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Abstract
In this paper we investigate some reliability measures, including super-connectivity,
cyclic edge connectivity, etc., in the folded hypercubes.
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1 Introduction

Suppose that� is a finite, simple and undirected graph.We use V (�), E(�), A(�) and
Aut(�) for showing the vertex set, edge set, arc set and the automorphism group of
�, respectively. We say that � is vertex-transitive, edge-transitive and arc-transitive
if Aut(�) acts transitive on V (�), E(�), A(�), respectively.

We remind that hypercube Qn is a graph with 2n vertices, each vertex with a dis-
tinct binary string x1x2 · · · xn on the set {0, 1}. Two vertices are linked by an edge
if and only if their strings differ in exactly one bit. It is well known that Qn is an
arc-transitive graph. As a variant of the hypercube, the n-dimensional folded hyper-
cube FQn , proposed first by El-Amawy and Latifi [1], is a graph obtained from the
hypercube Qn by adding an edge, called a complementary edge, between any two
vertices x = (x1x2 · · · xn) and x = (x1 x2 · · · xn), where xi = 1 − xi . The graphs
shown in Figs. 1 and 2 are FQ3 and FQ4, respectively. By an easy observation, FQn

is an (n + 1)-regular and its order is 2n . Like Qn , FQn is arc-transitive (see [15]).
Also by [1], it has diameter of �n/2� which is smaller than the diameter of Qn . In the
literature, FQn has received considerable attention, and a lot of its properties have
been investigated. For example see ([7–9,13,22,23,25,29,34]).
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Fig. 1 (FQ3)

Fig. 2 (FQ4)

Zhou et al. (see [33]) studied some reliability measures such as super-connectivity,
cyclically connectivity in the balanced hypercube by using its symmetric properties.
In this paper we get the similar results for n-dimensional folded hypercube FQn .

2 Preliminaries

In this section, we give some terminology and notation. For notation and terminology
not define here we follow [3].

Let n be a positive integer. Denote by Cn the cyclic graph of order n. For a vertex
v in a graph �, use N�(v) to denote the neighborhood of v, that is, the set of vertices
adjacent to v. Also for a positive integer m, mK1 represents the null graph with m
vertices and a graph is trivial if it is a vertex.

123



Some Results About the Reliability of Folded Hypercubes 1095

The vertex-connectivity of a graph � denoted by κ(�) is the minimum number of
vertices whose removal results in a disconnected graph or a trivial graph. Similarly,
we can define edge-connectivity of a graph � which is denoted by λ(�). In fact κ(�)

and λ(�) are two important factors for measuring the reliability of an interconnection
network. Also a larger κ(�) or λ(�) means that the network � is more reliable. It is
well known that κ(�) ≤ λ(�) ≤ δ(�), where δ(�) is the minimum degree of �. A
graph is said to be super-κ(resp. super-λ), if any minimum vertex-cut (resp. edge-cut)
isolates a vertex.

In order to estimate more precisely the reliability, Esfahanian and Hakimi introduce
such a kind of edge cut in [6] that separates a connected graph into a disconnected
one without isolated vertices. With the properties of restricted edge connectivity, Li
analyzed the reliability of circulant graphs in [11] and improved Bauer’s result. For
more accurate results, Ou et al. introduce the concepts of m-restricted edge cut and
m-restricted edge connectivity in [6,16,17,27]. An edge set F is an m-restricted edge
cut of a connected graph G if G − F is disconnected and each component of G − F
contains at least m vertices (see [6]). Let λ(m)(G) be the minimum size of all m-
restricted edge cuts and ξm(G) = min{|ω(U )| : |U | = m andG[U ]is connected}
where ω(U ) is the set of edges with exactly one end vertex in U and G[U ] is the
subgraph of G induced by U . A graph G is λ(m)-graph if λ(m)(G) = ξm(G). Also
λ(m)(G) is called m-restricted edge connectivity of graph G. Moreover, a graph is
called super-m-restrict edge connected, in short, super-λ(m) if every minimum edge
cut isolates one component G[U ] with |U | = m. In the special case, a set F of edges
of a connected graph G is said to be a restricted edge-cut, if its removal disconnects
G, and G − F contains no isolated vertices. If G has at least one restricted edge-cut,
the restricted edge-connectivity of G, denoted by λ

