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Abstract
Let G be a nontrivial connected graph with a vertex-coloring c: V (G) →
{1, 2, . . . , q}, q ∈ N . For a set S ⊆ V (G) and |S| ≥ 2, a subtree T of G satisfy-
ing S ⊆ V (T ) is said to be an S-Steiner tree or simply S-tree. The S-tree T is called a
vertex-rainbow S-tree if the vertices of V (T ) \ S have distinct colors. Let k be a fixed
integer with 2 ≤ k ≤ |V (G)|, if every k-subset S of V (G) has a vertex-rainbow S-tree,
then G is said to be vertex-rainbow k-tree connected. The k-vertex-rainbow index of
G, denoted by rvxk(G), is the minimum number of colors that are needed in order to
makeG vertex-rainbow k-tree connected. In this paper, we study the 3-vertex-rainbow
index of unicyclic graphs and complementary graphs, respectively.

Keywords Vertex-coloring · S-tree · Vertex-rainbow S-tree · k-vertex-rainbow index

Mathematics Subject Classification 05C15 · 05C40

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the
notation and terminology of [1] for those not described here. In recent years, colored
notions of connectivity in graphs become a new and active subject in graph theory.
Stating from rainbow connection, rainbow-vertex connection and total rainbow con-
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nection appeared later. Many researchers are working in this field, and a lot of papers
have been published in journals, see [2,3,5–12,15–19,21] for details. The reader also
can see [14] for dynamic survey and [13] for a new monograph on this topic.

The concept of rainbow path was generalized to rainbow tree by Chartrand et al. [4].
For every set S of V (G) and |S| ≥ 2, a subtree T ofG such that S ⊆ V (T ) is called an
S-Steiner tree or simply S-tree. For every set S of V (G), an S-tree is called a rainbow
S-tree if any two edges of the tree are assigned distinct colors. Let k be a fixed integer
with 2 ≤ k ≤ |V (G)|, the edge-coloring c of G is said to be a k-rainbow coloring if
for every set S of k vertices of G, there exists a rainbow S-tree. The k-rainbow index
of a connected graph, denoted by r xk(G), is the minimum number of colors that are
required in a k-rainbow coloring of G.

As a natural counterpart of the k-rainbow index, Mao introduced the concept of k-
vertex-rainbow index rvxk(G) and investigated the Nordhaus–Gaddum problem with
k = 3 in [20]. An S-tree T is called a vertex-rainbow S-tree or a vertex-rainbow tree
connecting S if no two vertices of V (T )\S share same color. Let k be a fixed integer
with 2 ≤ k ≤ |V (G)|, the vertex-coloring c of G is said to be a k-vertex-rainbow
coloring if for every set S of k vertices of G, there exists a vertex-rainbow S-tree. If
such vertex-coloring c exists, then G is called vertex-rainbow k-tree connected. The
k-vertex-rainbow index of a connected graph, denoted by rvxk(G), is the minimum
number of colors that are needed in a k-vertex-rainbow coloring of G.

In 2010, Chartrand et al. [4] considered the 3-rainbow index of unicyclic graphs.
In Sect. 2, we investigated the 3-vertex-rainbow index of unicyclic graphs. Moreover,
we studied the 3-vertex-rainbow index of complementary graphs in Sect. 3.

2 The 3-Vertex-Rainbow Index of Unicyclic Graphs

For a subset X of V (G), we use G[X ] to denote the induced subgraph by X . The
distance between two vertices u and v in a connected graph G, denoted by d(u, v),
is the length of a shortest u-v path in G. The eccentricity of a vertex v is defined
as eccG(v) := maxx∈V (G)d(v, x). The Steiner distance d(S) of a set S of V (G) is
the minimum number of edge of a tree in G containing S. The Steiner k-diameter
sdiamk(G) ofG is the maximum Steiner distance of S among all sets S with k vertices
in G. In [20], Mao obtained the following results.

Proposition 2.1 [20] Let G be a nontrivial connected graph of order n. Then,
rvxk(G) = 0 if and only if sdiamk(G) = k − 1.

Proposition 2.2 [20] Let G be a nontrivial connected graph of order n (n ≥ 5), and
let k be an integer with 2 ≤ k ≤ n. Then, 0 ≤ rvxk(G) ≤ n − 2.

Let G1 = C1 ∪C2 ∪ {uv}, where C1 = uu1u2 . . . uiu and C2 = vv1v2 . . . v jv. For
every k-subset S of {u1, u2, . . . , ui , v1, v2, . . . , v j } satisfying S∩{u1, u2, . . . , ui } 	= ∅
and S ∩ {v1, v2, . . . , v j } 	= ∅, we know that every S-tree contains the two cut vertices
u and v. The following observation holds.
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Observation 2.3 Let G be a connected graph of order n containing two cut vertices u
and v. For each integer k with 2 ≤ k ≤ n, every k-vertex-rainbow coloring of G must
assign distinct colors to u and v.

In [4], Chartrand et al. proved that the 3-rainbow index of cycles is n−1 for n = 3,
or n − 2 for n ≥ 4. Now we consider the 3-vertex-rainbow index of cycles.

Theorem 2.4 For integer n,

rvx3(Cn) =
{
0 if 3 ≤ n ≤ 4,

n − 4 if n ≥ 5.

Proof For 3 ≤ n ≤ 4, by Proposition 2.1, we have rvx3(C3) = 0 and rvx3(C4) = 0.
For n = 5, we assign one color to all vertices of C5. Thus, rvx3(C5) ≤ 1. Since

sdiam3(C5) = 3, we have rvx3(C5) ≥ 1, and so rvx3(C5) = 1 = n − 4.
For n = 6, we assign a vertex-coloring c toC6 as follows: c(v1) = c(v2) = c(v3) =

c(v6) = 1, c(v4) = c(v5) = 2. It is easy to verify that C6 is vertex-rainbow 3-tree
connected with the above vertex-coloring, and so rvx3(C6) ≤ 2. Since every tree
connecting {v1, v3, v5} has size at least 4, every tree has at least two vertices which
are different from {v1, v3, v5}. Note that rvx3(C6) ≥ 2. Thus rvx3(C6) = 2 = n − 4.

For n ≥ 7, let Cn : v1, v2, . . . , vn, vn+1 = v1. Assign a vertex-coloring c to Cn as
follows: c(v1) = c(v4) = c(v7) = 1, c(v2) = c(v5) = 2 and c(v3) = c(v6) = 3 if
n = 7; c(vi ) = i for 1 ≤ i ≤ n − 4 and c(vi ) = i − n + 4 for n − 3 ≤ i ≤ n if
n ≥ 8. For n = 7, we can check that the coloring c is a 3-vertex-rainbow coloring,
and thus, rvx3(C7) ≤ 3 = n − 4. For n ≥ 8, we need to show that there exists a
vertex-rainbow tree connecting any three different vertices vi , v j and vz of Cn , where
1 ≤ i < j < z ≤ n. Let S = {vi , v j , vz}. Without loss of generality, we verify
rvx3(Cn) ≤ n − 4 by considering the following four cases.

Case 1 vi , v j and vz are three distinct vertices of the path P = v1v2 . . . vn−4 (P =
v5v6 . . . vn), where 1 ≤ i < j < z ≤ n − 4 (5 ≤ i < j < z ≤ n). Obviously, there is
a vertex-rainbow S-tree T = vi . . . v j . . . vz , and so rvx3(Cn) ≤ n − 4.

Case 2 Two vertices of S which lie on the path P = v1v2 . . . vn−4, and the remaining
vertex of S lies on the path P

′ = vn−3vn−2vn−1vn . Let 1 ≤ i < j ≤ 4 and n − 3 ≤
z ≤ n. If i = 1 and j = 2, then there exists a vertex-rainbow S-tree T , where
T = vz . . . viv j . If i = 1, j = 3 and n − 2 ≤ z ≤ n, then there exists a vertex-
rainbow S-tree T , where T = vz . . . viv2v j . If i = 1, j = 3 and z = n − 3, then there
exists a vertex-rainbow S-tree T , where T = viv2v jv4 . . . vz . If i = 1 and j = 4,
then there exists a vertex-rainbow S-tree T , where T = v jv5 . . . vz . . . vi . If i = 2
and j = 3, then there exists a vertex-rainbow S-tree T , where T = vz . . . v1viv j . If
i = 2, j = 4 and n − 3 ≤ z ≤ n − 1, then there exists a vertex-rainbow S-tree T ,
where T = viv3v jv5 . . . vz . If i = 2, j = 4 and z = n, then there exists a vertex-
rainbow S-tree T , where T = vzv1viv3v j . If i = 3 and j = 4, then there exists a
vertex-rainbow S-tree T , where T = viv jv5 . . . vz . Let 1 ≤ i ≤ 4, 5 ≤ j ≤ n− 4 and
n − 3 ≤ z ≤ n. If n − 3 ≤ z ≤ n − 2, then there exists a vertex-rainbow S-tree T ,
where T = vi . . . v j . . . vz . If i = 1 and z = n − 1, then there exists a vertex-rainbow
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S-tree T , where T = v j . . . vz . . . vi . If 2 ≤ i ≤ 4 and z = n − 1, then there exists
a vertex-rainbow S-tree T , where T = vi . . . v j . . . vz . If z = n, then there exists
a vertex-rainbow S-tree T , where T = vz . . . vi . . . v j . Let 5 ≤ i < j ≤ n − 4 and
n−3 ≤ z ≤ n. Then, there exists a vertex-rainbow S-treeT ,whereT = vi . . . v j . . . vz .
Hence, rvx3(Cn) ≤ n − 4.

