

Some Results About the Reliability of Folded Hypercubes

Mohsen Ghasemi1

Received: 19 March 2020 / Revised: 8 August 2020 / Accepted: 11 August 2020 / Published online: 19 August 2020 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020

Abstract

In this paper we investigate some reliability measures, including super-connectivity, cyclic edge connectivity, etc., in the folded hypercubes.

Keywords Restricted edge-connectivity · Edge-transitive · Folded hypercubes

Mathematics Subject Classification 05C40 · 05C90

1 Introduction

Suppose that Γ is a finite, simple and undirected graph. We use $V(\Gamma)$, $E(\Gamma)$, $A(\Gamma)$ and $Aut(\Gamma)$ for showing the vertex set, edge set, arc set and the automorphism group of Γ , respectively. We say that Γ is *vertex-transitive*, *edge-transitive* and *arc-transitive* if Aut(Γ) acts transitive on $V(\Gamma)$, $E(\Gamma)$, $A(\Gamma)$, respectively.

We remind that hypercube Q_n is a graph with 2^n vertices, each vertex with a distinct binary string $x_1x_2 \cdots x_n$ on the set {0, 1}. Two vertices are linked by an edge if and only if their strings differ in exactly one bit. It is well known that Q_n is an arc-transitive graph. As a variant of the hypercube, the *n*-dimensional folded hypercube FQ_n , proposed first by El-Amawy and Latifi [\[1](#page-5-0)], is a graph obtained from the hypercube *Qn* by adding an edge, called a complementary edge, between any two vertices $x = (x_1 x_2 \cdots x_n)$ and $\overline{x} = (\overline{x_1} \ \overline{x_2} \cdots \overline{x_n})$, where $\overline{x_i} = 1 - x_i$. The graphs shown in Figs. [1](#page-1-0) and [2](#page-1-1) are FQ_3 and FQ_4 , respectively. By an easy observation, FQ_n is an $(n + 1)$ -regular and its order is 2^n . Like Q_n , FQ_n is arc-transitive (see [\[15\]](#page-5-1)). Also by [\[1](#page-5-0)], it has diameter of $\lceil n/2 \rceil$ which is smaller than the diameter of Q_n . In the literature, FQ_n has received considerable attention, and a lot of its properties have been investigated. For example see ([\[7](#page-5-2)[–9](#page-5-3)[,13](#page-5-4)[,22](#page-6-0)[,23](#page-6-1)[,25](#page-6-2)[,29](#page-6-3)[,34](#page-6-4)]).

Communicated by Rosihan M. Ali.

B Mohsen Ghasemi m.ghasemi@urmia.ac.ir

¹ Department of Mathematics, Urmia University, Urmia 57135, Iran

Fig. 2 (*F Q*4)

Zhou et al. (see [\[33](#page-6-5)]) studied some reliability measures such as super-connectivity, cyclically connectivity in the balanced hypercube by using its symmetric properties. In this paper we get the similar results for *n*-dimensional folded hypercube FQ_n .

2 Preliminaries

In this section, we give some terminology and notation. For notation and terminology not define here we follow [\[3](#page-5-5)].

Let *n* be a positive integer. Denote by C_n the cyclic graph of order *n*. For a vertex v in a graph Γ , use $N_{\Gamma}(v)$ to denote the neighborhood of v, that is, the set of vertices adjacent to v. Also for a positive integer m , mK_1 represents the null graph with m vertices and a graph is trivial if it is a vertex.

The *vertex-connectivity* of a graph Γ denoted by $\kappa(\Gamma)$ is the minimum number of vertices whose removal results in a disconnected graph or a trivial graph. Similarly, we can define *edge-connectivity* of a graph Γ which is denoted by $\lambda(\Gamma)$. In fact $\kappa(\Gamma)$ and $\lambda(\Gamma)$ are two important factors for measuring the reliability of an interconnection network. Also a larger $\kappa(\Gamma)$ or $\lambda(\Gamma)$ means that the network Γ is more reliable. It is well known that $\kappa(\Gamma) \leq \lambda(\Gamma) \leq \delta(\Gamma)$, where $\delta(\Gamma)$ is the minimum degree of Γ . A graph is said to be *super*-κ(resp. *super*-λ), if any minimum vertex-cut (resp. edge-cut) isolates a vertex.

