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Abstract
In this paper, we prove that cmo? (R") and A a(L—1y> the dual spaces of local Hardy
P

space h” (R™), are coincide with equivalent norms for nL-H < p < 1. Moreover, this

space can be characterized by another simple norm. As an application, we prove the
h?(R™) boundedness of inhomogeneous para-product operators.
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1 Introduction

It is well known that Hardy space H” (R") has much better functional properties than
the space L” (R") for p < 1[5]. However, as Goldberg in [14] pointed out that H 7 (R")
space is well suited only to the Fourier analysis, and is not stable under multiplications
by the Schwartz test functions. One reason is that H” (R") does not contain S(R"),
the space of the Schwartz test functions. To circumvent those drawbacks, Goldberg
in [14] introduced the local Hardy spaces 77 (R"),0 < p < oco. Let ® € S(R") with
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J @ #0,D(x) =1t"D() and set

Mo (f)(x) = sup [P f(x)].

0<t<l

Then h?(R") = {f € S'(R"), Mo(f) € LP(R")}, where S'(R") is the dual of
S(R™).

Goldberg showed that the dual of 2! (R") is bmo(R™), which is defined as the set
of f € L] .(R") such that

SI(H) = sup —f £() = foldx < oo
10]<1 19|

and

$2(f) = Sup —f |f(¥)]dx < oo,
o=1 109l

equipped with the norm || f|lpmo@rr) = max{S1(f), S2(f)}, where fo is the mean
of f over Q, .., fo = @fQ f(x)dx.For0 < r < 1, let A, = {f € L®°R") :

supxiy ”C(‘)Q_;yﬁ,(y)l < 00}. Then, it is well known that the dual of #” (R") is An(lfl)

for m < p < 1. We refer the reader to [14] for more details of A, whenr > 1.1t
is convenient to denote Ag = bmo(R"). For more results about local Hardy spaces,
we refer the reader to [1-3,18,19,25-29,31-33]. Some recent developments of multi-
parameter local Hardy spaces can be seen in [4,10,11].

In [31], Rychkov obtained that #”(R") can be characterized by a continuous

Littlewood—Paley—Stein square function. More precisely, let
o € D(R") with nonzero integral, and ¢(x) = ¢o(x) — 2_”¢0(§), (1.1)

where D(R") is the set of all smooth functions with compact support on R”, then
for any N > 0, there exist two functions ¢, ¢ € D(R") such that ¢ has vanishing
moments up to order N (i.e., f x%¢(x)dx = 0 for all multi-indices with |a| < N)
and

fO)=) ¢j*e;*f(x), inD'®R", (12)

jeN

where D’ (R") is dual space of D(R"), N is the set of all natural numbers. Here and the
following, we use dyadic dilations defined by g;(x) = 2/ng(2ix)for j e N, j>1,
and g (x) for j = Ois just the value of a function go. Forany j € Z,denote I1; = {Q :
Q are dyadic cubes in R” with the side length /(Q) = 27/, and the left lower corners
of Q are xg = 27¢, 0 e Z"), and I1 = UjenIl;. At last, denote IT={Q:Q are
cubes in R”}. Using continuous local Calder6n’s identity (1.2), Rychkov proved that
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f € h?(R") if and only if

o 1/2

Z lo; * fI? < . (1.3)

j=0

LP(R")

Moreover, the continuous local Calderén’s identity (1.2) also holds in S(R"), S’ (R").
We want to remark that using the fact pointed out in p160 of [31], the vanishing
moments of ¢ in (1.3) can be up to any fixed order.

Recently, the authors in [9] obtained the discrete Littlewood—Paley—Stein charac-
terization of A7 (R™). More precisely, let ¥, ¥ € S(R") with

suppyo C (& € R" : [£] <2 Yo(§) = 1, if 5] < 1, (1.4)
and R |
suppy C (£ € R < - < |E| <2}, (1.5)
and o
W@ + Y 1WQ /&P =1, forall§ e R", (1.6)

Jj=1
then one has the following continuous Calderén reproducing formula

+00
) =D ¥y % f(x), (1.7)

Jj=0
and the discrete Calderén reproducing formula is the following

+00

FG) =" 101 * lxg) x ¥rj(x — x0), (1.8)

j=0 Qer;

where the both series converge in L?(R"), S(R") and S’ (R") [13]. It is proved that in
[9] f € AP (R") if and only if

<Z Z [V * JC(XQ)|2)(Q(JC))7 < 400,
jeN Qell; Lo @)

where ¥ and ¢ € S(R") are functions satisfying conditions (1.4)—(1.6). Moreover,
they proved that cmo? (R") defined as following is also the dual space of 47 (R").