Case 3 One vertex of {vi , v j , vz} which lies on the path P = v1v2 . . . vn−4 and the
remaining vertices of {vi , v j , vz} lie on the path P

′ = vn−3vn−2vn−1vn . Let 1 ≤ i ≤ 4
and n − 3 ≤ j < z ≤ n. Then, an argument similar to the one used in the proof of
1 ≤ i < j ≤ 4 and n − 3 ≤ z ≤ n. Let 5 ≤ i ≤ n − 4 and n − 3 ≤ j < z ≤ n. Then,
there exists a vertex-rainbow S-tree T , where T = vi . . . v j . . . vz . Thus, rvx3(Cn) ≤
n − 4.

Case 4 vi , v j and vz are three distinct vertices of the path P = vn−3vn−2vn−1vn ,
where n − 3 ≤ i < j < z ≤ n. Thus, there exists a vertex-rainbow S-tree T , where
T = vi . . . v j . . . vz . Therefore, rvx3(Cn) ≤ n − 4.

Next, we verify that rvx3(Cn) ≥ n − 4 by proving the following three claims.

Claim 1 No five vertices of Cn can be colored the same.

Proof Suppose that c(vi ) = c(v j ) = c(vm) = c(vp) = c(vq), where 1 ≤ i < j <

m < p < q ≤ n. According to the adjacency of vertices of {vi , v j , vm, vp, vq}, we
only need to consider the seven types of {H1, H2, H3, H4, H5, H6, H7} shown in Fig.
1. (For all the graphs of this paper, if two vertices of a graph are joined by a solid line,
then the two vertices are said to be adjacent.) Let S = {vg, vh, vm}. Then, any tree
connecting S is not a vertex-rainbow S-tree, a contradiction. This completes the proof
of the Claim 1. �

Claim 2 At most one pair of four vertices of Cn can be colored the same. Moreover,
the four vertices share same color if and only if P4 contains them, and other vertices
have distinct colors.

Proof Suppose that there are two pairs π1 = {vi , v j , vp, vq} and π2 =
{va, vb, vc, vd} of vertices, where the colors of four of the eight vertices are the same
if and only if the four vertices belong to the same pair with i < j < p < q and
a < b < c < d. If vi , v j , vp and vq are four internally distinct vertices of the
path P = va . . . vb, then there is no vertex-rainbow S-tree, where S = {vi , vb, vq}.
If vi , v j and vp are three internally distinct vertices of the path P = va . . . vb,
vq is an internal vertex of the path P

′ = vb . . . vc . . . vd . . . va , then there is no
vertex-rainbow tree connecting {vi , vb, vq}. If vi and v j are two internally distinct
vertices of the path P = va . . . vb, vp and vq are two internally distinct vertices of
the path P

′ = vb . . . vc . . . vd . . . va , then there is no vertex-rainbow tree connect-
ing {vi , vc, vq}. If vi , v j , vp and vq are four internally distinct vertices of the paths
P = va . . . vb, P

′ = vb . . . vc, P
′′ = vc . . . vd and P

′′′ = vd . . . va , respectively, then
there is no vertex-rainbow S-tree, where S = {vi , vc, vq}.
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Fig. 1 Seven types of claim 2

Without loss of generality, assume that π1 = {vi , v j , vp, vq} satisfies c(vi ) =
c(v j ) = c(vp) = c(vq). Next, we verify that the four vertices of π1 can be colored the
same if and only if P4 contains π1, and the others have distinct colors. Consider the
four graphs G1,G2,G3 and G4 shown in Fig. 2. For the type shown in G1, there is
no vertex-rainbow tree connecting {vg, v j , vh}; In G2,G3 and G4, there is no vertex-
rainbow tree connecting {vg, vh, v f }. If P4 contains π1, then we can check that there
exists a vertex-rainbow tree connecting any three distinct vertices of Cn . Suppose that
there exist two distinct vertices va and vb satisfying c(va) = c(vb). By Claim 1, we
have c(va) 	= c(vi ). According to the adjacency of vertices of {vi , v j , vp, vq , va, vb},
we consider the graphs G5,G6,G7,G8 and G9 in Fig. 2. For the type shown in
G5, there is no vertex-rainbow tree connecting {vi , v j , vg}; In G6, there is no vertex-
rainbow tree connecting {vi , vq , vg}; In G7,G8 and G9, there is no vertex-rainbow
tree connecting {v j , vg, v f }, a contradiction. This completes the proof of the Claim
2. �

Claim 3 If there are not four vertices of Cn with the same color, then one of the
following cases holds.
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Fig. 2 Nine types of Claim 2

(i) At most two pairs of three vertices of Cn can be colored the same and other
vertices must be colored the different.

(ii) If Cn contains only one pair of three vertices with the same color, then other
vertices contain at most two pairs of two vertices where the vertices in each pair
can be colored the same.

(iii) At most four pairs of two vertices of Cn satisfy that any two vertices of Cn have
the same color if and only if the two vertices in the same pair.

Proof (i) Let π1 = {va, v′
a, v

′′
a} and π2 = {vb, v′

b, v
′′
b} which satisfy c(va) =

c(v
′
a) = c(v

′′
a) and c(vb) = c(v

′
b) = c(v

′′
b), where the vertices of π1 (π2) are encoun-

tered in the clockwise order va, v
′
a, v

′′
a (vb, v

′
b, v

′′
b) in Cn . Since n ≥ 7, we know that

there exists a vertex vg /∈ π1 ∪ π2. There is a vertex-rainbow tree connecting any
three distinct vertices if and only if the following two cases hold: (1) vb and v

′
b are

two internally distinct vertices of the path P = va . . . v
′
a , v

′′
b and vg are the internal

vertices of the paths P
′ = v

′
a . . . v

′′
a and P

′′ = v
′
a . . . v

′′
b , respectively; (2) vb and v

′
b

are two internally distinct vertices of the path P = va . . . v
′
a , v

′′
b and vg are the internal
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vertices of the paths P
′ = v

′′
a . . . va and P

′′ = v
′′
b . . . va , respectively. (Isomorphism is

no longer discussed.) If vb and v
′
b are the internal vertices of the path P = va . . . v

′
a ,

v
′′
b is the internal vertex of P

′ = v
′
a . . . v

′′
a . . . va , and the location of vg that is different

from (1) and (2), then we can check that there exists a set S
′
of three vertices, any

tree connecting S
′
is not vertex-rainbow. If vb, v

′
b and v

′′
b are three internally distinct

vertices of the path P = va . . . v
′
a , then any tree connecting {vb, v′

a, vg} is not vertex-
rainbow. If vb, v

′
b and v

′′
b are the internal vertices of the paths P = va . . . vb . . . v

′
a ,

P
′ = v

′
a . . . v

′
b . . . v

′′
a and P

′′ = v
′′
a . . . v

′′
b . . . va , respectively, then any tree connecting

{va, v′
a, v

′′
a} is not vertex-rainbow.

Let vb and v
′
b be two internally distinct vertices of the path P = va . . . v

′
a , v

′′
b be

an internal vertex of the path P
′ = v

′
a . . . v

′′
a . . . va . Suppose π3 = {vc, v′

c, v
′′
c }, where

c(vc) = c(v
′
c) = c(v

′′
c ) 	= c(va) 	= c(vb), and the vertices in π3 are encountered in the

clockwise order vc, v
′
c, v

′′
c in Cn . Assume that vc, v

′
c and v

′′
c are three internal vertices

of the path P = va . . . v
′
b . . . v

′
a . Then, any tree connecting {va, v′′

c , v
′′
b} is not vertex-

rainbow.Assume that vc, v
′
c and v

′′
c are three internal vertices of the path P = v

′
a . . . v

′′
a .

Then, any tree connecting {va, vc, v′′
b} is not vertex-rainbow. Assume that vc, v

′
c and

v
′′
c are three internal vertices of the path P = v

′′
a . . . va . Then, any tree connecting

{va, vc, v′′
b} is not vertex-rainbow. Assume that vc and v

′
c are two internal vertices of

the path P = va . . . v
′
b . . . v

′
a , v

′′
c is an internal vertex of the path P

′ = v
′
a . . . v

′′
a . . . va .

If vc and v
′
c are two internal vertices of the path P = va . . . vb . . . v

′
b, then any tree

connecting {va, v′
b, v

′′
c } is not vertex-rainbow. If vc is the internal vertex of the path

P = va . . . v
′
b . . . v

′
a and v

′
c is the internal vertex of the path P

′ = v
′
b . . . v

′
a , then

any tree connecting {va, v′
c, v

′′
c } is not vertex-rainbow. Assume that vc and v

′
c are

two internal vertices of the path P = v
′
a . . . v

′′
a , v

′′
c is an internal vertex of the path

P
′ = v

′′
a . . . va . . . v

′
a . Then, any tree connecting {va, v′

a, v
′′
b} is not vertex-rainbow.

