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Abstract
The exact Riemann solutions for a macroscopic production model under the equation
of state given by the Chaplygin gas are solved explicitly for all possible Riemann
initial data. It is discovered interestingly that a composite hyperbolic wave is involved
in Riemann solution under some specially designated initial conditions, which is made
up of a rarefaction wave and a delta contact discontinuity attached on the wave front
of the rarefaction wave. Furthermore, the constructions of global solutions to the
perturbed Riemann problem for this system are also displayed in completely explicit
forms when the initial data are taken to be three piecewise constant states under
some suitable restrictive conditions by using the method of characteristics. During
the process of constructing global solutions, the interactions of elementary waves are
studied in detail. Moreover, it is proved rigorously that Riemann solutions are stable
with respect to the specific small perturbations of Riemann initial data.

Keywords Riemann problem · Wave interaction · Chaplygin gas · Macroscopic
production model

Mathematics Subject Classification 35L65 · 35L67 · 76N15

1 Introduction

In recent years, the macroscopic production models have become one of the important
research topics in the study of production planning and control in the manufacturing
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industry. In the previous stage, the fluid-like continuous models [1,2] have been intro-
duced to model high-volume product flows, which can be used to depict the product
flow by using discrete event simulations in an accumulated way. The most widely
used model is a scalar conservation law under appropriate assumptions on the flux
function which is called as a clearing function for the product flow. In general, a given
clearing function describes the averaged sample data, but cannot illustrate the data
diffusion. In order to solve this problem, the following macroscopic production model
[3] consisting of two conservation laws is proposed in the form

{
ρt + (ρu)x = 0,(
ρu

(
1 + P(ρ)

))
t
+

(
ρu2

(
1 + P(ρ)

))
x

= 0,
(1.1)

in which ρ and u are used to represent the product density and velocity, respectively,
which are often required to be non-negative. In addition, t and x express the time and
the production stage (or the degree of completion) to describe the work-in-progress
and the pressure term P refers to the anticipated factor in the production line which
is usually given by the equation of state P = P(ρ).

It is of great interest to notice that some interesting nonlinear phenomena were
observed in [3] when the pressure term was taken as P(ρ) = ρ. Especially, it was
obtained in [4] that the delta standing wave was also involved in Riemann solu-
tions for system (1.1) under this pressure term P(ρ) = ρ. In fact, the singularity
of δ−concentration was also investigated in [5,6] which can be used to illustrate some
extreme situations in the production line. Nowadays, it was known in [7–11] that delta
shock wave is involved in Riemann solutions for the isentropic Chaplygin gas dynam-
ical system. It is worthwhile to mention that the equation of state for the Chaplygin gas
is taken to be the negative pressure P(ρ) = − 1

ρ
, which often happens in the product

flow. Actually, this equation of state P(ρ) = − 1
ρ
was also used in the AR traffic flow

model to describe some complicated traffic phenomena well [12]. It is known that the
behaviors of the macroscopic production model (1.1) are very similar to those of the
AR traffic flow model. Thus, it is natural to introduce the equation of state for the
Chaplygin gas P(ρ) = − 1

ρ
into the macroscopic production model (1.1) in order to

discover some new interesting nonlinear phenomena. In the current paper, from the
viewpoint of hyperbolic systems of conservation laws, it is also of great interest to
consider system (1.1) under the equation of state P(ρ) = − 1

ρ
given by the Chaplygin

gas, which is rewritten precisely as

{
ρt + (ρu)x = 0,
(ρu − u)t + (ρu2 − u2)x = 0.

(1.2)

In order to develop wave analysis, we first draw our attention on system (1.2) with the
following Riemann-type initial condition

(ρ, u)(x, 0) =
{

(ρ−, u−), x < 0,
(ρ+, u+), x > 0.

(1.3)
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The Riemann problem is a special initial value problem with the initial condition
consisting of two constant states separated by the origin. It is one of the most funda-
mental problems in the field of nonlinear hyperbolic systems of conservation laws.
The structures of Riemann solutions can be used well to describe the various and
complicated nonlinear phenomena and are also regarded as the basic for numerical
schemes, for the reason that Riemann solutions are served as the basic building blocks
of constructing solutions to the general initial value problem by employing the random
choice method. It is of great interest to develop numerical methods such as Godunov
methods or even Riemann-free methods [13–18], which are based on the construc-
tions of Riemann solutions in details. Thus, the constructions of Riemann solutions
for different hyperbolic systems of conservation laws are very important and also have
attracted the attention of researchers from analytical and numerical aspects.

It is not difficult to get that system (1.2) owns two real and different eigenvalues
λ1 = u − u

ρ − 1 and λ2 = u. Obviously, the line ρ = 1 is a singular curve in the

quarter (ρ, u) phase plane. In the present paper, we restrict ourselves into the region
� = {(ρ, u)|ρ > 1, u > 0}, such that λ1 < λ2 and then the system (1.2) is strictly
hyperbolic in this region �. In fact, the other region {(ρ, u)|0 < ρ < 1, u > 0}
can be dealt with similarly. It is worthwhile to notice that the shock curve shares the
same expression formula with the rarefaction one in the quarter (ρ, u) phase plane,
namely system (1.2) belongs to the so-called Temple class [19–21]. Furthermore, it
is of great interest to observe that a composite wave is involved in Riemann solution
of (1.2) and (1.3) under certain initial condition 0 < u+ <

(ρ−−1)u−
ρ− , which is made

up of a rarefaction wave and a delta contact discontinuity attached on the wave front
of rarefaction wave. In the current paper, we only construct possible solution of the
Riemann problem (1.2) and (1.3) for this certain initial condition and the uniqueness
problem is still unsolved and left for the future work. In addition, it is well known that
delta shock wave should be introduced in order to solve Riemann problems for some
weak hyperbolic conservation systems and the theory of delta shock wave has been
well established and developed in recent years, see [22–28] for examples. However,
as far as we know, our constructed composite wave solution with the singularity of
delta function cannot be found in any Riemann solution but only appears in the study
[29–31] of wave interaction between a delta shock wave with a rarefaction wave for
some hyperbolic systems of conservation laws.

