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Abstract
In this paper, we study the following nonlinear Schrödinger–Bopp–Podolsky system

{−�u + V (x)u + qφu = f (u)

−�φ + a2�2φ = 4πu2 inR
3,

where a > 0, q > 0 and V ∈ C(R3, R). By means of the variational methods, we
prove the existence of infinitely many nontrivial solutions, the existence of a ground
state solution for f (u) = |u|p−2u + h(u) with p ∈ [4, 6) and the existence of at least
one positive solution for f (u) = P(x)u5 + μ|u|p−2u with p ∈ (2, 6) under some
certain assumptions.

Keywords Schrödinger–Bopp–Podolsky equation · Ground state solution · Positive
solution · Multiplicity of solutions

Mathematics Subject Classification 35J60 · 35J20

1 Introduction

In the recent paper [12], the following Schrödinger–Bopp–Podolsky system has been
studied for the first time
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{−�u + ωu + q2φu = |u|p−2u
−�φ + a2�2φ = 4πu2 inR

3, (1.1)

where a, ω > 0, q �= 0 and p ∈ (2, 6). The system appears when one couples
the Schrödinger field � = �(t, x) with the Bopp–Podolsky Lagrangian of the elec-
tromagnetic field and considers standing wave �(t, x) = eiwt u(x) in the purely
electrostatic case. The Bopp–Podolsky theory, which is a second-order gauge the-
ory of the electromagnetic field, was developed by Bopp [3] and then independently
by Podolsky [20]. According to Mie theory [19] and its generalizations in [4–7], the
Bopp–Podolsky theorywas introduced to solve the alleged infinity problem in classical
Maxwell theory.

d’Avenia and Siciliano [12] used variational methods to prove the existence results
of problem (1.1). Indeed, the solutions can be found as critical points of a smooth
energy functional. When p ∈ (2, 6) and |q| small enough or p ∈ (3, 6) and q �= 0,
they proved that the energy functional has the mountain pass geometry; hence, the
above system has a nontrivial solution. In addition, they proved the above system does
not admit any nontrivial solution for p ≥ 6 by using Pohozaev-type identity, and in
the radial case, as a → 0, the solutions they got tend to solutions of the classical
Schrödinger–Poisson system. They also showed that, if ρ is the distribution density
of the given charge, then the electrostatic potential � satisfies the following equation

− �� = ρ in R
3. (1.2)

If ρ = 4πδx0 with x0 ∈ R
3, then G(x − x0) = 1

|x−x0| is the fundamental solution of
(1.2). And the electrostatic energy is

↑M (G) = 1

2

∫
R3

|∇G|2 = +∞.

Hence, Eq. (1.2) is replaced by

−�φ + a2�2φ = ρ inR
3

in the Bopp–Podolsky theory. Moreover, we know that K(x − x0) is the fundamental
solution of the equation

−�φ + a2�2φ = 4πδx0 ,

where

K(x) := 1 − e−|x |/a

|x | , lim
x→x0

K(x − x0) = 1

a
.

And its energy is

↑BP(K) = 1

2

∫
R3

|∇K|2 + a2

2

∫
R3

|�K|2 < +∞,
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more details can be found in [12].

Remark 1.1 The operator −�+�2 appears also in other different physical and math-
ematical problems (see [2,14]).

After that, Gaetano andKaye [15] supplemented and improved some results in [12].
It has been showed that (1.1) has no solution for large values of q’s and has two radial
solutions for small q’s.

Chen and Tang [10] extended the subcritical case to more general cases and dealt
with the following system

{−�u + V (x)u + φu = μ f (u) + u5

−�φ + a2�2φ = 4πu2 inR
3,

where a > 0, μ > 0, V ∈ C(R3, [0,∞)) with V∞ = lim|y|→∞ V (y) ≥
supx∈R3V (x) > 0, and f ∈ C(R, R) satisfies that there exists a constant p ∈ (2, 6)
such that

∫ t
0 f (s)ds ≥ t p for all t ≥ 0. They obtained the existence of ground state

solutions for p ∈ (4, 6) and μ > 0 or p ∈ (2, 4] and μ > μ∗, where μ∗ is a positive
constant.

Motivated by the cited papers [10,12], our aim here is to study the existence of
ground state solutions, positive solutions and infinitely many nontrivial solutions for
the following Schrödinger–Bopp–Podolsky system

{−�u + V (x)u + qφu = f (u)

−�φ + a2�2φ = 4πu2 inR
3, (1.3)

where a > 0, q > 0 and V satisfies the following conditions:

(V1) V ∈ C(R3, R) and infx∈R3 V (x) > 0;
(V2) there exists a constant d0 > 0 such that

lim|y|→+∞meas
{

x ∈ R
3 : |x − y| ≤ d0, V (x) ≤ M

}
= 0, ∀M > 0.

We work in the Hilbert space

E :=
{

u ∈ H1(R3) :
∫
R3

|∇u|2 + V (x)u2dx < +∞
}

,

endowed with the norm

‖u‖ :=
(∫

R3
|∇u|2 + V (x)u2dx

) 1
2

.

Theorem 1.2 [23]Assume that (V1)–(V2)are satisfied. Then, E is continuously embed-
ded into Ls(R3) for s ∈ [2, 6]. Moreover, the embedding E ↪→ Ls(R3) is compact
for s ∈ [2, 6).
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We first consider the following system:

{−�u + V (x)u + φu = f (u)

−�φ + a2�2φ = 4πu2 inR
3. (1.4)

Assume that f is a continuous function and satisfies the following conditions:

( f1) f (t) = − f (−t);
( f2) there exist 1 < ι < 5 such that lim|t |→0

f (t)
|t | = lim|t |→+∞ f (t)

|t |ι = 0;

( f3) lim|t |→+∞ F(t)
|t |4 = ∞, and there exists μ ≥ 4, κ > 0 such that

μF(t) ≤ t f (t) + κt2,

where F(t) = ∫ t
0 f (r) dr .

Our first result is as follows.

Theorem 1.3 Assume that (V1)–(V2) and ( f1)–( f3) are satisfied. Then, the problem
(1.4) possesses infinitely many nontrivial solutions.

Remark 1.4 To our knowledge, there are few results about existence of multiply solu-
tions to Schrödinger–Bopp–Podolsky equation.

Remark 1.5 In order to assure the boundedness of the Palais–Smale sequences of the
energy functional, the following condition is usually supposed.

(AR) There exists μ > 4 such that

0 < μH(s) ≤ sh(s), for all s �= 0.

Obviously, ( f3) is weaker than Ambrosetti–Rabinowitz condition.

We next consider the case of f (u) = |u|p−2u+h(u), namely the following system:

{−�u + V (x)u + φu = |u|p−2u + h(u)

−�φ + a2�2φ = 4πu2 inR
3, (1.5)

where h ∈ C(R, R) satisfies the following conditions:

(h1) for some  ∈ (1, 5),

lim|u|→+∞
h(u)

|u| = lim|u|→0

h(u)

|u| = 0;

(h2) for any p ∈ [4, 6), H(u) + 1
p |u|p ≥ 0, where H(u) = ∫ u

0 h(r) dr ,
(h3) there exists θ0 ∈ (0, 1) such that for any t > 0 and u �= 0,

[
h(u)

u3 − h(tu)

(tu)3

]
sign(1 − t) + θ0

V (x)|1 − t2|
(tu)2

≥ 0.
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The following is the second result of our paper.