Assume that vc and v
′
c are two internal vertices of the path P = v

′′
a . . . va , v

′′
c is an

internal vertex of the path P
′ = va . . . v

′
a . . . v

′′
a . Then, there is no vertex-rainbow

tree connecting {va, v′
a, v

′′
b}. Assume that vc, v

′
c and v

′′
c are the internal vertices of

the paths P = va . . . v
′
a, P

′ = v
′
a . . . v

′′
a and P

′′ = v
′′
a . . . va , respectively. Then, any

tree connecting {va, v′
a, vc} is not vertex-rainbow. Assume that vc, v

′
c and v

′′
c are the

internal vertices of the paths P = v
′
a . . . v

′′
a , P

′ = v
′′
a . . . va and P

′′ = va . . . v
′
a ,

respectively. Then, any tree connecting {va, v′
a, v

′′
c } is not vertex-rainbow. Assume

that vc, v
′
c and v

′′
c are the internal vertices of the paths P = v

′′
a . . . va , P

′ = va . . . v
′
a

and P
′′ = v

′
a . . . v

′′
a , respectively. Then, any tree connecting {va, v′

a, v
′
c} is not vertex-

rainbow, a contradiction.
Next, we verify that other vertices must be colored different. Note that vb and v

′
b

are two internal vertices of the path P = va . . . v
′
a , and v

′′
b is the internal vertex of

the path P
′ = v

′
a . . . v

′′
a . . . va . Suppose that π4 = {vd , v′

d} satisfies c(vd) = c(v
′
d),

and the vertices of π4 are encountered in the clockwise order vd , v
′
d in Cn . Let vd

and v
′
d be two internal vertices of the path P = va . . . v

′
b . . . v

′
a . If at least one vertex
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of {vd , v′
d} is the internal vertex of the path P = va . . . vb, then there is no vertex-

rainbow tree connecting {vd , v′
d , v

′
a}. If vd and v

′
d are the internal vertices of the

path P = vb . . . v
′
b, then there is no vertex-rainbow tree connecting {vd , va, v′

a}.
If vd and v

′
d are the internal vertices of the path P = v

′
b . . . v

′
a , then there is no

vertex-rainbow tree connecting {va, v′
a, v

′
b}. If vd and v

′
d are the internal vertices of

the paths P = vb . . . v
′
b and P

′ = v
′
b . . . v

′
a , respectively, then there is no vertex-

rainbow tree connecting {vd , va, v′
a}. Let vd and v

′
d be two internal vertices of the path

P = v
′
a . . . v

′′
a . Then, there is no vertex-rainbow tree connecting {va, v′

a, v
′′
a}. Let vd

and v
′
d be two internal vertices of the path P = v

′′
a . . . va . Then, any tree connecting

{va, v′
a, v

′′
a} is not vertex-rainbow. Let vd and v

′
d be the internal vertices of the paths

P = va . . . v
′
a and P

′ = v
′
a . . . v

′′
a . . . va , respectively. If vd is the internal vertex of

the path P = va . . . vb, then there is no vertex-rainbow tree connecting {vd , v′
d , v

′
a}.

If vd is the internal vertex of the path P = vb . . . v
′
b, then there is no vertex-rainbow

tree connecting {va, v′
a, vd}. If vd is the internal vertex of the path P = v

′
b . . . v

′
a , then

there is no vertex-rainbow tree connecting {va, v′′
b, vd}. Let vd and v

′
d be the internal

vertices of the paths P = v
′
a . . . v

′′
a and P

′ = v
′′
a . . . va , respectively. Then, there is no

vertex-rainbow tree connecting {vb, vd , v′
d}. Let vd and v

′
d be the internal vertices of

the paths P = v
′
a . . . v

′′
a and P

′ = va . . . v
′
b . . . v

′
a , respectively, or vd and v

′
d be the

internal vertices of the paths P = v
′′
a . . . va and P

′ = va . . . v
′
a . . . v

′′
a , respectively.

By the above similar argument, we can find a set of three vertices, and there is no
vertex-rainbow tree connecting it, a contradiction.

(ii) Let π1 = {va, v′
a, v

′′
a} such that c(va) = c(v

′
a) = c(v

′′
a). To the contrary, assume

that there exist three pairs π2 = {vb, v′
b}, π3 = {vc, v′

c} and π4 = {vd , v′
d} of vertices

where the colors of two of the six vertices are the same if and only if the two vertices
belong to the same pair. Let {vi1, vi2 , vi3 , vi4 , vi5 , vi6} = {vb, v′

b, vc, v
′
c, vd , v

′
d}, where

i1 < i2 < i3 < i4 < i5 < i6. If va, v
′
a and v

′′
a are the internal vertices of the path

P = vi1 . . . vi2 , then any tree connecting {va, vi1 , vi2} is not vertex-rainbow. If va and
v

′
a are the internal vertices of the path P = vi1 . . . vi2 , v

′′
a is the internal vertex of the

path P
′ = vi2 . . . vi3 . . . vi6 . . . vi1 , then any tree connecting {v′′

a, vi1 , vi2} is not vertex-
rainbow. If va is the internal vertex of the path P = vi1 . . . vi2 , v

′
a and v

′′
a are the internal

vertices of the paths P
′ = vi2 . . . vi3 and P

′′ = vi3 . . . vi6 . . . vi1 , respectively, then any
tree connecting {vi1, vi2 , vi3} is not vertex-rainbow. If va is the internal vertex of the
path P = vi1 . . . vi2 , v

′
a and v

′′
a are the internal vertices of the paths P

′ = vi3 . . . vi4
and P

′′ = vi4 . . . vi6 . . . vi1 , respectively, then any tree connecting {vi1 , vi2 , vi4} is not
vertex-rainbow, a contradiction.

(iii) Suppose that there are five pairs π1 = {va, v′
a}, π2 = {vb, v′

b}, π3 =
{vc, v′

c}, π4 = {vd , v′
d} and π5 = {ve, v′

e} of vertices where the colors of two of
the ten vertices are the same if and only if the two vertices belong to the same pair. Let
{vi1, vi2 , vi3 , vi4 , vi5 , vi6 , vi7 , vi8 , vi9 , vi10} = {va, v′

a, vb, v
′
b, vc, v

′
c, vd , v

′
d , ve, v

′
e},

where i1 < i2 < . . . < i10. Without loss of generality, we consider the two trees T1 =
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vi1 . . . vi2 . . . vi3 . . . vi4 . . . vi5 . . . vi6 . . . vi7 and T2 = vi4 . . . vi5 . . . vi6 . . . vi7 . . . vi8 . . .

vi9 . . . vi10 . . . vi1 . Let S = {vi1 , vi4 , vi7}. We prove (iii) by consider the following two
cases.

Case 1 Two vertices of the set S can be colored the same. Without loss of generality,
we assume that c(vi4) = c(vi7) 	= c(vi1). Denote S1 = {vi5 , vi6 , vi8 , vi9 , vi10}. Since
c(vi4) = c(vi7), we know that atmost four colors are assigned to S1; obviously, T2 is not
a vertex-rainbow S-tree. Suppose c(vi1) = c(vi j )with 8 ≤ j ≤ 10. If c(vi5) 	= c(vi6),
then we have c(vi2) = c(vi3), or only one color of {vi2 , vi3} is among the colors
that are assigned to {vi5, vi6} and the another color of {vi2 , vi3} is among the colors
that are assigned to {vi8, vi9 , vi10} \ {vi j }, or the two colors of {vi2 , vi3} are among
the colors that are assigned to {vi5, vi6}, and so there is no vertex-rainbow S-tree. If
c(vi5) = c(vi6), then there are two colors are assigned to {vi2 , vi3 , vi8 , vi9 , vi10}\{vi j },
and so there is no vertex-rainbow S-tree. Suppose c(vi1) = c(vi5). If c(vi6) = c(vi j )
and c(vi2) = c(vi3), where 8 ≤ j ≤ 10, then there is no vertex-rainbow S-tree. If
c(vi6) = c(vi j ), where 8 ≤ j ≤ 10, then the colors that are assigned to {vi2 , vi3}
are among the colors that are assigned to {vi8 , vi9 , vi10} \ {vi j }, and so there is no
vertex-rainbow tree connecting {vi3, vi6 , vi j }. If c(vi6) 	= c(vi j ), where 8 ≤ j ≤ 10,
then there are two vertices of {vi8, vi9 , vi10} having the same color and the color of vi6
is among the colors that are assigned to {vi2 , vi3}, and so there is no vertex-rainbow
S-tree. Suppose c(vi1) = c(vi6). If c(vi5) = c(vi8), then there is no vertex-rainbow
tree connecting {vi3 , vi5 , vi8}. If c(vi5) = c(vi9), then there is no vertex-rainbow tree
connecting {vi4 , vi7 , vi10}. If c(vi5) = c(vi10) and c(vi2) = c(vi8), then there is no
vertex-rainbow tree connecting {vi2 , vi5 , vi8}. If c(vi5) = c(vi10) and c(vi2) = c(vi9),
then there is no vertex-rainbow tree connecting {vi1, vi3 , vi8}. If c(vi5) = c(vi10)
and c(vi2) = c(vi3), then there is no vertex-rainbow S-tree. If c(vi5) 	= c(vi j ), where
8 ≤ j ≤ 10, then there are two vertices of {vi8, vi9 , vi10} having the same color, and the
color of vi5 is among the colors that are assigned to {vi2 , vi3}, and so there is no vertex-
rainbow S-tree. Suppose c(vi1) = c(vi2) (c(vi1) = c(vi3)). We can check that there is
no vertex-rainbow tree connecting {vi3, vi6 , vi10} ({vi2 , vi4 , vi10}), a contradiction.
Case 2 No vertex of S can be colored the same. Moreover, we have the following four
subcases.

