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Abstract
In this paper, we study the following Chern–Simons–Schrödinger equation

⎧
⎪⎨

⎪⎩

−�u + ωu + λ
(h2(|x |)

|x |2 +
∫ +∞

|x |
h(s)

s
u2(s)ds

)
u = g(u) in R

2,

u ∈ H1
r (R2),

where ω, λ > 0 and h(s) = 1
2

∫ s
0 ru2(r)dr . Since the nonlinearity g is asymptotically

5-linear at infinity, there would be a competition between g and the nonlocal term.
By constrained minimization arguments and the quantitative deformation lemma, we
prove the existence of least energy sign-changing radial solution, which changes sign
exactly once. Further, we study the concentration of the least energy sign-changing
radial solutions as λ → 0.

Keywords Chern–Simons–Schrödinger equation · Asymptotically 5-linear ·
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1 Introduction andMain Results

In this paper, we are interested in the following type of Chern–Simons–Schrödinger
equation
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⎧
⎪⎨

⎪⎩

−�u + ωu + λ
(h2(|x |)

|x |2 +
∫ +∞

|x |
h(s)

s
u2(s)ds

)
u = g(u) in R

2,

u ∈ H1
r (R2),

(1.1)

where ω, λ > 0 and h(s) = 1
2

∫ s
0 ru2(r)dr . As we all know, Eq. (1.1) derives from

studying the standing wave solutions of the following nonlinear Schrödinger system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i D0φ + (D1D1 + D2D2)φ + g(φ) = 0,

∂0A1 − ∂1A0 = −Im (φ̄D2φ),

∂0A2 − ∂2A0 = −Im (φ̄D1φ),

∂1A2 − ∂2A1 = −1

2
|φ|2,

(1.2)

where i denotes the imaginary unit, ∂0 = ∂
∂t , ∂1 = ∂

∂x1
, ∂2 = ∂

∂x2
for (t, x1, x2) ∈

R
1+2, φ : R

1+2 → C denotes the complex scalar field, Aν : R
1+2 → R denotes the

gauge field and Dν = ∂ν + i Aν denotes the covariant derivative for ν = 0, 1, 2.
System (1.2) was firstly proposed in [12,13], where (1.2) is usually called as Chern–

Simons–Schrödinger system. The Chern–Simons–Schrödinger system defined in R
2

is a non-relativistic quantum model describing the dynamics of a large number of
particles in the plane, in which these particles interact directly through the spontaneous
magnetic field. In addition, it describes an external uniformmagnetic field, which is of
great significance to the application of Chern–Simons theory in quantum Hall effect
[20]. For more physical backgrounds of system (1.2), we refer readers to [10,18,19].
After these works, many mathematical scholars have been studying the existence of
standing wave solutions for system (1.2). Especially, when g(u) = λ|u|p−2u with
p > 2 and λ > 0, some interesting results are presented in [2,3,11,14,22]. When it
comes to the standing wave solutions of system (1.2) with the form

φ(t, x) = u(|x |)eiωt and A0(t, x) = A0(|x |),
A1(t, x) = x2

|x |2 h(|x |) and A2(t, x) = − x1
|x |2 h(|x |),

system (1.2) reduces to the following nonlocal equation

−�u + (ω + ξ)u +
(h2(|x |)

|x |2 +
∫ +∞

|x |
h(s)

s
u2(s)ds

)
u = λ|u|p−2u in R

2, (1.3)

where h(s) = 1
2

∫ s
0 ru2(r)dr , ξ ∈ R is an integration constant of A0. Here, A0 has the

expression

A0(r) = ξ +
∫ +∞

r

h(s)

s
u2(s)ds.
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Moreover, in Chern–Simons theory, system (1.2) is invariant under the gauge trans-
formation

φ �→ φeiχ and Aν �→ Aν − ∂νχ for any χ ∈ C∞(R). (1.4)

Then, for a given stationary solution, if taking χ = ct in (1.4), we may obtain
another standing wave solution, in the sense that the functions u(x), A1(x), A2(x)
are unchanged, ω �→ ω + c and A0(x) → A0(x) − c. That is, the constant ω + ξ is a
gauge invariant of the stationary solution to system (1.2). Due to the above discussion,
we may take ξ = 0 below, then lim|x |→∞ A0(x) = 0. In this case, Eq. (1.3) becomes

−�u + ωu +
(h2(|x |)

|x |2 +
∫ +∞

|x |
h(s)

s
u2(s)ds

)
u = λ|u|p−2u in R

2. (1.5)

Recently, many scholars pay attention to Eq. (1.5) and obtained lots of results,
see, for example, [2,3,10,11,14,15,21,22]. Especially, for the case of p ∈ (2, 4) and
ω > 0, the standing wave solutions of Eq. (1.5) are found in [2] by the constrained
minimization methods. After this, Pomponio and Ruiz [22] proved the existence and
nonexistence of nontrivial solutions depending on the range of ω to Eq. (1.5). Fur-
thermore, Pomponio and Ruiz [21] have studied the existence of positive solution for
Eq. (1.5) on large ball. For p = 4, Byeon et al. [2] proved that Eq. (1.5) has no stand-
ing wave solutions if λ ∈ (0, 1), has a family of weak solutions in H1

r (R2) if λ = 1
and has a standing wave solution if λ > 1. In addition, Li and Luo [15] proved the
nonexistence of normalized solution by the constrained minimization method when
p = 4. Meanwhile, they also considered the case of p > 4. For p ∈ (4, 6), Byeon et
al. [2] proved the existence of standingwave solutions of equation (1.5) by considering
a minimization problem on a manifold of Pohožaev–Nehari type in H1

r (R2). Addi-
tionally, Huh [11] proved that Eq. (1.5) has infinitely many solutions for any p > 6.
For more investigations on the Chern–Simons–Schrödinger equations, we refer the
interested readers to [3,6,8,10,14,17,23,26,27] and references therein.

As far as we know, for the existence of sign-changing solutions to Eq. (1.5), there
are few works presented in [9,16,25]. In [16], Li, Luo and Shuai proved the existence
of least energy sign-changing radial solution which changes sign exactly once when
p > 6. In [9], Deng, Peng and Shuai studied that Eq. (1.5) has multiple nodal solutions
when p > 6. Xie and Chen [25] considered the more general type of nonlinearity g,
and a least energy sign-changing radial solution with two exactly nodal domains is
obtained when g is 5-superlinear.

Inspired by the above results, we consider the existence of sign-changing solutions
for Eq. (1.1) under the following assumptions:

(g1) g ∈ C(R, R),
(g2) limt→0

g(t)
t = 0,

(g3) limt→∞ g(t)
t5

= 1 and g(t)
t5

< 1 for all t ∈ R\{0},
(g4) the function t �→ g(t)

|t |5 is strictly increasing for all t ∈ R\{0}.
Our main results of this paper read as follows:
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714 J.-C. Kang et al.

Theorem 1.1 Assume that λ > 0 and (g1) − (g4) are satisfied. Then, Eq. (1.1) admits
a least energy sign-changing radial solution uλ, which changes sign exactly once.

