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Abstract
In this paper, the split common fixed point problem for quasi-pseudo-contractive
mappings is studied in Hilbert spaces. By using the hybrid projection method, a
new algorithm and some strong convergence theorems are established under suit-
able assumptions. Our results not only improve and generalize some recent results but
also give an affirmative answer to an open question.
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1 Introduction

Let H1 and H2 be two real Hilbert spaces and S : H1 → H1 and T : H2 → H2 be two
nonlinear operators. Denote the fixed point sets of S and T by Fix(S) and Fix(T ),
respectively. Let A : H1 → H2 be a bounded linear operator with adjoint A∗. The
“so-called” split common fixed point problem is to find a point x∗ ∈ H1 such that

x∗ ∈ Fix(S) and Ax∗ ∈ Fix(T ). (1.1)

As well known, the split common fixed point problem (1.1) is a generalization of the
split feasibility problem arising from signal processing and image restoration ([1–8]).
Note that solving (1.1) can be translated to solve the following fixed point equation:

x∗ = S(x∗ − τ A∗((I − T )Ax∗), τ > 0. (1.2)

In order to solve Eq. (1.2), Censor and Segal [9] proposed an algorithm for directed
operators. Since then, there has been growing interest in the split common fixed point
problem ([8,10–15]). In particular, in 2017, Wang [16] introduced the following new
iterative algorithm for the split common fixed point problem for firmly nonexpansive
mappings.

Algorithm 1.1 Choose an arbitrary initial guess x0 ∈ H1.
Step 1 Given xn , compute the next iteration via the formula:

xn+1 = xn − ρn[xn − Sxn + A∗(I − T )Axn], n ≥ 0. (1.3)

Step 2 If the following equality holds

||xn+1 − Sxn+1 + A∗(I − T )Axn+1|| = 0, (1.4)

then stop; otherwise, go to step 1.
Subsequently, he proved the following result.

Theorem 1.2 (Wang [16]). Assume the following conditions are satisfied:

(1) A is a bounded linear operator;
(2) the solution set of problem (1.1), denoted by �, is nonempty;
(3) both S and T are firmly nonexpansive operators.

If the sequence {ρn} satisfies the conditions: ∑∞
n=0 ρn = ∞ and

∑∞
n=0 ρ2

n < ∞,
then the sequence {xn} generated by Algorithm 1.1 converges weakly to a solution z
of problem (1.1).

At the same time, Wang [16] gave the following remark.

Remark 1.3 It is easy to see that, in Algorithm 1.1, the selection of the step size {ρn}
does not depend on the operator norm ||A||. It seems that the assumption (3) cannot
weaken to directed operators.
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Inspired by the works of [6–8,16–18], the main purpose of this paper is to introduce
and analyze a new iterative method for solving the split common fixed point problem
in Hilbert spaces. Using this method, we remove the assumptions imposed on the
operator norm ||A||. And the sequence generated by the algorithm converges strongly
to a solution of problem (1.1). Our results not only give an affirmative answer to
Remark 1.3 in [16] but also extend and improve the results in Yao et al. [6], Moudafi
[7,8] and Wang [16,17] from the firmly nonexpansive operators, directed operators
and demicontractive operators to a more general quasi-pseudo-contractive operators.

2 Preliminaries and Lemmas

Let H be a real Hilbert space, C be a nonempty closed and convex subset of H and
T : C → C be a nonlinear mapping.

Definition 2.1 T is said to be

(i) Nonexpansive if ||T x − T y|| ≤ ||x − y|| ∀x, y ∈ C ;
(ii) Quasi-nonexpansive if Fix(T ) 	= ∅ and

||T x − x∗|| ≤ ||x − x∗|| ∀x ∈ C and x∗ ∈ Fix(T );

(iii) Firmly nonexpansive if

||T x − T y||2 ≤ ||x − y||2 − ||(I − T )x − (I − T )y||2 ∀x, y ∈ C,

or equivalently

||T x − T y||2 ≤ 〈x − y, T x − T y〉 ∀x, y ∈ C .