Subcase 2.1 T2 is vertex-rainbow, and T1 is not vertex-rainbow. Note that at least
one color of {vi2 , vi3} is among the colors that are assigned to {vi5 , vi6}. Suppose
c(vi2) = c(vi5). Then, the colors that are assigned to S are among the colors that are
assigned to {vi6, vi8 , vi9 , vi10}. If c(vi2) = c(vi5) and c(vi6) = c(vi7), then any tree
connecting {vi2 , vi5 , vi8} is not vertex-rainbow. If c(vi2) = c(vi5) and c(vi6) = c(vi j ),
where 8 ≤ j ≤ 10, then any tree connecting {vi1, vi3 , vi6} is not vertex-rainbow.
Suppose c(vi2) = c(vi6). Then, the colors are assigned to {vi1, vi3 , vi4 , vi7} are among
the colors that are assigned to {vi5, vi8 , vi9 , vi10}, we know that one of vertices of
{vi1, vi3 , vi4 , vi7}has the samecolor as the vertexvi5 . If c(vi2) = c(vi6), c(vi1) = c(vi5)
and c(vi7) = c(vi10), then any tree connecting {vi2 , vi6 , vi9} is not vertex-rainbow. If
c(vi2) = c(vi6), c(vi1) = c(vi5) and c(vi7) = c(vil ), where 8 ≤ l ≤ 9, then any
tree connecting {vi2 , vi6 , vi10} is not vertex-rainbow. If c(vi2) = c(vi6) and c(vi3) =
c(vi5), then any tree connecting {vi2 , vi6 , vi9} is not vertex-rainbow. If c(vi2) = c(vi6)

123



1024 Y. Ma and W. Zhu

and c(vi4) = c(vi5), then any tree connecting {vi2 , vi6 , vi9} is not vertex-rainbow. If
c(vi2) = c(vi6) and c(vi5) = c(vi7), then any tree connecting {vi2 , vi4 , vi8} is not
vertex-rainbow, a contradiction.

Subcase 2.2Both T1 and T2 are vertex-rainbow.Obviously, the colors that are assigned
to {vi2 , vi3} are among the colors that are assigned to {vi8, vi9 , vi10}, and the colors
that are assigned to S are among the colors that are assigned to {vi5, vi6 , vi8 , vi9 , vi10}.
For c(vi1) = c(vi10), we know that the colors of {vi4 , vi7} are same with the col-
ors that are assigned to {vi5 , vi6}. Then, there is no vertex-rainbow tree connecting
{vi2 , vi5 , vi9}. For c(vi1) = c(vi9) (c(vi1) = c(vi8)), we have a similar argument
with c(vi1) = c(vi10). Then, there is no vertex-rainbow tree connecting {vi2 , vi8 , vi10}
({vi1, vi4 , vi8}). For c(vi1) = c(vi6), we can find that one of vertices of {vi4 , vi7} has the
same color with the vertex vi5 . If c(vi1) = c(vi6), c(vi2) = c(vi10) (c(vi2) = c(vi9))
and c(vi4) = c(vi5), then there is no vertex-rainbow tree connecting {vi3 , vi6 , vi8}. If
c(vi1) = c(vi6), c(vi2) = c(vi10) (c(vi2) = c(vi9)) and c(vi7) = c(vi5), then there is
no vertex-rainbow tree connecting {vi3 , vi6 , vi8}. If c(vi1) = c(vi6), c(vi2) = c(vi8)
and c(vi4) = c(vi5), then there is no vertex-rainbow tree connecting {vi3, vi7 , vi10}. If
c(vi1) = c(vi6), c(vi2) = c(vi8) and c(vi7) = c(vi5), then there is no vertex-rainbow
tree connecting {vi1 , vi4 , vi8}. For c(vi1) = c(vi5), we can find one of vertices of
{vi4 , vi7} has the same color with the vertex vi6 . If c(vi1) = c(vi5), c(vi2) = c(vi10)
(c(vi2) = c(vi9)) and c(vi4) = c(vi6), then there is no vertex-rainbow tree con-
necting {vi3 , vi5 , vi8}. If c(vi1) = c(vi5), c(vi2) = c(vi10) (c(vi2) = c(vi9)) and
c(vi7) = c(vi6), then any tree connecting {vi3, vi5 , vi8} is not vertex-rainbow. If
c(vi1) = c(vi5), c(vi2) = c(vi8) and c(vi4) = c(vi6), then there is no vertex-rainbow
tree connecting {vi3 , vi7 , vi10}. If c(vi1) = c(vi5), c(vi2) = c(vi8) and c(vi7) = c(vi6),
then there is no vertex-rainbow tree connecting {vi1 , vi4 , vi8}, a contradiction.
Subcase 2.3 T2 is not vertex-rainbow, and T1 is vertex-rainbow. We have c(vi2) 	=
c(vi3) 	= c(vi5) 	= c(vi6), and there are two vertices of {vi8, vi9 , vi10} having the
same color. Therefore. the colors that are assigned to S are among the colors that
are assigned to {vi2 , vi3 , vi5 , vi6}. If c(vi8) = c(vi9), then there is no vertex-rainbow
tree connecting {vi4 , vi7 , vi10}. If c(vi9) = c(vi10), then there is no vertex-rainbow
tree connecting {vi1, vi4 , vi8}. If c(vi8) = c(vi10), then there is no vertex-rainbow tree
connecting {vi1, vi7 , vi9}, a contradiction.
Subcase 2.4Neither T1 nor T2 is vertex-rainbow. Consider the tree T3 = vi7 . . . vi8 . . .

vi9 . . . vi10 . . . vi1 . . . vi2 . . . vi3 . . . vi4 . Assume that T3 is vertex-rainbow. Note that T1
is not vertex-rainbow, and so an argument similar to the one used in the proof of
Subcase 2.1 shows a contradiction.

Combining the above three claims, we have rvx3(Cn) ≥ n − 4, and hence
rvx3(Cn) = n − 4. �


The girth of a graph G with some cycles, denoted by g(G) or simply g, is the
length of the smallest cycle in G. Let Nk = {1, 2, . . . , k} for each positive integer k,
and d(v, H) = min{dG(v, x) : x ∈ V (H)}, where H is a subgraph of a connected
graph G and v ∈ V (G)\V (H). Now we determine the 3-vertex-rainbow index of all
unicyclic graphs that are not cycles.
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Theorem 2.5 If G is a unicyclic graph of order n ≥ 4 and 3 ≤ g(G) ≤ 4 that is not
a cycle, then rvx3(G) ≤ n − 3, and the bound is tight.

Proof Let G
′
be a subgraph of G , where V (G

′
) = {v1, v2, v3, v4, . . . , vt },

E(G
′
) = {v1v2, v2v3, v1v3, vivi+1|3 ≤ i ≤ t − 1} for g(G) = 3, or E(G

′
) =

{v1v2, v2v3, v3v4, v1v4, vivi+1|4 ≤ i ≤ t − 1} for g(G) = 4, and dG(vt ) = 1. Let
V (G) \ V (G

′
) = {vt+1, vt+2, . . . , vn}. Suppose that there are h1 + 1 leaves in G,

denote h = h1 + 1 (May be h1 = 0). Assign a vertex-coloring c to G
′
as follows:

c(vi ) = i − 2 for 4 ≤ i ≤ t − 1 and other vertices with color 1. We can find that
G

′
is vertex-rainbow 3-tree connected with 3 ≤ g(G) ≤ 4, thus rvx3(G

′
) ≤ t − 3.

For g(G) = 3, we know that G
′
contains t − 3 cut vertices. Then, by Observation

2.3, rvx3(G
′
) ≥ t − 3. Therefore, rvx3(G

′
) = t − 3. For g(G) = 4, assume that

rvx3(G
′
) ≤ t − 4, by Observation 2.3, we assign t − 4 colors to the cut vertices

of G
′
. Then, the colors that are assigned to {v1, v2, v3, vt } are among the colors that

are assigned to {v4, v5, . . . , vt−1}. If c(v1) = c(v3) = c(v4), then there is no vertex-
rainbow tree connecting {v2, vt−1, vt }. If c(v3) = c(v4) 	= c(v1) and c(v1) 	= c(vt−1),
then there is novertex-rainbow tree connecting {v2, vt−1, vt }. If c(v3) = c(v4) 	= c(v1)
and c(v1) = c(vt−1), then there is no vertex-rainbow tree connecting {v2, vt−2, vt }. If
c(v1) = c(v4) 	= c(v3), then we draw a same conclusion with c(v3) = c(v4) 	= c(v1).
If c(v1) 	= c(v4) and c(v3) 	= c(v4), then there is no vertex-rainbow tree connecting
{v2, v4, vt }. Therefore, rvx3(G ′

) ≥ t − 3. Hence, rvx3(G
′
) = t − 3. Next, we assign

color 1 to the leaves of G, and colors t − 2, t − 1, t, t + 1, . . . , n − 3 − h1 to the cut
vertices in G but not in G

′
.