In order to estimate more precisely the reliability, Esfahanian and Hakimi introduce such a kind of edge cut in [\[6](#page-5-6)] that separates a connected graph into a disconnected one without isolated vertices. With the properties of restricted edge connectivity, Li analyzed the reliability of circulant graphs in [\[11\]](#page-5-7) and improved Bauer's result. For more accurate results, Ou et al. introduce the concepts of *m*-restricted edge cut and *m*-restricted edge connectivity in [\[6](#page-5-6)[,16](#page-6-6)[,17](#page-6-7)[,27](#page-6-8)]. An edge set *F* is an *m*-*restricted edge cut* of a connected graph *G* if $G - F$ is disconnected and each component of $G - F$ contains at least *m* vertices (see [\[6](#page-5-6)]). Let $\lambda^{(m)}(G)$ be the minimum size of all *m*restricted edge cuts and $\xi_m(G) = \min\{|\omega(U)| : |U| = m \text{ and } G[U]\}$ connected} where $\omega(U)$ is the set of edges with exactly one end vertex in *U* and *G[U]* is the subgraph of *G* induced by *U*. A graph *G* is $\lambda^{(m)}$ -graph if $\lambda^{(m)}(G) = \xi_m(G)$. Also $\lambda^{(m)}(G)$ is called *m-restricted edge connectivity* of graph *G*. Moreover, a graph is called *super-m-restrict edge connected*, in short, *super-* $\lambda^{(m)}$ if every minimum edge cut isolates one component $G[U]$ with $|U| = m$. In the special case, a set *F* of edges of a connected graph *G* is said to be a restricted edge-cut, if its removal disconnects *G*, and *G* − *F* contains no isolated vertices. If *G* has at least one restricted edge-cut, the restricted edge-connectivity of *G*, denoted by $\lambda'(G)$, is then defined to be the minimum cardinality over all restricted edge-cuts of $G.$ Moreover, a graph Γ is called *super-restricted edge-connected*, in short, *super*-λ if every minimum restricted edge cut isolates one component of size 2 . The super-restricted edge-connectivity of many interconnection networks has been studied (see [\[5](#page-5-8)[,11](#page-5-7)[,12](#page-5-9)[,19](#page-6-9)[,24](#page-6-10)[,33\]](#page-6-5)).

Similarly, if *V* is a vertex set then *m*-restricted cut, *m*-restricted connectivity and super-*m*-restricted connectivity (in the special case *super*-κ) are defined analogously.

For a graph Γ , an edge set *F* is a *cyclic edge-cut* if $\Gamma - F$ is disconnected and at least two of its components contain cycles. Clearly, a graph has a cyclic edge-cut if and only if it has two vertex-disjoint cycles. For a cyclically separable graph *G*, the *cyclic edge-connectivity* of Γ , denoted by $\lambda_c(\Gamma)$, is defined as the cardinality of a minimum cyclic edge-cut of Γ . Cyclic edge-connectivity plays an important role in many classic fields of graph theory such as measure of network reliability. A graph Γ is said to be *super*- λ_c , if the removal of any minimum cyclic edge-cut of Γ results in a component which is a shortest cycle of Γ . The cyclic edge-connectivity of many interconnection networks has been studied (see [\[18](#page-6-11)[,21](#page-6-12)[,28](#page-6-13)[,30](#page-6-14)[–32\]](#page-6-15)).