It is well known that Riemann solutions of (1.2) and (1.3) cannot illustrate the
dynamic pictures of system (1.2) in all the situations. In order to capture some more
complicated nonlinear phenomena, it is necessary to investigate the perturbed (or
double) Riemann problem for system (1.2) with the following constant states in three
pieces

(ρ, u)(x, 0) =
⎧⎨
⎩

(ρ−, u−), −∞ < x < 0,
(ρm, um), 0 < x < ε,

(ρ+, u+), ε < x < +∞,

(1.4)

where ε is taken to be a adequately small positive number. In order to construct the
global solutions to the perturbed Riemann problem (1.2) and (1.4), we need to deal
with the problem of wave interactions carefully. Due to the fact that the uniqueness
problem is unsolved when 0 < u+ <

(ρ−−1)u−
ρ− , we restrict ourselves to only consider
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the interactions of elementary waves including shock wave, rarefaction wave and
contact discontinuity. For this purpose, it is required that the initial condition (1.4)
should satisfy um >

(ρ−−1)u−
ρ− and u+ >

(ρ−−1)u−
ρ− simultaneously. Thanks to system

(1.2) with special structure of Temple class, the global solutions of (1.2) and (1.4)
are constructed in fully explicit forms by using the method of characteristics. As a
consequence, it is evident to show that the limits of perturbed Riemann solutions
of (1.2) and (1.4) converge to the corresponding ones of (1.2) and (1.3) when the
perturbation parameter ε approaches zero. That is to say, Riemann solutions of (1.2)
and (1.3) are stable with respect to certain small perturbation of initial condition given
by (1.4) where ε is regarded as the so-called perturbation parameter. It should be
stressed that the initial condition taken in the form (1.4) has been intensively used to
investigate the problem of wave interactions [32–38] for various hyperbolic systems
of conservation laws.

The rest of this paper is organized in the following way. In Sect. 2, we investigate
the general properties and elementary waves for system (1.2) and then solve exact
Riemann solutions of (1.2) and (1.3) for all possible initial conditions. In Sect. 3, the
perturbed Riemann solutions of (1.2) and (1.4) are constructed by studying all the
occurring wave interactions under the two restrictive conditions um >

(ρ−−1)u−
ρ− and

u+ >
(ρ−−1)u−

ρ− . Finally, the limit ε → 0 is taken, which allows us to get stabilities
of Riemann solutions with respect to this special perturbation of initial condition and
then the conclusion is drawn in Sect. 4.

2 Riemann Solutions of (1.2) and (1.3)

In this section, we firstly present some basic characteristics for system (1.2). Then, we
construct Riemann solutions of (1.2) and (1.3) when the initial condition (1.3) lies in
the region� = {(ρ, u)|ρ > 1, u > 0}. System (1.2) admits the following quasi-linear
form

(
1 0
u ρ − 1

) (
ρ

u

)
t
+

(
u ρ

u2 2(ρ − 1)u

)(
ρ

u

)
x

=
(
0
0

)
.

The eigenvalues are represented as

λ1 = u − u

ρ − 1
, λ2 = u. (2.1)

It is evident that system (1.2) is strictly hyperbolic in the region�. The corresponding
right eigenvectors for λi (i = 1, 2) are given, respectively, by −→r1 = (ρ(ρ − 1),−u)T

and −→r2 = (1, 0)T . A simple calculation shows that ∇λ1 · −→r1 = 2u
ρ−1 �= 0 in the region

� and ∇λ2 · −→r2 ≡ 0, in which ∇ = ( ∂
∂ρ

, ∂
∂u ). So, it is easily shown that the first

characteristic field is genuinely nonlinear in the region� and the second characteristic
field is always linearly degenerate. As a consequence, the wave of λ1−family is either
shock wave or rarefaction wave as well as the wave of λ2−family is always contact
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discontinuity. For convenience, we use the notations S, R and J , respectively, to stand
for shock wave, rarefaction wave and contact discontinuity in the current paper. In
addition, theRiemann invariants along the characteristic fields are chosen, respectively,
as u − u

ρ and u.
To solve self-similar Riemann solutions of the form (ρ, u)(x, t) = (ρ, u)(ξ) with

ξ = x
t , the Riemann problem (1.2) and (1.3) is reduced to

{−ξρξ + (ρu)ξ = 0,
−ξ(ρu − u)ξ + (ρu2 − u2)ξ = 0,

(2.2)

with the boundary conditions (ρ, u)(±∞) = (ρ±, u±). For smooth solutions, system
(2.2) is rewritten as

(
u − ξ ρ

−ξu + u2 −ξ(ρ − 1) + 2(ρ − 1)u

) (
ρ

u

)
ξ

=
(
0
0

)
.

