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Abstract
Let Kn − Ck denote the graph obtained from the complete graph Kn by deleting k
edges of a cycle Ck , that is, a nearly complete graph. In this paper, we completely
determine the structure of the sandpile group of Kn − Ck for 3 ≤ k ≤ n − 2.
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1 Introduction

The sandpile group is originated from theAbelian SandpileModel in statistical physics
[5]. In fact, the sandpile group pops up in many different fields under different names,
such as the critical group in the chip-firing game [2–4], the Picard group or the Jacobian
group in the divisor theory of graphs [1], the group of components on arithmetical
graphs [8], etc.

In [7], Lorenzini studied the structure of the sandpile group of a complete graph
with edges of two disjoint paths Pa and Pb deleted. He showed that if a+b = n−1 and
gcd(a, b) = 1, then S(Kn − Pa − Pb) is cyclic, and at the same time, he suggested
that the sandpile groups of Kn − Cn−1 and Kn − Cn are never cyclic but with the
problems open. Then, in 2011, Norine and Whalen [10] not only showed the other
direction of the first result is also true, but settled the case Kn − Cn−1 by completely
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determining the structure of its sandpile group. Motivated by the above two papers,
we shall consider the sandpile group of the graph Kn − Ck for 3 ≤ k ≤ n − 2 in this
paper.

Let G = (V , E) be a finite loopless graph with n vertices. Then, its Laplacian
matrix L(G) = D(G) − A(G), where D(G) = diag(d1, d2, . . . , dn) and A(G) are
the degree matrix and the adjacency matrix of G, respectively. Thinking of L(G) as a
linear map Z

n → Z
n , its cokernel has the form

coker L(G) = Z
n/L(G)Zn = Z ⊕ S(G),

where S(G) is the sandpile group on G in the sense of isomorphism.
For v ∈ V (G), we define the reduced Laplacian L̃v as the submatrix of L(G)

obtained by omitting the row and column corresponding to v. Then, it is well known
that for any v ∈ V (G),

S(G) ∼= Z
n−1/L̃vZ

n−1 = coker(L̃v).

That is, coker(L̃v) is independent of the choice of vertex v. Thus, we simply write L̃v

as L̃ .
Recall that two matrices A, B ∈ Z

m×n are (unimodular) equivalent (written
A ∼ B) [9] if there exist P ∈ GL(m,Z), Q ∈ GL(n,Z), such that B = PAQ. Equiv-
alently, B is obtained from A by a sequence of integer row and column operations that
are invertible over the ring Z of integers. For any square integer matrix A, it is equiva-
lent to a unique diagonal matrix S(A) = diag(s1, s2, . . . , sn) ( the Smith normal form)
whose entries are nonnegative and si divides si+1(i = 1, . . . , n−1). It can be seen eas-
ily that A ∼ B implies coker A ∼= coker B. So if the Smith normal form of the reduced
Laplacian L̃ is diag(s1, s2, . . . , sn−1), where 1 = s1 = · · · = sr−1 < sr ≤ · · · ≤ sn−1,
then the sandpile group of G

S(G) = Zsr ⊕ Zsr+1 ⊕ · · · ⊕ Zsn−1 ,

where Za = Z/aZ. sr , . . . , sn are called invariant factors of S(G), and μ(G) = n− r
is the minimum number of generators of S(G).

The rest of the paper is arranged as follows: In Sect. 2, we give several lemmas
which are needed for the main results. In Sect. 3, we determine the explicit structure
of the sandpile group of Kn − Ck ,(3 ≤ k ≤ n − 2). In Sect. 4, as applications of the
main results, we deduce more explicit results for the sandpile group of Kn − Ck for
k = 3, 4, 5, 6, 7 and prime k.

2 Preliminaries

In this section, we shall first give several lemmas.
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The Sandpile Group of a Family of Nearly Complete Graphs 627

Lemma 2.1 [9] Suppose that A is an n × n integer matrix, and its Smith normal form
is diag(s1, s2, . . . , sn). Then,

si = �i

�i−1
, i = 1, 2, . . . , n,

where �i (called i-th determinant divisor) is the greatest common divisor of the i × i
minors of A. By convention �0 := 1.

