve some integralswith respect to the age-of-infection
a which goes from 0 to infinity. However, the functional is infinite if the number of
infected cells i(a, t) = 0 or if i(a, t) is positive but close enough to 0. To solve this
problem, we need to prove the uniform persistence of system (we point here that some
recent results from the age-structured epidemic models would also be relevant for our
discussion, for example, [18,20,46] and the references therein).

The article is organized as follows. In Sect. 2, we analyze the existence and unique-
ness of solutions by rewriting model (2) as an abstract Cauchy problem in a Banach
space. Existence and the local stability of steady states are discussed in Sect. 3. In
Sect. 4, we study the asymptotically smooth and uniform persistence of solution semi-
flow. Global stability of steady states are stated in Sect. 5. In Sect. 6, we give some
numerical simulations. A brief discussion is presented in the last section.

2 Existence and Uniqueness of Solutions

In this section, we study the existence and uniqueness of solutions to model (2) with
boundary condition (3) and initial condition (4). We denote the following Banach
spaces:

X = R × R × L1(R+, R) × R × R,

X0 = R × {0} × L1(R+, R) × R × R,

X+ = R+ × R+ × L1+(R+, R) × R+ × R+,

X0+ = X+ ∩ X0,
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with the norm

∣
∣
∣
∣
(
φ1, ϕ(·), φ2, φ3

)∣
∣
∣
∣X = |φ1| +

∫ ∞

0
|ϕ(a)|da + |φ2| + |φ3|.

In order to formulate system (2) as an abstractCauchyproblem,wedefine twooperators
on X0, which are the linear operator B and the nonlinear operator F .

The linear operator B : Dom(B) ⊂ X → X is given as follows:

B

⎛

⎜
⎜
⎜
⎜
⎝

φ1(
0
ϕ

)

φ2
φ3

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

−μ1φ1( −ϕ(0)
−ϕ′ − δϕ

)

−(μ2 + k)φ2
−μ3φ3

⎞

⎟
⎟
⎟
⎟
⎠

,

with Dom(B) = R × {0} × W 1,1(0,∞) × R × R, where W 1,1 denote the Sobolev
space. The nonlinear map F : Dom(B) ⊂ X → X is defined by

F

⎛

⎜
⎜
⎜
⎜
⎝

φ1(
0
ϕ

)

φ2
φ3

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

� − βφ1φ3(
βφ1φ3

0

)

∫∞
0 p(a)ϕ(a)da

kφ2

⎞

⎟
⎟
⎟
⎟
⎠

.

Clearly, Dom(B) = X0 is not dense in X and F is Lipschitz continuous on Dom(B).

Let u(t) =
(

T (t),

(
0

i(t, ·)
)

, D(t), V (t)

)ᵀ
, where ᵀ represents transposition of

a vector. Then, we can rewrite system (2) as the following abstract Cauchy problem:

⎧
⎨

⎩

du(t)

dt
= Bu(t) + F(u(t)), t ≥ 0,

u(0) = u0 ∈ X0

⋂
X0+.

(6)

In order to establish the existence anduniqueness of solutions for system (2) byusing
[21, Theorem 5.2.7], we need to show that the operator B is a Hille–Yosida operator.
Denote ρ(B) be the resolvent set of B. The definition of Hille–Yosida operator is as
following:

Definition 1 (See [21, Definition 2.4.1]) Let B : Dom(B) ⊂ X → X be a linear
operator. If there exist real constants M ≥ 1, and ω ∈ R, such that (ω,+∞) ⊆ ρ(B),
and

‖(λ − B)−n‖ ≤ M

(λ − ω)n
, for n ∈ N+, and all λ > ω.

Now, we show that the operator B is a Hille–Yosida operator.
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Lemma 1 The operator B is a Hille–Yosida operator.

Proof Let the resolvent of operator B is defined by

(λI − B)−1

⎛

⎜
⎜
⎜
⎜
⎝

φ̂1(
ϕ̂0
ϕ̂

)

φ̂2

φ̂3

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

φ1(
0
ϕ

)

φ2
φ3

⎞

⎟
⎟
⎟
⎟
⎠

.

Then, we can obtain

⎛

⎜
⎜
⎝

φ1
ϕ

φ2
φ3

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

1
λ+μ1

φ̂1

ϕ̂0e− ∫ a
0 (λ+δ(s))ds + ∫ a

0 ϕ̂e− ∫ a
τ (λ+δ(s))dsdτ

1
λ+μ2+k φ̂2

1
λ+μ3

φ̂3

⎞

⎟
⎟
⎟
⎠

.

For
∫∞
0 ϕ(a)da, we make an estimation as follows:

∫ ∞

0
ϕ(a)da =

∫ ∞

0
ϕ̂0e− ∫ a

0 (δ(s)+λ)dsda +
∫ ∞

0

∫ a

0
ϕ̂(s)e− ∫ a

s (δ(τ )+λ)dτdsda

≤ |ϕ̂0|
|λ + δ| +

∫ ∞

0

∫ a

0
ϕ̂(s)e−(λ+δ)(a−s)dsda

= |ϕ̂0|
|λ + δ| +

∫ ∞

0

∫ ∞

s
ϕ̂(s)e−(λ+δ)(a−s)dads

= |ϕ̂0|
|λ + δ| +

∫ ∞

0
ϕ̂(s)e(λ+δ)s

∫ ∞

s
e−(λ+δ)adads

= |ϕ̂0|
|λ + δ| +

∫ ∞

0
ϕ̂(s)e(λ+δ)s 1

λ + δ
e−(λ+δ)sds

= |ϕ̂0|
|λ + δ| + ||ϕ̂||L1

|λ + δ| .