′
(G), is then defined to be the

minimum cardinality over all restricted edge-cuts of G. Moreover, a graph � is called
super-restricted edge-connected, in short, super-λ

′
if every minimum restricted edge

cut isolates one component of size 2 . The super-restricted edge-connectivity of many
interconnection networks has been studied (see [5,11,12,19,24,33]).

Similarly, if V is a vertex set then m-restricted cut, m-restricted connectivity and
super-m-restricted connectivity ( in the special case super-κ

′
) are defined analogously.

For a graph �, an edge set F is a cyclic edge-cut if � − F is disconnected and
at least two of its components contain cycles. Clearly, a graph has a cyclic edge-cut
if and only if it has two vertex-disjoint cycles. For a cyclically separable graph G,
the cyclic edge-connectivity of �, denoted by λc(�), is defined as the cardinality of
a minimum cyclic edge-cut of �. Cyclic edge-connectivity plays an important role in
many classic fields of graph theory such as measure of network reliability. A graph
� is said to be super-λc, if the removal of any minimum cyclic edge-cut of � results
in a component which is a shortest cycle of �. The cyclic edge-connectivity of many
interconnection networks has been studied (see [18,21,28,30–32]).

Suppose that � and� are two graphs. The lexicographic product of � and�which
is denoted by �[�] is a graph with vertex set V (�)× V (�) and two vertices (u1, v1),
(u2, v2) ∈ V (�) × V (�) are adjacent in �[�] whenever either u1 is adjacent to u2 in
�, or u1 = u2 and v1 is adjacent to v2 in �.

Let � and H be two graphs. The lexicographic product �[H ] is defined as the
graph with vertex set V (�) × V (H), and for any two vertices (u1, v1), (u2, v2) ∈
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V (�) × V (H), they are adjacent in �[H ] if and only if either u1 is adjacent to u2 in
�, or u1 = u2 and v1 is adjacent to v2 in H .

Proposition 2.1 ([14,20]) Let � be a connected graph which is both vertex-transitive
and edge-transitive. Then κ(�) = δ(�), and moreover, � is not super-κ if and only
if � ∼= Cn[mK1] (n ≥ 6) or L(Q3)[mK1], where L(Q3) is the line graph of three-
dimensional hypercube Q3.

The following results are about the connectivity of edge-transitive graphs.

Proposition 2.2 ([2,11,19,30,31]) Let � be a k(k ≥ 3)-regular edge-transitive graph.
Then

(1) � is super-λ.

(2) λ
′
(�) = 2k − 2.

(3) � is not super-λ
′
if and only if � is isomorphic to the three-dimensional hypercube

Q3 or to a four-valent edge-transitive graph of girth 4.

(4) If � is not isomorphic to K4, K5 or K3,3 then λc(�) = g(k − 2), where g is the
girth of �.

By [32][Theorem 3.4] we have the following result.

Proposition 2.3 Let� be a k(k ≥ 3)-regular edge-transitive graph of girth g. Suppose
that � is not isomorphic to K4, K5 or K3,3. If � is not super-λc, then (g, k) =
(6, 3), (4, 4), (4, 5), (4, 6) or (3, 6). Furthermore, Cn[2K1] (n ≥ 4) is non-super-λc,
and if (g, k) = (4, 6) or (g, k) = (4, 5) then |�| = 16 or |�| = 12, respectively.