Theorem 1.6 Assume that (V1)–(V2) and (h1)–(h3) are satisfied. If p ∈ [4, 6), then
the problem (1.5) has a ground state solution.

Remark 1.7 The condition (h3) comes from [11], and it is weaker than Ambrosetti–
Rabinowitz condition and also weaker than the following condition:

h(u)

|u|3 is nondecreasing on (−∞, 0) ∪ (0,+∞).

Finally, we consider the case of f (u) = P(x)u5+μ|u|p−2u, namely the following
system:

{−�u + V (x)u + qφu = P(x)u5 + μ|u|p−2u
−�φ + a2�2φ = 4πu2 inR

3. (1.6)

We assume that P(x) is a continuous function and satisfies the following conditions:

(P1) P(x) > 0 and P(x) ∈ L∞(R3);
(P2) |P(x) − P(x0)| = O(|x − x0|2) as x → x0, where P(x0) = supx∈R3 P(x).

The difficulty in obtaining solutions of the problem (1.6) lies in two aspects. On the
one hand, since the problem involves critical exponent, the difficulty lies in the lack
of compactness. On the other hand, when p ∈ (2, 4), the boundedness of the Palais–
Smale sequences of the energy functional is hard to get. Inspired by [1,9,12,13,16,21],
we construct a truncated function and use the mountain pass theorem with mountain

pass lever value under 1
3 S

3
2 ‖P(x)‖

1
2∞.

Now we are in a position to state the following results of our paper on the existence
of positive solutions.

Theorem 1.8 Assume that (V1)–(V2) and (P1)–(P2) are satisfied. If p ∈ (4, 6) with
μ > 0 or p = 4 with μ sufficiently large, then the problem (1.6) has at least one
positive solution for any q > 0.

Theorem 1.9 Assume that (V1)–(V2) and (P1)–(P2) are satisfied. If p ∈ (2, 4) with μ

sufficiently large, then there exists q∗ > 0 such that, for all q ∈ (0, q∗), the problem
(1.6) has at least one positive solution.

Notations Throughout the paper, we denote by meas(·) the Lebesgue measure in
R
3. E∗ is the dual space of E . ‖·‖p denotes the usual norm of Lebesgue space L p(R3).

S is the best Sobolev constant for the embedding D1,2(R3) ↪→ L6(R3). The symbol
C denotes a positive constant and may vary from line to line.

2 Preliminary

In this section, we want to introduce the variational setting, the functional setting and
some main results.
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2.1 TheVariational Setting

We first consider the nonlinear Schrödinger Lagrangian density

LSc = i�ψ̄∂tψ − �
2

2m
|∇ψ |2 + 2F(ψ), (2.1)

where ψ : R × R
3 → C and �,m > 0. If the gauge potential of the electromagnetic

field (E,H) is (φ,A), where φ : R
3 → R and A : R

3 → R
3, then the following

equations hold

E = −∇φ − 1

c
∂tA, H = ∇ × A.

To study the interaction between ψ and its electromagnetic field (E,H), we can
replace the derivatives ∂t and ∇ in (2.1) with the covariant ones

Dt = ∂t + i
√

q

�
φ, D = ∇ − i

√
q

�c
A.

Thus, we have

LCSc = i�ψ̄ Dtψ − �
2

2m
|Dψ |2 + 2F(ψ)

= i�ψ̄

(
∂t + i

√
q

�
φ

)
ψ − �

2

2m

∣∣∣∣
(

∇ − i
√

q

�c
A
)

ψ

∣∣∣∣
2

+ 2F(ψ).

According to [3], the Bopp–Podolsky Lagrangian density is

LBP = 1

8π

{
|E|2 − |H|2 + a2

[
(divE)2 −

∣∣∣∣∇ × H − 1

c
∂tE

∣∣∣∣
2
]}

= 1

8π

{
|∇φ + 1

c
∂tA|2 − |∇ × A|2

+ a2

[(
�φ + 1

c
div∂tA

)2

−
∣∣∣∣∇ × ∇ × A + 1

c
∂t (∇φ + 1

c
∂tA)

∣∣∣∣
2
]}

.

Now, we add the Lagrangian density of the electromagnetic field to LCSc so that we
can get the total Lagrangian density

L := LCSc + LBP.

Therefore, the total action is

S(ψ, φ,A) =
∫
R3

Ldxdt .
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More details can be found in [12].

2.2 The Operator−1 + a212

Let D be the completion of C∞
c (R3) with the inner product

〈ϕ,ψ〉D :=
∫
R3

∇ϕ∇ψ + a2
∫
R3

�ϕ�ψ.

Obviously, D is continuously embedded into D1,2(R3) and therefore in L6(R3).
The following lemmas were obtained in [12].

Lemma 2.1 [12] The Hilbert space D is continuously embedded in L∞(R3).

Lemma 2.2 [12] The space C∞
c (R3) is dense in A, where

A :=
{
φ ∈ D1,2(R3) : �φ ∈ L2(R3)

}

normed by
√〈φ, φ〉D and, consequently D = A.

Lemma 2.3 [12] For all y ∈ R
3, K(· − y) = 1−e−|·−y|/a

|·−y| is the fundamental solution
of

−�φ + a2�2φ2 = 4πδy .

Furthermore,

(i) if f ∈ L1
loc(R

3) and, for almost everywhere x ∈ R
3, the map y ∈ R

3 �→ f (y)
|x−y| is

summable, then K ∗ f ∈ L1
loc(R

3);

(ii) if f ∈ Ls(R3) with 1 ≤ s < 3
2 , then K ∗ f ∈ Lr (R3) for r ∈

(
3s

3−2s ,+∞
]
.

In both cases, K ∗ f solves

−�φ + a2�2φ2 = 4π f .

Moreover, almost everywhere in R
3, we have

∇(K ∗ f ) = (∇K) ∗ f and �(K ∗ f ) = (�K) ∗ f .

Then, for any fixed u ∈ H1(R3), φu := K ∗ u2 is the unique solution in D of the
second equation in (1.3), and the following lemma holds.

Lemma 2.4 [12] For every u ∈ H1(R3), we have:

(i) for every y ∈ R
3, φu(·+y) = φu(· + y);

(ii) φu ≥ 0;
(iii) for every s ∈ (3,+∞], φu ∈ Ls(R3)

⋂
C0(R

3);
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(iv) for every s ∈ ( 32 ,+∞], ∇φu = ∇K ∗ u2 ∈ Ls(R3)
⋂

C0(R
3);

(v) φu ∈ D;
(vi) ‖φu‖6 ≤ C‖u‖2;
(vii) φu is the unique minimizer of the functional

E(φ) = 1

2
‖∇φ‖22 + a2

2
‖�φ‖22 −

∫
R3

φu2, φ ∈ D;

(viii) if vn⇀v in H1(R3), then φvn ⇀φv in D.