Denote ξ =
(

φ̂1,

(
φ̂0

ϕ̂(a)

)

, φ̂2, φ̂3

)ᵀ
. Then, we have

|| (λI − B)−1 ξ ||X = |φ1| + |0| +
∫ ∞

0
ϕ(a)da + |φ2| + |φ3|

= |φ̂1|
|λ + μ1| +

∫ ∞

0
ϕ(a)da + |φ̂2|

|λ + μ2 + k| + |φ̂3|
|λ + μ3|

≤ |φ̂1|
|λ + μ1| + |ϕ̂0|

|λ + δ| + ||ϕ̂||L1

|λ + δ| + |φ̂2|
|λ + μ2 + k| + |φ̂3|

|λ + μ3| .
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Choose μ = min{μ1, μ2 + k, μ3, δ}, then

|| (λI − B)−1 ξ ||X ≤ ||ξ ||X
λ + μ

.

Hence, by the definition of Hille–Yosida operator, the linear operator B is a Hille–
Yosida operator. �

Let X0 =
(

T0,

(
0
i0

)

, D0, V0

)ᵀ
∈ X0+. Recalling that F is Lipschitz continuous

on bounded set, then by [21][Theorem 5.2.7] (see also [19,22]), we have the following
theorem.

Theorem 1 There exists a uniquely determined semiflow {U (t)}t≥0 on X0+ such that
for each X0, there exists a unique continuous map U ∈ C ([0,∞),X0+) which is an
integrated solution of Cauchy problem (6), that is,

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

0
U (s)X0ds ∈ Dom(B), ∀t ≥ 0,

U (t)X0 = X0 + B
∫ t

0
U (s)X0ds +

∫ ∞

0
F(U (s)X0)ds, ∀t ≥ 0.

(7)

Denote

ϒ =

⎧
⎪⎨

⎪⎩
(T (t), i(t, a), D(t), V (t)) ∈ X0+

∣
∣
∣
∣
∣
∣
∣

T (t) ≤ �

μ1
, T (t) +

∫ ∞

0
i(t, a)da ≤ �

μ0
,

D(t) ≤ p̄�

μ0(μ2 + k)
, V (t) ≤ k p̄�

μ0(μ2 + k)μ3

⎫
⎪⎬

⎪⎭
(8)

where μ0 = min
{
μ1, δ

}
. For the set ϒ , we have the following proposition:

Proposition 1 ϒ is positively invariant set under the semiflow {U (t)}t≥0. Moreover,
the semiflow {U (t)}t≥0 is point dissipative and attracts all positive solutions of system
(2) in X0+.

Proof First, we solve the second equation of system (2) along the characteristic line
t − a = c with boundary condition (3) and initial condition (4), where c is a constant.
Set a = a0 + s and t = t0 + s for some variable s and (t0, a0) is a point in the
first quadrant of the (t, a) plane. Denote î(s) := i(t0 + s, a0 + s) = i(t, a) and
δ̂(s) := δ(a0 + s) = δ(a). Hence, we can rewrite the second equation of system (2)
as

dî(s)

ds
= −δ̂(s)î(s).
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Solving the above ordinary differential equation give us

î(s) = î(0)e− ∫ s
0 δ̂(τ )dτ .

Consider the case t ≤ a, we set t0 = 0, a0 = a − t and s = t , one has that

i(t, a) = i0(a − t)e− ∫ t
0 δ(a−t−τ)dτ = i0(a − t)

Ω(a)

Ω(a − t)
.

In the other case t > a, we set t0 = t − a, a0 = 0 and s = a. Recall that î(0) =
i(0, t − a), we obtain that

i(t, a) = i(0, t − a)Ω(a).

Overall, we obtain

i(t, a) =
⎧
⎨

⎩

βT (t − a)V (t − a)Ω(a), t > a,

i0(a − t)
Ω(a)

Ω(a − t)
, t ≤ a.

(9)

Then, we have

∫ ∞

0
i(t, a)da =

∫ t

0
βT (t − a)V (t − a)Ω(a)da +

∫ ∞

t
i0(a − t)

Ω(a)

Ω(a − t)
da

and

d

dt

∫ ∞

0
i(t, a)da =

∫ ∞

0

∂

∂t
i(t, a)da = βT (t)V (t) −

∫ ∞

0
δ(a)i(t, a)da.

From the first equation of (2), one has that

dT (t)

dt
= � − μ1T (t) − βT (t)V (t) ≤ � − μ1T (t),

which yields

T (t) ≤ �

μ1
+
(

T0 − �

μ1

)

e−μ1t .

Considering the first and the second equations of (2), we have

d

dt

(

T (t) +
∫ ∞

0
i(t, a)da

)

= � − μ1T (t) −
∫ ∞

0
δ(a)i(t, a)da

≤ � − μ1T (t) − δ

∫ ∞

0
i(t, a)da

≤ � − μ0

(

T (t) +
∫ ∞

0
i(t, a)da

)

,
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and
d

dt

(

T (t) +
∫ ∞

0
i(t, a)da

)

= � − μ1T (t) −
∫ ∞

0
δ(a)i(t, a)da

≥ −μ1T (t) − δ̄

∫ ∞

0
i(t, a)da.