(iv) Firmly quasi-nonexpansive if Fix(T ) 	= ∅ and

||T x − x∗||2 ≤ ||x − x∗||2 − ||(I − T )x ||2 ∀x ∈ C and x∗ ∈ Fix(T ).

(v) Directed if Fix(T ) 	= ∅ and 〈T x − x∗, T x − x〉 ≤ 0 ∀x ∈ C and x∗ ∈
Fix(T );

(vi) k-Demicontractive if Fix(T ) 	= ∅ and there exists k ∈ [0, 1) such that

||T x − x∗||2 ≤ ||x − x∗||2 + k||T x − x ||2 ∀x ∈ C and x∗ ∈ Fix(T ),

Remark 2.2 (1) It is easy to see that T : C → C is directed if and only if

||T x − x∗||2 ≤ ||x − x∗||2 − ||T x − x ||2 ∀x ∈ C and x∗ ∈ F(T ), (2.1)

i.e., each firmly quasi-nonexpansive mapping is a directed mapping.
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1158 S.-s. Chang et al.

(2) T : C → C is a quasi-nonexpansive mapping if and only if

〈x − T x, x − x∗〉 ≥ 1

2
||x − T x ||2, ∀x ∈ C, x∗ ∈ Fix(T ). (2.2)

(3) T : C → C is a k-demicontractive mapping if and only if

〈x − T x, x − x∗〉 ≥ 1 − k

2
||x − T x ||2, ∀x ∈ C, x∗ ∈ Fix(T ). (2.3)

Definition 2.3 An operator T : C → C is said to be pseudo-contractive if

〈T x − T y, x − y〉 ≤ ||x − y||2 ∀x, y ∈ C .

The interest of pseudo-contractive operators lies in their connection with monotone
mappings; namely, T is a pseudo-contraction if and only if I − T is a monotone
mapping. It is well known that T is pseudo-contractive if and only if

||T x − T y||2 ≤ ||x − y||2 + ||(I − T )x − (I − T )y||2 ∀x; y ∈ C .

Definition 2.4 An operator T : C → C is said to be quasi-pseudo-contractive if
Fix(T ) 	= ∅ and

||T x − x∗||2 ≤ ||x − x∗||2 + ||T x − x ||2 ∀x ∈ C and x∗ ∈ F(T ) : (2.4)

Remark 2.5 From the definitions above, we note that the class of quasi-pseudo-
contractive mappings is more general and fundamental which includes many kinds
of nonlinear mappings such as demicontractive mappings, directed mappings, quasi-
nonexpansive mappings and quasi-firmly nonexpansive mappings as its special cases.

Example of quasi-pseudo-contractive mappings Let H be the closed interval [0, 1]
with the absolute value as norm. Let T : H → H be the mapping defined by:

T x =

⎧
⎪⎨

⎪⎩

1

2
, x ∈ [0, 1

2
]

0, x ∈ (
1

2
, 1].

It is clear that Fix(T ) = { 12 }. Hence, for x ∈ [0, 1
2 ] we have

|T x − 1

2
|2 = 0 ≤ |x − 1

2
|2 + |x − T x |2;

Also, for x ∈ ( 12 , 1] we have

|T x − 1

2
|2 = |1

2
|2 ≤ |x − 1

2
|2 + |T x − x |2;
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These show that for x ∈ [0, 1] we have

|T x − 1

2
|2 ≤ |x − 1

2
|2 + |x − T x |2,

i.e., T is a quasi-pseudo-contractive mapping.
Inwhat follows, we adopt the following notations: xn⇀x means that {xn} converges

weakly to x ; xn → x means that {xn} converges strongly to x .
ωw(xn) := {x : ∃ {xn j } ⊂ {xn} such that xn j ⇀x} is the set of weak cluster points

of the sequence {xn}.
Definition 2.6 Let C be a nonempty, closed and convex subset of a real Hilbert space
H . It is well known that for each x ∈ H , there is unique point PC (x) ∈ C such that

||x − PC (x)|| = inf
u∈C ||x − u||. (2.5)