2.3 The Functional Setting

It is easy to see that the weak solutions of (1.3) are the critical points of the C1 energy
functional

R(u, φ) = 1

2
‖u‖2 + q

2

∫
R3

φu2dx − q

16π
‖φ‖2D −

∫
R3

F(u)dx

on E × D. If (u, φ) ∈ E × D is a critical point of R, then we have

0 = ∂u R(u, φ)[v] =
∫
R3

[∇u∇v + V (x)uv + qφuv] dx

−
∫
R3

f (u)vdx, for all v ∈ E,

and

0 = ∂φ R(u, φ)[ξ ] = q

2

∫
R3

ξu2dx − q

8π

∫
R3

[
∇φ∇ξ + a2�φ�ξ

]
dx, for all ξ ∈ D.

Distinctly, the functional R is strongly indefiniteness, and hence, we adopt a reduction
procedurewhichused in [12].Noting that ∂φ R ∈ C1(R3), by implicit function theorem,
we have

G� = {(u, φ) ∈ E × D : ∂φ R(u, φ) = 0
}

and � ∈ C1(E,D),

where G� is the graph of the map � : u ∈ E �→ φu ∈ D. Hence, we have the reduced
form

I (u) = 1

2

∫
R3

[
|∇u|2 + V (x)u2

]
dx + q

4

∫
R3

φuu2dx −
∫
R3

F(u)dx,

and it is of class C1 on E . For all u, v ∈ E ,

I ′(u)[v] = ∂u R(u,�(u))[v] + ∂φ R(u,�(u)) ◦ �′(u)[v]
= ∂u R(u,�(u))[v]
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=
∫
R3

[∇u∇v + V (x)uv + qφuuv] dx −
∫
R3

f (u)vdx .

In fact, to find solutions of Eq. (1.3), we only need to find critical points of I .

3 Existence of Multiple Solutions

In this section, assume that (V1)–(V2) and ( f1)–( f3) are satisfied. We prove that the
problem (1.4) possesses infinitely many nontrivial solutions. And we give the energy
functional I by

I (u) = 1

2

∫
R3

|∇u|2 + V (x)u2dx + 1

4

∫
R3

φuu2dx −
∫
R3

F(u)dx .

Lemma 3.1 [22] Let X be an infinite-dimensional Banach space, and there exists a
finite-dimensional space W such that X = W ⊕ V . I ∈ C1(X , R) satisfies the (P S)

condition, and

(i) I (u) = I (−u) for all u ∈ X, I (0) = 0;
(ii) there exist ρ > 0, α > 0 such that I |∂ Bρ∩V ≥ α;
(iii) for any finite-dimensional subspace Y ⊂ X, there exists R = R(Y ) > 0 such

that I (u) ≤ 0 on Y\BR.

Then, I possesses an unbounded sequence of critical values.

Lemma 3.2 Under the assumptions of Theorem 1.3, if {un} ⊂ E satisfies the following
conditions:

(i) {I (un)} is bounded above by a positive constant;
(ii) I ′ (un) [un] → 0, then {un} is bounded in E.

Proof If {un} is unbounded in E , we can find a subsequence still denoted by {un} such
that ‖un‖ → +∞. Let vn = un‖un‖ , we have ‖vn‖ = 1. Thus, we may assume that

vn⇀v in E . It follows from ( f3) and (i) that there exists a constant c > 0 such that

c + 1 ≥ I (un) − 1

μ
I ′ (un) [un]

≥ μ − 2

2μ
‖un‖2 − κ

μ
‖un‖22

= μ − 2

2μ
‖un‖2 ‖vn‖2 − κ

μ
‖un‖2 ‖vn‖22 ,

as n → ∞, which implies 1 ≤ 2κ
μ−2 lim supn→∞ ‖vn‖22. Therefore, v �≡ 0.

By ( f3) and Fatou’s lemma, one has

0 = lim
n→∞

c

‖un‖4 = lim
n→∞

I (un)

‖un‖4
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≤ lim
n→∞

(
1

2‖un‖2 + ‖un‖42
4a‖un‖4 −

∫
RN

F(u)

u4
n

v4ndx

)
= −∞,

as n → +∞. This is a contradiction, and hence, {un} is bounded in E . ��
Lemma 3.3 Under the assumptions of Theorem 1.3, then the functional I satisfies the
(PS) condition.

Proof To prove that I satisfies the (PS) condition, we only need to prove {un} ⊂ E
which obtained by Lemma 3.2, has a convergent subsequence. As {un} is bounded in
E , there exists a subsequence still denoted by {un} and u0 ∈ E such that un⇀u0 in E
and un → u0 in Lq(R3) for 2 < q < 6. It follows from un⇀u0 in E and I ′(u0) ∈ E∗
that

〈
I ′(u0), un − u0

〉→ 0. And as I ′(un) → 0 in E∗, it is easy to obtain

〈
I ′(un), un − u0

〉 ≤ ‖I ′(un)‖E∗‖un − u0‖ → 0.

Therefore,

〈
I ′ (un) − I ′(u0), un − u0

〉 = 〈I ′(u0), un − u0
〉− 〈I ′(un), un − u0

〉→ 0.

By ( f2), for any ε > 0, there exists Cε > 0 such that

f (u) ≤ ε|u| + Cε |u|ι.

Hence, as n → +∞, we have

∫
R3

(( f (un) − f (u0)) (un − u0)) dx

≤
∫
R3

| f (un) ||un − u0| dx +
∫
R3

| f (u0) ||un − u0| dx

≤
∫
R3

(
ε|un| + Cε|un|ι

) |un − u0| dx +
∫
R3

(
ε|u0| + Cε|u0|ι

) |un − u0| dx

≤ ε (‖un‖2 + ‖u0‖2) ‖un − u0‖2
+ Cε

(‖un‖ι
ι+1 + ‖u0‖ι

ι+1

) ‖un − u0‖ι+1 → 0,

as ε → 0 and ι ∈ (1, 5).
And then,

‖un − u0‖2 = 〈
I ′ (un) − I ′(u0), un − u

〉
+
∫
R3

(( f (un) − f (u0)) (un − u0)) dx → 0.

This completes the proof. ��
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Proof of Theorem 1.3 We have verified that I satisfies the (PS) condition. It follows
from ( f1) that I is an even functional. As E is a separable space, E has orthonormal
basis {ei }. For all k, j ∈ Z, we define E j := Re j , Wk := ⊕k

j=1E j , Vk := ⊕∞
j=k+1E j .

Let W = Wk , V = Vk , clearly E = W ⊕ V and dim W < ∞.
Next, we verify that I satisfies (ii) in Lemma 3.1. By ( f2), for any ε > 0, there

exists Cε > 0 such that

I (u) = 1

2
‖u‖2 + 1

4

∫
R3

φuu2 dx −
∫
R3

F(u)dx

≥ 1

2
‖u‖2 + 1

4

∫
R3

φuu2 dx − ε

∫
R3

u2dx − Cε

∫
R3

uι+1dx

≥ 1

2
‖u‖2 − C

(
ε‖u‖2 + Cε‖u‖ι+1

)
.

Therefore, there exists ρ > 0 small enough, α > 0 such that I (u) ≥ α > 0 as
‖u‖ = ρ.