Suppose g(G) = 3. Let d(v1) = d(v2) = 2 and d(v3) ≥ 3. Then, by checking
the given 3-vertex-rainbow coloring, we have rvx3(G) = n − 3 − h1 = n − 2 − h,
where h ≥ 1. Let d(v1) = 2 and d(v2) ≥ 3. Thus, there exists a leaf vm of G
satisfying d(vm,C) = d(vm, v2), we assign a new color n − 2 − h1 to the cut vertex
v2 instead of the color 1; otherwise, any tree connecting {v4, v5, vm} is not vertex-
rainbow, and so rvx3(G) = n − 2 − h1 = n − 1 − h, where h ≥ 2. Let d(v1) ≥ 3.
Then, there exists a leaf vm of G satisfying d(vm,C) = d(vm, v1), and we assign a
new color n − 2 − h1 to the cut vertex v1 instead of the color 1; otherwise, any tree
connecting {v4, v5, vm} is not vertex-rainbow. Assume that there exists another leaf
vm1 satisfying d(vm1 ,C) = d(vm1 , v j ), where 2 ≤ j ≤ 3. Then, we must assign a
new color n − 1 − h2 to the cut vertex v j ; otherwise, there is no vertex-rainbow tree
connecting {vm, vm1 , v4}. Therefore, rvx3(G) = n − 1 − h2 = n − h with h ≥ 3. If
h = 1, then G = G

′
, and so rvx3(G) = n − 3. Finally, we have rvx3(G) ≤ n − 3,

and G = G
′
is a tight example.

Suppose g(G) = 4. Let d(v1) = d(v2) = d(v3) = 2 and d(v4) ≥ 3. Then, by
checking the given 3-vertex-rainbow coloring, we have rvx3(G) = n − 3 − h1 =
n − 2 − h, where h ≥ 1. Let d(v1) = d(v2) = 2 and d(v3) ≥ 3. Then, rvx3(G) =
n − 3 − h1 = n − 2 − h by checking the given 3-vertex-rainbow coloring, where
h ≥ 1. Let d(v1) = 2 and d(v2) ≥ 3. Then, there exists a leaf vm of G satisfying
d(vm,C) = d(vm, v2), and so we must assign a new color n−2−h1 to the cut vertex
v2 instead of the color 1, otherwise, any tree connecting {v4, v5, vm} is not vertex-
rainbow. Thus, rvx3(G) = n − 2 − h1 = n − 1 − h, where h ≥ 2. Let d(v1) ≥ 3.
If d(v2) = d(v3) = 1, then rvx3(G) = n − 3 − h1 = n − 2 − h with h ≥ 2. If
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d(v j ) ≥ 3, where 2 ≤ j ≤ 3, then there exist two leaves vm and vm1 satisfying
d(vm,C) = d(vm, v1) and d(vm1 ,C) = d(vm1 , v j ). Note that we must color v1 with
a new color n − 2 − h1 instead of color 1; otherwise, there is no vertex-rainbow
tree connecting {vm, vm1 , vt }, and so rvx3(G) = n − 2 − h1 = n − 1 − h with
h ≥ 3. If d(v2) = d(v3) ≥ 3, then there exist three leaves vm, vm1 and vm2 satisfying
d(vm,C) = d(vm, v1), d(vm1 ,C) = d(vm1 , v2) and d(vm2 ,C) = d(vm2 , v3). In order
to ensure there exists a vertex-rainbow tree connecting {vm, vm1 , vm2}, we assign the
new colors n − 2 − h1 and n − 1 − h1 to v1 and v2, respectively, and so rvx3(G) =
n − 1 − h1 = n − h, where h ≥ 4. For h = 1, we have rvx3(G) = n − 3. Finally,
rvx3(G) ≤ n − 3, and G = G

′
is a tight example. �


Theorem 2.6 If G is a unicyclic graph of order n ≥ 6 and girth 5 that is not a cycle,
then rvx3(G) ≤ n − 4, and the bound is tight.

Proof Let G
′
be a subgraph of G , where V (G

′
) = {v1, v2, . . . , vt }, E(G

′
) =

{v1v2, v2v3, v3v4, v4v5, v1v5, vivi+1|5 ≤ i ≤ t − 1} and dG(vt ) = 1. Let V (G) \
V (G

′
) = {vt+1, vt+2, . . . , vn}. Suppose that there are h1 + 1 leaves in G, and

denote h = h1 + 1. Assign a vertex-coloring c to G
′
as follows: c(vi ) = i − 3

for 5 ≤ i ≤ t − 1, and other vertices with color 1. By checking the given vertex-
coloring, we have rvx3(G

′
) ≤ t − 4. To the contrary, assume that rvx3(G

′
) ≤ t − 5.

Let X1 = {v1, v2, v3, v4, vt } and X2 = {v5, v6, . . . , vt−1}, by Observation 2.3, we
have the colors that are assigned to X1 are among the colors that are assigned to X2.
Then, there is no vertex-rainbow tree connecting {v1, v3, vt }, and so rvx3(G ′

) ≥ t−4.
Hence, rvx3(G

′
) = t − 4. Moreover, an argument similar to the one used in the proof

of Theorem 2.5 shows that rvx3(G) ≤ n − 4. Finally, rvx3(G) ≤ n − 4, and G = G
′

is a tight example. �

Theorem 2.7 If G is a unicyclic graph of order n ≥ 7 and girth at least 6 that is not
a cycle, then rvx3(G) ≤ n − 5, and the bound is tight.

Proof Let G
′
be a subgraph of G with V (G

′
) = {v1, v2, . . . , vg, vg+1, . . . , vt } and

E(G
′
) = {v1vg, vivi+1|1 ≤ i ≤ t − 1}, where g ≥ 6 and dG(vt ) = 1. Let V (G) \

V (G
′
) = {vt+1, vt+2, . . . , vn}. Suppose that there are h1 + 1 leaves in G and h =

h1+1. Assign a vertex-coloring c toG
′
as follows: c(vi ) = 1 for i = 1, 4, t , c(vi ) = 2

for 2 ≤ i ≤ 3 and c(vi ) = i − 4 for 5 ≤ i ≤ t − 1. We can check that G
′
is vertex-

rainbow 3-tree connected with the vertex-coloring c, and thus rvx3(G
′
) ≤ t−5. To the

contrary, assume that rvx3(G
′
) ≤ t−6. Then, there exists a 3-vertex-rainbow coloring

c of G
′
using colors in Nt−6. Let A1 be the set of colors assigned to the g vertices of

the set S1 = {v1, v2, . . . , vg−1, vt } and A2 be the set of colors assigned to the t −g cut
vertices of the set S2 = {vg, vg+1, . . . , vt−1}. Then, A1 ∪ A2 = Nt−6. Furthermore,
|A2| = t − g by Observation 2.3. We may therefore assume that A2 = Nt−g .

If g = 6, then A2 = Nt−6 = A1 ∪ A2, and so A1 ⊆ A2. Obviously, any tree
connecting {v2, v4, vt } is not vertex-rainbow. If g ≥ 7, then there are g − 6 colors in
A1 different from A2. Let S3 = {v1, v2, . . . , vg−1} and A3 be the set of colors assigned
to S3. We consider the following two cases.

Case 1 c(vi ) 	= c(vt ), where 1 ≤ i ≤ g−1. Then, there are g−7 colors in A3 different
from A2, and A3 = A1 \ c(vt ). Let S′

3 ⊆ S3 and |S′
3| = g − 7. Then, we assign g − 7
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colors in A3 that are different from A2 to the vertices set S
′
3. Suppose A3∩A2 = ∅. Then

A3 = g−7, and so g−6 colors are assigned toCg ,which contradicts rvx3(Cg) = g−4;
Suppose A3 ∩ A2 	= ∅. According to rvx3(Cg) = g − 4, we have that at least two
colors of A3 are among the colors that are assigned to {vg+1, vg+2, . . . , vt−1}. Then,
c(vp) = c(v j ), where 1 ≤ p ≤ g − 1 and g + 1 ≤ j ≤ t − 1. Furthermore, there
exist four vertices of S3 \ S

′
3 ∪ {vp} satisfying the colors that are assigned to them are

among the colors that are assigned to the other vertices of G
′
. If p = 1, then there

is no vertex-rainbow tree connecting {v2, v3, vt }; If 2 ≤ p ≤ g − 1, then any tree
connecting {vp−1, vp+1, vt } is not vertex-rainbow.
Case 2 c(vi ) = c(vt ), where 1 ≤ i ≤ g−1. Then, there are g−6 colors of A3 that are
not contained in A2 and A3 = A1. Let S

′
3 ⊆ S3 and |S′

3| = g−6. Then, we assign g−6
colors in A3 that are different from A2 to the vertices set S

′
3. Suppose A3 ∩ A2 = ∅.

Then, |A3| = g − 6, and so g − 5 colors are assigned to Cg , which contradicts
rvx3(Cg) = g − 4. Suppose A3 ∩ A2 	= ∅. Since rvx3(Cg) = g − 4, we have at
least one color of A3 is among the colors that are assigned to {vg+1, vg+2, . . . , vt−1}.
Then, c(vp) = c(v j ), where 1 ≤ p ≤ g − 1, g + 1 ≤ j ≤ t − 1. Moreover, an
argument similar to the one used in the proof of Case 1 shows that if p = 1, then any
tree connecting {v2, v3, vt } is not vertex-rainbow, and if 2 ≤ p ≤ g − 1, then there
is no vertex-rainbow tree connecting {vp−1, vp+1, vt }. Finally, rvx3(G ′

) ≥ t − 5.
Therefore, rvx3(G

′
) = t − 5.

