
Bull. Malays. Math. Sci. Soc. (2021) 44:1401–1416
https://doi.org/10.1007/s40840-020-01007-5

On the Second Homology of Crossed Modules

Tahereh Fakhr Taha1 · Hajar Ravanbod1 · Ali Reza Salemkar1

Received: 27 July 2019 / Revised: 23 August 2020 / Accepted: 25 August 2020 /
Published online: 15 September 2020
©Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020

Abstract
In this article, we present a new description of the integral second homology of crossed
modules of groups and generalize two basic results on the integral second homology
of groups for crossed modules. Using these, we strengthen some consequences on
covering pairs and the universal relative central extensions of pairs of finite groups.
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1 Introduction

Several definitions for the homology of crossed modules have been given during the
last years: Ellis [7] and Baues [2] introduced the homology of a crossed module to be
the homology of its classifying space. Grandjeán and Ladra [10] defined the second
homology crossed module by means of a Hopf formula applied to a particular kind of
presentations called ε-projective. Also, associated with an extension of crossed mod-
ules, they [16] gave the construction of a five-term exact sequence for the homology
of crossed modules. In continuation, Pirashvili [21] presented the notion of the tensor
product of two abelian crossed modules, and he used it to construct the Ganea map,
that is, extended the above five-term exact sequence one term further. Carrasco et al.
[6], using the general theory of cotriple homology of Barr and Beck, defined the inte-
gral homology crossed modules of a crossed module as the simplicial derived functors
of the abelianization functor from the category of crossed modules to the category of
abelian crossed modules and generalized some classical results of the homology of
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groups. Considering projective presentations introduced in [6] instead of ε-projective
presentations, they also obtained the results given in [10,16].

Recently, authors [22] introduced the notions of the non-abelian tensor and exterior
products of two normal crossed submodules of some crossed module of groups, which
are generalizations of the works of Brown and Loday [4,5] and Pirashvili [21].

In this article, we give a new description of the second homology of crossed mod-
ules; in fact, we describe the second homology of crossed modules as the central
crossed submodules of their exterior products, which generalizes a result of Miller
[18] for groups. Also, we show that the second homology of the direct product of two
crossed modules is isomorphic to the direct product of the second homology of the
factors and the tensor product of the two crossed modules abelianized. Finally, we
give some applications to covering pairs and the universal central extensions of pairs
of finite groups.

2 Preliminaries on CrossedModules

In this section, we briefly recall some basic definitions in the category of crossed
modules, which will be needed in the sequel.

A crossed module T = (T ,G, ∂) is a group homomorphism ∂ : T −→ G together
with an action ofG on T , written gt for t ∈ T and g ∈ G, satisfying ∂(gt) = g∂(t)g−1

and ∂(t)t ′ = t t ′t−1, for all t, t ′ ∈ T , g ∈ G. It is worth noting that for any crossed
module (T ,G, ∂), Im∂ is a normal subgroup of G and ker ∂ is a G-invariant subgroup
in the center of T . Clearly, for any normal subgroup N of a group G, (N ,G, i) is
a crossed module, where i is the inclusion and G acts on N by conjugation. In this
way, every group G can be seen as a crossed module in two obvious ways: (1,G, i)
or (G,G, id).

A morphism of crossed modules (γ1, γ2) : (T ,G, ∂) −→ (T ′,G ′, ∂ ′) is a pair
of homomorphisms γ1 : T −→ T ′ and γ2 : G −→ G ′ such that ∂ ′γ1 = γ2∂ and
γ1(

gt) = γ2(g)γ1(t) for all g ∈ G, t ∈ T .
Taking objects and morphisms as defined above, we obtain the category CM of

crossed modules. We refer the reader to [10,20] for obtaining more information on
this category.

Let T = (T ,G, ∂) be a crossed module with normal crossed submodules S =
(S, H , ∂) and L = (L, K , ∂). The following is a list of notations which will be used:

• Z(T) = (T G, Z(G) ∩ stG(T ), ∂) is the center of T, where Z(G) denotes the
center of the group G, T G = {t ∈ T | gt = t for all g ∈ G} and stG(T ) = {g ∈
G| gt = t for all t ∈ T }.

• T′ = ([G, T ],G ′, ∂) is the commutator crossed submodule of T, where G ′ =
[G,G] and [G, T ] = 〈 gtt−1 | t ∈ T , g ∈ G〉 is the displacement subgroup of T
relative to G.

• [S,L] is the normal crossed submodule ([K , S][H , L], [H , K ], ∂) of T.
• Tab = (T /[G, T ],Gab, ∂) is the abelianization of T, where Gab = G/G ′ and ∂

is induced by ∂ .
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A crossed module (T ,G, ∂) is perfect if it coincides with its commutator crossed
submodule and is abelian if it coincides with its center.

In [6], it is proved that the category of crossed modules is an algebraic category,
that is, there is a tripleable forgetful functor from the category CM to the category of
sets Set and is deduced that every crossed module admits a projective presentation.
Also, it is shown in [1] that if (Y , F, μ) is a projective crossed module, then it can be
assumed that μ is inclusion and the groups F , F/Y are free objects in the category
of groups. Now, let (V , R, μ) � (Y , F, μ) � (T ,G, ∂) be a projective presentation
of the crossed module (T ,G, ∂). It is proved in [6] that the second homology crossed
module of (T ,G, ∂) is, up to isomorphism, the abelian crossed module

(
V ∩ [F,Y ]

[R,Y ][F, V ] ,
R ∩ F ′

[F, R] , μ̄

)
.