Now, we verify that I satisfies (iii) in Lemma 3.1. If I (u) > 0 for any finite-
dimensional subspaceY ⊂ E , thenwe canfind a sequence {un} such that ‖un‖ → +∞
and I (un) > 0. Let vn = un‖un‖ , from the proof in Lemma 3.2, we have

0 = lim
n→∞

I (un)

‖un‖4 ≤ lim
n→∞

(
1

2‖un‖2 + ‖un‖42
4a‖un‖4 −

∫
RN

F(u)

u4
n

v4ndx

)
= −∞,

as n → +∞, which is a contradiction. This shows that there exists R = R(Y ) > 0
such that I (u) ≤ 0 on Y\BR . The proof is completed. ��

4 Existence of Ground State Solutions for p ∈ [4, 6)
In this section, to solve the problem (1.5), we apply Jeanjean’s trick [17] and give a
family of energy functionals

Iλ(u) = 1

2

∫
R3

[
|∇u|2 + V (x)u2

]
dx + 1

4

∫
R3

φuu2dx − λ

∫
R3

[
1

p
|u|p + H(u)

]
dx .

Lemma 4.1 [24] Assume that {un} is a bounded sequence in H1(R3). If

lim
n→∞ sup

y∈R3

∫
Br (y)

|un|2 dx = 0 for some r > 0,

then un → 0 in Lq
(
R
3
)

for all q ∈ (2, 6).

Lemma 4.2 [17]Let (X , ‖·‖) be a Banach space and T ⊂ R
+ be an interval. Consider

a family of C1 functionals on X of the form

Iλ(u) = A(u) − λB(u) ∀ λ ∈ T ,
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964 Y. Zhu et al.

with B(u) ≥ 0 and either A(u) → +∞ or B(u) → +∞ as ‖u‖ → +∞. If there are
two points v1, v2 ∈ X such that

cλ = inf
γ∈�

max
t∈[0,1] Iλ(γ (t)) > max {Iλ (v1) , Iλ (v2)} ∀λ ∈ T ,

where

� = {γ ∈ C([0, 1], X) : γ (0) = v1, γ (1) = v2} .

Then, for almost every λ ∈ T , there exists a bounded (P S)cλ sequence in X, and the
mapping λ → cλ is non-increasing and continuous from the left.

Lemma 4.3 Suppose that V , h satisfy (V1)–(V2) and (h1)–(h2). Then, for almost
every λ ∈ [ 12 , 1], there is a bounded sequence {vm}, such that Iλ(vm) → cλ in E and
I ′
λ(vm) → 0 in the dual E∗ of E.

Proof Obviously that

∫
R3

[
1

p
|u|p + H(u)

]
dx ≥ 0,

and

1

2

∫
R3

[
|∇u|2 + V (x)u2

]
dx + 1

4

∫
R3

φuu2dx → +∞ as ‖u‖ → +∞.

Let uτ = τ 2u(τ ·), then

Iλ(uτ ) = τ 3

2
‖∇u‖22 + τ

2

∫
R3

V (x)u2 dx + τ 3

4

∫
R3

∫
R3

1 − e− |x−y|
τa

|x − y| u2(x)u2(y) dx dy

− λτ 2p−3

p
‖u‖p

p − λτ 3
∫
R3

H(u) dx

≤ τ 3

2
‖∇u‖22 + τ

2

∫
R3

V (x)u2 dx + τ 3

4

∫
R3

∫
R3

u2(x)u2(y)

|x − y| dx dy

− λτ 2p−3

p
‖u‖p

p.

Since p ∈ [4, 6), there exists τ0 > 0 large enough such that Iλ (τ0u) < 0. By taking
v = uτo , we have Iλ(v) < 0.

Moreover, it follows from (h1) that

|h(u)| ≤ ε|u| + Cε |u|, for any ε > 0.

By simple calculations, we derive

∫
R3

H (u) dx ≤ ε

2
‖u‖22 + Cε

 + 1
‖u‖+1

+1 .
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Hence,

Iλ(u) = 1

2
‖u‖22 + 1

4

∫
R3

φuu2 dx − λ
1

p
‖u‖p

p − λ

∫
R3

H(u) dx

≥ 1

2
‖u‖22 − 1

p
‖u‖p

p − ε

2
‖u‖22 − Cε

 + 1
‖u‖+1

+1

≥ 1 − εC

2
‖u‖2 − C

p
‖u‖p − CCε

 + 1
‖u‖+1.

Then, there exists ρ > 0 small enough such that Iλ(u) > 0 as ‖u‖ = ρ. Now,
Lemma 4.2 leads to the conclusion. ��
Lemma 4.4 If {vm} is a bounded sequence in E obtained by Lemma 4.3, then

lim
m→+∞ sup

y∈R3

∫
B1(y)

|vm |2 dx > 0.

Proof Assume that limm→+∞ sup
y∈R3

∫
B1(y)

|vm |2 dx = 0. From Lemma 4.1, we have

vm → 0 in Lq
(
R
3
)
for all q ∈ (2, 6).

Hence,

∫
R3

h(vm)vm dx ≤ ε‖vm‖22 + Cε‖vm‖+1
+1 = o(1).

Moreover, by the Hardy–Littlewood–Sobolev inequality (see [18]), we obtain

∫
R3

φvm v2m dx ≤
∫
R3

∫
R3

v2m(x)v2m(y)

|x − y| dx dy ≤ 8 3
√
2

3 3
√

π
‖vm‖412

5
= o(1).

Thus, we have

o(1) = I ′
λ(vm)[vm] = ‖vm‖2 +

∫
R3

φvm v2m dx − λ‖vm‖p
p − λ

∫
R3

h(vm)vm dx

= ‖vm‖2 + o(1),

and then

cλ + o(1) = Iλ(vm) = 1

2
‖vm‖2 + 1

4

∫
R3

φvm v2m dx − λ

p
‖vm‖p

p

− λ

∫
R3

H(vm) dx = o(1),

which is a contradiction. ��
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Lemma 4.5 If {vm} ⊂ E is the sequence obtained by Lemma 4.3, then for a.e. λ ∈[ 1
2 , 1
]
, there exists a sequence of points {ym} ⊂ R

3, set um(x) := vm (x − ym), we
have

(i) um⇀uλ �≡ 0 in E;
(ii) I ′

λ (uλ) = 0 in E∗;
(iii) Iλ (uλ) ≤ cλ in E;
(iv) there exists M > 0 such that Iλ (uλ) ≥ M.

Proof Putting together Lemmas 4.3 and 4.4, we know that for almost every λ ∈ [ 12 , 1],
there exists a bounded sequence {vm}which satisfies Iλ (vm) → cλ in E and I ′

λ (vm) →
0 in E∗ as m → +∞. Furthermore, by Lemma 4.4, there exists a sequence of points
{ym} ⊂ R

3 and α > 0, such that

lim
m→+∞

∫
B1(ym)

v2m dx ≥ α > 0. (4.1)

Let um(x) := vm (x − ym). By the invariance translations of Iλ, as m → +∞, we
have that Iλ (um) → cλ in E and I ′

λ (um) → 0 in E∗. Since {um} is bounded, there
exists uλ ∈ E such that

⎧⎨
⎩

um⇀uλ in E;
um → uλ in Ls

loc(R
3), ∀s ∈ [1, 6];

um → uλ a.e. inR
3.

(4.2)

In the following, we complete the proof of this lemma.