Definition 1.1 Let 0 < p < 1. Suppose that 9 and ¢y € S(R") are functions satisfy-
ing conditions (1.4)—(1.6). cmo? (R") is defined by

cmop(Rn) ={fe€ S/(Rn) : ”f”cmul’(]R") < oo},
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where

I Nemor ey = sup ( / > (v f)l xQ(x»dx)

Pell |P|” jeN Qell;,0cP
(1.9)

Obviously, cmo? (R™) is coincident with A n(L—1) for < p < 1 since they are
4

n
n+1
all the dual spaces of 47 (R"). A natural question is: can cmo? (R") be coincident with
A 1oy for ;25 < p < 1 by norms? In this paper, we give a positive answer.
Theorem 1.1 Suppose that Yo and v € S(R") are functions satisfying conditions
(1.4)—(1.6). Then for <p =1 feA, L-1 if and only if f € cmoP (R").

Moreover, || flla ~ | f llemor (&)

n+l
n(%—l)

Furthermore, we give another equivalent norm of cmo? (R") which has a very
simple form.

Definition 1.2 Let 0 < p < 1. Suppose that Yo and € S(R") are functions satisfy-
ing conditions (1.4)—(1.6). Lip? (R") is defined by

LipP(R") = (f € S'R") : | fllLipr@ny < 00},

where

oLl _
IflLipr@ny = sup 27" Dy« )l (1.10)
j=>0,xeR”

We remark that using continuous local Calder6n’s identity (1.2), the test functions
in (1.10) can be replaced by those given in (1.1).

Theorem 1.2 Suppose that Yy and & € S(R™) are functions satisfying conditions
(1.4)—(1.6). Then for 0 < p < 1, f € LipP(R") if and only if f € cmo?(R").
Moreover, || fllLipr @y 2 || fllcmor (&)

Since Lip?(R") is decreasing as p increases, we have the following corollary.

Corollary 1.3 For 0 < p < 1, cmo?(R") is increasing as p increases. Precisely, for
0 < p1 < p2 <1, we have

”f”cmoPZ(]R”) =< C”f”cmopl(]R")a

where C is a constant independent of f.

The organization of this paper is as follows. In Sect. 2 we establish the equivalence
between cmo? (R") and Lip? (R") for 0 < p < 1. The proof of Theorem 1.1 is pre-
sented in Sect. 3. For this, we prove that Lip? (R") identifies A, (L1 with equivalent

P

norms for ? < p < 1and A equals to cmo' (R") with equivalent norms, that
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is, Theorems 3.1 and 3.2, respectively. As an application of equivalent theorems, we
discuss the boundedness of inhomogeneous para-product operators on 47 (R”") in last
section.

Finally, we make some conventions. Throughout the paper, C denotes a positive
constant that is independent of the main parameters involved, but whose value may
vary from line to line. Constants with subscript, such as C1, do not change in different
occurrences. We denote f < Cgby f S g. If f < g < f, wewrite f ~ g.

2 Equivalence Between cmo” (R") and Lip? (R™)
In this section, we prove the equivalence between cmo? (R") and Lip? (R") for 0 <

p <1, that is Theorem 1.2.
We first prove

I fllemor@ny S N flLipr®ny- 2.1

Firstly for any fixed P € II,

/Z > (Y fx)xo()dx

|P|” jeN Qell;,QcP

DD D] RN

|P|p ]eN Qell;,QcP

We consider two cases |P| < 1and |.P| > 1. When |P| < 1 and P € II, there exists
jo € N such that 2770 < ¢(P) < 27/o+! Then

%_1 >3 10l fag)

|P|P"" jeN Qem;,0cP

1-2 —2in(L_-1
< I P77 > 3 oG = A

jZjo Qellj, Q<P

Fix 7 € (0, 1), then for any p € (0, 1],

2 . S|
A < I fllLipp@n| PP 77 Z y—inty=2jn(=1)
J>Jo

2—7r—2 —2jon(L—1 2
SN fllLippey | P77 227 0omm=20nG =D < 2 e,

If|Pl =1,

> Y ek f)l

|P|" ]EN Qell;,QcP
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! in(—— —2in(i_
Z Z 1012’ G 1)ij>kf(xQ)|)22 2jn(5—1)

= B
2
[PIP™" jeN gen;.ocp

2 1-t-2 “2jntH—2jn(t -1 2
S ppny P17 7 Y 272 272G < 2

jeN
Thus, we obtain (2.1).
Conversely, first we claim that
Wi x fOOI S I llemor @my I jr (X — )lnp@ey- (2.2)
Then, if we obtain that
170G = Moy < 27077, 2.3)

one can complete the proof. Now we prove (2.2). For any fixed x € R", set h(z) =
Y (x — t). Define

SO = (Y 1wy * o) Pro).