Considering a group G as a crossed module in the two usual ways, we have
H2(1,G, i) = (1, H2(G), i) or H2(G,G, id) = (H2(G), H2(G), id), which gives
the Hopf’s formula [13]. Note that in the above projective presentation of (T ,G, ∂),
if ∂ is injective, then V = R ∩ Y .

A central extension e : (A, B, ∂∗) � (T ∗,G∗, ∂∗) � (T ,G, ∂) is called a stem
extension of (T ,G, ∂) if (A, B, ∂∗) ⊆ (T ∗,G∗, ∂∗)′. If, in addition, (A, B, ∂∗) ∼=
H2(T ,G, ∂), then e is called a stem cover. In this case, (T ∗,G∗, ∂∗) is said to be a
covering crossed module of (T ,G, ∂). In [19], it is proved that any crossed module
(T ,G, ∂) admits at least one covering crossed module and is determined the structure
of all stem covers of a crossed module whose second homology is finite.

Finally, we recall from [22] that the non-abelian tensor and exterior products of
two normal crossed submodules (S, H , ∂) and (L, K , ∂) of a given crossed module
are defined, respectively, as

(S, H , ∂) ⊗ (L, K , ∂) = (cokerα, H ⊗ K , δ),

(S, H , ∂) ∧ (L, K , ∂) =
(
cokerα

I
, H ∧ K , δ̄

)
,

in which α = (idS ⊗ ∂, (∂ ⊗ idL)−1) and the map δ is induced on cokerα by the
homomorphism β = 〈∂ ⊗ idK , idH ⊗ ∂〉:

Also, I is a normal subgroupof cokerα generated by the elements (x⊗y, (y⊗x)(∂(z)⊗
z))Imα for all x, z ∈ S ∩ L , y ∈ H ∩ K . In the case of abelian crossed modules, the
definition of the tensor product holds for any two abelian crossed modules (see [21]).

The proof of the following lemma is straightforward, and it will be left to the reader.
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Lemma 2.1 Let A1 = (A1, B1, ∂1), A2 = (A2, B2, ∂2) and A = (A, B, ∂) be abelian
crossed modules. Then

(i) If f = ( f1, f2) : A1 −→ A and g = (g1, g2) : A2 −→ A are morphisms of
crossed modules, then f ∗ g = ( f1 ∗ g1, f2 ∗ g2) : A1 × A2 −→ A is a morphism
of crossed modules, where f1 ∗ g1(a1, a2) = f1(a1)g1(a2) and f2 ∗ g2(b1, b2) =
f2(b1)g2(b2), for all ai ∈ Ai , bi ∈ Bi , i = 1, 2.

(i i) There exists an isomorphism ν = (ν1, ν2) : A1 ⊗A2 −→ A2 ⊗A1 defined by

ν1((a1 ⊗ b2, b1 ⊗ a2)Imα)

= (
(a2 ⊗ b1)

−1, (b2 ⊗ a1)
−1)Imα′ and ν2(b1 ⊗ b2) = (b2 ⊗ b1)

−1.

The next proposition provides some properties of the above notions, which is useful
in our investigation.

Proposition 2.2 [22] Let T = (T ,G, ∂) be a crossed module. Then
(i) There is a morphism of crossed modules (τ1, τ2):T ⊗ T −→ T, where

Im(τ1, τ2) = T′ and J2(T) := ker(τ1, τ2) is abelian.
(i i) There is an isomorphism of crossed modules (ϕ̃, id):T∧T −→ (G ∧ T ,G ∧

G, id∧∂), where ϕ̃ is induced byμ : (T⊗G)�(G⊗T ) −→ G⊗T ,μ(x, y) = θ(x)y,
in which θ : T ⊗ G −→ G ⊗ T is defined by θ(t ⊗ g) = (g ⊗ t)−1.

(i i i) Let S and L be normal crossed submodules of T. If [S,L] = 1, then S⊗L ∼=
Sab ⊗ Lab.

(iv) If T is simply connected (that is, ∂ is onto), then there is a natural exact
sequence

�(Tab) −→ T ⊗ T � T ∧ T,

in which �(Tab) is a generalized version of Whitehead’s universal quadratic functor
(see [21] for more information).

3 Main Results

Miller [18] proves that, for any group G, the second homology of G is isomorphic to

the kernel of the commutator map G ∧G
[ , ]−→ G. Using this result, he determines the

behavior of the functor H2(−) with respect to the direct product of groups and, also,
Ellis [8] gets a six-term exact sequence in homology

H2(G, N ) −→ H2(G) −→ H2(Q) −→ N/[G, N ] −→ H1(G) � H1(Q),

from a short exact sequence of groups N � G � Q. Here, H2(G, N ) denotes the
second relative Chevally–Eilenberg homology of the pair (G, N ), which is isomorphic
to ker(G ∧ N −→ G) (see [5]). In this section, we generalize these results to crossed
modules. In fact, we prove
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Theorem 3.1 (i) For arbitrary crossed module T = (T ,G, ∂), H2(T) ∼= ker(T ∧ T
−→ T). In particular, H2(T) ∼= (ker(G ∧ T −→ T ), ker(G ∧ G −→ G), id ∧ ∂).