(i) It follows from (4.1) that

C ‖uλ‖2 ≥ ‖uλ‖22 ≥
∫

B1(0)
u2

λ dx = lim
m→+∞

∫
B1(0)

u2
m dx ≥ α > 0,

and thus uλ �≡ 0 in E .
(ii) We only need to show that

〈
I ′
λ (uλ) , ϕ

〉 = 0 for any ϕ ∈ E . Observe that

〈
I ′
λ (um) , ϕ

〉− 〈I ′
λ (uλ) , ϕ

〉
=
∫
R3

((∇um − ∇uλ) ϕ + V (x) (um − uλ) ϕ) dx +
∫
R3

(
φum um − φuλuλ

)
ϕ dx

− λ

∫
R3

( f (um) − f (uλ)) ϕ dx − λ

∫
R3

(
|um |p−2um − |uλ|p−2uλ

)
ϕ dx .

Moreover,

∣∣∣∣
∫
R3

(
φum um − φuλuλ

)
ϕ dx

∣∣∣∣ ≤
∫
R3

φum |um − uλ||ϕ| dx

+
∫
R3

|φum − φuλ ||uλϕ| dx := J1 + J2.
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By Lemma 2.4, {φum } is bounded in L6(R3) and φum ⇀φuλ in L6(R3). Using the
Hölder inequality and the strong convergence of um to uλ in L3(R3), we get

J1 ≤ ‖φum ‖6‖um − uλ‖3‖ϕ‖2 → 0.

Since ϕ ∈ E , for any ε > 0 there exists R > 0 such that

(∫
Bc

R(0)
|ϕ|s dx

) 1
s

< ε, s ∈ [2, 6]. (4.3)

Hence,

J2 =
∫

BR(0)
|φum − φuλ ||uλϕ| dx +

∫
Bc

R(0)
|φum − φuλ ||uλϕ| dx

≤ ‖φum − φuλ‖L6(BR(0))‖uλ‖2‖ϕ‖3 + ‖φum − φuλ‖6‖uλ‖2‖ϕ‖L3(Bc
R(0))

→ 0,

as m → +∞ and R → +∞.
Furthermore, notice that

∣∣∣∣
∫
R3

(
|um |p−2um − |uλ|p−2uλ

)
ϕ dx

∣∣∣∣
≤
∫

BR(0)

∣∣∣|um |p−2um − |uλ|p−2uλ

∣∣∣ |ϕ| dx

+
∫

Bc
R(0)

∣∣∣|um |p−2um − |uλ|p−2uλ

∣∣∣ |ϕ| dx

:= J3 + J4.

From (4.2), we infer that there exists Q(x) ∈ L p(BR(0)) such that |um | ≤ Q(x).
It follows from dominated convergence theorem that J3 → 0 as m → 0.
On the other hand, as R → ∞, we obtain

J4 ≤
∫

Bc
R(0)

|um |p−1 |ϕ| +
∫

Bc
R(0)

|uλ|p−1 |ϕ| dx

≤ ‖um‖p−1
p ‖ϕ‖L p(Bc

R(0)) + ‖uλ‖p−1
p ‖ϕ‖L p(Bc

R(0))

≤ εC → 0.

Moreover, as um → uλ a.e. inR
3, by continuity,

h(um) → h(uλ) a.e. in R
3.
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It follows from (h1) that {h(um)} is bounded in L
6
5 (R3), and so h(um)⇀h(uλ)

in L
6
5 (R3). Hence, as R → ∞, we have

∣∣∣∣
∫
R3

(h(um) − h(uλ)) ϕ dx

∣∣∣∣
≤
∫

BR(0)
|h(um) − h(uλ)| |ϕ| dx +

∫
Bc

R(0)
|h(um) − h(uλ)| |ϕ| dx

≤
∫

BR(0)
|h(um) − h(uλ)| |ϕ| dx +

∫
Bc

R(0)
|h(um)| |ϕ| dx

+
∫

Bc
R(0)

|h(uλ)| |ϕ| dx

≤ ‖h(um) − h(uλ)‖
L

6
5 (BR(0))

‖ϕ‖6 + ‖um‖ 6
5
‖ϕ‖L6(Bc

R(0))

+‖uλ‖ 6
5
‖ϕ‖L6(Bc

R(0))

≤ o(1) + εC → 0.

Now, we get I ′
λ(uλ) = 0.

(iii) It follows from (h3) that

1

4
h(u)u − H(u) + θ0V (x)

4
u2

=
∫ 1

0

[
h(u)

u3 − h(su)

su3 + θ0V (x)(1 − s2)

(su)2

]
s3u4ds ≥ 0.

Hence, by Fatou’s lemma we get

cλ = lim
m→+∞

[
Iλ (um) − 1

4

〈
I ′
λ (um) , um

〉]

≥
(

λ

4
− λ

p

)
lim inf
m→+∞ ‖um‖p

p + 1

4
lim inf
m→+∞

(
‖um‖2 − λθ0

∫
R3

V (x)|um |2dx

)

+ λ lim inf
m→+∞

∫
R3

(
1

4
h(um)um − H(um) + θ0V (x)|um |2

4

)
dx

≥
(

λ

4
− λ

p

)
‖uλ‖p

p + 1

4

(
‖uλ‖2 − λθ0

∫
R3

V (x)|uλ|2dx

)

+ λ

∫
R3

(
1

4
h(uλ)uλ − H(uλ) + θ0V (x)|uλ|2

4

)
dx

= Iλ (uλ) − 1

4

〈
I ′
λ (uλ) , uλ

〉 = Iλ (uλ) > 0.

(iv) Recall that C‖uλ‖2 ≥ α, we infer

Iλ (uλ) ≥ 1 − θ0

4
‖uλ‖2 ≥ α

C
:= M .
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The proof is completed. ��

Now, according to Lemmas 4.3 and 4.5, there exists a sequence
{(

λn, uλn

)} ⊂[ 1
2 , 1
]× E , such that

(i) λn → 1 as n → +∞;
(ii) uλn �≡ 0, M ≤ Iλn

(
uλn

) ≤ cλn ;
(iii) I ′

λn

(
uλn

) = 0.

Proof of Theorem 1.6 By Lemma 4.5, we have

c1 ≥ Iλn

(
uλn

) = Iλn

(
uλn

)− 1

4
I ′
λn

(uλn )[uλn ]

= 1

4
‖uλn ‖2 + (

λ

4
− λ

p
)‖uλn ‖p

p + λn

∫
R3

(
1

4
h(uλn )uλn − H(uλn )

)
dx

≥ 1

4
‖uλn ‖2 − λnθ0

4

∫
R3

V (x)|uλn |2dx

≥ 1 − θ0

4
‖uλn ‖2,

which implies that there exists a constant K > 0 such that‖uλn ‖ ≤ K .