The mapping PC : H → C defined by (2.5) is called the metric projection of H
onto C . Moreover, the following conclusions hold (see, for example, [19]):

〈x − PC (x), y − PC (x)〉 ≤ 0 ∀x ∈ H , y ∈ C; (2.6)

||x − PC (x)||2 + ||y − PC (x)||2 ≤ ||x − y||2, ∀x ∈ H and y ∈ C . (2.7)

Definition 2.7 Amapping T : C → C is said to be demiclosed at 0 if, for any sequence
{xn} ⊂ C which converges weakly to x and ||xn − T (xn)|| → 0, then T (x) = x .

Lemma 2.8 ([20]) Let H be a real Hilbert space and {xn} be a sequence in H. Then,
the following statements hold:

(i) If xn⇀x∗ and ||xn − x∗|| → 0 as n → ∞, then xn → x∗ as n → ∞;
(ii) If xn⇀x∗ as n → ∞, then ||x∗|| ≤ lim infn→∞ ||xn||.
Lemma 2.9 [21]Let {an} and {bn} be positive real sequences such that∑∞

n=0 bn < ∞.
If either an+1 ≤ (1 + bn)an or an+1 ≤ an + bn, then the limit limn→∞ an exists.

Lemma 2.10 ([5]) Let H be a real Hilbert space and T : H → H be a L-Lipschitzian
mapping with L ≥ 1. Denote by

K := (1 − ξ)I + ξT ((1 − η)I + ηT ), (2.8)

If 0 < ξ < η < 1
1+√

1+L2 , then the following conclusions hold:

(1) Fix(T ) = Fix(T ((1 − η)I + ηT )) = Fix(K );
(2) If T is demiclosed at 0, then K is also demiclosed at 0;
(3) K is a L2-Lipschitzian mapping;
(4) In addition, if T : H → H is quasi-pseudo-contractive, then the mapping K is

quasi-nonexpansive, that is,

||Kx − u∗|| ≤ ||x − u∗|| ∀x ∈ H and u∗ ∈ Fix(T ) = Fix(K ). (2.9)
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3 Main Results

Throughout this section, we assume that the following conditions are satisfied:

(A1) H1 and H2 are two real Hilbert spaces;
(A2) S : H1 → H1 and T : H2 → H2 are two L-Lipschitz continuous and quasi-

pseudo-contractive mappings with L > 1;
(A3) Let 0 < ξ < η < 1

1+√
1+L2 . Define operatorsU : H1 → H1 and V : H2 → H2

by

{
U : = (1 − ξ)I + ξ S((1 − η)I + ηS);
V : = (1 − ξ)I + ξT ((1 − η)I + ηT );

(A4) A : H1 → H2 is a bounded linear operator, and A∗ is its adjoint operator.
(A5) Denote by � the solution set of problem (1.1):

� := {z : z ∈ Fix(S) and Az ∈ Fix(T )}.

Therefore, � is a closed and convex subset of H1.

Algorithm 3.1 .Choose an arbitrary initial guess x0 ∈ H1, define the sequence {xn}
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yn = Uxn,

zn = V (Ayn),

Cn = {z ∈ H1 : ||yn−z||≤||xn−z||}
⋂

{z∈H1 : ||zn−Az||≤||Ayn−Az||},
En = {z ∈ H1 : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn

⋂
En (x0), n ≥ 0

(3.1)

We are now in a position to give the main results of the paper.

Theorem 3.2 Let H1, H2, S, T , U , V , A,� be the same as above. Let {xn} be the
sequence generated by Algorithm 3.1. If the following conditions are satisfied:

(i) S, T are demiclosed at zero;
(ii) the solution set � of problem (1.1) is not empty,

then {xn} converges strongly to a solution x∗ of problem (1.1).