Hence,

x(0)e−μ̄0t ≤ T (t) +
∫ ∞

0
i(t, a)da ≤ �

μ0
+
(

x(0) − �

μ0

)

e−μ0t , (10)

where μ̄0 = max
{
μ1, δ̄

}
and x(0) = T (0) + ∫∞

0 i0(a)da.
Furthermore, we have

− (μ2 + k)D(t) ≤ dD(t)

dt

=
∫ ∞

0
p(a)i(t, a)da − (μ2 + k)D(t) ≤ p̄�

μ0
− (μ2 + k)D(t)

and

D0e−(μ2+k)t ≤ D(t) ≤ p̄�

μ0(μ2 + k)
+
(

D0 − p̄�

μ0(μ2 + k)

)

e−(μ2+k)t . (11)

Similarly, we also have

V0e−μ3t ≤ V (t) ≤ k p̄�

μ0(μ2 + k)μ3
+
(

V0 − k p̄�

μ0(μ2 + k)μ3

)

e−μ3t . (12)

Hence,
dT (t)

dt
= � − μ1T (t) − βT (t)V (t) ≥ −μ̃T (t),

where μ̃ = μ1 + β
k p̄�

μ0(μ2+k)μ3
. It yields that T (t) ≥ T (0)e−μ̃t . Thus,

T (0)e−μ̃t ≤ T (t) ≤ �

μ1
+
(

T (0) − �

μ1

)

e−μ1t . (13)

Therefore, U (t)ϒ ⊂ ϒ , which implies ϒ is a positively invariant set. Moreover, from
(10), (11), (12) and (13), we can easily see that ϒ attracts all positive solutions of (2).

�
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3 Existence and Local Stability of Steady States

3.1 Existence of Steady States

We define the basic reproductive number of system (2) as follows:

�0 = βk�η

μ1μ3(μ2 + k)
.

The existence of steady states of system (2) is stated as follows.

Theorem 2 System (2) always has an virus-free steady state E0 = (T 0, 0, 0, 0). If
�0 > 1, system (2) also has an infection steady state E∗ = (T ∗, i∗(a), D∗, V ∗),
where T 0 = �

μ1
, T ∗ = μ3(μ2+k)�

μ1μ3(μ2+k)+βi∗(0)kη
, i∗(a) = i∗(0)Ω(a), D∗ = i∗(0)η

μ2+k , V ∗ =
i∗(0)kη

μ3(μ2+k)
and i∗(0) = μ1μ3(μ2+k)

βkη
(�0 − 1).

Proof Let (T̂ , î(a), D̂, V̂ ) be a steady state of (2), then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� − μ1T̂ − β T̂ V̂ = 0,
dî(a)

da
= −δ(a)î(a),

∫ ∞

0
p(a)î(a)da − (μ2 + k)D̂ = 0,

k D̂ − μ3V̂ = 0,

(14)

with initial condition

î(0) = β T̂ V̂ . (15)

From the second equation of system (14), we can obtain î(a) = î(0)Ω(a). Then, from
the other equations of (14), we have

D̂ = î(0)η

μ2 + k
,

V̂ = k D̂

μ3
= î(0)kη

μ3(μ2 + k)
,

T̂ = �

μ1 + β V̂
= μ3(μ2 + k)�

μ1μ3(μ2 + k) + β î(0)kη
.

Plugging T̂ and V̂ into (15) yields

î(0) = β�kηî(0)

μ1μ3(μ2 + k) + βkηî(0)
.

Now, we consider the following two cases:
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Case (i) If î(0) = 0, then D̂ = î(a) = V̂ = 0 and T̂ = �
μ1
. Hence, system (2) has

an virus-free steady state E0 = (T 0, 0, 0, 0).
Case (ii) If î(0) �= 0, then

î(0) = μ1μ3(μ2 + k)

β�kη

(
βk�η

μ1μ3(μ2 + k)
− 1

)

= μ1μ3(μ2 + k)

β�kη
(�0 − 1) .

Hence, the unique infection steady state E∗ = (T ∗, i∗(a), D∗, V ∗) exists if �0 > 1.
This ends the proof. �

3.2 Local Stability of Steady States

In this part, we analyze the local stability of steady states.

Theorem 3 (i) The virus-free steady state E0 is locally asymptotically stable if �0 < 1
and unstable if�0 > 1; (ii) the infection steady state E∗ is locally asymptotically stable
if �0 > 1.

Proof (i) Introduce the following perturbation variables

T1(t) = T (t) − T 0, i1(t, a) = i(t, a), D1(t) = D(t) and V1(t) = V (t).

The linearized system of (2) around the virus-free steady state is given as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT1(t)

dt
= −μ1T1(t) − βT 0V1(t),

∂i1(t, a)

∂t
+ ∂i1(t, a)

∂a
= −δ(a)i1(t, a),

dD1(t)

dt
=
∫ ∞

0
p(a)i1(t, a)da − (μ2 + k)D1(t),

dV1(t)

dt
= k D1(t) − μ3V1(t),

(16)

with boundary condition

i1(t, 0) = βT 0V1(t), (17)

Hence, the characteristic equation of (2) around the virus-free steady state E0 is

∣
∣
∣
∣
∣
∣
∣
∣

λ + μ1 0 0 βT 0

0 1 0 −βT 0

0 − ∫∞
0 p(a)Ω(a)e−λada λ + μ2 + k 0

0 0 −k λ + μ3

∣
∣
∣
∣
∣
∣
∣
∣

= 0,

After expanding, the characteristic equation is

(λ + μ1)�(λ) = 0,
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where �(λ) = βT 0k
∫∞
0 p(a)Ω(a)e−λada − (λ + μ2 + k)(λ + μ3).