Using the facts that for any ϕ ∈ E ,

〈
I ′ (uλn

)
, ϕ
〉 = 〈

I ′
λn

(
uλn

)
, ϕ
〉+ (λn − 1)

∫

RN

h
(
uλn

)
ϕ dx,

I
(
uλn

) = Iλn

(
uλn

)+ (λn − 1)
∫

RN

H
(
uλn

)
dx,

and
{
uλn

}
is bounded in E , we obtain that M ≤ limn→+∞ I

(
uλn

) ≤ c1 and
limn→+∞ I ′ (uλn

) = 0. Up to a subsequence, there exists a subsequence still denoted
by
{
uλn

}
and u0 ∈ E such that uλn ⇀u0 in E . By using the preceding method in

Lemma 4.5, we can obtain the existence of a nontrivial solution u0 for I such that
I ′ (u0) = 0 and M ≤ I (u0) ≤ c1. Thus, u0 is a nontrivial solution of (1.5). Define
m := inf

{
I (u) : u �≡ 0, I ′(u) = 0

}
. Let {un} be a sequence such that I ′ (un) = 0 and

I (un) → m. Similar to the argument in Lemma 4.5, we can prove that there exists
ū ∈ E such that I ′(ū) = 0 and I (ū) ≤ m. By the definition of m, we have m ≤ I (ū).
Hence, I (ū) = m, which shows that ū is a ground state solution of (1.5). ��

5 Existence of Positive Solutions for p ∈ (2, 6)

In this section, assume that (V1)–(V2) and (P1)–(P2) are satisfied and p ∈ (2, 6). We
prove the existence of positive solutions for problem (1.6).
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By simple calculation, we have

I (u) = 1

2

∫
R3

(
|∇u|2 + V (x)u2

)
dx + q

4

∫
R3

φuu2dx

−
∫
R3

(
1

6
P(x)|u|6 + μ

p
|u|p

)
dx,

I ′(u)[v] =
∫
R3

(∇u∇v + V (x)uv + qφuuv) dx

−
∫
R3

(
P(x)u5v + μ|u|p−2uv

)
dx .

Lemma 5.1 [12] If vn⇀v in H1(R3), then

∫
R3

φvn v
2
ndx −

∫
R3

φvv
2dx −

∫
R3

φvn−v(vn − v)2dx → 0.

Lemma 5.2 Let {vn} be a sequence such that vn⇀v in E, then

∫
R3

φvn v
2
ndx →

∫
R3

φvv
2dx as n → +∞.

Proof To prove
∫
R3 φvn v

2
n → ∫

R3 φvv
2, we only need to prove that

∣∣∣∣
∫
R3

(
φvn v

2
n − φvv

2
)
dx

∣∣∣∣ ≤
∣∣∣∣
∫
R3

(
φvn vn − φvv

)
vn dx

∣∣∣∣+
∣∣∣∣
∫
R3

(
φvn vn − φvv

)
v dx

∣∣∣∣
≤
∫
R3

φvn |vn − v||vn| dx +
∫
R3

|φvn − φv||vnv| dx

+
∫
R3

φvn |vn − v||v| dx +
∫
R3

|φvn − φv||v|2 dx

:= J1 + J2 + J3 + J4 → 0.

We just give the proof of J1 → 0, and the proof of J3 → 0 can be proved in the same
way. Lemma 2.4 and Theorem 1.2 imply that

J1 ≤ ‖φvn ‖6‖vn − v‖3‖vn‖2 → 0 asn → +∞.

Moreover, since v ∈ E , for any ε > 0 there exists R > 0 such that

(∫
Bc

R(0)
|v|s dx

) 1
s

< ε, s ∈ [2, 6].

Obviously,

J2 =
∫

BR(0)
|φvn − φv||vnv| dx +

∫
Bc

R(0)
|φvn − φv||vnv| dx
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≤ ‖φvn − φv‖L6(BR(0))‖vn‖2‖v‖3 + ‖φvn − φv‖6‖vn‖2‖v‖L3(Bc
R(0))

→ 0,

as m → +∞ and R → +∞, and J4 → 0 can be proved in the same way. ��

5.1 The Case p ∈ [4, 6)

Lemma 5.3 Assume that (V1)–(V2) and (P1)–(P2) are satisfied. Then, the functional
I verifies the mountain pass geometry, that is,

(i) there exist α, ρ > 0 such that I (v) ≥ α for all ‖v‖ = ρ;
(ii) there exists e ∈ H1((R)3)\{0} such that I (e) < 0 with ‖e‖ > ρ.

Proof Since P(x) ≤ P(x0), we have

I (u) ≥ 1

2

∫
R3

(
|∇u|2 + V (x)u2

)
dx −

∫
R3

(
1

6
P(x)|u|6 + μ

p
|u|p

)
dx

≥ 1

2
‖u‖2 − 1

6
P(x0)‖u‖66 − μ

p
‖u‖p

p

≥ 1

2
‖u‖2 − C

(
1

6
P(x0)‖u‖6 + μ

p
‖u‖p

)
.

Then, there exist α > 0 and ρ > 0 small enough such that I (u) ≥ α for all ‖u‖ = ρ.
Moreover, let uτ = τu, then

I (uτ ) = τ 2

2
‖u‖2 + τ 4q

4

∫
R3

φuu2 dx − μτ p

p

∫
R3

|u|pdx − τ 6

6

∫
R3

P(x)|u|6 dx .

Hence, there exists τ0 > 0 large enough such that I (τ0u) < 0. By taking e = uτo , we
have I (e) < 0. ��

Combine Lemma 5.3 and Mountain–Pass lemma, we infer that there exists a
sequence {vn} in E at the level c, such that

I (vn) → c and I ′(vn) → 0, as n → +∞, (5.1)

where

c := inf
γ∈�

max
t∈[0,1] I (γ (t)) > 0,

� = {γ ∈ C([0, 1], H1((R)3)) : γ (0) = 0, γ (1) = e}.

Lemma 5.4 The sequence {vn} in (5.1) is bounded in E for p ∈ [4, 6).
Proof As n → +∞, we have

c + o(1) = I (vn) − 1

4
I ′ (vn) [vn]
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= 1

4
‖vn‖2 +

(
1

4
− 1

p

)∫
R3

μ|vn|pdx +
(
1

4
− 1

6

)∫
R3

P(x)|vn|6dx

≥ 1

4
‖vn‖2.

This prove Lemma 5.4. ��
Lemma 5.5 The sequence {vn} in (5.1) is compact in E if

c <
1

3
S

3
2 ‖P(x)‖− 1

2∞ .

Proof As the sequence {vn} is given by (5.1), it satisfies that

I (vn) = 1

2

∫
R3

(
|∇vn|2 + V (x)v2n

)
dx + q

4

∫
R3

φvn v
2
ndx

−
∫
R3

(
1

6
P(x)|vn|6 + μ

p
|vn|p

)
dx = c + o(1), (5.2)

I ′(vn)[vn] =
∫
R3

(
|∇vn|2 + V (x)v2n

)
dx + q

∫
R3

φvn v
2
ndx

−
∫
R3

(
P(x)v6n + μ|vn|p

)
dx = o(1). (5.3)

Since the sequence {vn} is bounded, there exists v ∈ E\{0} such that

⎧⎨
⎩

vn⇀v in E;
vn → v in Ls

loc(R
3), ∀s ∈ [1, 6];

vn → v a.e. inR
3.