We further study the concentration of least energy sign-changing radial solutions
as λ → 0.

Theorem 1.2 For any sequence {λn} ⊂ (0,+∞) such that λn → 0 as n → ∞, {uλn }
strongly converges to u0 in H1

r (R2) up to a subsequence, where u0 changing sign
exactly once is a least energy sign-changing radial solution of

−�u + ωu = g(u) in R
2. (1.6)

Remark 1.3 To the best of our knowledge, the sign-changing solutions of Eq. (1.1)
were considered in [9,16,25], where the nonlinearity g is supposed as 5-superlinear
at infinity. In the present work, we assume that the nonlinearity g is asymptotically
5-linear, which means that there would be a competition between the nonlocal term
and the local nonlinearity. Hence, we will encounter the main difficulty in proving
Theorem 1.1 that the sign-changing Nehari-type manifold for Eq. (1.1) is nonempty
under our assumptions (g1) − (g4). Additionally, we point out that there are many
functions satisfying (g1) − (g4), for example, g(t) = t7

1+t2
for all t ∈ R.

The rest of this paper is organized as follows. In Sect. 2, we give some preliminary
lemmas which are necessary for proving our results. Section 3 is devoted to proving
Theorems 1.1 and 1.2.

Henceforth, we use the following notations:

• L p(R2) is the usual Lebesgue space with the norm |u|p = (∫

R2 |u|pdx) 1
p for all

p ∈ [1,+∞).
• H1

r (R2) consists of the all radial functions in H1(R2) with the inner product and
norm

(u, v) =
∫

R2
(∇u · ∇v + ωuv)dx and ‖u‖ = (u, u)

1
2 .

• ‖ · ‖H−1 denotes the norm of the dual space H−1
r (R2) of H1

r (R2).
• For any p ∈ [2,+∞), there exists the constant Sp such that |u|pp ≤ Sp‖u‖p for
all u ∈ H1

r (R2).
• “ →” and “⇀” denote the strong and weak convergences in function spaces,
respectively.

• u+(x) = max{u, 0}, u− = min{u, 0}; Ci , i = 1, 2, · · · , denote positive constants.
• For any r > 0, Br := {x ∈ R

2 : |x | < r}.

2 Preliminaries

Firstly, we present some properties on the nonlinearity g and its primitive G(t) =∫ t
0 g(s)ds. Due to (g1) − (g3), for any ε > 0 and p > 6, there exists some constant
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Sign-Changing Solutions for Chern–Simons–Schrödinger… 715

Cε,p > 0 such that

|g(t)| ≤ ε|t | + Cε,p|t |p−1 and |G(t)| ≤ ε

2
|t |2 + Cε,p

p
|t |p for all t ∈ R. (2.1)

Lemma 2.1 The function t �→ g(t)t − 6G(t) is strictly decreasing in (−∞, 0) and
strictly increasing in (0,+∞). Particularly, there holds that g(t)t − 6G(t) ≥ 0 for
all t ∈ R.

Proof Let G(t) := g(t)t − 6G(t) for any t ∈ R. Taking 0 < s < r , by (g4) we have

G(r) − G(s) = 6
[1

6

(
g(r)r − g(s)s

) − (
G(r) − G(s)

)]

= 6
( ∫ r

0

g(r)

r5
τ 5dτ −

∫ s

0

g(s)

s5
τ 5dτ −

∫ r

s

g(τ )

τ 5
τ 5dτ

)

= 6

[∫ s

0

(g(r)

r5
− g(s)

s5

)
τ 5dτ +

∫ r

s

(g(r)

r5
− g(τ )

τ 5

)
τ 5dτ

]

> 0,

which implies that G is strictly increasing in (0,+∞). Since G(t) is even in t , then G
is strictly decreasing in (−∞, 0). Specially, G(t) ≥ G(0) = 0 for all t ∈ R. Hence,
the proof is completed. ��

From now on, we fix λ > 0. The energy functional of Eq. (1.1) is defined as

Iλ(u) = 1

2

∫

R2

(|∇u|2 + ωu2
)
dx + λ

2

∫

R2

u2

|x |2
( ∫ |x |

0

r

2
u2(r)dr

)2
dx −

∫

R2
G(u)dx .

As in [2], by (2.1), it is standard to verify that Iλ ∈ C1(H1
r (R2), R) and, for any

u, ϕ ∈ H1
r (R2),

〈
I ′
λ(u), ϕ

〉 =
∫

R2

(∇u · ∇ϕ + ωuϕ
)
dx

+ λ

∫

R2

u2

|x |2
( ∫ |x |

0

r

2
u2(r)dr

)( ∫ |x |

0
ru(r)ϕ(r)dr

)
dx

+ λ

∫

R2

h2(|x |)
|x |2 uϕdx −

∫

R2
g(u)ϕdx .

Then, the critical points of Iλ are weak solutions of Eq. (1.1). For convenience, we
introduce

B(u) :=
∫

R2

u2

|x |2
( ∫ |x |

0

r

2
u2(r)dr

)2
dx,

B1(u) :=
∫

R2

|u+|2
|x |2

( ∫ |x |

0

r

2
|u−|2dr

)2
dx
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716 J.-C. Kang et al.

+ 2
∫

R2

|u−|2
|x |2

( ∫ |x |

0

r

2
|u+|2dr

)( ∫ |x |

0

r

2
|u−|2dr

)
dx,

B2(u) :=
∫

R2

|u−|2
|x |2

( ∫ |x |

0

r

2
|u+|2dr

)2
dx

+ 2
∫

R2

|u+|2
|x |2

( ∫ |x |

0

r

2
|u+|2dr

)( ∫ |x |

0

r

2
|u−|2dr

)
dx .

Through direct calculation, we can prove that, for all u ∈ H1
r (R2),

Iλ(u) = Iλ(u
+) + Iλ(u

−) + λ

2
B1(u) + λ

2
B2(u), (2.2)

〈
I ′
λ(u), u+〉 = 〈

I ′
λ(u

+), u+〉 + λB1(u) + 2λB2(u), (2.3)
〈
I ′
λ(u), u−〉 = 〈

I ′
λ(u

−), u−〉 + 2λB1(u) + λB2(u). (2.4)

Tofind the sign-changing solutions ofEq. (1.1),we introduce the following constrained
set:

Mλ :=
{
u ∈ H1

r (R2) : u± �= 0 and
〈
I ′
λ(u), u±〉 = 0

}
.

Obviously, the set Mλ contains all of the radial sign-changing solutions to Eq. (1.1).
Define

Sλ =
{

u ∈ H1
r (R2)\{0} : λH±(u) −

∫

R2
g(u±)u±dx < 0

}

, (2.5)

where the functional H± : H1
r (R2) �→ R is defined for u ∈ H1

r (R2) by

H±(u) = 2
∫

R2

|u|2
|x |2

( ∫ |x |

0

r

2
|u|2dr

)( ∫ |x |

0

r

2
|u±|2dr

)
dx

+
∫

R2

|u±|2
|x |2

( ∫ |x |

0

r

2
|u|2dr

)2
dx .