3 Reliability Evaluation of Folded Hypercube

The reliability of an interconnection network is an important issue for multiprocessor
systems. In this section we study some reliability measures, say, super-connectivity,
cyclic connectivity, etc., in folded hypercube. For the folded hypercubes, in [1] it was
shown that κ(FQn) = n + 1. However, by [15], we know that FQn is arc-transitive.
Thus by Proposition 2.1, κ(FQn) = δ(FQn) = n+ 1. In the following we obtain the
stronger result which states FQn is super-k for n ≥ 2.

Theorem 3.1 FQn is super-k if and only if n ≥ 2.

Proof If n = 2 then FQn is a complete graph K4. Clearly, it is super-k. In what
follows, assume that n ≥ 3. Suppose to contrary that is FQn is not super-k. Since
FQn is both vertex-transitive and edge-transitive, from Proposition 2.1 it follows that
FQn ∼= Cl [mK1] (l ≥ 6) or L(Q3)[mK1]. First suppose that FQn ∼= Cl [mK1]
(l ≥ 6). We know that κ(FQn) = n + 1. Also by [26][Theorems 1], κ(Cl [mK1]) =
2m and so n + 1 = 2m. Moreover, since |V (Cl [mK1])| = |V (FQn)|, it follows
that 2n = ml. Thus m and l are even. By [1] we know that diam(FQn) = �n/2�.
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Also we know that diam(Cl [mK1]) = l/2 (see [10]). Now l/2 = �n/2� and so
�n/2� = �2m − 1/2� = m = l/2. Now 2n = 2m2 and we may suppose that m = 2k

for some k ≥ 0. If k = 1 then m = 2 and l = 4, a contradiction. Thus k ≥ 2.
By 2n = 2m2 = 222k = 22k+1 we have n = 2k + 1. Now by n = 2m − 1 we
have 2k + 1 = 2k+1 − 1. Thus 2k = k + 1, a contradiction. Now suppose that
FQn ∼= L(Q3)[mK1]. Thus, the number of vertices of these graphs is same and so
2n = 12m, a contradiction. 	


In the following theorem we show that the delation of any minimum edge-cut of
FQn isolates a vertex.

Theorem 3.2 FQn is super-λ if and only if n ≥ 3.

Proof If n = 2 then FQ2 is a complete graph K4. Clearly, it is not super-λ. Suppose
that n ≥ 3. Thus the valency of FQn is at least 4. Since FQn is edge-transitive, the
theorem follows from Proposition 2.2(1). 	


From this theorem we immediately have the following corollary.

Corollary 3.3 For n ≥ 2, λ(FQn) = n + 1.

In [23][Theorem 3] Xu et al. proved that the restricted edge-connectivity of FQn

is 2n. Here we present a simple proof for this result.

Theorem 3.4 For n ≥ 2, λ
′
(FQn) = 2n.

Proof If n = 2 then FQ2 is a complete graph K4. Clearly, λ
′
(FQ2) = 4. Thus we

may suppose that n ≥ 3. Therefore FQn has valency n + 1 ≥ 4. Now since FQn is
edge-transitive, the theorem follows from Proposition 2.2. 	


In the following theorem we show that every minimum edge-cut of FQn (n ≥ 3)
isolates an edge.

Theorem 3.5 FQn is super-λ
′
if and only if n �= 3.

Proof If n = 2 then clearly FQ2 is super-λ
′
. Also if n = 3 then again it is easy to

see that FQ3 is not super-λ
′
(see Fig. 1). Thus we may suppose that n ≥ 4. Therefore

FQn has valency n ≥ 5. We know that FQn is edge-transitive. By Proposition 2.2
FQn is not super-λ

′
if and only if it is isomorphic to the three-dimensional hypercube

Q3 or a four-valent edge-transitive graph of girth 4. Since FQn (n ≥ 4) has valency
at least 5 it implies that FQn ∼= Q3. Also if FQn ∼= Q3 then n = 3. But we know
that Q3 has valency three, but the valency of FQ3 is four, a contradiction. Therefore
FQn is super-λ

′
for n ≥ 2. 	