It is obvious that the stability of E0 is determined by the roots of �(λ) = 0. If
�0 > 1, we have �(0) = μ3(μ2 + k)(�0 − 1) > 0 and lim

λ→+∞ �(λ) = −∞. By

Intermediate Value Theorem, there is at least one positive zero of �(λ). Hence, E0
is unstable if �0 > 1. Next, we assume �0 < 1. We claim all zeros of �(λ) have
negative real parts. In fact, by contradiction, we suppose λ0 is a root of�(λ) = 0 with
Re(λ0) ≥ 0, then we can obtain

(λ0 + μ3)(λ0 + μ2 + k)

k
= βT 0

∫ ∞

0
p(a)Ω(a)e−λ0ada, (18)

It follows that

μ3(μ2 + k)

k
≤
∣
∣
∣
(λ0 + μ3)(λ0 + μ2 + k)

k

∣
∣
∣ =

∣
∣
∣βT 0

∫ ∞

0
p(a)Ω(a)e−λ0ada

∣
∣
∣ ≤ βT 0A,

which contradicts with �0 < 1. Therefore, if �0 < 1, all the roots of f (λ) = 0 have
negative real parts. Accordingly, the virus-free steady state E0 is locally asymptotically
stable.

(ii) With the same technique of (i), the characteristic equation of system (2) at the
infection steady state E1 is given by

∣
∣
∣
∣
∣
∣
∣
∣

r + μ1 + βV ∗ βT ∗ 0 0
βV ∗ βT ∗ 0 −1
0 0 −r − μ2 − k

∫∞
0 p(a)Ω(a)e−rada

0 r + μ3 −k 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

After expanding, we have

(r + μ3)(r + μ2 + k)(r + μ1 + βV ∗) = (r + μ1)βkT ∗
∫ ∞

0
p(a)Ω(a)e−rada.

(19)

Obviously, r = −μ3 and r = −(μ2 + k) are not the roots of Eq. (19). Then, we can
rewrite Eq. (19) as follows:

r + μ1 + βV ∗ = βkT ∗(r + μ1)
∫∞
0 p(a)Ω(a)e−rada

(r + μ3)(r + μ2 + k)
. (20)

Notice that
∫∞
0 p(a)i∗(a)da = (μ2+k)D∗, D∗ = μ3V ∗

k , i∗(0) = βT ∗V ∗ if�0 > 1.
Then, if r0 is a root of Eq. (20) with Re(r0) ≥ 0, we can obtain the following two
inequalities

∣
∣r0 + μ1 + βV ∗∣∣ >

∣
∣r0 + μ1

∣
∣
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and

∣
∣
∣
βkT ∗(r0 + μ1)

∫∞
0 p(a)Ω(a)e−r0ada

(r0 + μ3)(r0 + μ2 + k)

∣
∣
∣

≤
∣
∣
∣
βkT ∗ ∫∞

0 p(a)Ω(a)da

μ3(μ2 + k)

∣
∣
∣
∣
∣(r0 + μ1)

∣
∣

=
∣
∣
∣
βkT ∗ ∫∞

0 p(a)Ω(a)i∗(0)da

i∗(0)μ3(μ2 + k)

∣
∣
∣
∣
∣r0 + μ1

∣
∣

=
∣
∣
∣
βkT ∗ ∫∞

0 p(a)i∗(a)da

i∗(0)μ3(μ2 + k)

∣
∣
∣
∣
∣r0 + μ1

∣
∣

=
∣
∣
∣
βkT ∗(μ2 + k)D∗

i∗(0)μ3(μ2 + k)

∣
∣
∣
∣
∣r0 + μ1

∣
∣

=
∣
∣
∣

βkT ∗

i∗(0)μ3(μ2 + k)

(μ2 + k)μ3V ∗

k

∣
∣
∣
∣
∣(r0 + μ1)

∣
∣

= ∣
∣r0 + μ1

∣
∣.

The above inequalities contradicts with Eq. (20). Hence, all roots of Eq. (19) have
negative real parts. Therefore, the infection steady state E1 is locally asymptotically
stable. �

4 Asymptotically Smooth and Uniform Persistence

In this section, we show that the semiflow {U (t)}t≥0 is asymptotically smooth and
uniform persistence. Because in the following section, we will use Lyapunov func-
tionals and LaSalles invariance principle to show the global stability of each steady
states. Since the state space X0+ is the infinite dimensional Banach space, we need
the semiflow {U (t)}t≥0 is asymptotically smooth. Furthermore, we need the semiflow
generated by the system (2) is uniformly persistent to make sure the Lyapunov func-
tional is well defined. Firstly, we show the semiflow is asymptotically smooth. Rewrite
U := Φ + �, where

Φ(t)X0 : = (0,�1(·, t), 0, 0), (21)

�(t)X0 : = (T (t),�2(·, t), D(t), V (t)), (22)

with

�1(·, t) =
{
0, t > a ≥ 0,
i(t, a), a ≥ t ≥ 0.

and �2(·, t) =
{

i(t, a), t > a ≥ 0,
0, a ≥ t ≥ 0.

We are now in the position to prove the following theorem.

Theorem 4 For any X0 ∈ ϒ , {U (t)X0 : t ≥ 0} has compact closure in X if the
following two conditions hold:
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(i) There exists a function � : R+ × R+ → R+ such that for any r > 0,
limt→∞ �(t, r) = 0, and if X0 ∈ Ω with ‖X0‖X ≤ r , then ‖Φ(t)X0‖X ≤ �(t, r)

for t ≥ 0;
(ii) For t ≥ 0, �(t)X0 maps any bounded sets of ϒ into sets with compact closure in

X .