By simple calculation, we get

H+(u) = 3B(u+) + B1(u) + 2B2(u), (2.6)

H−(u) = 3B(u−) + 2B1(u) + B2(u). (2.7)

Firstly, we prove Sλ �= ∅, which plays an important role in verifying Mλ �= ∅.
Lemma 2.2 The set Sλ is nonempty and Mλ ⊂ Sλ.

Proof From (g2), (g3) and Lemma 2.1, it follows that there exist R > 0 and C1 > 0
satisfying

g(t)t ≥ 6G(t) ≥ 0 for all |t | > R and |g(t)| ≤ C1|t | for all |t | ≤ R. (2.8)
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For any fixed u ∈ H1
r (R2) with u± �= 0, there exists some ν > 0 such that

{
x ∈ R

2 :
|u±(x)| > ν

}
has positive measure. Setting ut (·) = u(t ·) for t > 0, we deduce from

(2.8) that

λH±(tut ) −
∫

R2
g(tu±

t )tu±
t dx

= 2λt2
∫

R2

|u|2
|x |2

( ∫ |x |

0

r

2
|u|2dr

)( ∫ |x |

0

r

2
|u±|2dr

)
dx

+ λt2
∫

R2

|u±|2
|x |2

( ∫ |x |

0

r

2
|u|2dr

)2
dx

− 1

t

∫

{x∈R2:|tu±(x)|≤R}
g(tu±)u±dx − 1

t

∫

{x∈R2:|tu±(x)|>R}
g(tu±)u±dx

≤ 2λt2
∫

R2

|u|2
|x |2

( ∫ |x |

0

r

2
|u|2dr

)( ∫ |x |

0

r

2
|u±|2dr

)
dx

+ λt2
∫

R2

|u±|2
|x |2

( ∫ |x |

0

r

2
|u|2dr

)2
dx

+ C1

∫

{x∈R2:|tu±(x)|≤R}
|u±|2dx − 1

t2

∫

{x∈R2:|tu±(x)|>R}
6G(tu±)dx .

By (2.8), the Fatou lemma and (g3), one obtains

lim sup
t→+∞

λH±(tut ) − ∫

R2 g(tu
±
t )tu±

t dx

t4

≤ − lim inf
t→+∞

∫

{x∈R2:|tu±(x)|>R}
6G(tu±)

t6
dx

≤ −6
∫

{x∈R2:|u±(x)|>ν}
lim inf
t→+∞

G(tu±)

(tu±)6
|u±|6dx

< 0.

Thus, if taking u∞ = t∞ut∞ with t∞ > 0 sufficiently large, we conclude u∞ ∈ Sλ.
Moreover, by the definition of Mλ, it is easy to see that Mλ ⊂ Sλ. Therefore, we
finish the proof of this lemma. ��
Lemma 2.3 For any u ∈ Sλ, there exists a unique pair (su, tu) of positive numbers
such that suu+ + tuu− ∈ Mλ.

Proof Let ψ1(s, t) = 〈
I ′
λ(su

+ + tu−), su+〉
and ψ2(s, t) = 〈

I ′
λ(su

+ + tu−), tu−〉
for

s, t > 0, namely,

ψ1(s, t) = s2‖u+‖2 + 3λs6B(u+) + λs2t4B1(u) + 2λs4t2B2(u)

−
∫

R2
g(su+)su+dx,

ψ2(s, t) = t2‖u−‖2 + 3λt6B(u−) + 2λs2t4B1(u) + λs4t2B2(u)
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718 J.-C. Kang et al.

−
∫

R2
g(tu−)tu−dx .

Using (g4) and (2.6), for all t = s and s ≥ 1, we have

ψ1(s, s) = s2‖u+‖2 + s6
(
3λB(u+) + λB1(u) + 2λB2(u)

)
−

∫

R2
g(su+)su+dx

≤ s2‖u+‖2 + s6
(
λH+(u) −

∫

R2
g(u+)u+dx

)
. (2.9)

It follows from (g4) and (2.7) that, for all s = t and t ≥ 1,

ψ2(t, t) = t2‖u−‖2 + t6
(
3λB(u−) + 2λB1(u) + λB2(u)

)
−

∫

R2
g(tu−)tu−dx

≤ t2‖u−‖2 + t6
(
λH−(u) −

∫

R2
g(u−)u−dx

)
. (2.10)

From (2.9) and (2.10), there exists R > 0 large enough such that ψ1(R, R) < 0 and
ψ2(R, R) < 0. Besides, we deduce that, for all t > 0,

ψ1(s, t) ≥ s2‖u+‖2 −
∫

R2
g(su+)su+dx = s2

(
‖u+‖2 −

∫

R2

g(su+)

s
u+dx

)
.

(2.11)

For all s > 0,

ψ2(s, t) ≥ t2‖u−‖2 −
∫

R2
g(tu−)tu−dx = t2

(
‖u−‖2 −

∫

R2

g(tu−)

t
u−dx

)
.

(2.12)

Choose ε ∈ (0, S−1
2 ), it follows from (2.1) and the Sobolev inequality that, for ι > 0,

‖u±‖2 −
∫

R2

g(ιu±)

ι
u±dx ≥ (1 − εS2)‖u±‖2 − ιp−2Cε,pSp‖u±‖p.

By (2.11) and (2.12), there exists r ∈ (0, R) small enough such that ψ1(r , r) > 0
and ψ2(r , r) > 0. Noting that the functions ψ1(s, ·) and ψ2(·, t) are increasing in
(0,+∞) for any fixed s > 0 and t > 0, respectively, we can conclude that

ψ1(r , t) > 0 and ψ1(R, t) < 0 for all t ∈ [r , R],
ψ2(s, r) > 0 and ψ2(s, R) < 0 for all s ∈ [r , R].

Consequently, (ψ1, ψ2) �= (0, 0) on the boundary of (r , R) × (r , R). Then, by [16,
Lemma 2.4], there exists (su, tu) ∈ (r , R)×(r , R) such thatψ1(su, tu) = ψ2(su, tu) =

123



Sign-Changing Solutions for Chern–Simons–Schrödinger… 719

0. That is, suu+ + tuu− ∈ Mλ. Further, we claim that such (su, tu) is unique. Indeed,
for any u ∈ Mλ,

‖u+‖2 + 3λB(u+) + λB1(u) + 2λB2(u) =
∫

R2
g(u+)u+dx, (2.13)

‖u−‖2 + 3λB(u−) + 2λB1(u) + λB2(u) =
∫

R2
g(u−)u−dx . (2.14)

We show that if u ∈ Mλ, then (su, tu) = (1, 1). In fact, since suu+ + tuu− ∈ Mλ,
we have

s2u‖u+‖2 + 3λs6u B(u+) + λs2u t
4
u B1(u) + 2λs4u t

2
u B2(u) =

∫

R2
g(suu

+)suu
+dx,

(2.15)

t2u‖u−‖2 + 3λt6u B(u−) + 2λs2u t
4
u B1(u) + λs4u t

2
u B2(u) =

∫

R2
g(tuu

−)tuu
−dx .