(i i) If e : S � T � M is an extension of crossed modules, then there is a natural
exact sequence

ker(T ∧ S −→ T) −→ H2(T) −→ H2(M) −→ S
[S,T] −→ H1(T) � H1(M),

where H1(−) denotes the first homology of crossed modules [11].

Theorem 3.2 For crossed modules T1 = (T1,G1, ∂1) and T2 = (T2,G2, ∂2), there
are isomorphisms

J2(T1 × T2) ∼= J2(T1) × J2(T2) × (T1ab ⊗ T2ab ) × (T2ab ⊗ T1ab ),

H2(T1 × T2) ∼= H2(T1) × H2(T2) × (T1ab ⊗ T2ab ).

In order to prove these theorems, we need the following two propositions, which are
generalizations of [8, Proposition 1] and [3, Proposition 10], respectively.

Proposition 3.3 LetS = (S, H , ∂)beanormal crossed submodule of a crossedmodule
T = (T ,G, ∂). Then there is an exact sequence of crossed modules

T ∧ S
η−→ T ∧ T

π
� T

S
∧ T

S
.

Proof By the definition of the exterior product of crossed modules, we set

T ∧ S = (cokerα1/I1,G ∧ H , δ̄1) , T ∧ T = (cokerα/I ,G ∧ G, δ̄),

T
S

∧ T
S

= (cokerᾱ/ Ī ,
G

H
∧ G

H
, δ̃).

It is easy to see that the natural epimorphisms T −→ T /S and G −→ G/H
induce the homomorphisms π1 : cokerα/I −→ cokerᾱ/ Ī and π2 : G ∧ G −→
G/H ∧ G/H such that π = (π1, π2) is a surjective morphism. Also, the functional
homomorphisms β1 : T ⊗ H −→ T ⊗ G and β2 : G ⊗ S −→ G ⊗ T give rise to
the homomorphism ϕ : (T ⊗ H) � (G ⊗ S) −→ (T ⊗ G) � (G ⊗ T ) defined by
ϕ(ν, ω) = (β1(ν), β2(ω)). Since ϕ(Imα1) ⊆ Imα, we can obtain the homomorphism
ϕ̃ : cokerα1 −→ cokerα induced by ϕ. Certainly, ϕ̃(I1) ⊆ I and so ϕ̃ induces a
homomorphismη1 : cokerα1/I1 −→ cokerα/I . It is straightforward thatη = (η1, η2)

is a morphism of crossed modules in which η2 : G ∧ H −→ G ∧ G is the functional
homomorphism. To complete the proof, we need to indicate that Imη = ker π . We
have Imη2 = ker π2, thanks to Ellis [8, Proposition 1]. It is easily verified that Imη1 is
a normal subgroup of cokerα/I contained in ker π1. We now show that this inclusion
is an equality by constructing an isomorphism κ̃ : cokerᾱ/ Ī −→ cokerη1. Consider
the maps e1 : T /S × G/H −→ cokerη1 and e2 : G/H × T /S −→ cokerη1 defined
by e1(t S, gH) = (t ⊗ g, 1)Imη1 and e2(gH , t S) = (1, g ⊗ t)Imη1, respectively. For
t1, t2 ∈ T , g1, g2 ∈ G, s ∈ S, h ∈ H , if t1 = t2s, g1 = g2h, then
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e1(t1S, g1H) = (t2s ⊗ g2h, 1)Imη1

= (s ⊗ g2, 1)(s ⊗ h, 1)(t2 ⊗ g2, 1)(t2 ⊗ h, 1)Imη1

= (s ⊗ g2, 1)(t2 ⊗ g2, 1)Imη1,

because (s ⊗ h, 1), (t2 ⊗ h, 1) ∈ Imη1. On the other hand, we have (s ⊗ g2, 1) =
(1, g2 ⊗ s)

−1 ∈ Imη1, since (s ⊗ g2, g2 ⊗ s) = 1 in cokerα/I . It is therefore inferred
that e1(t1S, g1H) = (t2 ⊗ g2, 1)Imη1 = e1(t2S, g2H). So, e1 and, similarly, e2 are
well-defined. It is easy to verify that e1 and e2 are crossed pairings, and the universal
property of the tensor product thus yields the homomorphisms ē1 : T /S ⊗G/H −→
cokerη1 and ē2 : G/H ⊗ T /S −→ cokerη1. Now, the map

κ : (T /S ⊗ G/H) � (G/H ⊗ T /S) −→ cokerη1

defined by κ(x, y) = ē1(x)ē2(y) is a homomorphism that annihilates Imᾱ. So κ

induces the homomorphism κ̄ : cokerᾱ −→ cokerη1 with κ̄( Ī ) = 0, which in turn
induces a homomorphism κ̃ : cokerᾱ/ Ī −→ cokerη1. It is routine to check that κ̃ is
an isomorphism with inverse induced by π2. The proof is complete. 
�
Proposition 3.4 Let M = (M, P, ∂1) and N = (N , Q, ∂2) be two crossed modules
and T = (T ,G, ∂1 × ∂2) be a normal crossed submodule of M × N. Then

(M × N) ⊗ T ∼= (M ⊗ T) × (N ⊗ T).