(5.4)

From I ′(vn) → 0, we can obtain

I ′(v)[v] =
∫
R3

(
|∇v|2 + V (x)v2

)
dx + q

∫
R3

φvv
2dx

−
∫
R3

(
P(x)|v|6 + μ|v|p

)
dx = 0. (5.5)

Set v′
n = vn − v. By Brezis–Lieb’s lemma in [8],

I (vn) − I (v) − I (v′
n) → 0 as n → +∞, (5.6)

I ′(vn)[vn] − I ′(v)[v] − I ′(v′
n)[v′

n] → 0 as n → +∞. (5.7)

Theorem 1.2 and Lemmas 5.1, 5.2 and (5.4) imply that

lim
n→∞

∫
R3

|v′
n|pdx = 0, lim

n→∞

∫
R3

φv′
n
|v′

n|2dx = 0 as n → +∞. (5.8)
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Putting (5.8) in (5.6) and (5.7), as n → +∞, we have

I (v) = c + o(1) − I (v′
n)

= c + o(1) − 1

2
‖v′

n‖2 − q

4

∫
R3

φv′
n
|v′

n|2dx

+
∫
R3

(
1

6
P(x)|v′

n|6 + μ

p
|v′

n|p
)
dx

= c − 1

2
‖v′

n‖2 +
∫
R3

1

6
P(x)|v′

n|6dx + o(1), (5.9)

and

o(1) = I ′(v)[v] + I ′(v′
n)[v′

n]
=
∫
R3

(
|∇v′

n|2 + V (x)|v′
n|2
)
dx + q

∫
R3

φv′
n
|v′

n|2dx

−
∫
R3

(
P(x)|v′

n|6 + μ|v′
n|p
)
dx

=
∫
R3

(
|∇v′

n|2 + V (x)|v′
n|2
)
dx −

∫
R3

P(x)|v′
n|6dx + o(1).

Assume that
∫
R3 P(x)|v′

n|6dx → l as n → +∞, then
∫
R3 |∇v′

n|2+V (x)|v′
n|2dx → l.

It follows from Sobolev inequality that

∫
R3

(
|∇v′

n|2 + V (x)|v′
n|2
)
dxdx ≥ S

(∫
R3

|v′
n|6dx

) 1
3

≥ S‖P(x)‖− 1
3∞
(∫

R3
P(x)|v′

n|6dx

) 1
3

.

If l > 0, we have

l ≥ S
3
2 ‖P(x)‖− 1

2∞ . (5.10)

(5.9), (5.10) and Lemma 5.4 imply that

I (v) → c − 1

3
l ≤ c − 1

3
S

3
2 ‖P(x)‖− 1

2∞ < 0. (5.11)

However, (5.5) shows that

I (v) = 1

2

∫
R3

(
|∇v′

n|2 + V (x)|v′
n|2
)
dx + q

4

∫
R3

φvv
2dx

−
∫
R3

(
1

6
P(x)|v|6 + μ

p
|v|p

)
dx,
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= 1

2

∫
R3

(
P(x)|v|6 + μ|v|p

)
dx −

∫
R3

(
1

6
P(x)|v|6 + μ

p
|v|p

)
dx

≥ 0,

which is a contradiction to (5.11), thus l = 0. This concludes that {vn} is compact.
��

Proof of Theorem 1.8 Assume that (V1)–(V2) and (P1)–(P2) are satisfied. For each
ε > 0, x0 is chosen such that P(x0) = supx∈R3 P(x), we consider the following
function

ωε,x0(x) = (3ε)
1
4(

ε + |x − x0|2
) 1
2

,

which is a solution of the minimization problem S = inf{‖∇v‖22 : v ∈
D1,2(R3), ‖v‖6 = 1}, and ωε,x0 satisfies

‖∇ωε,x0‖22
‖ωε,x0‖26

= S.

Let η ∈ C∞
0 (R3, [0, 1]) be a cutoff function such that η(x) = 1 for |x − x0| ≤ r ,

0 < η(x) < 1 for r < |x − x0| ≤ 2r and η(x) = 0 for |x − x0| ≥ 2r . Set
vε(x) = η(x)ωε,x0(x), then as ε → 0, the following estimations hold (see [9,25])

‖∇vε‖22 = S
3
2 + O(ε

1
2 ),

‖vε‖66 = S
3
2 + O(ε

3
2 ),

‖vε‖s
s =

⎧⎪⎨
⎪⎩

O(ε
s
4 ), s ∈ [2, 3),

O(ε
s
4 | ln ε|), s = 3,

O(ε
6−s
4 ), s ∈ (3, 6).

As I (0) = 0, limt→+∞ I (tvε) = −∞, there exist tε > 0 and M > 0 such that

I (tεvε) = sup
t≥0

I (tvε) ≥ M and
dI (tvε)

dt
|t=tε = 0.

Hence, we get

tε‖∇vε‖22 = tε
(

S
3
2 + O(ε

1
2 )
)

≤ tε‖∇vε‖22 + tε

∫
R3

V (x)v2εdx + qt3ε

∫
R3

φvε v
2
εdx

= t5ε

∫
R3

P(x)v6εdx + μ

tε

∫
R3

|tεvε |pdx

≤ t5ε P(x0)
(

S
3
2 + O(ε

3
2 )
)

+ μ
(

tε O(ε
1
2 ) + t5ε S

3
2 + t5ε O(ε

3
2 )
)

,
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which shows that there exists a constant A1 > 0 such that tε ≥ A1.
Moreover,

M ≤ I (tεvε) ≤ t2ε
2

‖∇vε‖22 + t2ε
2

(
max

x∈B2r (x0)
V (x)

)
‖vε‖22 + qt4ε

4a
‖vε‖42

− t6ε
6

(
min

x∈B2r (x0)
P(x)

)
‖vε‖66

= t2ε
2

(
S

3
2 + O(ε

1
2 ) +

(
max

x∈B2r (x0)
V (x)

)
O(ε

1
2 )

)
+ qt4ε

4a

(
O(ε

1
2 )
)2

− t6ε
6

(
min

x∈B2r (x0)
P(x)

)(
S

3
2 + O(ε

3
2 )
)

,

which gives that there exists a constant A2 > 0 such that tε ≤ A2.
Next, we claim that

sup
t>0

(
t2ε
2

∫
R3

|∇vε |2dx − t6ε
6

∫
R3

P(x)|vε |6dx

)
≤ 1

3
S

3
2 ‖P‖− 1

2∞ + O(ε
1
2 ).

Choose δ > 0 small enough such that |x − x0| < δε
1
2 < r . Using the condition (P2),

there exists γ > 0 such that

|P(x) − P(x0)| ≤ γ |x − x0|2, for |x − x0| < δε
1
2 ,

hence
∫
R3

|P(x) − P(x0)||vε |6dx ≤
∫

|x−x0|<δε
1
2

γ |x − x0|2|vε |6dx

+ C
∫

|x−x0|≥δε
1
2

|vε |6dx

≤ γ δε‖vε‖66 + Cε
3
2

∫ |x−x0|=2r

|x−x0|=δε
1
2

1(
ε + |x − x0|2

)3 dx

≤ Cε + O(ε
5
2 ) + O(ε2).