(2.16)

Without loss of generality, we assume 0 < su ≤ tu . Then, from (2.15), we conclude

s2u‖u+‖2 + 3λs6u B(u+) + λs6u B1(u) + 2λs6u B2(u) ≤
∫

R2
g(suu

+)suu
+dx . (2.17)

From (2.13) and (2.17), we have

(s−4
u − 1)‖u+‖2 ≤

∫

R2

(
g(suu+)

s5u |u+|5 dx − g(u+)

|u+|5
)

|u+|6dx .

Using (g4), we get 1 ≤ su ≤ tu . Similarly, by (2.14) and (2.16), we obtain tu ≤ 1.
Therefore, su = tu = 1. Moreover, if u ∈ Sλ\Mλ, suppose that there exists another
pair (s′

u, t
′
u) of positive numbers such that s′

uu
+ + t ′uu− ∈ Mλ. Then, we get

s′
u

su
(suu

+) + t ′u
tu

(tuu
−) = s′

uu
+ + t ′uu− ∈ Mλ.

Hence, we obtain that s′
u = su and t ′u = tu . That is, such (su, tu) is unique. This lemma

is proved. ��
Lemma 2.4 mλ = infMλ

Iλ ≥ C2 > 0.

Proof Letting ε = ω
2 in (2.1), we deduce that, for all u ∈ Mλ,

∫

R2

(|∇u|2 + ωu2
)
dx + 3λ

∫

R2

h2(|x |)
|x |2 u2dx ≤ ω

2

∫

R2
u2dx + C ω

2 ,p

∫

R2
|u|pdx .

(2.18)
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Then, by the Sobolev inequality,

1

2
‖u‖2 < C ω

2 ,p|u|pp ≤ C ω
2 ,pSp‖u‖p. (2.19)

Since u �= 0 and p > 6, infu∈Mλ
‖u‖ ≥ (

2C ω
2 ,pSp

) 1
2−p . For any u ∈ Mλ, by

Lemma 2.1, one has

Iλ(u) = Iλ(u) − 1

6

〈
I ′
λ(u), u

〉 = 1

3
‖u‖2 +

∫

R2

1

6
g(u)u − G(u)dx ≥ 1

3
‖u‖2. (2.20)

Then, mλ = infu∈Mλ
Iλ(u) ≥ 1

3 (2C ω
2 ,pSp)

1
2−p := C2 > 0. Thus, this lemma is

proved. ��
Remark 2.5 It is clear that (2.18) still holds for all u ∈ H1

r (R2) satisfying 〈I ′
λ(u), u〉 ≤

0. Then, there exists ρ > 0 such that |u|p, ‖u‖ > ρ for all u ∈ H1
r (R2)\{0} with

〈I ′
λ(u), u〉 ≤ 0, where p > 6.

Lemma 2.6 The setMλ is closed.

Proof Let {un} ⊂ Mλ such that un → u in H1
r (R2). Due to [7, Proposition 7.2],

the maps v �→ v± are continuous from H1
r (R2) to itself. Hence, we can verify that

γ±(v) = 〈I ′
λ(v), v±〉 are continuous in H1

r (R2), which implies γ±(u) = 0. By (2.3)
and (2.4), we have

〈
I ′
λ(u

±
n ), u±

n

〉 ≤ 0. Using Remark 2.5, it follows that |u±
n |p > ρ > 0

for all n once p > 6. Moreover, since {u±
n } is bounded in H1

r (R2), by the compactness
of H1

r (R2) ↪→ L p(R2), u±
n → u± in L p(R2) for any p > 6 up to a subsequence.

From this fact, |u±|p > 0 and then u ∈ Mλ. Thus, this lemma is proved. ��
Lemma 2.7 For any u ∈ Mλ, Iλ(su+ + tu−) < Iλ(u) for every s, t ≥ 0 and (s, t) �=
(1, 1).

Proof Let �± = {
x ∈ R

2 : u±(x) �= 0
}
, it is clear that |�±| > 0. For any given

x ∈ �±, we define

ζ±(t) =
( t2

2
− t6

6

)(
|∇u±|2 + ω|u±|2

)
+ t6

6
g(u±)u± − G(tu±) for all t ≥ 0.

By direct computation, we obtain that, for any t ≥ 0,

ζ ′±(t) = t(1 − t4)
(
|∇u±|2 + ω|u±|2

)
+ t5(u±)6

[g(u±)

(u±)5
− g(tu±)

(tu±)5

]
.

Clearly, ζ ′±(0) = ζ ′±(1) = 0. By (g1) and (g4), ζ ′±(t) > 0 in (0, 1) and ζ ′±(t) < 0 in
(1,+∞). Then,

ζ±(t) < ζ±(1) for every t ∈ [0, 1) ∪ (1,+∞). (2.21)
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If u ∈ Mλ, for all s, t ≥ 0 and (s, t) �= (1, 1), we deduce from (2.2)–(2.4) and (2.21)
that

Iλ(su
+ + tu−) = Iλ(su

+ + tu−) − s6

6

〈
I ′
λ(u), u+〉 − t6

6

〈
I ′
λ(u), u−〉

= Iλ(su
+) + Iλ(tu

−) − s6

6

〈
I ′
λ(u

+), u+〉 − t6

6

〈
I ′
λ(u

−), u−〉

− λ

6

(
s2 − t2

)2(
s2 + 2t2

)
B1(u) − λ

6

(
s2 − t2

)2(2s2 + t2
)
B2(u)

≤ Iλ(su
+) − s6

6

〈
I ′
λ(u

+), u+〉 + Iλ(tu
−) − t6

6

〈
I ′
λ(u

−), u−〉

< Iλ(u
+) − 1

6

〈
I ′
λ(u

+), u+〉 + Iλ(u
−) − 1

6

〈
I ′
λ(u

−), u−〉

= Iλ(u
+) + Iλ(u

−) + λ

2
B1(u) + λ

2
B2(u)

= Iλ(u).

Therefore, we complete the proof of this lemma. ��

Lemma 2.8 If mλ = infu∈Mλ
Iλ(u) is attained by u ∈ Mλ, then u is a critical point

of Iλ.

Proof Assume by contrary that I ′
λ(u) �= 0 in H−1

r (R2), there exist ε0 > 0 and δ ∈
(
0,

√
ω�

4

)
such that ‖I ′

λ(v)‖H−1 ≥ ε0 for all v ∈ H1
r (R2) satisfying ‖v − u‖ ≤ 3δ,

where � = min
{|u+|2, |u−|2

}
. Setting D = ( 12 ,

3
2 ) × ( 12 ,

3
2 ), we define the map

h : D̄ → H1
r (R2) for (α, β) ∈ D̄ by h(α, β) = αu+ +βu−. Due to Lemma 2.7, there

holds

m̄ := max
∂D

Iλ ◦ h < mλ. (2.22)

Let ε := min
{mλ−m̄

4 , ε0δ
8

}
and S := {

v ∈ H1
r (R2) : ‖v−u‖ ≤ δ

}
. By the quantitative

deformation lemma (see [24, Lemma 2.3]), there exists a deformation η ∈ C
([0, 1] ×

H1
r (R2), H1

r (R2)
)
such that

(a) η(1, v) = v if v /∈ I−1
λ

([mλ − 2ε,mλ + 2ε]) ∩ S2δ ,
(b) η(1, Imλ+ε

λ ∩ S) ⊂ Imλ−ε
λ , where Imλ±ε

λ := {
v ∈ H1

r (R2) : Iλ(v) ≤ mλ ± ε
}
,

(c) Iλ
(
η(1, v)

) ≤ Iλ(v) for all v ∈ H1
r (R2),

(d) ‖η(t, v) − v‖ ≤ δ for all t ∈ [0, 1] and v ∈ H1
r (R2).