Suppose that Γ and Δ are two graphs. The lexicographic product of Γ and Δ which is denoted by $\Gamma[\Delta]$ is a graph with vertex set $V(\Gamma) \times V(\Delta)$ and two vertices (u_1, v_1) , $(u_2, v_2) \in V(\Gamma) \times V(\Delta)$ are adjacent in $\Gamma[\Delta]$ whenever either u_1 is adjacent to u_2 in Γ , or $u_1 = u_2$ and v_1 is adjacent to v_2 in Δ .

Let Γ and *H* be two graphs. The lexicographic product $\Gamma[H]$ is defined as the graph with vertex set $V(\Gamma) \times V(H)$, and for any two vertices (u_1, v_1) , $(u_2, v_2) \in$

 $V(\Gamma) \times V(H)$, they are adjacent in $\Gamma[H]$ if and only if either *u*₁ is adjacent to *u*₂ in Γ , or $u_1 = u_2$ and v_1 is adjacent to v_2 in *H*.

Proposition 2.1 ([\[14](#page-5-10)[,20](#page-6-16)]) *Let* Γ *be a connected graph which is both vertex-transitive* α and edge-transitive. Then $\kappa(\Gamma) = \delta(\Gamma)$, and moreover, Γ is not super- κ *if and only if* $\Gamma \cong C_n[mK_1]$ ($n \geq 6$) or $L(Q_3)[mK_1]$, where $L(Q_3)$ *is the line graph of threedimensional hypercube Q*3*.*

The following results are about the connectivity of edge-transitive graphs.

Proposition 2.2 ([\[2](#page-5-11)[,11](#page-5-7)[,19](#page-6-9)[,30](#page-6-14)[,31\]](#page-6-17)) *Let* Γ *be a k*($k \geq 3$)-regular edge-transitive graph. *Then*

- (1) Γ *is super-λ*.
- (2) $\lambda'(\Gamma) = 2k 2.$
- (3) Γ is not super- λ' if and only if Γ is isomorphic to the three-dimensional hypercube *Q*³ *or to a four-valent edge-transitive graph of girth* 4*.*
- (4) If Γ is not isomorphic to K_4 , K_5 or $K_{3,3}$ then $\lambda_c(\Gamma) = g(k-2)$, where g is the $girth$ of Γ .

By [\[32](#page-6-15)] [Theorem [3.4\]](#page-4-0) we have the following result.

Proposition 2.3 *Let* Γ *be a* $k(k \geq 3)$ -regular edge-transitive graph of girth g. Suppose *that* Γ *is not isomorphic to* K_4 , K_5 *or* $K_{3,3}$ *. If* Γ *is not super-* λ_c *, then* (g, k) = $(6, 3), (4, 4), (4, 5), (4, 6)$ *or* (3, 6)*. Furthermore,* $C_n[2K_1](n \ge 4)$ *is non-super-* λ_c *, and if* (*g*, *k*) = (4, 6) *or* (*g*, *k*) = (4, 5) *then* $|\Gamma| = 16$ *or* $|\Gamma| = 12$ *, respectively.*

3 Reliability Evaluation of Folded Hypercube

The reliability of an interconnection network is an important issue for multiprocessor systems. In this section we study some reliability measures, say, super-connectivity, cyclic connectivity, etc., in folded hypercube. For the folded hypercubes, in [\[1](#page-5-0)] it was shown that κ (*F Q_n*) = *n* + 1. However, by [\[15](#page-5-1)], we know that *F Q_n* is arc-transitive. Thus by Proposition [2.1,](#page-3-0) κ (*F* Q_n) = δ (*F* Q_n) = $n + 1$. In the following we obtain the stronger result which states FQ_n is super-*k* for $n \geq 2$.

Theorem 3.1 FQ_n is super-k if and only if $n \geq 2$.