Proof Step I. To show (i) holds. Let �(t, r) := e−δt r , where δ is defined in (A1). It is
obvious that limt→∞ �(t, r) = 0. Then, for X0 ∈ ϒ satisfying ‖X0‖X ≤ r , we have

‖Φ(t)X0‖X = |0| +
∫ ∞

0
|�1(a, t)|da + |0| + |0|

=
∫ ∞

t

∣
∣
∣
∣i0(a − t)

Ω(a)

Ω(a − t)

∣
∣
∣
∣ da

=
∫ ∞

0

∣
∣
∣
∣i0(s)

Ω(s + t)

Ω(s)

∣
∣
∣
∣ ds

≤ e−δt
∫ ∞

0
|i0(s)|ds

≤ e−δt‖X0‖X ≤ �(t, r), t ≥ 0.

Then, we completes the proof of condition (i).
Step II. To show (ii) holds. We need to show that �2(t, a) remain in a precompact

subset of L1+(0,∞). In order to prove it, we should show the following conditions
hold (see [38][Theorem B.2]):

(a) The supremum of
∫∞
0 �2(t, a)da with respect to X0 ∈ ϒ is finite;

(b) limu→∞
∫∞

u �2(t, a)da = 0 uniformly with respect to X0 ∈ ϒ ;
(c) limu→0+

∫∞
0 (�2(t, a + u)−�2(t, a))da = 0 uniformly with respect to X0 ∈ ϒ ;

(d) limu→0+
∫∞

u �2(t, a)da = 0 uniformly with respect to X0 ∈ ϒ .

Conditions (a), (b) and (d) hold since (8) holds. Next, we verify condition (c). For
sufficiently small u ∈ (0, t), we have

∫ ∞

0
|�2(t, a + u) − �2(t, a)|da

=
∫ t−u

0
|βT (t − a − u)V (t − a − u)Ω(a + u) − βT (t − a)V (t − a)Ω(a)|da

+
∫ t

t−u
|0 − βT (t − a)V (t − a)Ω(a)|da

≤
∫ t−u

0
βT (t − a − u)V (t − a − u)|Ω(a + u) − Ω(a)|da

+
∫ t−u

0
|βT (t − a − u)V (t − a − u) − βT (t − a)V (t − a)|Ω(a)da

+u

(
�

μ0

)2
βk p̄

μ3(μ2 + k)
.
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Since Ω(a) is non-increasing function with respect to a and 0 ≤ Ω(a) ≤ 1, we have

∫ t−u

0
|Ω(a + u) − Ω(a)|da =

∫ t−u

0
(Ω(a) − Ω(a + u))da

=
∫ t−u

0
Ω(a)da −

∫ t

u
Ω(a)da

=
∫ u

0
Ω(a)da −

∫ t

t−u
Ω(a)da ≤ u.

Then,

∫ ∞

0
|�2(t, a + u) − �2(t, a)|da ≤ 2u

(
�

μ0

)2
βk p̄

μ3(μ2 + k)
+ �

where

� =
∫ t−u

0
|βT (t − a − u)V (t − a − u) − βT (t − a)V (t − a)|Ω(a)da.

Thanks to the argument in [27][Proposition 6], T (·)V (·) is Lipschitz on R+, let M1
be the Lipschitz coefficients of T (·)V (·). Then,

� ≤ βM1u
∫ t−u

0
Ω(a)da ≤ βM1u

∫ t−u

0
Ω(a)da ≤ βM1u

δ
.

Thus,

∫ ∞

0
|�2(t, a + u) − �2(t, a)|da ≤ 2u

(
�

μ0

)2 (
β p̄

μ2
+ k̄

)

+ βM1u

δ

which converges to 0 as u → 0+, then condition (c) holds. The proof is completed. �
Hence, Theorem 4 ensures the following proposition.

Proposition 2 Let Assumption (A1) and (A2) hold, then the solution semiflow
{U (t)}t≥0 is asymptotically smooth.

In the following of this section, we investigate the uniform persistence of system
(2). Similar to the arguments in [4,34], we define

M̂ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

T(
0
i

)

D
V

⎞

⎟
⎟
⎟
⎟
⎠

∈ X0+ : ∫∞
0 i(s)ds + D + V > 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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and

∂ M̂ = X0+\M̂ .

Lemma 2 The sets M̂ and ∂ M̂ are both positively invariant under the semiflow
{U (t)}t≥0 generated by system (2) onX0+. Moreover, for each ζ ∈ ∂ M̂, U (t)ζ → E0
as t → ∞.

Proof Let

G(t) = D(t) + V (t) +
∫ ∞

0
i(t, a)da.

We obtain that

dG(t)

dt
=
∫ ∞

0
p(a)i(t, a)da − μ2D(t) − μ3V (t) + βT (t)V (t) −

∫ ∞

0
δ(a)i(t, a)da

≥ −μ2D(t) − μ3V (t) − δ̄

∫ ∞

0
i(t, a)da

≥ −a1G(t),

where a1 = max{μ2, μ3, δ̄}. For any ζ̃ =
(

T̃ , (0, ĩ), D̃, Ṽ
)T ∈ M̂ , we have G(0) >

0. Then,G(t) ≥ G(0)e−a1t > 0which shows thatU (t)M̂ ⊂ M̂ , that is, M̂ is positively
invariant.

For any ζ = (T0, (0, i0), D0, V0)
T ∈ ∂ M̂ , we have V0 = V (0) = 0, D0 = D(0) =

0,
∫∞
0 i(a)da = 0. Next, we prove ∂ M̂ is positively invariant.