Proof (I) First, we point out that by the assumptions (A1)–(A4) and conditions (i)–
(ii), the following conclusions can be obtained from Lemma 2.10:

(Conclusion 1) U and V are two quasi-nonexpansive mappings and Fix(U ) =
Fix(S); Fix(V ) = Fix(T ). Therefore, the solution set � of problem (1.1) is:

� = {z : z ∈ Fix(S) and Az ∈ Fix(T )}
= {z : z ∈ Fix(U ) and Az ∈ Fix(V )} 	= ∅;
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(Conclusion 2) U and V are demiclosed at zero; (Conclusion 3) U and V are L2-
Lipschitz continuous mappings.

(II) Now, we prove that the sequence {xn} generated by Algorithm 3.1 is well defined.

First, we prove that for each n ≥ 0, Cn and En are closed and convex subsets of H1.
In fact, the sets Cn, Dn and En can be rewritten in the following forms:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cn = {z ∈ H1 : 〈xn − yn, z〉 ≤ 1

2
(||xn||2 − ||yn||2)}

⋂
{z ∈ H1 : 〈Ayn − zn, Az〉 ≤ 1

2
(||Ayn||2 − ||zn||2)},

En = {z ∈ H1 : 〈x0 − xn, z〉 ≤ 〈xn, x0 − xn〉},

Since 〈xn − yn, z〉, 〈Ayn − zn, Az〉 and 〈x0 − xn, z〉 are continuous and convex
functions in z, therefore for each n ≥ 0, Cn and En are closed and convex subsets in
H1.

Next, we prove that � ⊂ Cn
⋂

En for all n ≥ 0. Indeed, taking any point p ∈ �,
we have p ∈ Fix(U ) = Fix(S) and Ap ∈ Fix(V ) = Fix(T ). Since U and V are
quasi-nonexpansive, we have

||yn − p|| = ||Uxn −Up|| ≤ ||xn − p||,
||zn − Ap|| = ||V (Ayn) − V (Ap)|| ≤ ||Ayn − Ap||.

These imply that � ⊂ Cn ∀n ≥ 0.
Now, we show that � ⊂ En for all n ≥ 0. In fact, since E0 = H1, � ⊂ E0.

Now, suppose that � ⊂ En for some n ≥ 1, therefore � ⊂ Cn
⋂

En . Since xn+1 =
PCn

⋂
En (x0), n ≥ 0, by (2.6) (the property of projection operator), we have

〈z − xn+1, x0 − xn+1〉 ≤ 0, ∀z ∈ Cn

⋂
En

Since p ∈ Cn
⋂

En , we have

〈p − xn+1, x0 − xn+1〉 ≤ 0.

This implies that p ∈ En+1. Thus by induction, we conclude that � ⊂ En, ∀n ≥ 0.
Hence, � ⊂ Cn

⋂
En, ∀n ≥ 0. This implies that Cn

⋂
En, n ≥ 0 is a nonempty

closed and convex subset of H1. Therefore, the sequence {xn} defined by (3.1) is well
defined.

(III) Now, we prove that {xn} is a bounded sequence and

||xn+1 − xn|| → 0, ||xn − yn|| → 0 and ||zn − Ayn|| → 0 as n → ∞.(3.2)

Let x∗ = P�(x0). Hence, x∗ ∈ � ⊂ En,∀n ≥ 0. Further by the definition of En and
the characterization of the metric projection (2.6), we have that xn = PEn (x0). And
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so, we have

||xn − x0|| ≤ ||x∗ − x0||, ∀n ≥ 0. (3.3)

This implies that the sequence {xn} is bounded.
Since xn+1 ∈ En and xn = PEn (x0), it follows from (2.7) that

||xn+1 − xn||2 ≤ ||xn+1 − x0||2 − ||xn − x0||2. (3.4)