It provides not only general solution (constant state), but also singular solution. It
should be pointed out that a rarefactionwave is a piecewise smooth continuous solution
of (2.2). Let the left state (ρ−, u−) be a fixed point in the region �, then we get the
1-rarefaction curve originating from (ρ−, u−) as follows:

R(ρ−, u−) : ξ = λ1 = u − u

ρ − 1
, u − u

ρ
= u− − u−

ρ−
, ρ > ρ−, u < u−.

(2.3)
It is worth mentioning that if the given left state (ρ−, u−) lies in the region �, then
the 1-rarefaction curve has the line u = u− − u−

ρ− as its asymptote. By differentiating
ρ with respect to u in (2.3), we find that

dρ

du
= −ρ−(ρ− − 1)u−(

ρ−u − (ρ− − 1)u−
)2 < 0,

d2ρ

du2
= 2ρ2−(ρ− − 1)u−(

ρ−u − (ρ− − 1)u−
)3 = 2ρ3(ρ− − 1)u−

ρ−u3
> 0,

which implies that the 1-rarefaction curve is convex in �.
The R-H conditions at a discontinuous curve x = x(t) are given by

{
σ [ρ] = [ρu],
σ [ρu − u] = [ρu2 − u2], (2.4)

where σ = dx
dt is the velocity of discontinuity and [ρ] = ρr − ρl with ρl = ρ(x(t) −

0, t) and ρr = ρ(x(t)+ 0, t) is the jump of ρ across the discontinuity, etc. On the one
hand, if σ = 0, then we can only obtain a constant state solution. On the other hand,
if σ �= 0, then eliminating σ in (2.4) yields

(ρr ur − ur − ρlul + ul)(ρr ur − ρlul) = (ρr − ρl)(ρr u
2
r − u2r − ρlu

2
l + u2l ),

123



1200 P. Wang and C. Shen

which is simplified into

(ul − ur )
(
ρr ul(ρl − 1) − ρlur (ρr − 1)

)
= 0.

On the one hand, if ul �= ur , then we have ul − ul
ρl

= ur − ur
ρr
. We then find ρl > ρr by

using the Lax entropy conditions. Therefore, let the left state (ρl , ul) = (ρ−, u−) be
fixed in the region �, then the 1-shock curve originating from (ρ−, u−) is expressed
as

S(ρ−, u−) : σ = ρu − ρ−u−
ρ − ρ−

, u− u

ρ
= u−−u−

ρ−
, ρ < ρ−, u > u−. (2.5)

If the given left state (ρ−, u−) lies in �, then the 1-shock curve has the line ρ = 1 as
its asymptote. On the other hand, if ul = ur , then one has σ = ul = ur . Therefore, the
curve of contact discontinuity starting from the given left state (ρ−, u−) is represented
as

J (ρ−, u−) : τ = u = u−. (2.6)

In summary, if the given left state (ρ−, u−) lies in the region�, then the set of states
consist of 1-shock curve S(ρ−, u−), 1-rarefaction curve R(ρ−, u−) and 2-contact
discontinuity curve J (ρ−, u−) (see Fig. 1). Then the unique global Riemann solution
of (1.2) and (1.3) can be constructed in terms of the right state (ρ+, u+) in the different
parts I , I I and I I I of the region �.

More specifically, if u− < u+, then the Riemann solution of (1.2) and (1.3) can be
expressed by the symbol S + J in the following form (see Fig. 2a)

(ρ, u)(x, t) =
⎧⎨
⎩

(ρ−, u−), x
t < σ,

(ρ∗, u∗), σ < x
t < τ,

(ρ+, u+), x
t > τ,

(2.7)

in which the intermediate state (ρ∗, u∗) is given by

(ρ∗, u∗) =
(

ρ−u+
ρ−u+ − (ρ− − 1)u−

, u+
)

, (2.8)

and the wave speeds of S and J are computed, respectively, by

σ = ρ∗u∗ − ρ−u−
ρ∗ − ρ−

= (ρ− − 1)u− − u+
ρ− − 1

= u− − u+
ρ− − 1

, τ = u+. (2.9)

If (ρ−−1)u−
ρ− < u+ < u−, then the Riemann solution of (1.2) and (1.3) can be

expressed by the symbol R + J in the following form (see Fig. 2b)

(ρ, u)(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(ρ−, u−), x
t < λ1(ρ−, u−),

(ρ, u), λ1(ρ−, u−) < x
t < λ1(ρ∗, u∗),

(ρ∗, u∗), λ1(ρ∗, u∗) < x
t < τ,

(ρ+, u+), x
t > τ,

(2.10)
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Fig. 1 The (ρ, u) phase plane
for the Riemann problem (1.2)
and (1.3) is shown for the given
left state (ρ−, u−) located in the
region
� = {(ρ, u)|ρ > 1, u > 0}, in
which the rarefaction curve
R(ρ−, u−) takes the line
u = u− − u−

ρ− and the shock
curve S(ρ−, u−) takes the line
ρ = 1 as their asymptotic lines,
respectively

(a) (b) (c)

Fig. 2 The constructions of solutions to the Riemann problem (1.2) and (1.3) are displayed for all kinds of
initial conditions

in which (ρ∗, u∗) is also given by (2.8) and the state (ρ, u) in the rarefaction wave fan
follows from (2.3) that

(ρ, u) =
( (ρ− − 1)u− +

√
(ρ− − 1)2u2− − ρ−(ρ− − 1)u−x

t√
(ρ− − 1)2u2− − ρ−(ρ− − 1)u−x

t

,

(ρ− − 1)u− +
√

(ρ− − 1)2u2− − ρ−(ρ− − 1)u−x

t
ρ−

)
.