Next, we assign the color 1 to the leaves ofG, the colors t−4, t−3, . . . , n−5−h1
to the cut vertices in G but not in G

′
. Let d(vi ) = 2, where 1 ≤ i ≤ 6. Then,

rvx3(G) = n−5− h1 = n−4− h by checking the given 3-vertex-rainbow coloring,
where h ≥ 1. Let d(vi ) = 2 and d(v6) ≥ 3, where 1 ≤ i ≤ 5. Then, there exists
a leaf vm of G satisfying d(vm,C) = d(vm, v6). Note that we must assign a new
color n − 4 − h1 to v3 or v4; otherwise, there is no vertex-rainbow tree connecting
{vm, v2, v4} or {vm, v3, v7}, and so rvx3(G) = n − 4 − h1 = n − 3 − h, where
h ≥ 2. Let d(vi ) = 2 and d(v5) ≥ 3, where 1 ≤ i ≤ 4. Then, there exists a
leaf vm of G satisfying d(vm,C) = d(vm, v5). Note that we must assign a new
color n − 4 − h1 to v1 or v4; otherwise, there is no vertex-rainbow tree connecting
{vm, v2, v7} or {vm, v3, v7}, and so rvx3(G) = n − 4 − h1 = n − 3 − h, where
h ≥ 2. Let d(vi ) = 2 and d(v4) ≥ 3, where 1 ≤ i ≤ 3. Then, there exists a leaf
vm of G satisfying d(vm,C) = d(vm, v4). Note that we must assign a new color
n − 4 − h1 to v4; otherwise, there is no vertex-rainbow tree connecting {vm, v2, v7}.
Suppose that there exists another leaf vm1 of G satisfying d(vm1 ,C) = d(vm1 , v6).
We must assign a new color n − 3 − h1 to v6; otherwise, there is no vertex-rainbow
tree connecting {vm, vm1 , v2}, and so rvx3(G) = n − 3 − h1 = n − 2 − h, where
h ≥ 3. Let d(v1) = d(v2) = 2 and d(v3) ≥ 3. Then, there exists a leaf vm of G
satisfying d(vm,C) = d(vm, v3). Note that we must assign the new color n − 4 − h1
to v3; otherwise, there is no vertex-rainbow tree connecting {vm, v1, v5}. Suppose that
there exists another leaf vm1 of G satisfying d(vm1 ,C) = d(vm1 , v5). Then, assign
a new color n − 3 − h1 to v5; otherwise, there is no vertex-rainbow tree connecting
{vm, vm1 , v1}, and so rvx3(G) = n−3−h1 = n−2−h, where h ≥ 3. Let d(v1) = 2
and d(v2) ≥ 3. Then, there exists a leaf vm of G satisfying d(vm,C) = d(vm, v2).
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If d(v4) = d(v5) = d(v6) = 2, then c(v2) = n − 4 − h1; otherwise, there is
no vertex-rainbow tree connecting {vm, v1, v4}, and so rvx3(G) = n − 4 − h1 =
n − 3 − h, where h ≥ 2. If d(v6) = 2 and d(vi ) ≥ 3, where 4 ≤ i ≤ 5, then
c(v2) = n − 4 − h1 and c(vi ) = n − 3 − h1; otherwise, there is no vertex-rainbow
tree connecting {vm, vm1 , v7}, and so rvx3(G) = n − 3 − h1 = n − 2 − h, where
d(vm1 ,C) = d(vm1 , vi ) and h ≥ 3. If d(v6) ≥ 3 and d(v3) = d(v4) = d(v5) = 2,
then c(v2) = n−4−h1 and c(v3) = n−3−h1; otherwise, there is no vertex-rainbow
tree connecting {vm, vm1 , v4}, and so rvx3(G) = n − 3 − h1 = n − 2 − h, where
d(vm1 ,C) = d(vm1 , v6) and h ≥ 3. If d(v6) ≥ 3 and d(v4) ≥ 3, then c(v2) =
n− 4− h1, c(v3) = n− 3− h1 and c(v4) = n− 2− h1; otherwise, there is no vertex-
rainbow tree connecting {vm, vm1 , vm2}, and so rvx3(G) = n − 2 − h1 = n − 1 − h,
where d(vm1 ,C) = d(vm1 , v4), d(vm2 ,C) = d(vm2 , v6) and h ≥ 4. Let d(v1) ≥ 3.
Then, there exists a leaf vm of G satisfying d(vm,C) = d(vm, v1). Note that we
must assign the color n−4−h1 to v4 or v5; otherwise, there is no vertex-rainbow tree
connecting {vm, v3, v5}or {vm, v4, v6}, and so rvx3(G) = n−4−h1 = n−3−h,where
h ≥ 2. Suppose that there exist other leaves vm1 , vm2 , vm3 , vm4 and vm5 satisfying
d(vmi ,C) = d(vmi , vi+1), 1 ≤ i ≤ 5. In order to ensure that there exists a vertex-
rainbow tree connecting any three vertices of {vm, vm1 , vm2 , vm3 , vm4 , vm5}, we assign
some new colors n − 4− h1, n − 3− h1, n − 2− h1 and n − 1− h1 to v3, v4, v5 and
v6, respectively. Therefore, rvx3(G) = n − 1− h1 = n − h, where h ≥ 7. For h = 1,
we have rvx3(G) = rvx3(G

′
) = n − 5. Finally, rvx3(G) ≤ n − 5, and G = G

′
is a

tight example. �


3 The 3-Vertex-Rainbow Index of Complementary Graphs

Let G be a simple graph with order n. The complement graph G of G is the simple
graph whose vertex set is V (G) and whose edges are the pairs of nonadjacent vertices
of G. If G is an disconnected graph with t ≥ 2 connected components, then G
contains a complete t-partite spanning subgraph. We immediately draw the following
conclusion.

Proposition 3.1 Let G be a graph with t ≥ 2 connected components Gi and n′
i =

n(Gi ) (1 ≤ i ≤ t). Then, rvx3(G) ≤ rvx3(Kn′
1
, . . . ,n′

t
).

Now we investigate the 3-vertex-rainbow index of a connected graph G by use of
its complement graph G with diameter at least 3.

Theorem 3.2 Let G be a connected graph of order n.

(i) If G is connected and diam(G) ≥ 4, then rvx3(G) = 1;
(ii) If G is connected and diam(G) = 3, then 1 ≤ rvx3(G) ≤ 2, and the bounds are

tight;
(iii) If G is disconnected, then 0 ≤ rvx3(G) ≤ 1, and the bounds are tight.

Proof Choose a vertex x in G, where x satisfies eccG(x) = diam(G) = d. Denote
Ni
G
(x) = {v : d(x, v) = i} for 0 ≤ i ≤ d, especially, N 0

G
(x) = {x} and N 1

G
(x) =
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NG(x). Then,∪0≤i≤d N i
G
(x) is a vertex partition of V (G). Let X = ∪i≡0(mod 2)Ni

G
(x)

and Y = ∪i≡1(mod 2)Ni
G
(x).

(i) G is connected and d ≥ 4. Then, G[X ] (G[Y ]) contains a spanning complete
k1-partite subgraph (complete k2-partite subgraph) by the definition of complement
graphs, where k1 = � d+1

2 � (k2 = � d
2 �). Now, we show a vertex-coloring c of G as

follows: c(z) = 1 for z ∈ G. Let S = {u, v, w}, where u, v and w are any three
different vertices of G.

Suppose u, v, w ∈ Ni
G
(x), where i is even. Then, T is a vertex-rainbow S-tree

with E(T ) = {ux, vx, wx}. Suppose u, v ∈ Ni
G
(x) and w ∈ N j

G
(x), where i, j

are even and i 	= j . Then, T is a vertex-rainbow S-tree with E(T ) = {uw, vw}.
Suppose u ∈ Ni

G
(x), v ∈ N j

G
(x) and w ∈ Nr

G
(x), where i, j and r are even and

i 	= j 	= r . Then, T is a vertex-rainbow S-tree with E(T ) = {uv, uw}. Suppose
u, v ∈ Ni

G
(x) and w ∈ Y , where i is even. Then, one of the following two cases

holds. (1) uw, vw ∈ E(G); (2) uy, vy, wy ∈ E(G), where y ∈ N j
G
(x), j is even

and i 	= j . For (1), there is a vertex-rainbow S-tree T with E(T ) = {uw, vw}.
For (2), there is a vertex-rainbow S-tree T with E(T ) = {uy, vy, wy}. Suppose
u ∈ Ni

G
(x), v ∈ N j

G
(x) and w ∈ Nr

G
(x), where i, j are even and r is odd and

i 	= j . Then, either uv, vw ∈ E(G) or uy, vy, wy ∈ E(G), where y ∈ Nq
G
(x),

q is even and i 	= j 	= q. If uv, vw ∈ E(G), then T is a vertex-rainbow S-tree
with E(T ) = {uv, vw}. If uy, vy, wy ∈ E(G), then T is a vertex-rainbow S-tree
with E(T ) = {uy, vy, wy}. Suppose u ∈ X and v,w ∈ Y or u, v, w ∈ Y . Then, a
similar argument as above shows that we can find a vertex-rainbow S-tree. Therefore,
rvx3(G) ≤ 1.

Next, we prove rvx3(G) ≥ 1. Let u ∈ Nd−2
G

(x), v ∈ Nd−1
G

(x) and w ∈ Nd
G
(x).

Then, uv, vw ∈ E(G) and uw /∈ E(G). It follows that uv, vw /∈ E(G) and uw ∈
E(G), and so rvx3(G) ≥ 1. Hence, rvx3(G) = 1.

(ii) G is connected and d = 3. According to the definition of complement graphs, we
know that G[X ] (G[Y ]) contains a spanning complete 2-partite subgraph. Now, we
give the graph G a vertex-coloring c as follows: c(z1) = 1 for z1 ∈ X and c(z2) = 2
for z2 ∈ Y . Denote S = {u, v, w}, where u, v and w are any three different vertices
of G.