Proof Using the definition of the tensor product of crossed modules, we suppose that
M⊗T = (cokerα1, P ⊗G, δ1),N⊗T = (cokerα2, Q ⊗G, δ2) and (M×N)⊗T =
(cokerα, (P × Q) ⊗ G, δ), where α1 = (idM ⊗ (∂1 × ∂2), (∂1 ⊗ idT )−1), α2 =
(idN ⊗ (∂1 × ∂2), (∂2 ⊗ idT )−1) and α = (idM×N ⊗ (∂1 × ∂2), ((∂1 × ∂2)⊗ idT )−1).
We only need to define an isomorphism (ψ1, ψ2)

The second component ψ2 is the isomorphism given in [3, Proposition 10], which
is defined on generators by ψ2((p, q) ⊗ g) = (p ⊗ g, q ⊗ g). We now construct ψ1,
which will be induced on cokerα by a homomorphism 〈φ1, φ2〉
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Let us define φ1 and φ2 on generators as follows:

φ1((m, n) ⊗ g) = ((m ⊗ g, 1)Imα1, (n ⊗ g, 1)Imα2),

φ2((p, q) ⊗ t) = ((1, p ⊗ t)Imα1, (1, q ⊗ t)Imα2).

Since the action of M on groups N and Q is trivial, for all m ∈ M , n ∈ N and
g = (g1, g2) ∈ G, we have

m(n ⊗ g) = (
m ⊗ ngg−1)(n ⊗ g) = (

m ⊗ (1,n)(g1, g2)
(
g−1
1 , g−1

2

))
(n ⊗ g)

= (
m ⊗ ng2g

−1
2

)
(n ⊗ g) = m(n ⊗ g2)(n ⊗ g2)

−1(n ⊗ g) = n ⊗ g.

So, M on N ⊗ G and similarly, N on M ⊗ G act trivially. Using these results and
after a long calculations, one can see that φ1 and φ2 preserve the defining relations
of the tensor product of groups and are then homomorphisms. We now claim that
φ1(

ba) = φ2(b)φ1(a) for all a ∈ (M × N ) ⊗ G and b ∈ (P × Q) ⊗ T . Without loss
of generality, we may assume that a = (m, n) ⊗ g and b = (p, q) ⊗ (t1, t2), where
(t1, t2) ∈ T . Then

φ1(
ba) = φ1

((p,q)⊗(t1,t2)((m, n) ⊗ g)
) = φ1

((pt1t
−1
1 , q t2t

−1
2 )

((m, n) ⊗ g)
)

= ((
pt1t1−1m ⊗ (pt1t

−1
1 ,q t2t

−1
2 )g, 1), (

q t2t
−1
2 n ⊗ (pt1t

−1
1 ,q t2t

−1
2 )g, 1))

= ((
q t2t

−1
2 (

pt1t
−1
1 (m ⊗ g)), 1), (

pt1t
−1
1 (

q t2t
−1
2 (n ⊗ g)), 1))

= ((p⊗t (m ⊗ g), 1), (q⊗t (n ⊗ g), 1))

=((1,p⊗t),(1,q⊗t)) ((m ⊗ g, 1), (n ⊗ g, 1))

= φ2((p,q)⊗t)φ1((m, n) ⊗ g).

Note that the forth equality follows from the fact that N acts trivially on M ⊗ G.
It, therefore, follows from Lemma 2.1(i) that the map φ = 〈φ1, φ2〉 : ((M × N ) ⊗
G) � ((P × Q)⊗ T ) −→ cokerα1 × cokerα2 defined by φ(a, b) = (φ1(a), φ2(b)) is
a homomorphism. Because φ annihilates Imα, φ induces the homomorphism ψ1. We
prove that ψ1 is an isomorphism by giving an inverse for it. Consider the canonical
homomorphisms η1 : cokerα1 −→ cokerα, (m ⊗ g, p ⊗ t)Imα1 �−→ ((m, 1) ⊗
g, (p, 1) ⊗ t)Imα, and η2 : cokerα2 −→ cokerα, (n ⊗ g, q ⊗ t)Imα2 �−→ ((1, n) ⊗
g, (1, q) ⊗ t)Imα. Then the map η = 〈η1, η2〉 : cokerα1 × cokerα2 −→ cokerα
given by η(x, y) = η1(x)η2(y) is an inverse for ψ1. One easily sees that (ψ1, ψ2) is
a morphism of crossed modules. 
�
Proof of Theorem 3.1 (i) Let (V , R, μ) � (Y , F, μ) � (T ,G, ∂) be a projective
presentation of the crossed module (T ,G, ∂). It is sufficient to prove

(T ,G, ∂) ∧ (T ,G, ∂) ∼= (Y , F, μ)′

[(Y , F, μ), (V , R, μ)] .
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Since (Y , F, μ) is a projective crossed module, F/Y is a free group. It follows from
[8, Theorem 6] that the kernel of the epimorphism λY : F ∧ Y −→ [F,Y ] is trivial.
Also, the homomorphism λF : F ∧ F −→ F ′ is an isomorphism thanks to Ellis [8,
Proposition 2]. Now, it is readily seen that (λY , λF ) : (F ∧ Y , F ∧ F, id ∧ μ) −→
([F,Y ], F ′, μ) is an isomorphism of crossed modules and

(Y , F, μ) ∧ (Y , F, μ) ∼= ([F,Y ], F ′, μ).