(2.11)
In the end, we need to consider the case 0 < u+ <

(ρ−−1)u−
ρ− . Before solving it,

we shall focus on the limit of Riemann solution (2.10) when u+ →
(

(ρ−−1)u−
ρ−

)
+ is

taken. In terms of u− > 0 and ρ− > 1, it follows from (2.8) that

lim
u+→

(
(ρ−−1)u−

ρ−
)

+

ρ∗ = lim
u+→

(
(ρ−−1)u−

ρ−
)

+

(
ρ−u+

ρ−u+ − (ρ− − 1)u−

)
= +∞,

lim
u+→

(
(ρ−−1)u−

ρ−
)

+

u∗ = lim
u+→

(
(ρ−−1)u−

ρ−
)

+

u+ = (ρ− − 1)u−
ρ−

,
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which allows us to conclude that the singularity is formed for the state variable ρ in

the limiting u+ →
(

(ρ−−1)u−
ρ−

)
+ situation. It then follows from (2.7) combining with

(2.8) that

lim
u+→

(
(ρ−−1)u−

ρ−
)

+

λ1(ρ∗, u∗) = lim
u+→

(
(ρ−−1)u−

ρ−
)

+

(
u∗ − u∗

ρ∗ − 1

)
= (ρ− − 1)u−

ρ−
,

lim
u+→

(
(ρ−−1)u−

ρ−
)

+

τ = lim
u+→

(
(ρ−−1)u−

ρ−
)

+

u+ = (ρ− − 1)u−
ρ−

.

As a result, it is not difficult to see that the front of rarefaction wave R and the contact

discontinuity J coincide with each other on the line x =
(
(ρ− − 1)u−

ρ−
)
t and the

density between them tends to +∞ in the limiting u+ →
(

(ρ−−1)u−
ρ−

)
+ situation.

Thus, if the initial condition (1.3) satisfies the special requirement u+ = (ρ−−1)u−
ρ− , we

can construct a composite wave Rδ J , which is made up of a rarefaction wave R and
a delta contact discontinuity δ J attached on the wave front of R. More specifically,
when u+ = (ρ−−1)u−

ρ− , the Riemann solution of (1.2) and (1.3) may be displayed in
the form

(ρ, u)(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(ρ−, u−), x
t < λ1(ρ−, u−),

(ρ, u), λ1(ρ−, u−) < x
t < u+,

(+∞, u+), x
t = u+,

(ρ+, u+), x
t > u+,

(2.12)

in which the state (ρ, u) in the rarefaction wave fan R is also calculated by (2.11).
Motivated by the above detailed observation on the construction of Riemann solu-

tion for the special case u+ = (ρ−−1)u−
ρ− , we plan to construct possible Riemann

solution of (1.2) and (1.3) when 0 < u+ <
(ρ−−1)u−

ρ− . It is not difficult to get that

λ1(ρ+, u+) < λ2(ρ+, u+) <
(ρ− − 1)u−

ρ−
,

which means that all the characteristic lines on the right-hand side of the contact
discontinuity x = (ρ−−1)u−t

ρ− will enter the line of this contact discontinuity. Thus,
the delta contact discontinuity is formed whose mass only comes from the particles
on the right-hand side. Different from delta shock wave, the left-hand side of contact
discontinuity is rarefaction wave and thus the strength of delta contact discontinuity
cannot be solved by the so-called generalized Rankine–Hugoniot relations of delta
shock wave. But we notice that mass only comes from the particles on the right-
hand side. Hence, we calculate the strength of delta contact discontinuity by using the
density multiplying by the difference between the speed of the particles and the speed
of delta contact discontinuity as

β(t) = ρ+
( (ρ− − 1)u−

ρ−
− u+

)
t .
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Therefore, when 0 < u+ <
(ρ−−1)u−

ρ− , we can construct the possible Riemann solution
of (1.2) and (1.3) by using the composite wave Rδ J , which is given by (see Fig. 2c)

(ρ, u)(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρ−, u−), x
t < λ1(ρ−, u−),

(ρ, u), λ1(ρ−, u−) < x
t <

(ρ−−1)u−
ρ− ,

(β(t)δ(x − (ρ−−1)u−t
ρ− ),

(ρ−−1)u−
ρ− ), x

t = (ρ−−1)u−
ρ− ,

(ρ+, u+), x
t >

(ρ−−1)u−
ρ− .

(2.13)
It should be mentioned that the delta shock wave is an over-compressive shock

wave in the sense that it is usually an isolated discontinuity to connect the left state
and the right state directly for the Riemann problem. In other words, the delta shock
wave is surrounded by the two constant states on both sides of it. By comparison, in
the wave fan of Rδ J , the delta contact discontinuity δ J is attached on the wave front of
R, namely δ J is surrounded by a rarefaction wave on the left-hand side and a constant
state on the right-hand side. Different from the delta shock wave, it is impossible to
use the generalized Rankine–Hugoniot relations to calculate the strength of δ J for
the reason that the left-hand side of it is a rarefaction wave and the density ρ in the
characteristic line of the rarefactionwave R tends to+∞ if the characteristic line tends
closer and closer to the line of δ J . In the current work, the strength β(t) in (2.13) is
obtained by virtue of the fact that all of the mass gathering together on the line of
δ J only comes from the particles on the right-hand side of it. It is of great interest to
notice that the solution consisting of delta shock wave surrounded by two rarefaction
waves on both sides of delta shock line has been constructed in [39] recently, which is
similar to the composite wave Rδ J in this paper. In conclusion, the Riemann solutions
of (1.2) and (1.3) are constructed fully for all the possible cases, namely S + J for
u− < u+, R + J for (ρ−−1)u−

ρ− < u+ < u−, as well as Rδ J for 0 < u+ <
(ρ−−1)u−

ρ− .