By using of Volterra formulation (9), the third equation of (2) is written as

dD(t)

dt
= β

∫ t

0
p(a)T (t − a)V (t − a)Ω(a)da

+
∫ ∞

t
p(a)i0(a − t)

Ω(a)

Ω(a − t)
da − (μ2 + k)D(t). (23)

By the fourth equation of (2) and initial value V (0) = 0, it follows that V (t) =
k
∫ t
0 D(s)e−μ3(t−s)ds. Substituting V (t) into (23), we can obtain

dD(t)

dt
= βk

∫ t

0
p(a)T (t − a)Ω(a)e−μ3(t−a)

∫ t−a

0
D(s)eμ3sdsda

+
∫ ∞

t
p(a)i0(a − t)

Ω(a)

Ω(a − t)
da − (μ2 + k)D(t).

We claim that D(t) = 0 and V (t) = 0 for all t ≥ 0 if D(0) = 0 and V (0) = 0 (see
[5][Lemma 4.3] for details). Hence, we have

0 ≤
∫ ∞

0
i(t, a)da =

∫ t

0
βT (t − a)V (t − a)Ω(a)da +

∫ ∞

t
i0(a − t)

Ω(a)

Ω(a − t)
da ≤ 0
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which implies that
∫∞
0 i(t, a)da = 0. Therefore, ∂ M̂ is positively invariant.

Furthermore,
∫∞
0 i(t, a)da = 0 implies limt→∞ ||i(t, a)||L1 = 0. Since

(D(t), V (t)) → (0, 0) as t → ∞, we have that T (t) → T 0 as t → ∞ from
the system (2). Hence, it follows that U (t)ζ → E0 as t → ∞ for each ζ ∈ ∂ M̂ . �

Followed by the results in [10,23], we have the following theorem.

Theorem 5 If �0 > 1, the semiflow {U (t)}t≥0 generated by system (2) is uniformly
persistent with respect to the pair (∂ M̂, M̂); that is , there exists ε > 0 such that

lim inf
t→+∞ d

(
U (t)ζ, ∂ M̂

) ≥ ε

for any ζ ∈ M̂.

Proof According to Lemma 2 and Theorem 1, the conditions (i)-(iii) of Theorem 4.1
in [10] are satisfied. Theorem 4.1 in [10] states that {U (t)}t≥0 is uniformly persistent
if and only if

W s(E0) ∩ M̂ = ∅, (24)

where

W s(E0) =
{

ζ ∈ ϒ : lim
t→+∞ U (t)ζ = E0

}

. (25)

By way of contradiction, suppose that ζ0 ∈ W s(E0)∩ M̂ . Then, there exists t1 > 0
such that D(t1) + V (t1) + ∫∞

0 i(t1, a)da > 0 since ζ0 ∈ M̂ . Hence, D(t) + V (t) +
∫∞
0 i(t, a)da > 0 when t ≥ t1.

On the other hand, we can choose ε0 small enough such that
kβη

(
T 0−ε0

)

μ3(μ2+k)
> 1 for

�0 > 1. And ζ0 ∈ W s(E0) implies that limt→+∞ T (t) = T 0. Then, for the above ε0,
there must exist some t2 ≥ 0 such that T (t) > T 0 − ε0 for all t ≥ t2.

Let

G1(t) = k
∫ ∞

0
Φ(a)i(t, a)da + k D(t) + (μ2 + k)V (t),

where Φ(a) is defined by (5). Notice that Φ(0) = η. Then, for t ≥ t2, we have

dG1(t)

dt

∣
∣
∣
(2)

= −μ3(μ2 + k)V (t) + kΦ(0)i(t, 0)

= (
kβηT (t) − μ3(μ2 + k)

)
V (t)

≥
(

kβη
(

T 0 − ε0

)
− μ3(μ2 + k)

)
V (t)

≥ μ3(μ2 + k)

(
kβη

(
T 0 − ε0

)

μ3(μ2 + k)
− 1

)

V (t)

≥ 0,

(26)
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which is a non-decreasing function for t ≥ t2. Therefore, G1(t) ≥ G1(t0) > 0 for
all t ≥ t0 with t0 = max{t1, t2}, which prevents (i(t, a), D(t), V (t)) converging to(
0L1 , 0, 0

)
as t → ∞. A contradiction with ζ ∈ W s(E0). �

5 Global Stability of Steady States

In this section, we study the global stability of steady states by constructing appropriate
Lyapunov functionals. For global stability of the virus-free steady state, we have the
following result.

Theorem 6 If �0 < 1, the virus-free steady state E0 is globally asymptotically stable.

Proof We define the following function

H(x) = x − 1 − ln x, ∀x > 0,

and define the Lyapunov functional as:

L = L1 + L2 + βT 0

μ3

k

μ2 + k
D(t) + βT 0

μ3
V (t),

where

L1 = T 0H

(
T

T 0

)

and L2 = βT 0

μ3

k

μ2 + k

∫ ∞

0
Φ(a)i(t, a)da.

Then, we have

dL1(t)

dt

∣
∣
∣
(2)

= T − T 0

T

(
� − μ1T (t) − βT (t)V (t)

)

= −μ1

T
(T − T 0)2 − i(t, 0) + βT 0V (t)

and

dL2(t)

dt

∣
∣
∣
(2)

=
∫ ∞

0
Φ(a)

∂

∂t
i(t, a)da

= −
∫ ∞

0
Φ(a)

( ∂

∂a
i(t, a) + δ(a)i(t, a)

)
da

= −
∫ ∞

0
Φ(a)δ(a)i(t, a)da −

∫ ∞

0
Φ(a)di(t, a)

= − lim
a→+∞ Φ(a)i(t, a) + Φ(0)i(t, 0)

+
∫ ∞

0

(dΦ(a)

da
− δ(a)Φ(a)

)
i(t, a)da.
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By Assumption (A2), we know that lima→+∞ Φ(a)i(t, a) = 0. Notice thatΦ(0) = η

and dΦ(a)
da = δ(a)Φ(a) − p(a). Hence, we obtain that

dL

dt

∣
∣
∣
(2)

= −μ1

T
(T − T 0)2 + (�0 − 1)i(t, 0).