JEN Qell;

Foranyi € Z, let

Q = {x eR": S(h)(x) > 2i} , Qi = {x eR": M(XQI-)(X) > (1(1))"}

and
1 1
Bi=10:0eUj>ll;, |0NQ;| > EIQI, [0 N Q| = EIQI .
Then, Ugep, O © fZi. By local reproducing formula (1.8), one has

Vi f) =D D Yk flxg) kY (x — xg)

jeN QGH_,‘

=) Yo * fxo)¥o * ¥j(x — xg)

Qell

+00
=3 Y Y 101 * FGYo * Yy (x — xg)l.

i=—00 Q*€B; QCQ*, Q€B;
in L2(R"), where Q* are the maximal dyadic cubes in B;, and ¢ ; are denoted by ¢g.

@ Springer



Equivalent Norms of cmoP (R") and Applications

999

Hence,

+00 »
Wi fl<{ Y Y1017 Y] 101 * vy(x —x0))?)2

i=—00 Q*€B; QCQ*, Q€B;

—1 p o1
’ 7., Z Q1Yo *f(xQ)|2)z}}1
Q|7 0co*.0eB;

+00
< fllemorn{ Y Y 10*'72
i=—o00 Q*eB;
(Y 10l xvx—x)P) 7).

QCO*, Q€B;

Since Q € B;, one has |Q] < 2|0 N §~2,-\§2,-+1|. Hence,

o 10lpg * M) <2 Y 10 NQA\Qit1ll(pg * h)(xo)I?
QCQ*,0€eb; 0eB;

2 / (9o * 1) (x0) 1> x o (x)dx
Qi\Qit1 QXGZ:S,- ¢ © ©

<2 fN (Sh)))2dx < 2418,
Qi\ Q11

which implies that

1

+00 P
~ 72 . ~
ljrx fOI S Ilfllcmoumm{ DIl )P
i=—o0

+o00 ' '
S lemor@nd Y 2771}
i=—00

S M f lemor @y 1Rl e ey

It is well known that
1/2
IS ILo@n = 1(D_ 19 % hOP) .
jeN

Hence,

190G = iy f (Z [V * [ (x — ~)](y)|2)p/2dy

jeN

=f(2|1/,,-*¢,<y)|2)p/2dy

jeN
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2Gnimpo—1i—J'INp

/Z a4 2080yt @

< ZZ(M./ Ynp—n) o—=|j—j'INp

jeN
— 9i'n(p=1) 3 AGAIM(p=1)  j'n(=p)  »=lj=]'INp
jeN
— 9i/n(p=1) 3 LG =iAI(=p)  9=1j=J'INp_
jeN

Since|j’ — j A j'| < |j — j'|, one has

I (x — ')”ZP(R") <2/ n(p—1) Z2|j_j In(1=p)  5—=li=Jj"INp

jeN
— oJ'n(p=1) Z 2=1j=Jj'|(Np=n(1=p))
jeN
y - )
— pJ'n(p=1) Z o=/ Ip(N=n(;=1))
jeN

Choosing N big enough such that N — n(% — 1) > 0, one obtain (2.3).
Thus we complete the proof. O

3 Equivalence Between LipP (R") and A,

Theorem3.1 f € A,,0 <r < lifandonlyif f € S'(R") and sup j ey yern 21"|1pj *
f(x)| < 4o00. Moreover, || f|la, = SUD jeN, xeR” 20y x f ().