3 Wave Interactions

It is remarked that system (1.2) is attributed to Temple class whose wave interactions
have relatively simple structures. Due to the fact that we can only use the composite
wave Rδ J to construct possible Riemann solution of (1.2) and (1.3) when 0 < u+ <
(ρ−−1)u−

ρ− , whose uniqueness is still unsolved. Thus, we restrict ourselves to only
consider the interactions of elementary waves including shock wave, rarefaction wave
and contact discontinuity. For this purpose, we are dedicated to the special initial value
problem for system (1.2) with the constant states in three pieces (1.4) which should
satisfy um >

(ρ−−1)u−
ρ− and u+ >

(ρ−−1)u−
ρ− simultaneously. In brief, our main purpose

in this section is to construct global solutions of the perturbed Riemann problem (1.2)
and (1.4) by using the method of characteristics when the composite wave Rδ J is not
involved. In this respect, there exist four cases according to the different combinations
of waves originating from the two initial points (0, 0) and (ε, 0) as follows:

(1) S + J and S + J , (2) R + J and R + J , (3) R + J and S + J , (4) S + J and R + J .
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Fig. 3 The interaction between S + J and S + J is shown when (ρ−−1)u−
ρ− < u− < um < u+

In addition, by taking the initial condition (1.4), we can further consider whether the
limits ε → 0 of solutions of (1.2) and (1.4) are in accordance with the corresponding
ones of (1.2) and (1.3) or not.
Case 1. S + J and S + J

In this work, we begin by taking into account the case that there are a shock wave
followed by a contact discontinuity emitting from the initial points (0,0) and (ε, 0),
respectively. For the sake of convenience, we use S1, J2 and S3, J4 to denote them,
respectively (see Fig. 3). In this case, when the time t is adequately small, the solution
of (1.2) and (1.4) can be abbreviated by using the symbols as

(u−, v−) + S1 + (u1, v1) + J2 + (um, vm) + S3 + (u2, v2) + J4 + (u+, v+),

where “+′′ stands for “followed by”. Obviously, the occurrence of this case depends
on the conditions (ρ−−1)u−

ρ− < u− < um < u+. By virtue of (2.8), the intermediate
states (ρ1, u1) and (ρ2, u2) can be given, respectively, by

(ρ1, u1) =
(

ρ−um
ρ−um − (ρ− − 1)u−

, um

)
, (ρ2, u2) =

(
ρmu+

ρmu+ − (ρm − 1)um
, u+

)
. (3.1)

Proposition 3.1 The contact discontinuity J2 collides with the shock wave S3 in finite
time. Subsequently, the interaction between J2 and S3 gives rise to a new shock wave
S5 and a new contact discontinuity J6, respectively. Finally, the two shock waves S1
and S5 coalesce into a new shock wave S7 as well as the two contact discontinuities
J4 and J6 are parallel with each other.

Proof It is evident that the wave speeds of J2 and S3 are given, respectively, by

τ2 = um, σ3 = (ρm − 1)um − u+
ρm − 1

= um − u+
ρm − 1

. (3.2)
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Taking into account ρ > 1 and u > 0, we have

τ2 − σ3 = u+
ρm − 1

> 0,

which implies that τ2 > σ3. Therefore, J2 collides with S3 in finite time. The point of
intersection (x1, t1) is determined by

{
x1 = τ2t1 = umt1,

x1 − ε = σ3t1 =
(
um − u+

ρm − 1

)
t1,

which yields

(x1, t1) =
(

(ρm − 1)umε

u+
,
(ρm − 1)ε

u+

)
. (3.3)

Obviously, J2 and S3 intersect at a finite time when a new Riemann problem is
formed. At the time t = t1, we again have a Riemann problem for system (1.2) subject
to the Riemann-type initial data (ρ1, u1) and (ρ2, u2). On account of the relations
(ρ−−1)u−

ρ− < u− < u1 = um < u+ = u2, the Riemann solution at the point (x1, t1) is
still a shock wave followed by a contact discontinuity, which are denoted with S5 and
J6, respectively. Moreover, the intermediate state (ρ3, u3) between S5 and J6 can also
be obtained by

(ρ3, u3) =
(

ρ1u2
ρ1u2 − (ρ1 − 1)u1

, u2

)
=

(
ρ−u+

ρ−u+ − (ρ− − 1)u−
, u+

)
. (3.4)

By using (3.1) and (3.4), it is not difficult to achieve the wave speeds of S5 and J6 as

σ5 = ρ1u1 − ρ3u3
ρ1 − ρ3

= um + u+ − ρ−umu+
(ρ− − 1)u−

, τ6 = u+. (3.5)