We consider the diagram

where (η1, η2) and (ϕ̃, id) are the morphisms given in Propositions 2.2(ii) and 3.3,
respectively, andψ = (ψ1, ψ2) is the composition of (ϕ̃, id) and (η1, η2). As Imψ1 =
〈 f ∧ ν, r ∧ y | f ∈ F, ν ∈ V , r ∈ R, y ∈ Y 〉 and Imψ2 = 〈r ∧ f | r ∈ R, f ∈ F〉,
for the morphism (λY , λF ) given above, we have

(λY , λF )(Imψ1, Imψ2, id ∧ μ) = ([F, V ][R,Y ], [R, F], μ),

and therefore,

(T ,G, ∂) ∧ (T ,G, ∂) ∼= (F ∧ Y , F ∧ F, id ∧ μ)

Imψ
∼= (Y , F, μ)′

[(Y , F, μ), (V , R, μ)] .

The proof is complete.
(i i) There is the following commutative diagram of crossed modules:

where the rows and, invoking Proposition 3.3, columns are exact. Then, by the snake
lemma, we get the following exact sequence

ker(T ∧ S −→ T) −→ ker(T ∧ T −→ T) −→ ker(M ∧ M −→ M),

and the result now follows from part (i) and [6, Theorem 12(i)]. 
�
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Proof of Theorem 3.2 ByProposition 2.2(i) andTheorem3.1(i), we only need to prove
that

(T1 × T2) ⊗ (T1 × T2) ∼= (T1 ⊗ T1) × (T2 ⊗ T2) × (T1ab

⊗T2ab) × (T2ab ⊗ T1ab), (1)

(T1 × T2) ∧ (T1 × T2) ∼= (T1 ∧ T1) × (T2 ∧ T2) × (T1ab ⊗ T2ab). (2)

Identifying T1 and T2 with their images in the crossed module T1 ×T2, [T1,T2] = 1
and so, according to Proposition 2.2(i i i), T1 ⊗ T2 ∼= T1ab ⊗ T2ab and T2 ⊗ T1 ∼=
T2ab ⊗ T1ab. We therefore obtain the isomorphism (1) by applying Proposition 3.4
twice.

To prove the isomorphism (2), we consider the following diagram

(
T1 × T2

) ⊗ (
T1 × T2

)

ϕ

nat . (
T1 × T2

) ∧ (
T1 × T2

)

η
(
T1 ⊗ T1

) × (
T2 ⊗ T2

) × (
T1ab ⊗ T2ab

) × (
T2ab ⊗ T1ab

)
ψ

λ=idT1⊗T1 ×idT2⊗T2 ×
(
idT1ab⊗T2ab ∗ν

)
(
T1 ⊗ T1

) × (
T2 ⊗ T2

) × (
T1ab ⊗ T2ab

)
i

nat . (
T1 ∧ T1

) × (
T2 ∧ T2

)×(
T1ab ⊗ T2ab

)
,

θ

whereψ ,ϕ are isomorphisms obtained in the proof of Proposition 3.4, i is the inclusion
morphism, and idT1ab⊗T2ab ∗ ν : (T1ab ⊗ T2ab) × (T2ab ⊗ T1ab) −→ T1ab ⊗ T2ab
is the surjective morphism given in Lemma 2.1(i). An easy calculation shows that

λϕ((T1 × T2)�(T1 × T2)) ⊆ (T1�T1) × (T2�T2),

ψi((T1�T1) × (T2�T2)) ⊆ (T1 × T2)�(T1 × T2),

from which we get the induced morphisms η and θ . Since η is surjective, we prove
that η is isomorphism by showing that θ is a left inverse of η. But this follows from
the following observations. For any ti ∈ Ti , gi ∈ Gi (i = 1, 2), we have

(t1, 1) ⊗ (g1, g2) = ((t1, 1) ⊗ (1, g2))
(1,g1)((t1, 1) ⊗ (g1, 1))

= ((t1, 1) ⊗ (1, g2))((t1, 1) ⊗ (g1, 1)),

and similarly, (g1, 1) ⊗ (t1, t2) = ((g1, 1) ⊗ (t1, 1))((g1, 1) ⊗ (1, t2). The proof is
complete. 
�

We have the following consequences of the above theorems.

Corollary 3.5 Let (N ,G, i) be the inclusion crossed module. Then H2(G, N ) ∼=
R ∩ [F,Y ]

[R,Y ][F, R ∩ Y ] , where (R ∩ Y , R, μ) � (Y , F, μ) � (N ,G, i) is a projec-

tive presentation of (N ,G, i).

Proof It follows from Theorem 3.1(i) and Hopf formula for H2(N ,G, i). 
�
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Corollary 3.6 Let (N1,G1, i1) and (N2,G2, i2) be inclusion crossed modules. Then

H2(G1 × G2, N1 × N2) ∼= H2(G1, N1) × H2(G2, N2)

×
(

(N 1 ⊗ G2) × (G1 ⊗ N 2)

〈(n1 ⊗ i2(n2), (i1(n1) ⊗ n2)−1)|n1 ∈ N1, n2 ∈ N2〉

)
,

H2(G1 × G2) ∼= H2(G1) × H2(G2) × (G1 ⊗ G2).