Proof If $n = 2$ then FQ_n is a complete graph K_4 . Clearly, it is super-k. In what follows, assume that $n \geq 3$. Suppose to contrary that is FQ_n is not super-*k*. Since *F Qn* is both vertex-transitive and edge-transitive, from Proposition [2.1](#page-3-0) it follows that *F* Q_n \cong *C*_[$[mK_1]$ ($l \geq 6$) or $L(Q_3)[mK_1]$. First suppose that FQ_n $\cong C_l[mK_1]$ $(l \ge 6)$. We know that κ (*F* Q_n) = n + 1. Also by [\[26](#page-6-18)][Theorems 1], κ (C_l[mK₁]) = 2*m* and so $n + 1 = 2m$. Moreover, since $|V(C_l[mK_1])| = |V(FQ_n)|$, it follows that $2^n = ml$. Thus *m* and *l* are even. By [\[1\]](#page-5-0) we know that $\text{diam}(FQ_n) = \lceil n/2 \rceil$.

Also we know that $\text{diam}(C_l[mK_1]) = l/2$ (see [\[10\]](#page-5-12)). Now $l/2 = \lceil n/2 \rceil$ and so $\lfloor n/2 \rfloor = \lfloor 2m - 1/2 \rfloor = m = l/2$. Now $2^n = 2m^2$ and we may suppose that $m = 2^k$ for some $k \ge 0$. If $k = 1$ then $m = 2$ and $l = 4$, a contradiction. Thus $k \ge 2$. By $2^n = 2m^2 = 22^{2k} = 2^{2k+1}$ we have $n = 2k + 1$. Now by $n = 2m - 1$ we have $2k + 1 = 2^{k+1} - 1$. Thus $2^k = k + 1$, a contradiction. Now suppose that *F Q_n* ≅ *L*(*Q*₃)[*mK*₁]. Thus, the number of vertices of these graphs is same and so $2^n = 12m$. a contradiction. $2^n = 12m$, a contradiction.

In the following theorem we show that the delation of any minimum edge-cut of *F Qn* isolates a vertex.

Theorem 3.2 FQ_n *is super-* λ *if and only if* $n \geq 3$ *.*

Proof If $n = 2$ then FQ_2 is a complete graph K_4 . Clearly, it is not super- λ . Suppose that $n \geq 3$. Thus the valency of FQ_n is at least 4. Since FQ_n is edge-transitive, the theorem follows from Proposition [2.2\(](#page-3-1)1). \Box

From this theorem we immediately have the following corollary.

Corollary 3.3 *For* $n \geq 2$ *,* λ (*FQ_n*) = $n + 1$ *.*

In [\[23](#page-6-1)][Theorem 3] Xu et al. proved that the restricted edge-connectivity of FQ_n is 2*n*. Here we present a simple proof for this result.

Theorem 3.4 *For n* ≥ 2 , $\lambda'(FQ_n) = 2n$.

Proof If $n = 2$ then FQ_2 is a complete graph K_4 . Clearly, $\lambda'(FQ_2) = 4$. Thus we may suppose that $n \geq 3$. Therefore FQ_n has valency $n + 1 \geq 4$. Now since FQ_n is edge-transitive, the theorem follows from Proposition [2.2.](#page-3-1)

In the following theorem we show that every minimum edge-cut of FQ_n ($n \geq 3$) isolates an edge.

Theorem 3.5 FQ_n is super- λ' if and only if $n \neq 3$.

Proof If $n = 2$ then clearly FQ_2 is super- λ' . Also if $n = 3$ then again it is easy to see that *F* Q_3 is not super- λ' (see Fig. [1\)](#page-1-0). Thus we may suppose that $n \geq 4$. Therefore *F Q_n* has valency $n \ge 5$. We know that FQ_n is edge-transitive. By Proposition [2.2](#page-3-1) FQ_n is not super- λ' if and only if it is isomorphic to the three-dimensional hypercube Q_3 or a four-valent edge-transitive graph of girth 4. Since FQ_n ($n \geq 4$) has valency at least 5 it implies that $FQ_n \cong Q_3$. Also if $FQ_n \cong Q_3$ then $n = 3$. But we know that Q_3 has valency three, but the valency of FQ_3 is four, a contradiction. Therefore FQ_n is super- λ' for $n \ge 2$.