This shows that the sequence {||xn − x0||} is increasing. Since it is also bounded,
the limit limn→∞ ||xn − x0|| exists. It now follows from (3.4 ) that

lim
n→∞ ||xn+1 − xn|| = 0. (3.5)

Since xn+1 = PCn
⋂

En (x0) ∈ Cn , from the definition of Cn we have

{
||xn+1 − yn|| ≤ ||xn+1 − xn||
||zn − Axn+1|| = ||Ayn − Axn+1|| ≤ ||A||||yn − xn+1||. (3.6)

It follows from (3.5) and (3.6) that

||xn+1 − yn|| → 0 (as n → ∞), (3.7)

and

||zn − Axn+1|| → 0 (as n → ∞). (3.8)

This together with (3.7) shows that

||zn − Ayn|| ≤ ||zn − Axn+1|| + ||Axn+1 − Ayn||
≤ ||zn − Axn+1|| + ||A||||xn+1 − yn|| → 0 (as n → ∞).

The conclusion (3.2) is proved.

(IV) Finally, we prove {xn} → x∗ := P�(x0)

Since {xn} is bounded, there exists a subsequence {xni } ⊂ {xn} such that xni ⇀p ∈ H1
asni → ∞. Since A is a bounded linear operator,we also have Axnk⇀Ap. Using (3.2),
we have yni ⇀p, Ayni ⇀Ap and

||xni −Uxni || → 0 and ||Ayni − V (Ayni )|| → 0 (as ni → ∞). (3.9)

Since U and V are demiclosed at zero, p ∈ Fix(U ) = Fix(S) and Ap ∈ Fix(V ) =
Fix(T ), i.e., p ∈ �.
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Since x∗ = P�(x0) and p ∈ �, from (3.3) and Lemma 2.8 (ii) (the weakly lower
semi-continuity of the norm || · ||), we have that

||x0 − x∗|| ≤ ||x0 − p|| ≤ lim inf
ni→∞ ||x0 − xni ||

≤ lim sup
ni→∞

||x0 − xni || ≤ ||x0 − x∗|| (by 3.3)

Using the uniqueness of the nearest point x∗, we have x∗ = p. Hence, we have
||xni − x0|| → ||x∗ − x0||. Again by Lemma 2.8 (i), we get that xni → x∗ as ni → ∞.
Using again the uniqueness of x∗, we deduce that limn→∞ xn = x∗.

This completes the proof of Theorem 3.2. ��
Remark 3.3 Theorem 3.2 not only gives an affirmative answer to theWang’s questions
in Remark 1.3, but also extends and improves the corresponding results in Yao et al.
[6], Moudafi [7,8] and Wang [16,17] from the firmly nonexpansive operators and
demicontractive operators to a more general quasi-pseudo-contractive operator.

The following theorem can be obtained from Theorem 3.2.

Theorem 3.4 Let H1 and H2 be two real Hilbert spaces, S : H1 → H1 and T : H2 →
H2 be two firmly nonexpansive mappings and A : H1 → H2 be a bounded linear
operator, and A∗ is its adjoint operator. For an arbitrary initial guess x0 ∈ H1, define
the sequence {xn} by
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yn = Sxn,

zn = T (Ayn),

Cn = {z ∈ H1 : ||yn − z||≤||xn−z||}
⋂

{z∈H1 : ||zn−Az||≤||Ayn − Az||},
En = {z ∈ H1 : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn

⋂
En (x0), n ≥ 0

(3.10)

If the solution set � of problem (1.1) is nonempty, then {xn} converges strongly to a
solution x∗ of problem (1.1).

Proof In fact, since � 	= ∅, Fix(S) 	= ∅ and Fix(T ) 	= ∅. This implies that

(1) S and T are quasi-nonexpansive and L−Lipschitz mappings with L > 1;
(2) S and T both are demiclosed at zero.