Assume that u, v, w ∈ N 2
G
(x). Then, the tree T connecting S is vertex-rainbow,

where E(T ) = {ux, vx, wx}. Assume that u, v ∈ N 2
G
(x) and w = x ∈ N 0

G
(x). Then,

the tree T connecting S is vertex-rainbow, where E(T ) = {uw, vw}. Assume that
u, v ∈ N 2

G
(x) andw ∈ NG(x). Then, there are two vertices x ∈ N 0

G
(x) and y ∈ N 3

G
(x)

such that xu, xv, xy, yw ∈ E(G), and so the tree T connecting S is vertex-rainbow,
where E(T ) = {xu, xv, xy, yw}. Assume that u, v ∈ N 2

G
(x) and w ∈ N 3

G
(x). Then,

the tree T connecting S is vertex-rainbow, where E(T ) = {ux, vx, wx}. Assume that
u ∈ N 2

G
(x), v ∈ N 0

G(x) and w ∈ NG(x). Then, there is a vertex y ∈ N 3
G
(x) such

that vu, yv, yw ∈ E(G), and so the tree T connecting S is vertex-rainbow, where
E(T ) = {vu, yv, yw}. Assume that u ∈ N 2

G
(x), v ∈ N 0

G(x) and w ∈ N 3
G
(x). Then,

the tree T connecting S is vertex-rainbow, where E(T ) = {vu, vw}. Assume that
u, v ∈ Y and w = x ∈ N 0

G
(x). If u, v ∈ N 3

G
(x), then the tree T connecting S is
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vertex-rainbow, where E(T ) = {wu, wv}; If u, v ∈ NG(x), then there is a vertex
y ∈ N 3

G
(x) such that yu, yv,wy ∈ E(G), and so the tree T connecting S is vertex-

rainbow, where E(T ) = {uy, vy, wy}; If u ∈ N 3
G
(x) and v ∈ NG(x), then the tree T

connecting S is vertex-rainbow, where E(T ) = {uw, uv}. Assume that u, v ∈ Y and
w ∈ N 2

G
(x). If u, v ∈ N 1

G
(x), then there are two vertices y ∈ N 3

G
(x) and x ∈ N 0

G
(x)

satisfying xw, xy, yu, yv ∈ E(G), and so the tree T connecting S is vertex-rainbow,
where E(T ) = {xw, xy, yu, yv}; If u, v ∈ N 3

G
(x), then the tree T connecting S is

vertex-rainbow, where E(T ) = {xv, xu, xw}; If u ∈ N 1
G
(x) and v ∈ N 3

G
(x), then

the tree T connecting S is vertex-rainbow, where E(T ) = {xv, xw, uv}. Assume
that u, v, w ∈ Y . If u, v, w ∈ N 1

G
(x) (u, v, w ∈ N 3

G
(x)), then there is a vertex

y ∈ N 3
G
(x) (y ∈ N 1

G
(x)) satisfying uy, vy, wy ∈ E(G), and so the tree T connecting

S is vertex-rainbow, where E(T ) = {uy, vy, wy}; If u, v ∈ N 1
G
(x) (u, v ∈ N 3

G
(x))

and w ∈ N 3
G
(x) (w ∈ N 1

G
(x)), then the tree T connecting S is vertex-rainbow, where

V (T ) = {u, v, w} and E(T ) = {uw, vw}. From what has been discussed above, we
get that rvx3(G) ≤ 2.

Next, we show rvx3(G) ≥ 1. Let u ∈ NG(x), v ∈ N 2
G
(x) and w ∈ N 3

G
(x). Then,

uv, vw ∈ E(G) and uw /∈ E(G). It follows that uv, vw /∈ E(G) and uw ∈ E(G),
and so rvx3(G) ≥ 1. Hence 1 ≤ rvx3(G) ≤ 2.

Tight Example 1. Let G be a connected graph of order n with diam(G) = 3. We can
prove that rvx3(G) = 1.

Pick a vertex x of G that satisfies eccG(x) = diam(G) = 3. Denote N 0
G
(x) =

{x}, NG(x) = {y1, y2}, N 2
G
(x) = {u1, u2}, N 3

G
(x) = {v1, v2, . . . , vn−5} and

E(G) = {xy1, xy2, u1y1, u2y2, u1u2, u1vi , u2vi |1 ≤ i ≤ n − 5}. Then, V (G) =
{x, y1, y2, u1, u2, v1, v2, . . . , vn−5} and E(G) = {y1y2, u1y2, u2y1, xu1, xu2, xvi ,
y1vi , y2vi , viv j |1 ≤ i, j ≤ n − 5}. Since the tree connecting {u1, u2, y1} has at least
three edges, we have rvx3(G) ≥ 1. Now we only need to prove rvx3(G) ≤ 1.

Assign color 1 to all vertices of G. Suppose S = {x, u1, u2}. Then, the tree T
connecting S is vertex-rainbow, where E(T ) = {xu1, xu2}. Suppose S = {u1, u2, vi },
where 1 ≤ i ≤ n − 5. Then, the tree T connecting S is vertex-rainbow, where
E(T ) = {xu1, xu2, xvi }. Suppose S = {u1, u2, y j }, where 1 ≤ j ≤ 2. If j = 1, then
the tree T connecting S is vertex-rainbow, where E(T ) = {xu1, xu2, u2y j }; If j = 2,
then the tree T connecting S is vertex-rainbow, where E(T ) = {xu1, xu2, u1y j }.
Suppose S = {x, u j , vi }, where 1 ≤ i ≤ n − 5, 1 ≤ j ≤ 2. Then, the tree T
connecting S is vertex-rainbow, where E(T ) = {xu j , xvi }. Suppose S = {x, u1, y j },
where 1 ≤ j ≤ 2. If j = 1, then the tree T connecting S is vertex-rainbow, where
E(T ) = {xu1, xu2, u2y j }; If j = 2, then the tree T connecting S is vertex-rainbow,
where E(T ) = {xu1, u1y j }. Suppose S = {x, u2, y j }, where 1 ≤ j ≤ 2. Then,
we have a similar argument with S = {x, u1, y j }. Suppose S = {x, u, v}, where
u, v ∈ NG(x) ∪ N 3

G
(x). If u, v ∈ NG(x), then the tree T connecting S is vertex-

rainbow,where E(T ) = {xv1, uv1, vv1}. Ifu, v ∈ N 3
G
(x), then the tree T connecting S

is vertex-rainbow,where E(T ) = {xu, xv}. If u ∈ NG(x) and v ∈ N 3
G
(x), then the tree

T connecting S is vertex-rainbow, where E(T ) = {xv, uv}. Suppose S = {u1, u, v},
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where u, v ∈ NG(x)∪N 3
G
(x). If u, v ∈ NG(x), then the tree T connecting S is vertex-

rainbow, where E(T ) = {u1u, uv}. If u, v ∈ N 3
G
(x), then the tree T connecting S is

vertex-rainbow, where E(T ) = {u1y2, uv, uy2}. If u ∈ NG(x) and v ∈ N 3
G
(x), then

the tree T connecting S is vertex-rainbow, where E(T ) = {xu1, xv, uv}. Suppose
S = {u2, u, v}, where u, v ∈ NG(x) ∪ N 3

G
(x). Then, we have a similar argument

with S = {u1, u, v}. Suppose S = {u, v, w}, where u, v, w ∈ NG(x) ∪ N 3
G
(x).

Then, the tree T connecting S is vertex-rainbow, where E(T ) = {uv,wu}. Therefore,
rvx3(G) ≤ 1.

Tight Example 2 Let G be a connected graph of order n with diam(G) = 3. We can
prove that rvx3(G) = 2.

Pick a vertex x of G such that eccG(x) = diam(G) = 3. Suppose that N 0
G
(x) =

{x}, N 1
G
(x) = NG(x) = {y1, y2, . . . , yn−3}, N 2

G
(x) = {u1}, N 3

G
(x) = {v1} and

E(G) = {xyi , u1yi , u1v1|1 ≤ i ≤ n−3}. Then, V (G) = {x, u1, v1, yi |1 ≤ i ≤ n−3}
and E(G) = {xu1, xv1, v1yi , yi y j |1 ≤ i, j ≤ n − 3}. Since the tree T connecting
S = {u1, y1, y2} has at least four edges and V (T )\S = {x, v1}, we have rvx3(G) ≥ 2.
Now we only need to prove rvx3(G) ≤ 2.

Define a vertex-coloring c of G as follows: c(x) = c(u1) = 1, c(v1) = c(yi ) = 2,
where 1 ≤ i ≤ n − 3. Let S = {x, u1, v1}. Then, T satisfying E(T ) = {xu1, xv1}
is a vertex-rainbow S-tree. Let S = {x, u1, yi }. Then, T satisfying E(T ) =
{xu1, xv1, v1yi } is a vertex-rainbow S-tree. Let S = {x, v1, yi }. Then, T satisfy-
ing E(T ) = {xu1, xv1, v1yi } is a vertex-rainbow S-tree. Let S = {x, yi , y j }. Then, T
satisfying E(T ) = {xv1, v1yi , yi y j } is a vertex-rainbow S-tree. Let S = {u1, v1, yi }.
Then, T satisfying E(T ) = {xu1, xv1, v1yi } is a vertex-rainbow S-tree. Let S =
{u1, yi , y j }. Then, T satisfying E(T ) = {xu1, xv1, v1yi , yi y j } is a vertex-rainbow
S-tree. Let S = {u, v, w} ∈ NG(x) ∪ N 3

G
(x). Then, T satisfying E(T ) = {uv, uw} is

a vertex-rainbow S-tree. Thus, rvx3(G) ≤ 2.