Proof Suppose that f € A,,0 < r < 1, thatis, f is a bounded and continuous
function. Then it is easy to check that f € S'(R"), [ * f(x)| < C|| f |l zoo(wn), and

for j = 1,1y * fO) = | [¥;(x =) fDdyl = | [¥;(x = MIF () — f0)]dy|
since f Y (x)dx = 0. Thus, [ * f(x)| < C277| f | A,- These estimates imply that
SUP j &N, xeRr 2771 % f(x)] < Cll flla, - Conversely,if f € S'(R"), by the continuous

o
Calder6n reproducing formula (1.7), f(x) = Z Vj*¥j* f(x)in S’ (R"). Note that
1fsup]ENxeRn 277 [ * f(x)] < C, then |1//] * 1//] % f(x)| < C27"/ and hence, the

series Z Y x ¥ * f(x) converges uniformly. This implies that Z Yixy* f(x)is
Jj= Jj=

a bounded and continuous function, thus f(x) = Z Y * Y *x f(x) forall x € R,

To see that f € A,,0 < r < 1, we only need to show that for any given x and y
with [x —y| < 1, [f(x) = f()] = Clx — yI" supjen yern 2/" [V * f(u)]. To do
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this, let jo € N such that 27/ < |x — y| < 217/, Split the series into two parts:

JO 00
I1(x) = Zolpj*l//j*f(x) and I1(x) = ) j*y;* f(x). Write I(x) —I(y) =
j=

Jj=jo+1
Jo
Y JI¥j(x —z) — ¥j(y — D] = f(z)dz. Applying the estimate that [ [[v/;(x —
j=0

D) =i — DWW * F@dzl < CQ@Jx — Y27 supjen yern 27 1Wj * f@)], we
obtain that

11(x) = T()| < €200 x —y[ sup 27|y % f(w)]
jeNueRn

<Clx—yl" sup 27|y * f(w)l.
jeN,ueRn

Applying the size condition, it follows that

[[1(x) = T1(y)] < C270 sup 277y % f(u)
jeN,ueRn?

<Clx—yl" sup 27|y f(u)l.
jeN,ueRn

Thus, we complete the proof. O

Theorem 3.2 f € bmo(R") if and only if f € cmo(R"). Moreover; | f |l bmowry &
”f”cmo(R")-

Note that, for convenience, here we denote cmo(R") = cmo! (R?) .
Proof Given any f € cmo(R"), we now prove
”f”bmu(R”) ,S ”f”cmo(R”)-

To do this, define a linear functional on &' (R") by

Lrg)=(f.8)

for g € h'(R"). By the above the duality argument, namely (k' (R"))* = cmo(R"),
we have

ILr @1 = I1f llemon 18 N1t ®n)-

Now fix a Q € II, and let L2Q denote the space of all square integrable functions
supported in Q. If £(Q) > 1, it is easy to see that each g € L2Q is a multiple of

an (1,2) atom of ' (R") with lgllptrey < C|Q|% gl z2(rn)- Hence, Ly is a linear

1
functional on L2Q with norm at most C| Q|2 || f ll¢mo(rr)- Then, the Riesz representation
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1002 W.Ding, Y.Zhu

theorem for Hilbert spaces L2Q tells us that there exists F< € LZQ such that
L) =(f g = /Q FO(x)g(x)dx, Vg € L}

with ||FQ||L2Q =|ILsll < C|Q|%||f||cmu(Rn), which yields that f must be a square

integrable function on Q and f = F< on Q. Therefore, for any cubes Q satisfying
Q) =1,

) 1/2 0 5 1/2
d = F d C cmo(R™)
{IQI/ Lf (o)l X} {IQI/' ()] X} = Cll fllemoqrm

which implies that

sup —f [f ) dx < Cll f llemony-
10|>1 O]

On the other hand, if £(Q) < 1,let Ly, o = {f € LG, [ f = 0}. Recall that a
function a(x) supported in a cube Q is said to be a (p, 2) atom of h” (R"),0 < p <
1 1

1, if it satisfies a size condition ||all 2@,y < |Q|? 7 and a cancellation condition
fx“a(x)dx =0, e N || < n(%— 1), when £(Q) < 1[14]. Then,each g € L2Q’0

is a multiple of an (1, 2) atom of h! (R™) with gl ey < C|Q|% gl L2(mn)> and L ¢

. . . . 1 .
is a linear functional on LzQ o With norm at most C|Q|2 || fll¢cmo(rn)- By the Riesz

representation theorem, there exists some F¢ e LZQ o such that
Lyg)=(f.g) = / F2(x)g(x)dx, Vg € Ly
0

with ||FQ||L2Q =L/l < C|Q|% Il f llemoqrny, Which yields that f must be a square

integrable function on Q and f = F? + c¢p on Q for some constant cg since
J g(x)dx = 0. Therefore, for any cube Q satisfying £(Q) < 1,