It is clear that dL
dt ≤ 0 if �0 < 1. Furthermore, when �0 < 1, dL

dt = 0 if and only
if T = T 0, V = 0. Hence, {((T , i, D, V ))| dL

dt = 0} = {E0}, which is the largest
invariant subset of {((T , i, D, V ))| dL

dt = 0}. Thanks the asymptotic smoothness of
the semiflow as shown in Proposition 2, it follows from the arguments in [11,21] that
the semiflow {U (t)}t≥0 admits a global attractor. According to the Lyapunov–LaSalle
invariance principle, the virus-free steady state E0 is globally asymptotically stable
when �0 < 1. �

Next, we discuss global stability of the infection steady state.

Theorem 7 If �0 > 1, the infection steady state E∗ is globally asymptotically stable.

Proof LetΦ(θ) andη be defined in (5).Weconstruct aLyapunov functional as follows:

W = W1 + 1

η
W2 + 1

η
W3 + 1

η

μ2 + k

k
W4,

where W1 = T ∗ H
(

T (t)
T ∗

)
, W2 = ∫∞

0 Φ(θ)i∗(θ)H
(

i(t,θ)
i∗(θ)

)
dθ , W3 = D∗H

(
D(t)
D∗

)

and W4 = V ∗H
(

V (t)
V ∗

)
. We first calculate the derivative of W1. Then, we obtain that

dW1

dt

∣
∣
∣
(2)

= T − T ∗

T

(
� − μ1T (t) − βT (t)V (t)

)

= T − T ∗

T

(
μ1T ∗ + βT ∗V ∗ − μ1T (t) − βT (t)V (t)

)

= −μ1

T
(T − T ∗)2 + i∗(0) − i(t, 0) − i∗(0)T ∗

T
+ i(t, 0)

T ∗

T

= −μ1

T
(T − T ∗)2 + i∗(0) − i(t, 0)

− 1

η

∫ ∞

0
p(θ)i∗(θ)

T ∗

T
dθ + 1

η

∫ ∞

0
p(θ)i∗(θ)

V

V ∗ dθ.

Next, calculating the derivative of W2, one has that

dW2

dt

∣
∣
∣
(2)

= d

dt

∫ ∞

0
Φ(θ)i∗(θ)H

( i(t, θ)

i∗(θ)

)
dθ

=
∫ ∞

0
Φ(θ)

(
1 − i∗(θ)

i(t, θ)

) ∂

∂t
i(t, θ)dθ

=
∫ ∞

0
Φ(θ)

(
1 − i∗(θ)

i(t, θ)

)(
− δ(θ)i(t, θ) − ∂

∂θ
i(t, θ)

)
dθ
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= −
∫ ∞

0
Φ(θ)i∗(θ)d

( i(t, θ)

i∗(θ)
− 1 − ln

i(t, θ)

i∗(θ)

)

= −Φ(θ)i∗(θ)
( i(t, θ)

i∗(θ)
− 1 − ln

i(t, θ)

i∗(θ)

)∣
∣
∣
θ=∞
θ=0

+
∫ ∞

0

( i(t, θ)

i∗(θ)
− 1 − ln

i(t, θ)

i∗(θ)

)(dΦ(θ)

dθ
i∗(θ) + di∗(θ)

dθ
Φ(θ)

)
dθ.

Since Φ(0) = η,
dΦ(θ)
dθ = δ(θ)Φ(θ) − p(θ) and di∗(θ)

dθ = −δ(θ)i∗(θ), we have

1

η

dW2

dt

∣
∣
∣
(2)

= −1

η
Φ(θ)i∗(θ)

( i(t, θ)

i∗(θ)
− 1 − ln

i(t, θ)

i∗(θ)

)∣
∣
∣
θ=∞
θ=0

+ 1

η

∫ ∞

0

( i(t, θ)

i∗(θ)
− 1 − ln

i(t, θ)

i∗(θ)

)(dΦ(θ)

dθ
i∗(θ) + di∗(θ)

dθ
Φ(θ)

)
dθ

= −1

η
Φ(θ)i∗(θ)

( i(t, θ)

i∗(θ)
− 1 − ln

i(t, θ)

i∗(θ)

)∣
∣
∣
θ=∞

+ 1

η

∫ ∞

0
p(θ)i∗(θ)

( i(t, 0)

i∗(0)
− 1 − ln

i(t, 0)

i∗(0)

)
dθ

− 1

η

∫ ∞

0
p(θ)i∗(θ)

( i(t, θ)

i∗(θ)
− 1 − ln

i(t, θ)

i∗(θ)

)
dθ.

By some calculations, we also have

1

η

dW3

dt

∣
∣
∣
(2)

= 1

η

(
1 − D∗

D

)( ∫ ∞

0
Φ(θ)i(t, θ)dθ − (μ2 + k)D

)

= 1

η

∫ ∞

0
p(θ)i∗(θ)

i(t, θ)

i∗(θ)
dθ − 1

η

∫ ∞

0
p(θ)i∗(θ)

D

D∗ dθ

− 1

η

∫ ∞

0
p(θ)i∗(θ)

i(t, θ)

i∗(θ)

D∗

D
dθ + 1

η

∫ ∞

0
p(θ)i∗(θ)dθ

and

1

η

μ2 + k

k

dW4

dt

∣
∣
∣
(2)

= 1

η

μ2 + k

k

(
1 − V ∗

V

)(
k D − μ3V

)

= 1

η

∫ ∞

0
p(θ)i∗(θ)

D

D∗ dθ − 1

η

∫ ∞

0
p(θ)i∗(θ)

V

V ∗ dθ

− 1

η

∫ ∞

0
p(θ)i∗(θ)

V ∗

V

D

D∗ dθ + 1

η

∫ ∞

0
p(θ)i∗(θ)dθ.