Now let ak(t), bk(t), ck(t) and dk(t) be four sequences satisfying the same lin-
ear recurrence relation: yk(t) = t yk−1(t) − yk−2(t) with initial values as follows,
respectively,

a0(t) = 1, a1(t) = t;
b0(t) = 2, b1(t) = t;
c0(t) = 1, c1(t) = t + 1;
d0(t) = 1, d1(t) = t − 1.

Solving the linear recurrence relations, it is easy to obtain that

ak(t) = 1√
t2 − 4

(λk+1
1 − λk+1

2 );
bk(t) = λk1 + λk2;
ck(t) = 1

t − 2
(λk1(λ1 − 1) + λk2(λ2 − 1));

dk(t) = 1

t + 2
(λk1(λ1 + 1) + λk2(λ2 + 1));

where

λ1 = t + √
t2 − 4

2
, λ2 = t − √

t2 − 4

2

are two roots of the characteristic equation x2 − t x + 1 = 0.

Lemma 2.2 For ak(t), bk(t), ck(t) and dk(t) as defined above, we have

(1) if k = 2m, then

{
a2m(t) = cm(t)dm(t);
a2m(t) + 1 = am(t)bm(t).

(2) if k = 2m − 1, then

{
a2m−1(t) = am−1(t)bm(t);
a2m−1(t) − 1 = cm−1(t)dm(t).
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(3)

tbm(t) − 2bm−1(t) = (t2 − 4)am−1(t);
tcm(t) − 2cm−1(t) = (t + 2)dm(t).

Proof Using the facts λ1λ2 = 1, λ1 + λ2 = t, λ1 − λ2 = √
t2 − 4. It is easy to check

the identities. �	
Note that if t is an integer, then ak(t), bk(t), ck(t) and dk(t) are integer sequences.

Let gcd(a, b) denote the greatest common divisor of a and b. Then, we have the
following results.

Lemma 2.3 Let t be an integer, then for any m > 1,

gcd(am(t), am−1(t)) = gcd(cm(t), cm−1(t)) = gcd(dm(t), dm−1(t)) = 1

and

gcd(bm(t), bm−1(t)) = gcd(2, t).

Proof We only need to notice that for any sequence xn satisfying xn = t xn−1 − xn−2,

gcd(xn, xn−1) = gcd(xn−1, xn−2) = · · · = gcd(x1, x0).

Thus, the results follow directly. �	
Using the fact ∣∣∣∣∣∣∣∣∣∣∣

t 1 0 · · · 0
1 t 1 · · · 0
0 1 t · · · 0
...

...
...

...

0 0 0 · · · t

∣∣∣∣∣∣∣∣∣∣∣
k×k

= ak(t)

for k ≥ 1, we obtain the following result.

Lemma 2.4 For k ≥ 3, let

Ak(t) =

⎛
⎜⎜⎜⎜⎜⎝

t 1 0 · · · 1
1 t 1 · · · 0
0 1 t · · · 0
...

...
...

...

1 0 0 · · · t

⎞
⎟⎟⎟⎟⎟⎠

k×k

then

det Ak(t) =
{

(t2 − 4)a2m−1(t), if k = 2m;
(t + 2)d2m(t), if k = 2m + 1.
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The Sandpile Group of a Family of Nearly Complete Graphs 629

Proof It is easy to see that

det Ak(t) = tak−1(t) − 2(ak−2(t) + (−1)k).

(1) If k = 2m, then by Lemma 2.2

det Ak(t) = ta2m−1(t) − 2(a2m−2(t) + 1)

= tam−1(t)bm(t) − 2am−1(t)bm−1(t))

= am−1(t)(tbm(t) − 2bm−1(t))

= (t2 − 4)a2m−1(t).

(2) If k = 2m + 1, then by Lemma 2.2 again

det Ak(t) = ta2m(t) − 2(a2m−1(t) − 1)

= tcm(t)dm(t) − 2cm−1(t)dm(t)

= dm(t)(tcm(t) − 2cm−1(t))

= (t + 2)d2m(t).