L 1 o 2 12
- d = F d c cmo(R™)»
{|Q|/ () = col x} {|Q|/| w0l x} < Cllf lemotr

which implies that

1/2
o1 |Q|/'f(x>—CQ|2dx}/ < Cllf lemogn)-

@ Springer



Equivalent Norms of cmoP (R™) and Applications 1003

Hence
1 172
sup {_/ |f(x) - fQ|2dx} / = C”f”cmo(R”)-
o<1 19l Jo

The estimates above imply that || f |l pmo®?) S IIf lemony-
We now prove

”f”cmo(]R") S ”f”bma(R”)-

By the definition of bmo(R"), it is easy to see that,

1

Sup—/ Lf () = foldx < 2|l fllomon).
o 1QlJo

where sup is taken over all cubes with sides parallel to the coordinate axes in R".
Forany P € I, let P* = 3.,/n P, the cube with the same center of P and side length

3JRL(P).Split fas f = fi+ fot fywith fi = (f = fp)xpes fo = (f = fpo) xpoye

and f3 = fp=. Itis easy to see that

1
ﬁfpz Do v fFa)Pxo()

jeN Qell;,QcP

SZ/PZ DYy fi)Pxe()).

i=1 V" jeN Qel;,QcP

For fi, by Littlewood—Paley theory,

1
|?|/PZ Z (¥ * fi(xo)*xo(x))dx

JjeN Qell;,QCP

1
= WZ > 10l = fitxe)?

jeN Qell;,0cP

1
] D) 1ol fitx)

JjeN Qell;

1 1
< — < — — fpe2dy SN FIZ o
N|P|||f1||Lz(R>N|P|/P*|f<y> Fpe12dy S 1L Wimoeny

For f>, first of all, it is easy to see that |/; * fa(xp)| = | [ ¥(xo — ¥) f2(y)dy|
is dominated by

—j 2_/
~ aoy~ [ o Ay,
‘/(‘P*)C (2_] + |XQ - y|)n+1 f Y Y (P*)e (2_] + |-XP _ y|)n+1 f y Y
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1004 W.Ding, Y.Zhu

where xp is the center of P. Hence
[V * fa(x)l

400
sy [
k=1

H-1g(Py<xp—y|<2kepy 27 + |xp —

2001y

+o00 1
S22 e f | 2()dy
,; Re(P)™1 oy 1<2kecp)

= 1
9=J 2 T I EY
ST LRy {/XP_y|<zkz<p) )

— faepeldy + QX(P))"| for pe — fP*|} ;
combining with classical result about BM O (R") functions, gives

[V % x| S 2776PY M f llbmorn)-

Note that there exists jy € Z such that 2o < L(P) < 2—Jjot+! Then,

— Z > 10l * Al

jGN Qell;,QCP

|P| Z Z |Q|2_2(j_'/0)||f||%mo([[gn) N ||f||§mo(]1gn)-

Jj=Jjo Q€llj,QCP

For the constant item f3, note that [ = 1 and [y; = 0,j > 1. Hence if
P <1,

—Z > |Q||wj*f3<xQ)|2——Z D 10l * )P =

jENQGH ,QCP J>1Qel'l ,QcP

Otherwise, if £(P) > 1

— Z > 101 * I < 1A= SN = 1 Imon-

]EN Qell;,QCP

since f3 = fp+ with £(P*) > 1.
Thus, we complete the proof. O

We want to point out that the results of this section can also be seen in [8]. For
completeness, we give their proofs.
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4 Applications

In this section, we discuss the boundedness of inhomogeneous para-product operators
on h” (R"). Firstly, we recall some about non-convolution singular integral operators.

A locally integral function K(x, y) defined away from the diagonal x = y in
R" x R" is called a Calderén—Zygmund kernel with regularity exponent ¢ > 0 if there
exists a constant C > 0 such that

1
[KC(x, y)I < Cﬁ’ for x #y, 4.1
xX—=Yy
and
ly —y'I°
IK(x, y) — K(x, y)| < Cﬁ, 4.2)
lx — ¥l
whenever |y — /| < %|x — y|, and
|x — x'|®
IK(x, y) — K&, )| < Cm, (4.3)

whenever |x —x'| < % |x — y|. The operator 7 is said to be non-convolution Calderén—
Zygmund singular integral if T' is a continuous linear operator from D(R") to D’ (R")
defined by