On the one hand, one has

σ5 − σ3 = um + u+ − ρ−umu+
(ρ− − 1)u−

−
(
um − u+

ρm − 1

)
= ρm(ρ− − 1)u− − ρ−(ρm − 1)um

(ρm − 1)(ρ− − 1)u−
u+

=
ρmρ−

(
u− − u−

ρ−
−

(
um − um

ρm

))
(ρm − 1)(ρ− − 1)u−

=
ρmρ−

(
u1 − u1

ρ1
−

(
um − um

ρm

))
(ρm − 1)(ρ− − 1)u−

=
ρmρ−

( 1

ρm
− 1

ρ1

)
um

(ρm − 1)(ρ− − 1)u−
< 0,

which permits us to see that the shock wave reduces the speed forwards (or add up
the speed backwards) when across the contact discontinuity. On the other hand, it is
evident that 0 < τ2 = um < u+ = τ6, which means that the contact discontinuity
adds up the speed forwards when across the shock wave. Eventually, J4 is parallel to
J6 due to the relation τ4 = τ6 = u+.
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In the following, we consider the interaction between S1 and S5. The wave speed
of S1 is given by σ1 = u− − um

ρ− − 1 . Comparing with σ5 in (3.5), we have

σ5 − σ1 = um + u+ − ρ−umu+
(ρ− − 1)u−

−
(
u− − um

ρ− − 1

)
= (um + u+ − u−) + um(u− − ρ−u+)

(ρ− − 1)u−

=
(
1 + u− − ρ−u+

(ρ− − 1)u−

)
um + (u+ − u−) = ρ−um(u− − u+)

(ρ− − 1)u−
+ (u+ − u−)

= (u− − u+)

(
ρ−um

(ρ− − 1)u−
− 1

)
< 0.

In other words, the shock wave S1 catches up with the shock wave S5 in finite time.
The point of intersection (x2, t2) is determined by

⎧⎪⎨
⎪⎩
x2 = σ1t2 =

(
u− − um

ρ− − 1

)
t2,

x2 − x1 = σ5(t2 − t1) =
(
um + u+ − ρ−umu+

(ρ− − 1)u−

)
(t2 − t1),

where (x1, t1) is given by (3.3). Then, we have

(x2, t2) =
(

(ρm − 1)
(
(ρ− − 1)u− − um

)
ε

(ρ− − 1)(u+ − u−)
,
(ρm − 1)ε

u+ − u−

)
. (3.6)

It follows from (3.4) that

u3 − u3
ρ3

= u+ − ρ−u+ − (ρ− − 1)u−
ρ−

= u− − u−
ρ−

.

Hence, it is concluded that the two states (ρ−, u−) and (ρ3, u3) can be connected by
a single shock wave S7, whose wave speed is σ7 = u− − u+

ρ− − 1 . That is to say, the

two shock waves S1 and S5 coalesce into a new shock wave S7. Comparing with σ1
and σ5, we have

σ1 − σ7 = u− − um
ρ− − 1

−
(
u− − u+

ρ− − 1

)
= u+ − um

ρ− − 1
> 0,

and

σ5 − σ7 = um + u+ − ρ−umu+
(ρ− − 1)u−

−
(
u− − u+

ρ− − 1

)
= (um + u+ − u−) + u+(u− − ρ−um)

(ρ− − 1)u−

=
(
1 + u− − ρ−um

(ρ− − 1)u−

)
u+ + (um − u−) = ρ−u+(u− − um)

(ρ− − 1)u−
+ (um − u−)

= (u− − um)(ρ−(u+ − u−) + u−)

(ρ− − 1)u−
< 0,

in which the inequalities u− < um < u+ and ρ− > 1 have been used. As a conse-
quence, σ5 < σ7 < σ1 can be established, namely the wave speed of S7 is between
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Fig. 4 The interaction between R + J and R + J is shown when (ρ−−1)u−
ρ− < u+ < um < u−

those of S1 and S5. With the help of the above calculations and discussions, we can
draw Fig. 3 to illustrate this case in detail. The proof of this proposition is completed.

	


Case 2. R + J and R + J
Secondly, we focus on the situation that there are a rarefaction wave followed by

a contact discontinuity emitting from the initial points (0,0) and (ε, 0), respectively.
For the sake of convenience, we use R1, J2 and R3, J4 to denote them, respectively
(see Fig. 4). For t adequately small, the solution of (1.2) and (1.4) is abbreviated as

(u−, v−) + R1 + (u1, v1) + J2 + (um, vm) + R3 + (u2, v2) + J4 + (u+, v+).

The occurrence of this case depends on the conditions (ρ−−1)u−
ρ− < u+ < um < u−.

Remark that the intermediate states (ρ1, u1), (ρ2, u2) and (ρ3, u3) are the same as
those in Case 1.

Proposition 3.2 The contact discontinuity J2 collides with the wave back of the rar-
efaction wave R3 in finite time. Subsequently, the interaction between J2 and R3 gives
rise to a new rarefaction wave R5 and a new contact discontinuity J7, respectively.
In the end, the wave front of R1 is parallel to the wave back of R5 as well as J4 is
parallel to J7, respectively.