Then, we conclude that

max
(α,β)∈D̄

Iλ
(
η(1, h(α, β))

)
< mλ. (2.23)
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Next, we end the proof by proving η(1, h(D)) ∩ Mλ �= ∅, then (2.23) implies
mλ < mλ, a contradiction. For (α, β) ∈ D̄, define φ(α, β) = η(1, h(α, β)) and

�0(α, β) = (〈
I ′
λ(αu

+ + βu−), αu+〉
,

〈
I ′
λ(αu

+ + βu−), βu−〉)
,

�1(α, β) = (〈
I ′
λ(φ(α, β)), φ+(α, β)

〉
,

〈
I ′
λ(φ(α, β)), φ−(α, β)

〉)
.

ByLemma 2.3, we deduce deg(�0, D, 0) = 1. From (2.22) and (a), it follows that h =
φ on ∂D. Thus, using the degree theory, we get deg(�1, D, 0) = deg(�0, D, 0) = 1.
Consequently, �1(α0, β0) = 0 for some (α0, β0) ∈ D. If [φ(α0, β0)]+ = 0, by the
Young inequality, we have

‖φ(α0, β0) − h(α0, β0)‖ ≥
( ∫

R2
ω

∣
∣α0u

+ + β0u
− − [φ(α0, β0)]−

∣
∣2dx

) 1
2

≥ ω
1
2 α0|u+|2 > 2δ,

which is contrary to (d). That is, [φ(α0, β0)]+ �= 0. Similarly, we can prove
[φ(α0, β0)]− �= 0. Therefore, η(1, h(α0, β0)) = φ(α0, β0) ∈ Mλ and this lemma
is proved. ��

3 Proof of Theorems 1.1 and 1.2

Before starting the proof of Theorem 1.1, we verify that there exists some σ > 0 such
that

〈
I ′
λ(w

±), w±〉 ≥ 1

4
‖w±‖2 for all w ∈ H1

r (R2) with ‖w±‖ ≤ σ. (3.1)

In fact, fix ε ∈ (0, ω
2 ), by (2.1) and the Sobolev inequality, we infer that

〈
I ′
λ(w

±), w±〉 ≥ ‖w±‖2 −
∫

R2
|g(w±)||w±|dx

≥ ‖w±‖2 − ε

∫

R2
|w±|2dx − Cp,ε

∫

R2
|w±|pdx

≥ 1

2
‖w±‖2 − SpCp,ε‖w±‖p.

Hence, if choosing σ ≤ (4SpCp,ε)
1

2−p , we will conclude that (3.1) holds.

Proof of Theorem 1.1 Let {un} ⊂ Mλ be a minimizing sequence of the infimum mλ.
Similar to (2.20), we observed that {un} is bounded in H1

r (R2). Then, un⇀uλ in
H1
r (R2), un → uλ in L p(R2) for p > 6 and un(x) → uλ(x) a.e. in R

2 up to a
subsequence. We will prove that, as n → ∞,

∫

R2
g(un)undx →

∫

R2
g(uλ)uλdx and

∫

R2
G(un)dx →

∫

R2
G(uλ)dx . (3.2)
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Indeed, set P1(s) = g(s)s, P2(s) = G(s) and Q(s) = εs2 + Cp,ε|s|p for s ∈ R,
where p > 6, we get

lim
s→∞

P1(s)

Q(s)
= lim

s→0

P1(s)

Q(s)
= 0 and lim

s→∞
P2(s)

Q(s)
= lim

s→0

P2(s)

Q(s)
= 0.

It is clear that supn
∫

R2 |Q(un)|dx < +∞ and Pi (un(x)) → Pi (uλ(x)) a.e. in R
2 as

n → ∞, i = 1, 2. Then, by Theorem A.I and Radial Lemma A.II in [1], (3.2) holds.
Due to [2, Lemma 3.2], we have

lim
n→∞ B(un) = B(uλ), (3.3)

lim
n→∞

〈
B ′(un), un

〉 = 〈
B ′(uλ), uλ

〉
, (3.4)

lim
n→∞

〈
B ′(un), ϕ

〉 = 〈
B ′(uλ), ϕ

〉
for all ϕ ∈ H1

r (R2). (3.5)

Noting that u+
n ⇀u+

λ and u−
n ⇀u−

λ in H1
r (R2) up to a subsequence, we will prove

u±
n → u±

λ in H1
r (R2). For similarity, we just give the details of proving u+

n → u+
λ

in H1
r (R2). Assume by contradiction that u+

n � u+
λ in H1

r (R2) up to a subsequence,
then ‖u+

λ ‖ < lim infn→∞ ‖u+
n ‖. For σ > 0 given by (3.1), choosing κ ∈ (0, 1) such

that κ‖u±
λ ‖ ≤ σ , by (3.1), we get

〈
I ′
λ(κu

+
λ + tu−

λ ), κu+
λ

〉 ≥ 〈
I ′
λ(κu

+
λ ), κu+

λ

〉 ≥ κ2

4
‖u+

λ ‖2 > 0 for every t ∈ (κ, 1),

〈
I ′
λ(su

+
λ + κu−

λ ), κu−
λ

〉 ≥ 〈
I ′
λ(κu

−
λ ), κu−

λ

〉 ≥ κ2

4
‖u−

λ ‖2 > 0 for every s ∈ (κ, 1).

Besides, by (2.3), (3.2), (3.3) and the Fatou lemma, we have

〈
I ′
λ(uλ), u

+
λ

〉

= ‖u+
λ ‖2 + λB1(uλ) + 2λB2(uλ) + 3λB(u+

λ ) −
∫

R2
g(u+

λ )u+
λ dx

< lim inf
n→∞

(
‖u+

n ‖2 + λB1(un) + 2λB2(un) + 3λB(u+
n ) −

∫

R2
g(u+

n )u+
n dx

)

= lim inf
n→∞

〈
I ′
λ(un), u

+
n

〉

= 0. (3.6)

Recalling ‖u−
λ ‖ ≤ lim infn→∞ ‖u−

n ‖, we deduce from (2.4), (3.2), (3.3) and the Fatou
lemma that

〈
I ′
λ(uλ), u

−
λ

〉

= ‖u−
λ ‖2 + 2λB1(uλ) + λB2(uλ) + 3λB(u−

λ ) −
∫

R2
g(u−

λ )u−
λ dx
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≤ lim inf
n→∞

(
‖u−

n ‖2 + 2λB1(un) + λB2(un) + 3λB(u−
n ) −

∫

R2
g(u−

n )u−
n dx

)

= lim inf
n→∞ 〈I ′

λ(un), u
−
n 〉

= 0. (3.7)

Then, it follows from (2.3) and (3.6) that, for every t ∈ (κ, 1),

〈
I ′
λ(u

+
λ + tu−

λ ), u+
λ

〉

= ‖u+
λ ‖2 + λt4B1(uλ) + 2λt2B2(uλ) + 3λB(u+

λ ) −
∫

R2
g(u+

λ )u+
λ dx

< ‖u+
λ ‖2 + λB1(uλ) + 2λB2(uλ) + 3λB(u+

λ ) −
∫

R2
g(u+

λ )u+
λ dx

= 〈I ′
λ(uλ), u

+
λ 〉 < 0.