Then, we have that

t2ε
2

∫
R3

|∇vε |2dx − t6ε
6

∫
R3

P(x)|vε |6dx

= t2ε
2

∫
R3

|∇vε |2dx − t6ε
6

∫
R3

P(x0)|vε |6dx +
∫
R3

|P(x0) − P(x)||vε |6dx

≤ 1

3
S

3
2 ‖P‖− 1

2∞ + O(ε
1
2 ) + O(ε

5
2 ) + O(ε

3
2 ) + Cε + O(ε2),

which implies the claim holds.
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Thus,

I (tεvε) = t2ε
2

∫
R3

|∇vε |2dx + t2ε
2

∫
R3

V (x)v2εdx + qt4ε
4

∫
R3

φvε v
2
εdx

− μt p
ε

p

∫
R3

|vε |pdx − t6ε
6

∫
R3

P(x)|vε |6dx

≤ 1

3
S

3
2 ‖P‖− 1

2∞ + q A4
2

4a
‖vε‖42 − μ

Ap
1

p
‖vε‖p

p

+ O(ε
1
2 ) + Cε + O(ε

3
2 ) + O(ε

5
2 ) + O(ε2)

≤ 1

3
S

3
2 ‖P‖− 1

2∞ + O(ε
1
2 ) + O(ε) + O(ε

3
2 ) + O(ε

5
2 ) + O(ε2) − Cμε

6−p
4

:= 1

3
S

3
2 ‖P‖− 1

2∞ + A.

If 4 < p < 6 with μ > 0 or p = 4 with μ sufficient large, we have A < 0.
Combine Lemmas 5.2 and 5.4, we can easily verity that if there exists v0 ∈ E and

v0 �≡ 0 such that

sup
t≥0

I (tv0) <
1

3
S

3
2 ‖P(x)‖− 1

2∞ . (5.12)

Then, the problem (1.6) has at least one positive solution. Taking v0 = vε for ε small
enough, then (5.12) holds, this completes our proof. ��

5.2 The Case of p ∈ (2, 4)

Inspired by [12], we consider the truncated functional

IT (u) := 1

2

∫
R3

(
|∇u|2 + V (x)u2

)
dx + q

4
χ

(‖u‖2
T 2

)∫
R3

φuu2dx

−
∫
R3

(
1

6
P(x)|u|6 + μ

p
|u|p

)
dx,

where χ(s) = 1 for 0 ≤ s ≤ 1, χ(s) ∈ (0, 1) for 1 ≤ s ≤ 2, χ(s) = 0 for 2 ≤ s and
‖χ ′‖∞ ≤ 2.

Lemma 5.6 The functional IT satisfies the mountain pass geometry:

(i) there exist α, ρ > 0 such that I (u) ≥ α for all ‖u‖ = ρ;
(ii) there exists e ∈ H1((R)3)\{0} such that I (e) < 0 with ‖e‖ > ρ.

Proof As q > 0, we have

IT (u) ≥ 1

2

∫
R3

(
|∇u|2 + V (x)u2

)
dx −

∫
R3

(
1

6
P(x)|u|6 + μ

p
|u|p

)
dx
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≥ 1

2
‖u‖2 − C

(
P(x0)

6
‖u‖6 + μ

p
‖u‖p

)
.

Then, there exists ρ > 0 small enough such that IT (u) > 0 as ‖u‖ = ρ.
In addition, consider uτ = τu, we get

IT (τu) = τ 2

2
‖u‖2 + qτ 4

4
χ

(
τ 2

‖u‖2
T 2

)∫
R3

φuu2dx

−
∫
R3

(
τ 6

6
P(x)|u|6 + μτ p

p
|u|p

)
dx,

and there exists τ0 > 0 large enough such that Iλ (τ0u) < 0. By taking v = uτo , we
have IT (v) < 0. ��

By mountain pass theorem, there exists a sequence {un} in E at the level cT , such
that

IT (un) → cT and I ′
T (un) → 0, as n → +∞, (5.13)

where

cT : = inf
γ∈�T

max
t∈[0,1] IT (γ (t)) > 0,

�T = {γ ∈ C([0, 1], H1((R)3)) : γ (0) = 0, IT (γ (1)) < 0}.

Remark 5.7 It follows from IT ≤ I that cT ≤ c, where the constant c is given in (5.1).

Lemma 5.8 There exist T0 > 0 independent of q and q∗ > 0 dependent on T0 such
that if q < q∗, then the sequence {un} in (5.13) satisfies

lim sup
n

‖un‖ < T0.

Proof Similar to the proof in [12]. Arguing by contradiction, suppose for any T > 0,
there exists q > 0 such that

lim sup
n

‖un‖ ≥ T . (5.14)

Notice that

pIT (un) − I ′
T (un)[un] =

( p

2
− 1
)

‖un‖2 +
( pq

4
− q
)

χ

(‖un‖2
T 2

)∫
R3

φun u2
ndx

− q‖un‖2
2T 2 χ ′

(‖un‖2
T 2

)∫
R3

φun u2
ndx

−
( p

6
− 1
) ∫

R3
P(x)|un|6dx . (5.15)
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Let e be as in Lemma 5.6. As n → +∞, we have

IT (un) ≤ 2cT ≤ 2 max
t∈[0,1] IT (te)

≤ ‖e‖2 max
t∈[0,1] t2 + q

2
max

t∈[0,1]

[
t4χ

(
t2‖e‖2

T 2

)∫
R3

φee2dx

]

:= C1 + q

2
J1.

If t2‖e‖2 > 2T 2 then J1 = 0 and if t2‖e‖2 ≤ 2T 2, then

J1 ≤ 4T 4

‖e‖4
∫
R3

φee2dx ≤ 4T 4

a‖e‖4 ‖e‖42.

By Theorem 1.2, we have

IT (un) ≤ C1 + C2qT 4. (5.16)

Through similar discussions, we obtain

χ

(‖un‖2
T 2

)∫
R3

φun u2
ndx ≤ C3T 4, (5.17)

and

‖un‖2χ ′
(‖un‖2

T 2

)∫
R3

φun u2
ndx ≤ ‖un‖2

∣∣∣∣χ ′
(‖un‖2

T 2

)∣∣∣∣
∫
R3

φun u2
ndx ≤ C4T 6.

(5.18)

Combining (5.14)–(5.18), we get

C5T 2 − T

≤
( p

2
− 1
)

‖un‖2 − I ′
T (un)[un]

≤ pIT (un) +
(

q2 − pq2

4

)
χ

(‖un‖2
T 2

)∫
R3

φun u2
ndx

+ q‖un‖2
2T 2 χ ′

(‖un‖2
T 2

)∫
R3

φun u2
ndx

−
(
1 − p

6

) ∫
R3

P(x)|un|6dx

≤ pIT (un) +
(

q − pq

4

)
χ

(‖un‖2
T 2

)∫
R3

φun u2
ndx

+ q‖un‖2
2T 2 χ ′

(‖un‖2
T 2

)∫
R3

φun u2
ndx

≤ C6 + qC7T 4. (5.19)
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Obviously, the inequality (5.19) does not hold if q small enough and for large T . ��
Remark 5.9 Since lim sup

n
‖un‖ < T0, we have IT0(un) = I (un).

Proof of Theorem 1.9 Assume that (V1)–(V2) and (P1)–(P2) are satisfied. From Lem-
mas 5.6, 5.8 and Remark 5.9, there exists q∗ > 0 such that if q ∈ (0, q∗) then I
possesses a bounded (PS) sequence {un} at level cT0 . Moreover, we already know that

if cT0 < 1
3 S

3
2 ‖P(x)‖− 1

2∞ , then {un} is compact in E . It remains to show that there exists
v0 ∈ E and v0 �≡ 0 such that

sup
t≥0

I (tv0) <
1

3
S

3
2 ‖P(x)‖− 1

2∞ ,

for p ∈ (2, 4) with μ sufficiently large. As its proof is similar with the Proof of
Theorem 1.8, we omit it here. ��
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