Proof It suffices to show that the wave speeds of J2 and the wave back of R3 are given,
respectively, by

τ2 = um, ξ3(ρm, um) = um − um
ρm − 1

. (3.7)

We then get

τ2 − ξ3(ρm, um) = um
ρm − 1

> 0,
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which implies that J2 collides with the wave back of R3 in finite time. The point of
intersection (x1, t1) is determined by

{
x1 = τ2t1 = umt1,

x1 − ε = ξ3(ρm, um)t1 =
(
um − um

ρm − 1

)
t1,

which yields

(x1, t1) =
(

(ρm − 1)ε,
(ρm − 1)ε

um

)
. (3.8)

We find that J2 and the wave back of R3 intersect at a finite time. Subsequently,
J2 begins to penetrate the rarefaction wave R3 after t1, which is recorded as J6 in
the process of penetration. The expression of J6 during the penetrating process is
computed by

dx

dt
= u,

x − ε

t
= u − u

ρ − 1
, u − u

ρ
= um − um

ρm
, x(t1) = x1. (3.9)

Differentiating the second equation in (3.9) with respect to t , we have

u = dx

dt
= (ρ − 2)u

ρ − 1
+ (ρ − 2)t

ρ − 1

du

dt
+ ut

(ρ − 1)2
dρ

dt
,

which is simplified into

u = (ρ − 2)t
du

dt
+ ut

ρ − 1

dρ

dt
. (3.10)

Differentiating the third equation in (3.9) with respect to t yields

du

dt
+ u

ρ(ρ − 1)

dρ

dt
= 0. (3.11)

Which, together with (3.10), gives

du

dt
+ 1

ρt

(
u − (ρ − 2)t

du

dt

)
= 0,

such that one has

du

dt
= − u

2t
.

Hence, we can get

dx

dt
= u = um

√
t1
t
.
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As a result, the curve of J6 is expressed as

x = 2um
√
t1t + x1 − 2umt1. (3.12)

In the end, by combining (3.12) together with the line of wave back of R3 given by

x2 − ε =
(
u2 − u2

ρ2 − 1

)
t2.

The end point of J6 passing through R3 can be obtained as

(x2, t2) =
(

(ρm − 1)(ρmu+ + 2um)ε

2(ρm − 1)um − ρmu+
,

ρ2
m(ρm − 1)umε(

2(ρm − 1)um − ρmu+
)2

)
. (3.13)

There is no doubt that the two states (ρ2, u2) and (ρ3, u3) can be connected by the
contact discontinuity J7 for the reason that u3 = u2 = u+. In the end, it is evident
that the two contact discontinuities J4 and J7 are parallel with each other due to the
fact that the wave speeds of J7 and J4 are the same as τ7 = τ4 = u+. The proof is
finished. 	

Case 3. R + J and S + J

Thirdly, we are devoted to the case that there are a rarefaction wave followed by
a contact discontinuity emitting from the origin (0,0) and a shock wave followed by
a contact discontinuity emitting from the initial point (ε, 0), respectively. As before,
we use R1, J2 and S3, J4 to stand for them, respectively. For t adequately small, the
solution of (1.2) and (1.4) can be symbolized as (see Figs. 5 and 6)

(u−, v−) + R1 + (u1, v1) + J2 + (um, vm) + S3 + (u2, v2) + J4 + (u+, v+).

The occurrence of this case depends on the conditions (ρ−−1)u−
ρ− < um < u− and

(ρ−−1)u−
ρ− < um < u+. Similarly, the intermediate states (ρ1, u1), (ρ2, u2) and (ρ3, u3)

and the point of intersection (x1, t1) are also calculated in the same formulae as before
and then a new Riemann problem is formed at the time t1.

Proposition 3.3 The wave front of the rarefaction wave R1 catches up with the shock
wave S5 in finite time.More specifically, S5 is able to penetrate thewhole R1 thoroughly
when u− < u+ or not when u− > u+. Moreover, the two contact discontinuities J4
and J6 are parallel with each other.

Proof The wave speeds of the wave front of R1 and S5 are as follows:

ξ1(ρ1, u1) = (ρ1 − 2)u1
ρ1 − 1

= 2um − ρ−u2m
(ρ− − 1)u−

, σ5 = um + u+ − ρ−umu+
(ρ− − 1)u−

.

(3.14)
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Fig. 5 The interaction between R + J and S + J is shown when (ρ−−1)u−
ρ− < um < u+ < u−, in which

S5 cannot penetrate the whole R1 in finite time and ultimately has the line x =
((

2(ρ−−1)u−−ρ−u+
)
u+

(ρ−−1)u−

)
t

as its asymptote

Fig. 6 The interaction between R + J and S + J is shown when (ρ−−1)u−
ρ− < um < u− < u+, in which

S5 is able to penetrate the whole R1 completely

Then, we have

ξ1(ρ1, u1) − σ5 = 2um − ρ−u2m
(ρ− − 1)u−

− (um + u+) + ρ−umu+
(ρ− − 1)u−

= (um − u+)
(
1 − ρ−um

(ρ− − 1)u−

)
> 0,

which permits us to get ξ1(ρ1, u1) > σ5. Hence, the wave front of R1 catches up with
S5 in finite time and then the point of intersection (x2, t2) is determined by

⎧⎪⎨
⎪⎩
x2 = ξ1(ρ1, u1)t2 =

(
2um − ρ−u2m

(ρ− − 1)u−
)
t2,

x2 − x1 = σ5(t2 − t1) =
(
um + u+ − ρ−umu+

(ρ− − 1)u−
)
(t2 − t1),
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which yields

(x2, t2) =
(

(ρm − 1)
(
2(ρ− − 1)u− − ρ−um

)
umε

(ρ− − 1)u−(u+ − um)
,
(ρm − 1)ε

u+ − um

)
. (3.15)

Analogously, S5 begins to penetrate R1 after t2,which is recorded as S7 in the process of
penetration. The expression of S7 during the penetrating process is able to be computed
by

dx

dt
= u− u+

ρ − 1
,

x

t
= u− u

ρ − 1
, u− u

ρ
= u−−u−

ρ−
, x(t2) = x2. (3.16)