These show that S, T satisfy all the conditions ofU and V in Theorem 3.2. Hence,
the conclusion of Theorem 3.4 can be obtained from Theorem 3.2 immediately. ��

4 Applications

In this section, we shall utilize the results presented in the paper to study the split
common null point problem and the split minimum point problem in real Hilbert
spaces.
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4.1 Application to Split Common Null Point Problems

Let H1 and H2 be two real Hilbert spaces. Let S : H1 → 2H1 and T : H2 → 2H2

be two maximal monotone operators and A : H1 → H2 be a bounded linear operator.
The “so-called” split common null point problem for mappings S and T is to find an
element x∗ ∈ H1 such that

0 ∈ S(x∗) and 0 ∈ T (Ax∗)), i.e., x∗ ∈ �1 := S−1(0)
⋂

A−1(T−1(0)) (4.1)

It is well known that if S is a maximal monotone operator, then for each λ > 0, we can
define a single-valued and firmly nonexpansive mapping J S

λ : R(I + λS) → D(S)

by J S
λ = (I + λS)−1. This mapping is called the resolvent of S. It is not difficult to

see that S−1(0) = Fix(J S
λ ) f orallλ > 0.

In Theorem 3.4, if we replace S by J S
λ and T by J Tλ , then the following theorem

can be obtained from Theorem 3.4 immediately.

Theorem 4.1 Let H1 and H2 be two real Hilbert spaces. Let S : H1 → 2H1 and
T : H2 → 2H2 be two maximal monotone operators and A : H1 → H2 be a given
bounded linear operator. For an arbitrary initial guess x0 ∈ H1, define the sequence
{xn} by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yn = J S
λ (xn),

zn = J Tλ (Ayn),

Cn = {z∈H1 : ||yn−z||≤||xn−z||}
⋂

{z∈H1 : ||zn−Az||≤||Ayn−Az||},
En = {z ∈ H1 : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn

⋂
En (x0), n ≥ 0

(4.2)

If the solution set �1 of problem (4.1) is nonempty, then {xn} converges strongly to a
solution x∗ of problem (4.1).

4.2 Application to Split Minimum Point Problem

Let H1 and H2 be two real Hilbert spaces. Let f1 : H1 → (−∞,+∞] and f2 :
H2 → (−∞,+∞] be two proper, lower semicontinuous and convex functions, and
let A : H1 → H2 be a bounded linear operator. The “so-called” split minimum point
problem for functions f1 and f2 is to find a point x∗ ∈ H1 such that

x∗ ∈ �2 := argminx∈H1 f1(x)
⋂

A−1(argminy∈H2 f2(y)) (4.3)

It is well known that since fi , i = 1, 2 is a proper lower semicontinuous and convex
function, the subdifferential ∂ fi of fi is a maximal monotone operator and that x∗ ∈
argminx∈Hi fi (x) if and only if 0 ∈ ∂ fi (x∗). Let us define the resolvent of ∂ fi by
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J ∂ fi
λ = (I + λ∂ fi )−1, λ > 0. It is known that Fix(J ∂ fi

λ ) = ∂ f −1
i (0). Therefore, the

following theorem can be obtained from Theorem 4.1 immediately.

Theorem 4.1 Let H1 and H2 be two real Hilbert spaces. Let f1 : H1 → (−∞,+∞]
and f2 : H2 → (−∞,+∞] be two proper, lower semicontinuous and convex func-
tions, ∂ fi , i = 1, 2 be the subdifferential of fi and A : H1 → H2 be a given bounded
linear operator. For an arbitrary initial guess x0 ∈ H1, define the sequence {xn} by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = J ∂ f1
λ (xn),

zn = J ∂ f2
λ (Ayn),

Cn = {z ∈ H1 : ||yn−z||≤||xn−z||}
⋂

{z∈H1 : ||zn−Az||≤||Ayn − Az||},
En = {z ∈ H1 : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn

⋂
En (x0), n ≥ 0

(4.4)

If the solution set �2 of problem (4.3) is nonempty, then {xn} converges strongly to a
solution x∗ of problem (4.3).