From (2.4) and (3.7), for every s ∈ (κ, 1), we conclude

〈
I ′
λ(su

+
λ + u−

λ ), u−
λ

〉

= ‖u−
λ ‖2 + 2λs2B1(uλ) + λs4B2(uλ) + 3λB(u−

λ ) −
∫

R2
g(u−

λ )u−
λ dx

< ‖u−
λ ‖2 + 2λB1(uλ) + λB2(uλ) + 3λB(u−

λ ) −
∫

R2
g(u−

λ )u−
λ dx

= 〈I ′
λ(uλ), u

−
λ 〉 ≤ 0.

Besides, it is easy to verify that
(〈I ′

λ(su
+
λ +tu−

λ ), su+
λ 〉, 〈I ′

λ(su
+
λ +tu−

λ ), tu−
λ 〉) �= (0, 0)

on the boundary of (κ, 1) × (κ, 1). Therefore, applying [16, Lemma 2.4], there exists
(α, β) ∈ (κ, 1) × (κ, 1) satisfying αu+

λ + βu−
λ ∈ Mλ. Due to this fact, Iλ(αu

+
λ +

βu−
λ ) ≥ mλ. From (3.2) and Lemma 2.1, there holds

Iλ(αu
+
λ + βu−

λ ) = Iλ(αu
+
λ + βu−

λ ) − 1

6

〈
I ′
λ(αu

+
λ + βu−

λ ), αu+
λ + βu−

λ

〉

= α2

3
‖u+

λ ‖2 +
∫

R2

1

6
g(αu+

λ )αu+
λ − G(αu+

λ )dx

+ β2

3
‖u−

λ ‖2 +
∫

R2

1

6
g(βu−

λ )βu−
λ − G(βu−

λ )dx

≤ 1

3
‖uλ‖2 +

∫

R2

1

6
g(uλ)uλ − G(uλ)dx

< lim inf
n→∞

(1

3
‖un‖2 +

∫

R2

1

6
g(un)un − G(un)dx

)
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= lim inf
n→∞

(
Iλ(un) − 1

6

〈
I ′
λ(un), un

〉)

= lim inf
n→∞ Iλ(un)

= mλ,

which is a contradiction. Namely, u±
n → u±

λ in H1
r (R2). Hence, we obtain that un →

uλ in H1
r (R2). This result and Lemma 2.6 imply uλ ∈ Mλ. Clearly, Iλ(uλ) = mλ. In

virtue of Lemma2.8, uλ is a critical point of Iλ. Then, uλ is a least energy sign-changing
radial solution of Eq. (1.1).

Furthermore, we prove that uλ changes sign exactly once. Following the arguments
in [4], we assume that uλ = u1 + u2 + u3 with ui �= 0, u1(x) ≥ 0, u2(x) ≤ 0 and
supp ui ∩ supp u j = ∅ for i �= j and i, j = 1, 2, 3. For σ > 0 given by (3.1), taking
κ ∈ (0, 1) such that κ‖v±‖ ≤ σ , we deduce

〈
I ′
λ(κv+ + tv−), κv+〉 ≥ 〈

I ′
λ(κv+), κv+〉 ≥ κ2

4
‖v+‖2 > 0 for every t ∈ (κ, 1),

(3.8)

〈
I ′
λ(sv

+ + κv−), κv−〉 ≥ 〈
I ′
λ(κv−), κv−〉 ≥ κ2

4
‖v−‖2 > 0 for every s ∈ (κ, 1).

(3.9)

Set v = u1 + u2, then v+ = u1 and v− = u2, from
〈
I ′
λ(uλ), v

+〉 = 0 it follows that

〈
I ′
λ(v), v+〉 = 〈

I ′
λ(uλ), v

+〉 − λ

∫

R2

|u1|2
|x |2

( ∫ |x |

0

r

2
|u3|2dr

)2
dx

− 2λ
∫

R2

|u1|2
|x |2

( ∫ |x |

0

r

2
|v|2dr

)( ∫ |x |

0

r

2
|u3|2dr

)
dx

− 2λ
∫

R2

v2

|x |2
( ∫ |x |

0

r

2
|u1|2dr

)( ∫ |x |

0

r

2
|u3|2dr

)
dx

− 2λ
∫

R2

|u3|2
|x |2

( ∫ |x |

0

r

2
|uλ|2dr

)( ∫ |x |

0

r

2
|u1|2dr

)
dx

< 0. (3.10)

Then, one obtains that, for any t ∈ (κ, 1),

〈
I ′
λ(v

+ + tv−), v+〉

= ‖v+‖2 + λt4B1(v) + 2λt2B2(v) + 3λB(v+) −
∫

R2
g(v+)v+dx

< ‖v+‖2 + λB1(v) + 2λB2(v) + 3λB(v+) −
∫

R2
g(v+)v+dx

= 〈
I ′
λ(v), v+〉

< 0. (3.11)
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Similar to the proof of (3.10), we have
〈
I ′
λ(v), v−〉

< 0, which implies that

〈
I ′
λ(sv

+ + v−), v−〉
< 0 for all s ∈ (κ, 1). (3.12)

Clearly, we have
(〈I ′

λ(sv
+ + tv−), sv+〉, 〈I ′

λ(sv
+ + tv−), tv−〉) �= (0, 0) on the

boundary of (κ, 1) × (κ, 1). Therefore, combining (3.8), (3.9), (3.11) and (3.12), by
[16, Lemma 2.4] we deduce that there exists a pair (α′, β ′) ∈ (κ, 1) × (κ, 1) such that
α′v+ + β ′v− ∈ Mλ. Besides, we claim that

Iλ(v) ≥ Iλ(sv
+ + tv−) + 1 − s6

6

〈
I ′
λ(v), v+〉 + 1 − t6

6

〈
I ′
λ(v), v−〉

. (3.13)

Indeed, from (g4), we deduce that, for all t ≥ 0 and ξ ∈ R,

G(tξ) − t6

6
g(ξ)ξ + 1

6
g(ξ)ξ − G(ξ) =

∫ 1

t

[g(ξ)

ξ5
− g(sξ)

(sξ)5

]
s5ξ6ds ≥ 0. (3.14)

Then, for all s, t ≥ 0, we infer

Iλ(v) = Iλ(sv
+ + tv−) + 1 − s6

6
〈I ′

λ(v), v+〉 + 1 − t6

6
〈I ′

λ(v), v−〉

+ λ(s6 − 3s2 + 2)

6
‖v+‖2 + λ(t6 − 3t2 + 2)

6
‖v−‖2

+ λ

6

(
s2 − t2

)2(
s2 + 2t2

)
B1(v) − λ

6

(
s2 − t2

)2(2s2 + t2
)
B2(v)

+
∫

R2
G(sv+) − s6

6
g(v+)v+ + 1

6
g(v+)v+ − G(v+)

+
∫

R2
G(tv−) − t6

6
g(v−)v− + 1

6
g(v−)v− − G(v−)

≥ Iλ(sv
+ + tv−) + 1 − s6

6
〈I ′

λ(v), v+〉 + 1 − t6

6
〈I ′

λ(v), v−〉.