Combining the above four parts, we have

dW

dt

∣
∣
∣
(2)

= −μ1

T
(T − T ∗)2 − 1

η
p(θ)i∗(θ)H

( i(t, θ)

i∗(θ)

)∣
∣
∣
θ=∞

−1

η

∫ ∞

0
p(θ)i∗(θ)

{

H
(T ∗

T

)
+ H

(V ∗

V

D

D∗
)

+ H
( i(t, θ)

i∗(θ)

D∗

D

)}

dθ.
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Thus, dW
dt

∣
∣
(2) ≤ 0 and dW

dt

∣
∣
(2 = 0 if and only if T

T ∗ = V ∗
V

D
D∗ = i(t,θ)

i∗(θ)
D∗
D = 1, that is,

{(T , i(t, a), D, V )} = {(T ∗, i∗(a), D∗, V ∗)}. Hence,
{
(T , i, D, V )

∣
∣
∣ dW
dt

∣
∣
(2) = 0

}
=

{E∗}, which is the largest invariant subset of
{
(T , i, D, V )

∣
∣
∣ dW
dt

∣
∣
(2) = 0

}
. Thanks the

asymptotic smoothness of the semiflow as shown in Proposition 2, it follows from the
arguments in [11,21] that the semiflow {U (t)}t≥0 admits a global attractor. By using
Lyapunov–LaSalle invariance principle, we can conclude that the infection steady
state E∗ is globally asymptotically stable when �0 > 1. �

6 Numerical Simulations

In this section, we perform some numerical simulations to illustrate our theoretical
results. Here, we fix parameters � = 2.6 × 107, μ1 = 0.01 which are from [3] and
parameters μ2 = 0.053, μ3 = 3.8, k = 0.87 which come from [29].

Furthermore, we set the maximum age-infection for infected cells as a† = 24 and
assume

δ(a) = 0.053

(

1 + sin
(a − 12) π

24

)

,

p(a) = 150

(

1 + sin
(a − 12) π

24

)

, 0 ≤ a ≤ 24,

so that each of the averages is equal to 0.053 and 150, respectively, which were in line
with those in [29].

Let a = 10 and we observe the dynamical behavior of solutions when β varies.
If we choose β = 1.67 × 10−12 (which comes from [29]), then �0 = 3.9548 > 1

and infection steady state is E∗ = (6.5742×108, 1.7226×107, 7.7282×109, 1.7694×
109). From Theorem 7, the infection steady state is globally asymptotically stable (see
Fig. 1).

When we choose β = 3 × 10−13 ( which is from [2]), thus �0 = 0.0710 < 1
and virus-free steady states is E0 = (2.6000 × 109, 0, 0, 0). From Theorem 6, the
virus-free steady state is globally asymptotically stable (see Fig. 2).

7 Discussion

Many researchers have proposed models for HBV dynamics which manifest the
relation of uninfected and infected hepatocytes along with the virions. Few models
consider the virions produced frommature intracellularHBVDNA-containing capsids
(see Murray et al. [30], Manna and Chakrabarty [24]). Taking into account the age-
dependent mortality rate and virus production rate of infected cells, we generalized
theirmodels to an age-structuredmodel ofHBV infectionswithHBVDNA-containing
capsids. By a standard theory of non-densely defined operator [21], we reformulated
the model as an abstract Cauchy problem and we showed the existence and unique-
ness of solutions for the original model. The existence of two steady states based on
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Fig. 1 The plots show variables i(t, 10), D(t), and V (t) is converging to its infection steady state, respec-
tively, as time t , where β = 1.67 × 10−11, a = 10 and �0 = 3.9548 > 1
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Fig. 2 The plots show that variables i(t, 10), D(t), V (t) are converging to their virus-free steady state
value, respectively, as time t increases, where β = 3 × 10−13, a = 10 and �0 = 0.0710 < 1
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basic reproduction number �0 is obtained, and we proved the local stability of each
steady states by linearizing the system and analyze the corresponding characteristic
equation. In order to using Lyapunov–LaSalle invariance principle to prove the global
asymptotical stability of themodel, we showed the asymptotically smooth and uniform
persistence of solution semiflow. Our main results are: if�0 < 1, the virus-free steady
state is globally asymptotically stable; otherwise, the virus-free steady state became
unstable and the infection steady state is globally asymptotically stable if �0 > 1. At
last, we give some numerical simulations to support our theoretical analysis.

It should be pointed out, we have not studied the case �0 = 1. In fact, in the
proof of local stability of disease-free equilibrium, we can obtain the characteristic
equation �(λ) and there may exist zero eigenvalue if R0 = 1. This may lead to more
complex dynamic behavior. For example, Qesmi et al. [35] propose a mathematical
model describing the dynamics of hepatitis B or C virus infection with age-structure,
and they found that the system may undergo a backward bifurcation when �0 = 1. It
is an ongoing project for us to study the dynamical behavior of system (2). The host
immune system plays an important role in the progress of the viral infection. Many
authors have considered the immune response in modeling viral infection, for example
[1,8,43]. Based on the above facts, we propose an age-structured HBV infection with
DNA-containing capsids by incorporating immune response with nonlinear incidence
into the model (2) for our future work.
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