Proof It follows from Theorem 3.2 and its proof. 
�
Corollary 3.7 For any simply connected T = (T ,G, ∂), there is a commutative dia-
gram of crossed modules with exact rows and columns.

Proof It follows from Proposition 2.2(iv) and Theorem 3.1(i). 
�
Corollary 3.8 For any finite perfect crossed module T = (T ,G, ∂), the second homol-
ogy of its covers is trivial.

Proof In view of [20, Theorem 2.68], the extension

ker(τ1, τ2) � (G ⊗ T ,G ⊗ G, id ⊗ ∂)
(τ1,τ2)� T (3)

is the universal central extension of T, in which the commutator morphism (τ1, τ2) is
given by τ1(g1⊗t) = g1 t t−1 and τ2(g1⊗g2) = [g1, g2], for all t ∈ T , g1, g2 ∈ G. Due
to [24, Proposition 5 and Corollary 2], the extension (3) is, up to isomorphism, the only
stemcover ofT.ApplyingTheorem3.1(i i) to the extension (3),wededuce that H2(G⊗
T ,G ⊗G, id ⊗ ∂) is a homomorphic image of (G ⊗ T ,G ⊗G, id ⊗ ∂)∧ker(τ1, τ2).
But the perfectness of the crossed module T, together with Proposition 2.1(i i i) yields
that

(G ⊗ T ,G ⊗ G, id ⊗ ∂) ∧ ker(τ1, τ2) = (G ⊗ T ,G ⊗ G, id ⊗ ∂) ⊗ ker(τ1, τ2) = 1,

and then the result holds. 
�

4 Applications to the Pair of Groups

Loday [17] and Ellis [9], respectively, introduced the notions of relative central exten-
sion and cover for pairs of groups and used them as useful tools to develop the theory
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of capability, Schur multiplier, and central series of groups to a theory for pairs of
groups. This section is devoted to structural results on these notions.

Let (G, N ) be a pair of groups, in which N is a normal subgroup of G. We recall
from [9,17] that

• A crossed module (M,G, δ) is called a relative central extension of (G, N ) if
δ(M) = N and ker δ ⊆ MG . A morphism between two relative central extensions
M = (M,G, δ) and M′ = (M ′,G, δ′) of (G, N ) is a crossed module morphism
( f , id) : M −→ M′. In particular, if f is surjective, then M′ is called a homo-
morphic image of M.

• A relative central extension (M,G, δ) of the pair (G, N ) is called universal if
there exists a unique morphism from it to any relative central extension of (G, N ).
It is proved in [17] that the pair (G, N ) has a universal relative central extension
if and only if N is G-perfect (that is, [G, N ] = N ).

• A relative central extension (M,G, δ) of (G, N ) is called a relative stem extension
if ker δ ⊆ [G, M]. If, in addition, kerδ ∼= H2(G, N ) then (M,G, δ) is said to be
a covering pair for (G, N ). It is established in [19] that any pair of groups admits
at least one covering pair.

We begin with the following key lemma, which deals with the connection between the
stem covers and the universal central extensions of crossed modules with correspond-
ing concepts for pairs of groups.

Lemma 4.1 Let (G, N ) be a pair of groups and e: (A, B, δ) � (M, H , δ)
(ψ1,ψ2)�

(N ,G, i) be a stem cover (respectively, universal central extension) of the inclusion
crossed module (N ,G, i). Then the composite homomorphism iψ1 : M −→ G with
the action of G on M given by gm =h m, in which h is any element in the pre-image
of g via ψ2, is a covering pair (respectively, universal relative central extension) of
(G, N ).

Proof The case of stem cover follows from [19, Corollary 3.2]. We so assume that e
is a universal central extension of (N ,G, i), and (M1,G, δ1) is an arbitrary relative
central extension of the pair (G, N ). Considering the central extension (kerδ1, 1, 1) �
(M1,G, δ1)

(δ1,id)
� (N ,G, i), we get a unique morphism (β1, ψ2) : (M, H , δ) −→

(M1,G, δ1) such that (δ1, id)(β1, ψ2) = (ψ1, ψ2). It is straightforward to see that
(β1, id) : (M,G, iψ1) −→ (M1,G, δ1) is a morphism of crossed modules. This
morphism is unique, because if (β ′

1, id) : (M,G, iψ1) −→ (M1,G, δ1) is another
morphism, then (β ′

1, ψ2) : (M, H , δ) −→ (M1,G, δ1) is a morphism satisfying
(δ1, id)(β ′

1, ψ2) = (ψ1, ψ2). But this result yields that β1 = β ′
1, as desired. 
�

The following corollary is a consequence of the above lemma.

Corollary 4.2 Let (R∩Y , R, μ) � (Y , F, μ)
(π1,π2)� (N ,G, i) be a projective presen-

tation of a perfect inclusion crossed module (N ,G, i). Then ([F,Y ]/([R,Y ][F, R ∩
Y ],G, i π̄1) is a covering pair as well as the universal relative central extension of the
pair (G, N ), where π̄1 is induced by π1.

Proof This follows from Lemma 4.1, [23, Proposition 4.3] and [6, Page 171]. 
�
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In the following theorem, we see how Theorem 3.1(i) together with [19, Theorem
3.6] can be used to determine the structure of covering pairs.