(Tf.g) = / K(x, ) f (0)g(x)dxdy

forall f, g € D(R™) with disjoint supports, where K is a Calder6n—Zygmund kernel.
The fundamental result for the third generation Calderén—Zygmund singular integrals
is the Theorem 7’1 contained in [6]. See [7,16,17,20-22,30] for other versions of the
T 1 theorems for Hardy, Besov and Triebel-Lizorkin spaces. If the Calderén—-Zygmund
kernel /C satisfies a restrictve size condition, namely, the condition (4.1) is replaced
by

IK(x, )| = Cmin{

o = y|”+5}’ forsome § > Oand x #y, (4.4)

we then obtain an inhomogeneous Calderon—Zygmund kernel associate with regu-
larity exponent ¢, § > 0, and inhomogeneous Calderén—Zygmund singular integral
associate with regularity exponent ¢, 8 > 0, respectively. It is well known that each
pseudo-differential operator Ty, f(x) = f o(x, £)e*rixé f (&§)d& with o € S?,o is an
inhomogeneous Calder6n—Zygmund singular integral. For the boundedness of opera-
tors on local Hardy spaces, we refer the readers to the work in [14,26]

Using atomic decomposition, one has the following result.
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1006 W.Ding, Y.Zhu

Theorem 4.1 Suppose that T is an inhomogeneous Calderon—Zygmund singular inte-
gral associate with regularity exponent €,8 > 0. Then, if T is bounded on L*(R"), T
is bounded from h? (R") to LP(IR™) ifmax{niﬁ, n”ﬁ} <p<lLl

The proof of Theorem 4.1 is standard, and we refer the readers to [15] for non-
convolution Calder6n—Zygmund singular integral on H” (R"), to [12] for Journé’s
type of multi-parameter singular integral operators on multi-parameter Hardy spaces
HP(R" x R™), to [10] for inhomogeneous Journé’s type of multi-parameter singular
integral operators on multi-parameter Hardy spaces #” (R"! x R"2), so we omit its
proof. We want to remark that it is enough to prove Theorem 4.1 under conditions
(4.4) and (4.2).

Now we begin to define inhomogeneous para-product operators. In this section,
we always suppose that g, ¥, ¢ belong to D(R") supported on unit ball centered
at origin satisfying that i has vanishing moments up to some proper order N and
[Yo(x)dx = [@(x)dx = 1. Set ¥;(x) = 2/"y(2/x) for j € N,j > 1, and
@j(x) =292/ x) for j € N.

By Corollary 1.3, bmo(R") 2 cmo?(R") for all 0 < p < 1. Fixed any b €
bmo(R™), inhomogeneous para-product operators are defined as following:

(@) =Y Y QY xb(xg) - ¥j(x — x0)g;j * f(x0),

JjeN QEHj

and its adjoint operator

(@ =Y > 10ler(x — xp) ¥ * b(xg) - Yk * f(x0).

keN Qelly

One can check that 7, 77, are inhomogeneous Calderén—Zygmund singular integrals
associate with regularity exponent ¢ = 8§ = 1 and bounded on L?(R"). Hence 1, Ty
are bounded from A” (R") to L? (R") if n”ﬁ < p < 1. Now we give the main result
of this section.

Theorem 4.2 Suppose that b € Lipn”? (R™). Then, mp, 7t are bounded on h? (R") if
n

To prove Theorem 4.2, we will follow the approach in [23,24] by reducing the
h? (R") boundedness of 7, and 7 to h? (R") — LP(R") boundedness.

Since the proofs of the A”(R") boundedness of 7, is similar as ;s but more
difficult, we only give the proof of . Obviously, L*(R™) N kP (R") is dense in
hP (R") since S(R") is dense in h? (R"). For f € L>(R") N h? (R"), using (1.3), one
has

1

2
17 ()l ey = {Z|m*n;<f><x>|2}

keN LP(RM)
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It is easy to see that { ) |y * n;‘(f)(x)|2}% is bounded on LZ(R"), since b €
keN

Lipﬁ (R™) € bmo(R™). Moreover,

Yk x 7, (f)(x) = / Vi (x — 2)m, (f)(2)dz

= f i(x —2) Y Y 1Qlpw (2 — x) Y x blxg) Y f(xg)dz

K'eN Q'ell,s
B // Z Z 10" [k (x — D) (z — x0)Yir * b(x )Y (xor — y) f(y)dzdy.
k'eN Q'elly

Set

Sk(x,y) = _/ Z Z 1O 1Yk (x — 2)gi (z — x) Vi * b(x )Y (xor — y)dz.