The following theorem shows that for n ≥ 3, every minimum cyclic edge-cut of
FQn isolates a shortest cycle.

Theorem 3.6 FQn is super-λc if and only if n �= 2.
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Proof If n = 2 then clearly FQ2 is not super-λc. Also if n = 3 or n = 4 then it is easy
to see that FQ3 is super-λc. Thus we may suppose that n ≥ 5. We know that FQn has
order 2n and valency n + 1. Thus FQn is not isomorphic to K3, K4 or K3,3. Suppose
to contrary that FQn is not super-λc. By Proposition 2.3, n+1 ∈ {3, 4, 5, 6}. Suppose
that n + 1 = 3 or n + 1 = 4 then n = 2 or n = 3, a contradiction. If n + 1 = 5 or
n + 1 = 6 then n = 4 or n = 5. Now by Proposition 2.3, FQ4 or FQ5 has 12 or 16
vertices, a contradiction.

In the following theorem we show that for n ≥ 3, by removing 4(n−1) edges from
FQn we obtain a disconnected graph which has at least two components containing
cycle. 	

Theorem 3.7 For n ≥ 3, λc(FQn) = 4(n − 1).

Proof Since FQn has at least 8 vertices it is not isomorphic to K3, K4 and K3,3.
By [22][Theorems 3.3] we know that FQn has girth 4. Now by Proposition 2.2
λc(FQn) = 4(n + 1 − 2) = 4(n − 1). 	

Theorem 3.8 FQn (n ≥ 8) is super-κ

′
.

Proof By [4,34], we know that κ2 ≥ κ1. Suppose that FQn for (n ≥ 8) is not super-κ
′
.

Thus there is a restricted cut S of order κ1, but the cut is not the neighborhood of any
edge. That is, S is also a 3-restricted cut. Thus |S| ≥ κ2, a contradiction. 	


References

1. El-Amawy,A., Latifi, S.: Properties and performance of folded hypercubes. IEE. Trans. Parallel Distrib.
Syst. 2(1), 31–42 (1991)

2. Boesch, F.T., Tindell, R.: Circulant and their connectivities. J. Graph Theory 8, 487–499 (1984)
3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier North Holland, Amsterdam

(1976)
4. Chang, N.W., Tsai, C.Y., Hsieh, S.Y.: On 3-extra connectivity and 3-extra edge connectivity of folded

hypercubes. IEEE Trans. Comput. 63(6), 1593–1599 (2014)
5. Chen, Y.C., Tan, J.J.M., Hsu, L.H.: Super-connectivity and super-edge-connectivity for some intercon-

nection networks. Appl. Math. Comput. 140, 245–254 (2003)
6. Esfahanian, A., Hakimi, S.: On computing a conditional edge-connectivity of a graph. Inform. Process.

Lett. 27(4), 195–199 (1988)
7. Fu, J.S.: Fault-free cycles in folded hypercubes with more faulty elements. Inform. Process. Lett.

108(5), 261–263 (2008)
8. Hsieh, S.Y.: Some edge-fault-tolerant properties of the folded hypercube. Networks 52(2), 92–101

(2008)
9. Hsieh, S.Y., Tsai, C.Y., Chen, C.A.: Strong diagnosability and conditional diagnosability of multipro-

cessor systems and folded hypercubes. IEEE Trans. Computers 62(7), 1472–1477 (2012)
10. Imrich, W., Klavžar, S., Hammack, R.: Handbook of Product Graphs. CRC Press, Boca Raton (2011)
11. Li, Q.L., Li, Q.: Super edge connectivity properties of connected edge symmetric graphs. Networks

33, 147–159 (1999)
12. Lü, M., Chen, G.L., Xu, J.-M.: On super edge-connectivity of cartesian product graphs. Networks 49,

135–157 (2007)
13. Ma, M.J., Xu, J.M.: Algebraic properties and panconnectivity of folded hypercubes. Ars Combin.