Author contributions All the authors contributed equally to the writing of the present article. And they also
read and approved the final paper.

Funding This workwas supported by theNatural Science Foundation of ChinaMedical University, Taiwan.
This study was also supported by the National Natural Science of China (No. 11361070).

Availability of data andmaterial Not applicable.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no competing interests.

References

1. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruc-
tion. Inverse Probl. 20, 103–120 (2004)

2. Ceng, L.C., Ansari, Q.H., Yao, J.C.: An extragradient method for split feasibility and fixed point
problems. Comput. Math. Appl. 64, 633–642 (2012)

3. Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal.
74, 4105–4111 (2011)

4. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces.
Inverse Probl. 26, 105018 (2010)

5. Chang, S.S., Wang, L., Qin, L.J.: Split equality fixed point problem for quasi-pseudo-contractive
mappings with applications. Fixed Point Theory Appl. 2015, 208 (2015)

6. Yao, Y.H., Yao, J.C., Liou, Y.C., Postolache, M.: Iterative algorithms for split common fixed points
of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math. 34(3),
451–458 (2018)

7. Moudafi, A.: A note on the split common fixed-point problem for quasi-nonexpansive operators.
Nonlinear Anal. 74, 4083–4087 (2011)

123



1166 S.-s. Chang et al.

8. Moudafi, A.: The split common fixed-point problem for demicontractive mappings. Inverse Probl. 26,
055007 (2010)

9. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal.
16, 587–600 (2009)

10. Ansari, Q.H., Rehan, A., Wen, C.F.: Implicit and explicit algorithms for split common fixed point
problems. J. Nonlinear Convex Anal. 17, 1381–1397 (2016)

11. Boikanyo, O.A.: A strongly convergent algorithm for the split common fixed point problem. Appl.
Math. Comput. 265, 844–853 (2015)

12. Cegielski, A.: General method for solving the split common fixed point problem. J. Optim. Theory
Appl. 165, 385–404 (2015)

13. Kraikaew, P., Saejung, S.: On split common fixed point problems. J. Math. Anal. Appl. 415, 513–524
(2014)

14. Takahashi, W.: The split common fixed point problem and strong convegence theorems by hybrid
methods in two Banach spaces. J. Nonlinear Convex Anal. 17, 1051–1067 (2016)

15. Takahashi, S., Takahashi,W.: The split commonnull point problem and the shrinking projectionmethod
in two Banach spaces. Linear Nonlinear Anal. 1, 297–304 (2015)

16. Wang, F.: A new method for split common fixed-point problem without priori knowledge of operator
norms. J. Fixed Point Theory Appl. (2017). https://doi.org/10.1007/s11784-017-0434-0

17. Wang, F.: A new iterative method for the split common fixed point problem in Hilbert spaces. Opti-
mization 66(3), 407–415 (2017)

18. Reich, S., Tuyen, T.M.: A new algorithm for solving the split common null point problem in Hilbert
spaces. Numer. Algorithms (2020). https://doi.org/10.1007/s11075-019-00703-z

19. Goebel, K., Reich, S.: UniformConvexity, HyperbolicGeometry, andNonexpansiveMappings.Marcel
Dekker, New York (1984)

20. Agarwal, R.P., ORegan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-type Mappings with
Applications. Springer, New York (2009)

21. Tan, K.K., Xu, H.K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration
process. J. Math. Anal. Appl. 178, 301–308 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s11784-017-0434-0
https://doi.org/10.1007/s11075-019-00703-z

	Split Common Fixed Point Problem for Quasi-Pseudo-Contractive Mapping in Hilbert Spaces
	Abstract
	1 Introduction
	2 Preliminaries and Lemmas
	3 Main Results
	4 Applications
	4.1 Application to Split Common Null Point Problems
	4.2 Application to Split Minimum Point Problem

	References