K'eN Q'elly,

Then, the 27 (R") boundedness of 77, can be reduced to h” (R") — L?(R") bounded-
ness of vector value inhomogeneous Calder6n—Zygmund singular integral with kernel
{Sk(x, y)}. We will finish the proof of Theorem 4.2 by proving that {Si (x, y)} satisfies
vector value inhomogeneous Calderén—Zygmund kernel conditions, namely,

Lemma4.3 LetSi(x,y) = [ > > 10 1Vk(x—2)pr (z—xo)Yrxb(xo) Y (xg —
k'eN Q'elly

y)dz, and suppose that b € Lip#(]R”). Then for every ¢ € (0, 1),
(i) LY 1Sk, pIPW? < € min{ e, =t} if 1x = y1 > 0;
keN Y ey

(D) {3 1Sk (x, ¥ = Sk, P2 < C, if 1y — ) < §lx — ¥l
keN

Proof Split Si(x, y) as following
Sk =Y > Q] / Vi (x — Dgu (2 — x) Y % b(x )Y (xg — y)dz
K>k Q'€

#3210 [ vt = Dz xo e  blro W txg — )z

K <k Q'elly
= Sp(x, ) + Sg(x, ).

We first prove size condition (7). For S !, one has

NEDIDD |Q/|/[¢k(X—Z—xQ’)

K>k Q'€
=Yk (x — xo)1or (DY * b(x )Y (xgr — y)dz
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1008 W.Ding, Y.Zhu

+ Y > 10 Wn(x — xg) Y xb(xg) Y (xg — y) = A+ B.

K'>k Q'ell,
We first show that
—k

2
1B| S . (4.5)
@7k 4 Jx — yprt!

If v — y| <2275,

1Bl <> Y 1011 (x — xg) Wi * bxgn)| [ (xgr — y)l
K>k Q'€
2—k8/

<> > o] BT I g Y * P g = )l

K>k Q'ell,

2—k
= 2 —k(n+1) Z Z 10 1¥w * b(xo)| |V (xgr — y)|
k'>k Q/Enk/
—k

S e T L 2 11k sbee)livi e Ml @6

K>k Q'€

When |x — y| > 2 -27%. Note that lxor — ¥l < 2=% < 2% Hence, |x — xo'| =
lx =yl —1ly —xg| > %Ix — y|, which also yields (4.6). Thus, (4.5) is obtained if we
can prove

3 QW * blxg) Y (xgr — y)| < C.

k'>k Q'elly/
Indeed, using b € Li pnnﬁ (R™), one has

D0 10k # b)Y (xgr — ¥

k'>k Q'elly
1] ntl
SHbl, gy 2o 2o Q2T e (g — )
K>k Q'ell,
v 2K
< K (=1 / - dz
ig) an:k, Q7+ lxgr =y

27¥
S f ; dz < C,
P27 ]z = yhm

since 2% + lxor — y| =~ 2K 4 |z — y|forany z € Q’.
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For A, firstly, by the fact that ¥/ * b(x /) is bounded uniformly, one has

A1y > |Q/|f|wk(x—z—xg/>—wk(x—fo)||<pk/(z>||wkf(xQ/—y>|dz.

K>k Q'eMyy

Hence, by the following classical result, for any ¢ € (0, 1),

Vi (x —z — x0) — Yn(x — x01)|

<(&
~ 2_k

) (

27* 27+
+ 9
Q7 +|x—z—xg "t Q7F+|x - xQ/|)"+1>

and using the fact that the support of ¥ is unit ball at origin, A is dominated by

>0

K>k Q'ell,

I

2K

(2—k’ + |Z|)"+1

2k 2k
Q7+ |x —z = xg/ ! pC R xQ’|)"+l>

[V (xgr — y)ldz

=2 2 1R P g — )

K'>k Q'elly,

2—k

2

; dz
Q*+|x —z—xg P QK + |z H]

2—k

/2—(k/—k)s , ,
+Y > 10 G —agpr P e =)l

K>k Q'

27K
—dz
/(sz + |Z|)n+1

< ’ 2—(](/—]()6 , L
YY) Vv G = oy =

K>k Q'ell,

2—k

2K 2k

< / 2—(](/—]()8
N Z Z Q'] (z_k/ + |y _xQ’|)n+l (2—k + |x — xQ/|)n+l

K>k Q'ell,

2—k'(1—6’) 2—k(1—s’)

Yy e i
P Q7 Ay —xg )T 27K 4 x = xgr e

K>k Q'ell,,

I
o Q7K 4|y =zt Q7 4 fx — gyt

k'>k Q'elly

Q
z—k’(l—s’) 2—k(1—s/)