Theorem 4.3 Let (G, N ) be a pair of finite groups, and (R∩Y , R, μ) � (Y , F, μ) �
(N ,G, i) be a projective presentation of the crossed module (N ,G, i). Then the
crossed module (M,G, δ) is a covering pair of (G, N ) if and only if there is a normal
subgroup U of F with M ∼= Y/U, ker δ ∼= (R ∩ Y )/U, and

R ∩ Y

[R,Y ][F, R ∩ Y ] = H2(G, N ) × U

[R,Y ][F, R ∩ Y ] . (4)

Proof Let (M,G, δ) be a covering pair of (G, N ). Then (ker δ, 1, 1) � (M,G, δ) �
(N ,G, i) is a stem extension of the crossed module (N ,G, i) and so, accord-
ing to Mohammadzadeh et al. [19, Lemma 3.3], we find an epimorphism β :
Y/([R,Y ][F, R ∩ Y ]) −→ M such that β(H2(G, N )) = ker δ. Set ker β =
U/([R,Y ][F, R∩Y ]) for some normal subgroupU of Y , then M ∼= Y/U and ker δ ∼=
(R ∩ Y )/U . Also, the finiteness of H2(G, N ) ensures that H2(G, N ) ∩ ker β = 1.
As the kernel of the restriction of β1 to (R ∩ Y )/([R,Y ][F, R ∩ Y ]) is ker β and the
image of this restriction is ker δ, we conclude that U satisfies the condition (4).

Conversely, letU be anormal subgroupof F satisfying (4), and μ̄ : Y/([R,Y ][F, R∩
Y ]) −→ F/[F, R] be the crossed module induced by μ. In view of [15, Theorems
2.1.4(i) and 2.4.6(iv)], there is a normal subgroup S of F such that R/[F, R] =
H2(G) × (S/[F, R]). One easily sees that μ̄(U/([R,Y ][F, R ∩ Y ])) ⊆ S/[F, R].
Using these results and Theorem 3.1(i), we obtain

(
R ∩ Y

[R,Y ][F, R ∩ Y ] ,
R

[F, R] , μ̄
)

= H2(N ,G, i) ×
(

U

[R,Y ][F, R ∩ Y ] ,
S

[F, R] , μ̄
)

.

It, therefore, follows from [19, Proposition 3.1(i)] that (Y/U , F/S, μ̄) is a covering
crossed module of (N ,G, i) and so, the composite homomorphism Y/U −→ Y/(R∩
Y )

∼=−→ N
i−→ G is a covering pair of the pair (G, N ), thanks to Lemma 4.1. The

proof is complete. 
�
The following corollaries are generalizations of the works of Jones and Wiegold

[14], and Yamazaki [25].

Corollary 4.4 Let (Mi ,G, δi ) i = 1, 2, be two covering pairs of a pair (G, N ) of finite
groups. Then

(i) M1 and M2 are isoclinic.
(i i) Z(M1)/ ker δ1 ∼= Z(M2)/ ker δ2.

Proof Suppose (R ∩ Y , R, μ) � (Y , F, μ) � (N ,G, i) is a projective presentation
of the inclusion crossed module (N ,G, i). From Theorem 4.3 and its proof, we have
an epimorphism β : Y/([R,Y ][F, R∩Y ]) −→ M1 such that (R∩Y )/([R,Y ][F, R∩
Y ]) = H2(G, N ) × ker β. But this implies that

(
Y

[R,Y ][F, R ∩ Y ]
)′

∩ ker β ⊆ [F,Y ]
[R,Y ][F, R ∩ Y ] ∩ ker β = 1.

123



On the Second Homology of Crossed Modules 1413

So, byHall [12, Page 134],M1 and similarly,M2 are isoclinic toY/([R,Y ][F, R∩Y ]),
which proves (i).

To prove (i i), we only need to show that the factor Z(M1)/ ker δ1 is determined
uniquely by the free presentation N ∼= Y/(R ∩ Y ). Put

ker β = U

[R,Y ][F, R ∩ Y ] and Z

(
Y

[R,Y ][F, R ∩ Y ]
)

= W

[R,Y ][F, R ∩ Y ]
for somenormal subgroupsU andW ofY . Then [Y ,W ] ⊆ U and soW/U ⊆ Z(Y/U ).
On the other hand, if xU ∈ Z(Y/U ) then [x, y] ∈ U ∩ [Y , F] = [R,Y ][F, R ∩ Y ]
for all y ∈ Y . Hence

x[R,Y ][F, R ∩ Y ] ∈ Z

(
Y

[R,Y ][F, R ∩ Y ]
)

= W

[R,Y ][F, R ∩ Y ] ,

which implies that Z(Y/U ) = W/U . It, therefore, follows that Z(M1)/ ker δ1 ∼=
W/(R ∩ Y ), as required. 
�
Corollary 4.5 Any relative stem extension of a pair of finite groups is a homomorphic
image of one of its covering pairs.