Differentiating the second equation in (3.16) with respect to t , we have

u − u+
ρ − 1

= dx

dt
= (ρ − 2)u

ρ − 1
+ (ρ − 2)t

ρ − 1

du

dt
+ ut

(ρ − 1)2
dρ

dt
,

which is simplified into

u − u+ = (ρ − 2)t
du

dt
+ ut

(ρ − 1)

dρ

dt
. (3.17)

Differentiating the third equation in (3.16) with respect to t yields

du

dt
+ u

ρ(ρ − 1)

dρ

dt
= 0. (3.18)

Which, together with (3.17), gives

du

dt
+ 1

ρt

(
u − u+ − (ρ − 2)t

du

dt

)
= 0,

such that one has
du

dt
= −u − u+

2t
.

Hence, we can get

dx

dt
= u− u+

ρ − 1
= (ρ− − 1)u− − ρ−u+

(ρ− − 1)u−
u+u+ = (ρ− − 1)u− − ρ−u+

(ρ− − 1)u−

(
(um−u+)

√
t2
t

+u+
)
+u+.

As a result, the curve of S7 is expressed as

x =
(
2(ρ− − 1)u− − ρ−u+

)
u+t

(ρ− − 1)u−

−2
(
(ρ− − 1)u− − ρ−u+

)√
(ρm − 1)(u+ − um)εt

(ρ− − 1)u−
+ ρ−(ρm − 1)(um − u+)ε

(ρ− − 1)u−
. (3.19)
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In the end, by combining (3.19) together with the line of wave back of R3 given by

x3 =
(
u− − u−

ρ− − 1

)
t3.

There are two situations in the process of penetration:

(1) If u− > u+, then S7 cannot penetrate R1 completely and ultimately has the line

x =
((

2(ρ− − 1)u− − ρ−u+
)
u+

(ρ− − 1)u−

)
t as its asymptote.

(2) If u− < u+, then S7 has the ability to penetrate the whole rarefaction wave R1
completely at a point (x3, t3) and then be denoted with a new shock wave S8 after
penetration, whose wave speed is given by σ8 = u− − u+

ρ− − 1 . It suffices to get

(x3, t3) =
(

(ρ− − 2)(ρm − 1)(u+ − um)u−ε

(ρ− − 1)(u+ − u−)2
,
(ρm − 1)(u+ − um)ε

(u+ − u−)2

)
. (3.20)

As before, the two contact discontinuities J4 and J6 are also parallel. 	

Case 4. S + J and R + J

In the end, we shall focus our attention on the situation that there are a shock
wave followed by a contact discontinuity emitting from the initial point (0,0) and a
rarefaction wave followed by a contact discontinuity emitting from the initial point
(ε, 0), respectively. Similarly, we use S1, J2 and R3, J4 to denote them, respectively.
For t adequately small, the solution of (1.2) and (1.4) can be symbolized as

(u−, v−) + S1 + (u1, v1) + J2 + (um, vm) + R3 + (u2, v2) + J4 + (u+, v+).

The occurrence of this case depends on the conditions (ρ−−1)u−
ρ− < u− < um and

(ρ−−1)u−
ρ− < u+ < um . Precisely, all the intermediate states are calculated in the same

way as before. It is noted that the process of J2 penetrating R3 is the same as that
in Case 2. Finally, we need to consider how does the shock wave S1 to penetrate the
non-centered rarefaction wave R5. The analytic calculation is impossible due to the
fact that the rarefaction wave R5 is non-centered. But we notice that both S1 and R5
belong to the wave of λ1−family. Thus, we can judge that S1 is able to cancel R5 when
u− < u+ or cannot penetrate R5 completely when u− > u+. In fact, this situation
is similar to that in Case 3. In other words, the wave interaction in Case 4 is just the
combination of those in Cases 2 and 3. Hence, we only describe the process and omit
the details here.

4 Conclusion

The wave interaction problems for system (1.2) have been well investigated in fully
explicit forms by using the method of characteristics, including shock wave, rarefac-
tion wave and contact discontinuity. Based on the above results, we can construct the
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global solutions to the perturbed Riemann problem (1.2) and (1.4) under the assump-
tion min(um, u+) >

(ρ−−1)u−
ρ− such that the composite wave Rδ J is not involved.

It is evident to see that the limits ε → 0 of solutions of (1.2) and (1.4) tend to the
corresponding ones of (1.2) and (1.3) by analyzing the above four cases in detail. As
a consequence, it is verified strictly that the Riemann solutions of (1.2) and (1.3) are
stable with respect to the specific small perturbations (1.4) of Riemann initial data
under the assumption min(um, u+) >

(ρ−−1)u−
ρ− .

It should be stressed that the composite wave Rδ J is involved in the Riemann
solution of (1.2) and (1.3)when the initial condition (1.3) satisfies 0 < u+ <

(ρ−−1)u−
ρ− .

This is a new kind of singular hyperbolic wave which has not been paid enough
attention in current literatures. There are still some interesting, but difficult problems
needed to be considered. The first concern is that our constructed composite wave Rδ J
is the uniqueness Riemann solution of (1.2) and (1.3) or not when 0 < u+ <

(ρ−−1)u−
ρ− .

The second concern is that the composite wave Rδ J is stable or not under some small
perturbations of Riemann initial data (1.3) such as the perturbation (1.4). We plan to
consider these interesting but difficult problems in our future work.
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