Hence, based on (3.13), Lemmas 2.1 and 2.7, using the fact that 〈I ′
λ(v), v±〉 < 0, we

conclude that

mλ = Iλ(uλ) = Iλ(uλ) − 1

6

〈
I ′
λ(uλ), uλ

〉

= Iλ(v) + Iλ(u3) − 1

6

〈
I ′
λ(v), v

〉 − 1

6

〈
I ′
λ(u3), u3

〉

≥ sup
s,t≥0

(
Iλ(sv

+ + tv−) + 1 − s6

6

〈
I ′
λ(v), v+〉 + 1 − t6

6

〈
I ′
λ(v), v−〉)

+ Iλ(u3) − 1

6

〈
I ′
λ(v), v

〉 − 1

6

〈
I ′
λ(u3), u3

〉

≥ sup
s,t≥0

Iλ(sv
+ + tv−) + 1

3
‖u3‖2
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≥ mλ + 1

3
‖u3‖2,

which implies u3 = 0.
That is, uλ changes sign exactly once. Thus, Theorem 1.1 is proved. ��
Similar to [5], we prove that the infimum mλ has a minimax characterization

expressed by

mλ = inf
u∈Sλ

max
s,t≥0

Iλ(su
+ + tu−). (3.15)

In fact, for every u ∈ Mλ, fromLemma 2.7, we havemaxs,t≥0 Iλ(su++tu−) ≤ Iλ(u)

which implies infu∈Sλ
maxs,t≥0 Iλ(su+ + tu−) ≤ mλ. Additionally, for any u ∈ Sλ,

according to Lemma 2.3, there holds maxs,t≥0 Iλ(su+ + tu−) ≥ mλ. Hence, (3.15) is
true.

As in Sect. 2, we denote the energy functional and the sign-changing Nehari-
type manifold of Eq. (1.6) by I0 and M0, where I0 = Iλ|λ=0 and M0 = Mλ|λ=0.
Meanwhile, m0 = infu∈M0 I0(u) denotes the least energy of sign-changing solutions
to Eq. (1.6). Further, it is not difficult to verify I0 ∈ C1(H1

r (R2), R).

Proof of Theorem 1.2 Let {λn} ⊂ (0,+∞) such that λn
n→ 0, {uλn } ⊂ H1

r (R2) be
a sequence of least energy sign-changing solutions to Eq. (1.1), from Theorem 1.1 it
follows that uλn changes sign exactly once for every n ∈ N+.

Firstly, we claim that {uλn } is bounded in H1
r (R2). Indeed, for any w0 ∈ Sλ, by

(2.2), (2.6), (2.7) and (3.14) one obtains that, for any λ > 0,

max
s,t≥0

Iλ(sw
+
0 + tw−

0 )

= max
s,t≥0

[
s2

2
‖w+

0 ‖2 + s6

2
λB(w+

0 ) −
∫

R2
G(sw+

0 )dx + s2t4

2
λB1(w0)

+ t2

2
‖w−

0 ‖2 + t6

2
λB(w−

0 ) −
∫

R2
G(tw−

0 )dx + s4t2

2
λB2(w0)

]

≤ max
s,t≥0

[
s2

2
‖w+

0 ‖2 + s6

6

(
3λB(w+

0 ) + λB1(w0) + 2λB2(w0) −
∫

R2
g(w+

0 )w+
0 dx

)

+ t2

2
‖w−

0 ‖2 + t6

6

(
3λB(w−

0 ) + 2λB1(w0) + λB2(w0) −
∫

R2
g(w−

0 )w−
0 dx

)

+ 1

6

∫

R2
g(w+

0 )w+
0 − 6G(w+

0 )dx + 1

6

∫

R2
g(w−

0 )w−
0 − 6G(w−

0 )dx

− λ

6
(s2 − t2)2(s2 + 2t2)B1(w0) − λ

6
(s2 − t2)2(2s2 + t2)B2(w0)

]

≤ max
s,t≥0

[
s2

2
‖w+

0 ‖2 + s6

6

(
λH+(w0) −

∫

R2
g(w+

0 )w+
0 dx

)

+ t2

2
‖w−

0 ‖2 + t6

6

(
λH−(w0) −

∫

R2
g(w−

0 )w−
0 dx

)
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+ 1

6

∫

R2
g(w+

0 )w+
0 − 6G(w+

0 )dx + 1

6

∫

R2
g(w−

0 )w−
0 − 6G(w−

0 )dx

]

:= �0.

By (3.15), we get mλ ≤ �0 ∈ (0,+∞) for all λ > 0. In view of this fact, from
Lemma 2.1, we obtain

�0 ≥ mλn = Iλn (uλn ) − 1

6

〈
I ′
λn

(uλn ), uλn

〉 ≥ 1

3
‖uλn‖2,

which means that {uλn } is bounded in H1
r (R2). Then, there exists u0 ∈ H1

r (R2) such
that uλn⇀u0 in H1

r (R2), uλn → u0 in L p(R2) for any p > 6 and uλn (x) → u0(x)
a.e. in R

2 up to a subsequence.
Secondly, we prove that uλn → u0 in H1

r (R2) up to a subsequence, then u0 is a sign-
changing solution of Eq. (1.6) and changes sign exactly once. For any ϕ ∈ C∞

0 (R2), by
(3.5), we deduce that

{〈B ′(uλn ), ϕ〉} is bounded inR. Then, by Lebesgue’s dominated
convergence theorem, we get

〈
I ′
0(u0), ϕ

〉

=
∫

R2

(∇u0 · ∇ϕ + ωu0ϕ
)
dx −

∫

R2
g(u0)ϕdx

= lim
n→∞

(∫

R2

(∇uλn · ∇ϕ + ωuλnϕ
)
dx + λn

2

〈
B ′(uλn ), ϕ

〉 −
∫

R2
g(uλn )ϕdx

)

= lim
n→∞

〈
I ′
λn

(uλn ), ϕ
〉 = 0 for all ϕ ∈ C∞

0 (R2).