The following theorem shows that for $n \geq 3$, every minimum cyclic edge-cut of *F Qn* isolates a shortest cycle.

Theorem 3.6 FQ_n *is super-* λ_c *if and only if n* \neq 2*.*

Proof If $n = 2$ then clearly FQ_2 is not super- λ_c . Also if $n = 3$ or $n = 4$ then it is easy to see that *FQ*₃ is super- λ_c . Thus we may suppose that $n \geq 5$. We know that *FQ_n* has order 2^n and valency $n + 1$. Thus FQ_n is not isomorphic to K_3 , K_4 or $K_{3,3}$. Suppose to contrary that FQ_n is not super- λ_c . By Proposition [2.3,](#page-3-2) $n+1 \in \{3, 4, 5, 6\}$. Suppose that $n + 1 = 3$ or $n + 1 = 4$ then $n = 2$ or $n = 3$, a contradiction. If $n + 1 = 5$ or $n + 1 = 6$ then $n = 4$ or $n = 5$. Now by Proposition [2.3,](#page-3-2) FQ_4 or FQ_5 has 12 or 16 vertices, a contradiction.

In the following theorem we show that for $n \geq 3$, by removing $4(n-1)$ edges from *F Qn* we obtain a disconnected graph which has at least two components containing cycle.

Theorem 3.7 *For n* \geq 3*,* λ_c (*FQ_n*) = 4(*n* − 1)*.*

Proof Since FQ_n has at least 8 vertices it is not isomorphic to K_3 , K_4 and $K_{3,3}$. By $[22]$ [Theorems 3.3] we know that FQ_n has girth 4. Now by Proposition [2.2](#page-3-1) $\lambda_c(FQ_n) = 4(n+1-2) = 4(n-1).$

Theorem 3.8 FQ_n ($n \ge 8$) is super- κ' .

Proof By [\[4](#page-5-13)[,34\]](#page-6-4), we know that $\kappa_2 \geq \kappa_1$. Suppose that FQ_n for $(n \geq 8)$ is not super- κ' . Thus there is a restricted cut *S* of order κ_1 , but the cut is not the neighborhood of any edge. That is, *S* is also a 3-restricted cut. Thus $|S| \ge \kappa_2$, a contradiction.