-dz,
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1010 W.Ding, Y.Zhu

since 27 + ly —xor| = 27K 4 ly —z], 27K+ |x —xg| = 27k 4 x —z]lifz € Q.
Then

e 27k 27k
Al <Y 2 K-he < } 4.7
A5 2 PR Tl v S e R
By estimates (4.5) and (4.7), one has
| 27*
NACIRIIBS (4.8)

Q7 F+jx —yprtt

For S,%, using the cancelation condition of ¥, one has

St (x, y)
= Z Z |Q/|/wk(x —Dlow(z —XQ/)
k' <k Q/El_[k/

—op (x —x) Y * b(xg) Y (xgr — y)dz.

Then with a similar process to estimate A, one can see that (4.8) also holds for S,?.
Thus, we can complete the proof of size condition (i).
To prove (i), we only estimate the smoothness of S ,l (x, y) with the second variable

y since the proof to obtain the smoothness of S,f (x, y) is similar and easier. Set

Sp (e, y) = 5 (x, ¥
- / Y3 10k — DYz — xg) Y x b(xg) [ (xgr — ¥)]
K>k Q'€
— Y (xor — y)ldz
- / Z Z Q' |[Wk(x — 2) — Y (x — xo)]gw (2 — x0 )Y * b(xg)
K'>k Q'
[Yw(xg — y) = Y (xg — y)ldz
+) Y 10 (x = xg) Yk # b(xg) [V (xgr — ¥) — Y (xgr — )]

k'>k Q'€
= A} (x,y) + AT (x, y).

For any ¢ € (0, 1), using the support condition, it is easy to have

|AL(x, )l

lz — xQ’l 3 2~k
S | Q' | (
/z—xQ/§2k/ Z Z 2—k (2—k+ | X —z |)n+l

K>k Q'elly,
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2k 2
=+ 5 "(xXpor —
@F+ 1 x—xg |>"+‘} EFF Tz g 1 | 0 Y
—Yr(xg —y)] | dz,

since | Y * b(xg/) |< C, uniformly for k" and x¢/. Then,

/ 27k y =1\
A] , < 2(k7k)e /
EHENIEDY 2 N e

k'>k Q'elly

2 2
. 7 + 7
Q7+ +xg — Y|)”Jrl Q7% 4+ xg — y' !

<22(k k)s/ ly =l ¢
2k 4+ Ix — ul)”‘|rl 2K

k'>k

27¥ 27K
: ; + - du
Q7K+ Ju — ypr! (2"‘ + Ju =y

, 27k
~ ,;k @F 4 1x =y

2—k
MR y/|>"+1]

< |y _ y/| 8/ 2—k + 2—]{
~ 2—k (sz + |x _ y|)n+1 (z—k + |x _ y/|)n+]

provided ¢ > ¢’. Hence, for any &’ € (0, 1), when |y — y'| < %|y — x|,

|y - y | 2+ 2k
Z'Ak(x )’)| <Z( ) |:(2_k+|x_y|)n+1 + (2—k+|x_y/|)n+li|

keN keN
T4
< ly — ¥l N
|x_y|l’l+€

At last, for any ¢ € (0, 1),

27+ ly = y'1\*
2 ’
EHRERSTIESD I |Q|(2k+|x_xQ/|),,+l|wk,*b(xQ/>|(—z_k, )

K'>k Q'ell,

2 2
. 7 +
Q7K +|xg — yl)"+1 (z—k’ +lxg — )"

! |
. Z Z /’ (2= k+|x |)n+1|1/fk * b(xon)|( y )

K>k Q'eMy
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1012 W.Ding, Y.Zhu

27¥ 27K
’ + /
Q7 +ju—yhrtt QR fu =yt

SIS S O | 2 =y
~ T Lip T (RY) £ P 27K | x —untt 2K

K>k Q'ely

2K 2K
; + ;
Q% +ju—yprtt Q7+ u -yt

, o 2~k

<ol Yok 2
LipmT ") £~ 27K T 7k 4 x =y !
>
—k
SUbll 2 ly =y Y 27k
~ Lipn+T (Rm) (2—k + |x _ y|)n+1 =
>

Z—k
LipTT ®") (27K 4 [x — y[yrH

< bl ly = 'Ff

Thus, for any ¢ € (0, 1),

ly —y'F
ZlA%(ny)l S e
keN Y

Then, we complete the proof. O
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