(iii) If G is disconnected, then G has t ≥ 2 connected components. Suppose that
G1,G2, . . . ,Gt are the connected components of G. It results that G contains a
complete t-partite spanning subgraph. Given a vertex-coloring c of G as follows:
assign the color 1 to all the vertices of G. Next, we show that there exists a vertex-
rainbow tree connecting any three different vertices u, v andw ofG. Let S = {u, v, w}.
Let u, v, w ∈ V (Gi ), where 1 ≤ i ≤ t . Then, there is a vertex y ∈ V (G j ) such that
uy, vy, wy ∈ E(G), where 1 ≤ j ≤ t and i 	= j , and so the tree T connecting S
is vertex-rainbow, where E(T ) = {uy, vy, wy}. Let u, v ∈ V (Gi ) and w ∈ V (G j ),
where 1 ≤ i 	= j ≤ t , or u ∈ V (Gi ), v ∈ V (G j ) and w ∈ V (Gr ), where 1 ≤ i 	=
j 	= r ≤ t . Then, the tree T connecting S is vertex-rainbow, where E(T ) = {uw,wv}.
Therefore, rvx3(G) ≤ 1. Finally, we have 0 ≤ rvx3(G) ≤ 1 by Proposition 2.2.

Tight Example 3 Let G be a graph of order n with V (G) = {y1, y2, . . . , yn−1, yn}
and E(G) = {yn−1yn}. Then, V (G) = V (G) and E(G) = {yi y j , yi yn−1, yi yn|1 ≤
i 	= j ≤ n − 2}. We can find that sdiam3(G) = 2. Therefore, rvx3(G) = 0.
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Tight Example 4 Let G be a connected graph of order n and G be disconnected. We
can prove that rvx3(G) = 1.

Suppose that V (G) = {y1, y2, . . . , yn−1, yn} and E(G) = {yn−2yn−1, yn−1yn, yn−2
yn}. Then, V (G) = V (G) and E(G) = {yn−2yi , yn−1yi , yn yi , yi y j |1 ≤ i, j ≤
n − 3}. Since the tree T connecting {yn−2, yn−1, yn} has at least three edges, we have
rvx3(G) ≥ 1. Now we only need to prove rvx3(G) ≤ 1. Assign one color to all
vertices of G. Let X = {y1, y2, . . . , yn−3} and Y = {yn−2, yn−1, yn}. Suppose that
u, v and w are any distinct vertices of G, denote S = {u, v, w}. Assume that at least
one vertex of S lies on the set X . Without loss of generality, assume that u ∈ X .
Then, we obtain a vertex-rainbow S-tree T , where E(T ) = {uw, uv}. Assume that all
vertices of S lie on the set Y . Then, the tree T connecting S is vertex-rainbow, where
E(T ) = {uy1, vy1, wy1}, and so rvx3(G) ≤ 1. �


A graph G is connected with diam(G) = 2. Let x be a vertex of G satisfying
eccG(x) = diam(G) = 2. Suppose that NG(x) = {y1, y2, . . . , yn−2}, N 2

G
(x) =

{yn−1} such that yn−1 and yi are adjacent in G, where 1 ≤ i ≤ n − 3. Then, rvx3(G)

can be very large if the number of cut vertices in G[NG(x)] is sufficiently large. Here,
we add an additional constraint to study the 3-vertex-rainbow index of G.

Theorem 3.3 Let G be a triangle-free graph with diam(G) = 2. If G is connected,
then rvx3(G) = 1.

Proof Select a vertex x of G satisfying eccG(x) = diam(G) = 2. Let |Ni
G
(x)| = ni ,

where 1 ≤ i ≤ 2. We need to consider the following four cases: (1) n1 = 1, n2 = 1;
(2) n1 = 1, n2 ≥ 2; (3) n1 ≥ 2, n2 = 1; (4) n1 ≥ 2, n2 ≥ 2. If (1), (2) or (3)
occurs, then G is not connected. Thus, we only need to study (4). Let N 0

G
(x) =

{x}, NG(x) = {y1, y2, . . . , yk} and N 2
G
(x) = {w1, w2, . . . , wt }, where k+ t +1 = n.

For every w j ∈ N 2
G
(x), where 1 ≤ j ≤ t , define NG(w j ) = {yi ∈ NG(x) :

yiw j ∈ E(G)|1 ≤ i ≤ k}. Since G is a triangle-free graph and diam(G) = 2,

we have NG(w j ) 	= ∅. Without loss of generality, assume that y1 /∈
t⋃

j=1
NG(w j ).

For every w j ∈ N 2
G
(x), we have y1w j /∈ E(G). Then, dG(y1, w j ) ≥ 3. Hence,

t⋃
j=1

NG(w j ) = NG(x) = {y1, y2, . . . , yk}. First, we verify the following claim.

Claim 1 For every vertex yi of NG(x), where 1 ≤ i ≤ k, define NG(yi ) = {w j ∈
N 2
G
(x) : yiw j ∈ E(G)|1 ≤ j ≤ t}. Then NG(yi ) 	= ∅.

ProofWithout loss of generality, we assume that y1 ∈ NG(x) satisfying NG(y1) = ∅.
Then, for every vertex w j ∈ N 2

G
(x), we have y1w j /∈ E(G), and so y1w j ∈ E(G).

For every yi ∈ N 2
G
(x)\{y1}. Then, we consider the following two cases: (1) There

exists a vertex w j ∈ N 2
G
(x) such that yiw j /∈ E(G). (2) Every vertex w j ∈ N 2

G
(x)

such that yiw j ∈ E(G). If (1) occurs, then d(yi , w j ) ≥ 3. If (2) occurs, then G is not
connected. Therefore, NG(yi ) 	= ∅. �
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Define a vertex-coloring to G as follows: assign one color to all vertices of G.
We need to verify that G is vertex-rainbow 3-tree connected with the above vertex-
coloring. Let u, v and w be any three distinct vertices of G and S = {u, v, w}.

Let u, v, w ∈ NG(x). Then, the tree T connecting S is vertex-rainbow, where
E(T ) = {uv, uw}. Let u, v ∈ NG(x) and w = x ∈ N 0

G
(x). Then, there exists a

vertex w j ∈ N 2
G
(x) satisfying ww j , uw j , uv ∈ E(G) by Claim 1, and so the tree T

connecting S is vertex-rainbow, where E(T ) = {ww j , uw j , uv}. Let u, v ∈ NG(x)
and w ∈ N 2

G
(x). Then, one of the following two cases holds: (1) uw, uv ∈ E(G);

(2) uw, vw /∈ E(G) and uw j ∈ E(G), where w j ∈ N 2
G
(x) \ {w}. For (1), then the

tree T connecting S is vertex-rainbow, where E(T ) = {uv, uw}. For (2), we further
consider the following subcases. If vw j /∈ E(G), then ww j ∈ E(G), and so the tree
T connecting S is vertex-rainbow, where E(T ) = {uv, uw j , ww j }. If vw j , ww j ∈
E(G), then the treeT connecting S is vertex-rainbow,where E(T ) = {uv, uw j , ww j }.
If vw j ∈ E(G) and ww j /∈ E(G), then ww j ∈ E(G), since G is a triangle-free
graph and d = 2, we know that there exists a vertex yi ∈ NG(x) \ {u, v} such that
yiw j ∈ E(G), wyi /∈ E(G), it follows thatwyi ∈ E(G), and so the tree T connecting
S is vertex-rainbow,where E(T ) = {wyi , uyi , uv}. Let u ∈ NG(x) and v,w ∈ N 2

G
(x).

If uv ∈ E(G), then T is a vertex-rainbow S-tree, where E(T ) = {xv, xw, uv}. If
uv, uw /∈ E(G), then there exists a vertexw j ∈ N 2

G
(x) such that uw j ∈ E(G), and so

we have the following two cases: (3) ww j ∈ E(G); (4) ww j , vw j /∈ E(G). When (3)
occurs, the tree T connecting S is vertex-rainbow, where E(T ) = {uw j , ww j , wv}.
When (4) occurs, since G is a triangle-free graph and d = 2, we know that there
exists a vertex yi ∈ NG(x) \ {u} such that yiw j ∈ E(G), wyi , vyi /∈ E(G), it
follows that wyi , vyi ∈ E(G), and so the tree T connecting S is vertex-rainbow,
where E(T ) = {wyi , vyi , uyi }. Let u ∈ NG(x), v ∈ N 2

G
(x) and w = x . Then, there

exists a vertex w j ∈ N 2
G
(x) such that uw j ∈ E(G), and so the tree T connecting S is

vertex-rainbow, where E(T ) = {wv,ww j , uw j }. Let u, v and w ∈ N 2
G
(x). Then, the

tree T connecting S is vertex-rainbow,where E(T ) = {ux, vx, wx}. Let u, v ∈ N 2
G
(x)

and w = x . Note that the tree T is vertex-rainbow, where E(T ) = {uw, vw}. Thus,
rvx3(G) ≤ 1.

Obviously, we know that a tree connecting {x, yi , y j } has at least three edges in G.
Then, rvx3(G) ≥ 1, and so rvx3(G) = 1. �
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