Proof Let (M,G, δ) be an arbitrary relative stem extension of a pair (G, N ) of finite

groups, and let (R ∩ Y , R, μ) � (Y , F, μ)
(π1,π2)� (N ,G, i) be a projective pre-

sentation of the inclusion crossed module (N ,G, i). Due to Mohammadzadeh et al.
[19, Lemma 3.3], there is the following commutative diagram with exact rows and
surjective columns.

where β| is the restriction of β. Put ker β| = ker β = T /([R,Y ][F, R ∩Y ]) for some
normal subgroup T of Y . It can be seen in the proof of Theorem 4.3 that

R ∩ Y

T
∼= ker δ ∼= R ∩ [F,Y ]

T ∩ R ∩ [F,Y ]
∼= T (R ∩ [F,Y ])

T
,

which, because of the finiteness of ker δ, implies that T (R ∩ [F,Y ]) = R ∩ Y . Also,
the triviality of the second homology of F/Y yields that Y ∩ F ′ = [F,Y ]. So, we
have

T

T ∩ [F, Y ] = T

T ∩ R ∩ [F, Y ]
∼= T (R ∩ [F, Y ])

R ∩ [F, Y ] = R ∩ Y

R ∩ Y ∩ F ′ ∼= (R ∩ Y )F ′

F ′ ≤ F

F ′ .

Thus the following exact sequence of abelian groups splits

T ∩ [F,Y ]
[R,Y ][F, R ∩ Y ] � T

[R,Y ][F, R ∩ Y ] � T

T ∩ [F,Y ] ,
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and hence

T

[R,Y ][F, R ∩ Y ] = T ∩ [F,Y ]
[R,Y ][F, R ∩ Y ] × U

[R,Y ][F, R ∩ Y ] ,

where U/([R,Y ][F, R ∩ Y ]) ∼= T /(T ∩ [F,Y ]). Using these results, we have

U (R ∩ [F,Y ]) = R ∩ Y and U ∩ (R ∩ [F,Y ]) = [R,Y ][F, R ∩ Y ],

which show that U satisfies (4). Accordingly, owing to Theorem 4.3, the map
δ : Y/U −→ G induced by β is a covering pair of (G, N ) and, moreover, M is
a homomorphic image of Y/U , which completes the proof. 
�

Given a pair (G, N ) of groups, it is shown in Lemma 4.1 that any stem cover of the
inclusion crossed module (N ,G, i) gives a covering pair for (G, N ). Now, we prove
the converse in the case where G is finite.

Proposition 4.6 Let (G, N )be a pair of finite groups. Then any covering pair of (G, N )

can be lifted to a stem cover of the inclusion crossed module (N ,G, i).

Proof Let (M,G, δ) be a covering pair of (G, N ). By Mohammadzadeh et al. [19,
Theorem 3.4], there is a stem cover

( Â, B̂, δ̂) � (M̂, Ĝ, δ̂)
(ψ1,ψ2)� (N ,G, i),

and a surjective morphism (β1, β2) : (M̂, Ĝ, δ̂) −→ (M,G, δ) such that the diagram

is commutative. Invoking Lemma 4.1, (M̂,G, iψ1) is a covering pair of (G, N ). Since
the groups M and M̂ have the same order, it follows that β1 is an isomorphism. Now,
the composite homomorphism δ̂β−1

1 : M −→ Ĝ, together with the action of Ĝ on M

defined by ĝm = β2(ĝ)m is a crossed module. Because, ifm,m1,m2 ∈ M , ĝ ∈ Ĝ and
β1(m̂) = m for some m̂ ∈ M̂ , then using the above diagram we have

δ̂β−1
1

(ĝ
m

) = δ̂β−1
1

(β2(ĝ)β1(m̂)
) = δ̂β−1

1

(
β1(

ĝm̂)
) = δ̂

(ĝ
m̂

) = ĝ δ̂β−1
1 (m),

δ̂β−1
1 (m1)m2 = β2 δ̂β

−1
1 (m1)m2 = δ(m1)m2 = m1m2.
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It is routine to verify that ker δ ⊆ [Ĝ, M] ∩ MĜ , B̂ = ker β2 ⊆ Z(Ĝ) ∩ stĜ(M) ∩ Ĝ ′

and (β1, id) : ( Â, B̂, δ̂) −→ (ker δ, ker β2, δ̂β
−1
1 ) is an isomorphism. We therefore

conclude that the extension

(
ker δ, ker β2, δ̂β

−1
1

)
�

(
M, Ĝ, δ̂β−1

1

) (δ,β2)� (N ,G, i)

is a stem cover of (N ,G, i). Moreover, (M,G, δ) and (M,G, iδ) are isomorphic. 
�
We end this article with the following interesting corollary.

Corollary 4.7 Let G be a finite group with a normal subgroup N such that the inclusion
crossed module (N ,G, i) is perfect. Then

(i) All covering pairs of the pair (G, N ) are isomorphic.
(i i) A relative central extension of (G, N ) is universal if and only if it is a covering

pair.
(i i i)Every universal central extension of (G, N ) can be lifted to a universal central

extension of (N ,G, i).

Proof (i) Combine the above proposition with [24, Corollary 3.8].
(i i) In the proof of Corollary 3.8, it was shown that the perfect crossed module

(N ,G, i) admits a universal central extension, which is, up to isomorphism, its unique
stem cover. The result now follows from these facts, Lemma 4.1, part (i), and the
uniqueness of the universal relative central extension.

(i i i) This follows from part (i i) and Proposition 4.6. 
�
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