95(1), 179–186 (2010)
14. Meng, J.: Connectivity of vertex and edge transitive graphs. Discrete Appl. Math. 127, 601–613 (2003)
15. Morteza Mirafzal, S.: Some other algebraic properies of folded hypercubes, arXiv:1103.4351v1

[math.GR]

123

http://arxiv.org/abs/1103.4351v1


Some Results About the Reliability of Folded Hypercubes 1099

16. Ou, J.P.:m-Restricted edge connectivity of graphs and network reliability. Xiamen University, Depart-
ment of Mathematics, Ph.D. Thesis (2003)

17. Ou, J.P.: Edge cuts leaving components of order at least m. Discrete Math. 305, 365–371 (2005)
18. Plummer, M.D.: On the cyclic connectivity of planar graphs. Lecture Notes in Math. 303, 235–242

(1972)
19. Tian, Y., Meng, J.: On super restricted edge-connetctivity of edge-transitive graphs. Discrete Math.

310, 2273–2279 (2010)
20. Tindell, R.: Connectivity of cayley graphs. In: Du, D.Z., Hsu, D.F. (eds.) Combinatorial Network

Theory, pp. 41–64. Kluwer Academic Publishers, Amsterdam (1996)
21. Wang, B., Zhang, Z.: On the cyclic edge-connectivity of transitive graphs. Discret Math. 309, 4555–

4563 (2009)
22. Xu, J.M., Ma, M.J.: Cycles in folded hypercubes. Appl. Math. Lett. 19(2), 140–145 (2006)
23. Xu, J.-M., Zhu, Q., Hou, X.-M., Zhou, T.: On restricted connectivity and extra connectivity of hyper-

cubes and folded hypercubes. J. Shanghai Jiaotong Univ. Sci. 10(2), 203–207 (2005)
24. Yang, M.C.: Super connectivity of balanced hypercubes. Appl. Math. Comput. 219, 970–975 (2012)
25. Yang, W.H., Li, H.: On reliability of the folded hypercubes in terms of the extra edge-connectivity. Inf.

Sci. 272, 238–243 (2014)
26. Yang, C., Xu, J.: Connectivity of lexicographic product and direct product of graphs. Ars Combin.

111, 3–12 (2013)
27. Zhang, Z., Meng, J.: On optimally-λ(3) transitive graphs. Discrete Appl. Math. 154, 1011–1018 (2006)
28. Zhang, Z., Wang, B.: Super cyclically edge-connected transitive graphs. J. Comb. Optim. 22, 549–562

(2011)
29. Zhang, M.M., Zhou, J.-X.: On g-extra connectivity of folded hypercubes. Theoret. Comput. Sci. 593,

146–153 (2015)
30. Zhou, J.-X.: Super-restricted edge-connectivity of regular edge-transitive graphs. Discrete Appl. Math.

160, 1248–1252 (2012)
31. Zhou, J.X.: Atoms of cyclic edge connectivity in regular graphs. J. Comb. Optim. 31, 382–395 (2014)
32. Zhou, J.X., Feng, Y.Q.: Super-cyclically edge-connected regular graphs. J. Comb. Optim. 26, 393–411

(2013)
33. Zhou, J.X., Wu, Z.L., Yang, S.C., Yuan, K.W.: Symmetric property and reliability of balanced hyper-

cubes. IEEE Trans. Comput. 64(3), 876–881 (2015)
34. Zhu, Q., Xu, J.M., Hou, X.M., Xu, M.: On the reliability of the folded hypercubes. Inf. Sci. 177(8),

1782–1788 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Some Results About the Reliability of Folded Hypercubes
	Abstract
	1 Introduction
	2 Preliminaries
	3 Reliability Evaluation of Folded Hypercube
	References