References

- 1. El-Amawy, A., Latifi, S.: Properties and performance of folded hypercubes. IEE. Trans. Parallel Distrib. Syst. **2**(1), 31–42 (1991)
- 2. Boesch, F.T., Tindell, R.: Circulant and their connectivities. J. Graph Theory **8**, 487–499 (1984)
- 3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier North Holland, Amsterdam (1976)
- 4. Chang, N.W., Tsai, C.Y., Hsieh, S.Y.: On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes. IEEE Trans. Comput. **63**(6), 1593–1599 (2014)
- 5. Chen, Y.C., Tan, J.J.M., Hsu, L.H.: Super-connectivity and super-edge-connectivity for some interconnection networks. Appl. Math. Comput. **140**, 245–254 (2003)
- 6. Esfahanian, A., Hakimi, S.: On computing a conditional edge-connectivity of a graph. Inform. Process. Lett. **27**(4), 195–199 (1988)
- 7. Fu, J.S.: Fault-free cycles in folded hypercubes with more faulty elements. Inform. Process. Lett. **108**(5), 261–263 (2008)
- 8. Hsieh, S.Y.: Some edge-fault-tolerant properties of the folded hypercube. Networks **52**(2), 92–101 (2008)
- 9. Hsieh, S.Y., Tsai, C.Y., Chen, C.A.: Strong diagnosability and conditional diagnosability of multiprocessor systems and folded hypercubes. IEEE Trans. Computers **62**(7), 1472–1477 (2012)
- 10. Imrich, W., Klavžar, S., Hammack, R.: Handbook of Product Graphs. CRC Press, Boca Raton (2011)
- 11. Li, Q.L., Li, Q.: Super edge connectivity properties of connected edge symmetric graphs. Networks **33**, 147–159 (1999)
- 12. Lü, M., Chen, G.L., Xu, J.-M.: On super edge-connectivity of cartesian product graphs. Networks **49**, 135–157 (2007)
- 13. Ma, M.J., Xu, J.M.: Algebraic properties and panconnectivity of folded hypercubes. Ars Combin. **95**(1), 179–186 (2010)
- 14. Meng, J.: Connectivity of vertex and edge transitive graphs. Discrete Appl. Math. **127**, 601–613 (2003)
- 15. Morteza Mirafzal, S.: Some other algebraic properies of folded hypercubes, [arXiv:1103.4351v1](http://arxiv.org/abs/1103.4351v1) [math.GR]
- 16. Ou, J.P.: *m*-Restricted edge connectivity of graphs and network reliability. Xiamen University, Department of Mathematics, Ph.D. Thesis (2003)
- 17. Ou, J.P.: Edge cuts leaving components of order at least *m*. Discrete Math. **305**, 365–371 (2005)
- 18. Plummer, M.D.: On the cyclic connectivity of planar graphs. Lecture Notes in Math. **303**, 235–242 (1972)
- 19. Tian, Y., Meng, J.: On super restricted edge-connetctivity of edge-transitive graphs. Discrete Math. **310**, 2273–2279 (2010)
- 20. Tindell, R.: Connectivity of cayley graphs. In: Du, D.Z., Hsu, D.F. (eds.) Combinatorial Network Theory, pp. 41–64. Kluwer Academic Publishers, Amsterdam (1996)
- 21. Wang, B., Zhang, Z.: On the cyclic edge-connectivity of transitive graphs. Discret Math. **309**, 4555– 4563 (2009)
- 22. Xu, J.M., Ma, M.J.: Cycles in folded hypercubes. Appl. Math. Lett. **19**(2), 140–145 (2006)
- 23. Xu, J.-M., Zhu, Q., Hou, X.-M., Zhou, T.: On restricted connectivity and extra connectivity of hypercubes and folded hypercubes. J. Shanghai Jiaotong Univ. Sci. **10**(2), 203–207 (2005)
- 24. Yang, M.C.: Super connectivity of balanced hypercubes. Appl. Math. Comput. **219**, 970–975 (2012)
- 25. Yang, W.H., Li, H.: On reliability of the folded hypercubes in terms of the extra edge-connectivity. Inf. Sci. **272**, 238–243 (2014)
- 26. Yang, C., Xu, J.: Connectivity of lexicographic product and direct product of graphs. Ars Combin. **111**, 3–12 (2013)
- 27. Zhang, Z., Meng, J.: On optimally-λ(³) transitive graphs. Discrete Appl. Math. **154**, 1011–1018 (2006)
- 28. Zhang, Z., Wang, B.: Super cyclically edge-connected transitive graphs. J. Comb. Optim. **22**, 549–562 (2011)
- 29. Zhang, M.M., Zhou, J.-X.: On *g*-extra connectivity of folded hypercubes. Theoret. Comput. Sci. **593**, 146–153 (2015)
- 30. Zhou, J.-X.: Super-restricted edge-connectivity of regular edge-transitive graphs. Discrete Appl. Math. **160**, 1248–1252 (2012)
- 31. Zhou, J.X.: Atoms of cyclic edge connectivity in regular graphs. J. Comb. Optim. **31**, 382–395 (2014)
- 32. Zhou, J.X., Feng, Y.Q.: Super-cyclically edge-connected regular graphs. J. Comb. Optim. **26**, 393–411 (2013)
- 33. Zhou, J.X., Wu, Z.L., Yang, S.C., Yuan, K.W.: Symmetric property and reliability of balanced hypercubes. IEEE Trans. Comput. **64**(3), 876–881 (2015)
- 34. Zhu, Q., Xu, J.M., Hou, X.M., Xu, M.: On the reliability of the folded hypercubes. Inf. Sci. **177**(8), 1782–1788 (2007)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.