Since C∞
0 (R2) is dense in H1

r (R2), we conclude that

〈
I ′
0(u0), ϕ

〉 = 0 for all ϕ ∈ H1
r (R2). (3.16)

In view of (2.1), (3.4), (3.5) and the Hölder inequality, we obtain that, up to a subse-
quence,

‖uλn − u0‖2 = 〈
I ′
λn

(uλn ) − I ′
0(u0), uλn − u0

〉 − λn

2

〈
B ′(uλn ) − B ′(u0), uλn − u0

〉

+
∫

R2

(
g(uλn ) − g(u0)

)
(uλn − u0)dx → 0 as n → ∞.

It follows from (3.3) that {B(uλn )} is bounded. By (3.2) and Lemma 2.4, we obtain

I0(u0) = lim
n→∞ Iλn (uλn ) = lim

n→∞mλn ≥ C2 > 0. (3.17)

Hence, by (3.16) and (3.17), u0 �= 0 is a weak solution of Eq. (1.6). Similar to
(2.19), we obtain that ‖u±

λn
‖2 < 2Cε,p

∫

R2 |u±
λn

|pdx ≤ 2Cε,pSp‖u±
λn

‖p. Then,

(2Cε,p)
p

2−p S
2

2−p
p < |u±

λn
|pp. In addition, since {u±

λn
} is bounded in H1

r (R2), we obtain
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u±
λn

⇀u±
0 in H1

r (R2) and u±
λn

→ u±
0 in L p(R2) for any p > 6 up to a subsequence.

Then, we have |u±
0 |pp > 0, which implies u±

0 �= 0. Therefore, u0 is a radial sign-
changing solution of Eq. (1.6). It is clear that u0 changes sign exactly once.

Finally, we prove I0(u0) = m0. Repeating the discussion in Sect. 2, we may prove
that Eq. (1.1) has a least energy sign-changing radial solution when λ = 0. That is,
there exists z0 ∈ M0 such that I ′

0(z0) = 0 and I0(z0) = m0. Since 〈I ′
0(z0), z

±
0 〉 = 0,

we obtain
∫

R2 g(z
±
0 )z±0 dx > 1

2‖z±0 ‖2. We claim that H±(u) ≤ C7‖u‖6 for all u ∈
H1
r (R2). In fact, by the Hölder and Sobolev inequalities, for all u ∈ H1

r (R2), we get

( ∫ |x |
0

r
2u

2(r)dr
)2

|x |2 =
( ∫

B|x |
u2(y)
4π dy

)2

|x |2 ≤ C3‖u‖4 for all x ∈ R
2\{0}. (3.18)

From (3.18), we deduce B(u±) ≤ C3‖u±‖4 ∫

R2 |u±|2dx ≤ C4‖u‖6 for all u ∈
H1
r (R2). Similarly, we can prove that B1(u) ≤ C5‖u‖6 and B2(u) ≤ C6‖u‖6 for

all u ∈ H1
r (R2). Then, by (2.6) and (2.7), H±(u) ≤ C7‖u‖6 for all u ∈ H1

r (R2).
Let �1 = min

{
(2C7)

−1‖z+0 ‖2‖z0‖−6, (2C7)
−1‖z−0 ‖2‖z0‖−6

}
, for all large n, we get

∫

R2 λnH±(z0) − g(z±0 )z±0 dx < �1C7‖z0‖6 − 1
2‖z±0 ‖2 ≤ 0, which shows z0 ∈ Sλn .

For every large n, by Lemma 2.3, there exists a unique pair (sλn , tλn ) of positive
numbers such that sλn z

+
0 + tλn z

−
0 ∈ Mλn . We claim that {sλn } and {tλn } are bounded.

If not, without loss of generality, we may assume that limn→∞ sλn = +∞ up to a
subsequence. Using Lemma 2.4, (2.2), (2.6), (2.7) and (3.14), for n large enough, we
get

0 < Iλn (sλn z
+
0 + tλn z

−
0 )

= s2λn
2

‖z+0 ‖2 + s6λn
2

λn B(z+0 ) −
∫

R2
G(sλn z

+
0 )dx + s2λn t

4
λn

2
λn B1(z0)

+ t2λn
2

‖z−0 ‖2 + t6λn
2

λn B(z−0 ) −
∫

R2
G(tλn z

−
0 )dx + s4λn t

2
λn

2
λn B2(z0)

≤ s2λn
2

‖z+0 ‖2 + s6λn
6

(
λnH

+(z0) −
∫

R2
g(z+0 )z+0 dx

)

+ t2λn
2

‖z−0 ‖2 + t6λn
6

(
λnH

−(z0) −
∫

R2
g(z−0 )z−0 dx

)

+ 1

6

∫

R2
g(z+0 )z+0 − 6G(z+0 )dx + 1

6

∫

R2
g(z−0 )z−0 − 6G(z−0 )dx

< 0,

a contradiction. Hence, both {sλn } and {tλn } are bounded. Then, up to a subsequence,
there exist constants s′, t ′ ≥ 0 such that (sλn , tλn ) → (s′, t ′) as n → ∞. Since
sλn z

+
0 + tλn z

−
0 ∈ Mλn , we obtain

s2λn‖z+0 ‖2 + 3λns
6
λn
B(z+0 ) + λns

2
λn
t4λn B1(z0) + 2λns

4
λn
t2λn B2(z0)
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=
∫

R2
g(sλn z

+
0 )sλn z

+
0 dx,

t2λn‖z−0 ‖2 + 3λnt
6
λn
B(z−0 ) + 2λns

2
λn
t4λn B1(z0) + λns

4
λn
t2λn B2(z0)

=
∫

R2
g(tλn z

−
0 )tλn z

−
0 dx .

Then, we deduce from (g4) and 〈I ′
0(z0), z0〉 = 0 that (s′, t ′) equals (1, 1), (0, 0), (0, 1)

or (1, 0). If (s′, t ′) = (0, 0), by (3.17), we have 0 < I0(u0) = limn→∞ Iλn (uλn ) ≤
limn→∞ Iλn (sλn z

+
0 + tλn z

−
0 ) = 0, a contradiction. If (s′, t ′) = (0, 1), we get

I0(z0) ≤ I0(u0) = lim
n→∞ Iλn (uλn ) ≤ lim

n→∞ Iλn (sλn z
+
0 + tλn z

−
0 ) = I0(z

−
0 ).

Since I0(z0) = I0(z
+
0 ) + I0(z

−
0 ), we know I0(z

+
0 ) ≤ 0. Then, using the fact

〈I ′
0(z0), z0〉 = 0 and Lemma 2.1, we deduce 0 ≤ ∫

R2 g(z
+
0 )z+0 − 6G(z+0 )dx < 0,

a contradiction. Similarly, we can prove (s′, t ′) �= (1, 0). Hence, (s′, t ′) = (1, 1).
Then,

I0(z0) ≤ I0(u0) = lim
n→∞ Iλn (uλn ) ≤ lim

n→∞ Iλn (sλn z
+
0 + tλn z

−
0 ) = I0(z0),

which implies that u0 is a least energy sign-changing radial solution to equation (1.6).
Thus, we complete the proof of Theorem 1.2. ��
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