Now the proof is completed. �	

3 The Sandpile Group of Kn − Ck

After the preparatory work we have done in the above section, in this section, we
shall give the explicit structure of the sandpile group of the graph G = Kn − Ck

for 3 ≤ k ≤ n − 2. Let V (G) = {1, . . . , n}, by symmetry, we may assume that
d1 = d2 = · · · = dk = n − 3 and dk+1 = · · · = dn = n − 1. Then, the Laplacian
matrix of G has the form

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − 3 0 −1 · · · 0 −1 · · · −1
0 n − 3 0 · · · −1 −1 · · · −1

−1 0 n − 3 · · · −1 −1 · · · −1
...

...
...

...
...

...

0 −1 −1 · · · n − 3 −1 · · · −1
−1 −1 −1 · · · −1 n − 1 · · · −1
...

...
...

...
...

...

−1 −1 −1 · · · −1 −1 · · · n − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

Deleting the last row and column from L to obtain the reduced Laplacian matrix, L̃ of
G. For L̃ , first subtracting the last row of L̃ from all other rows, and then subtracting
the last column from all other columns. We get
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L̃ ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − 2 1 0 · · · 1 0 · · · 0 0
1 n − 2 1 · · · 0 0 · · · 0 0
0 1 n − 2 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

1 0 0 · · · n − 2 0 · · · 0 0
0 0 0 · · · 0 n · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 0 · · · n 0
0 0 0 · · · 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n−1)×(n−1)

=
(
Ak(n − 2) 0

0 B

)
,

where

B =

⎛
⎜⎜⎜⎝
n · · · 0 0
...

...
...

0 · · · n 0
0 · · · 0 1

⎞
⎟⎟⎟⎠

(n−1−k)×(n−1−k)

.

That is,

S(Kn − Ck) ∼= (Zn)
n−k−2 ⊕ coker(Ak(n − 2)). (1)

Remark Note that Kn − Ck can be viewed as the join of the graph Kk − Ck with the
complete graph Kn−k . The structure of the sandpile group of this family of graphs
had been addressed in [6,11]. (1) is just the same result of Theorem 1 (1) in [6]. In
the following, we first determine the explicit structure of coker(Ak(n−2)). Then, we
determine all invariant factors of S(Kn − Ck).

Theorem 3.1 For the Smith normal form of Ak(n − 2), we have

Ak(n − 2) =

⎛
⎜⎜⎜⎜⎜⎝

n − 2 1 0 · · · 1
1 n − 2 1 · · · 0
0 1 n − 2 · · · 0
...

...
...

...

1 0 0 · · · n − 2

⎞
⎟⎟⎟⎟⎟⎠

k×k

∼

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · s1 0
0 0 · · · 0 s2

⎞
⎟⎟⎟⎟⎟⎠

k×k

where

s1 =
{
am−1(n − 2)gcd(2, n), if k = 2m;
dm(n − 2), if k = 2m + 1.

s2 =
{

n(n−4)
gcd2(2,n)

s1, if k = 2m;
ns1, if k = 2m + 1.

Proof Note that there exists a (k − 2) × (k − 2) minor in Ak(n − 2) with value 1
(deleting the first and the k−th columns, the k − 1-th and k-th rows, respectively). So
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The Sandpile Group of a Family of Nearly Complete Graphs 631

�1 = · · · = �k−2 = 1. Also �k = det Ak(n − 2) is given in Lemma 2.4. The only
remain is to compute �k−1. Since Ak(n − 2) is a circulant matrix, so does its adjoint
matrix ad j(Ak(n − 2)). Hence,

�k−1 = gcd(Ai j ; i, j = 1, . . . , k) = gcd(A1 j ; j = 1, . . . , k),

where Ai j (1 ≤ j ≤ k) is the algebraic cofactor of i j−element of Ak(n − 2). For
simplicity, let (x1, x2, . . . , xk) = (A11, A12, . . . , A1k). Note that xi = xk+2−i (i =
2, 3, . . . , k) since Ak(n − 2) is a symmetric circulant matrix. From

⎛
⎜⎜⎜⎜⎜⎝

n − 2 1 0 · · · 1
1 n − 2 1 · · · 0
0 1 n − 2 · · · 0
...

...
...

...

1 0 0 · · · n − 2

⎞
⎟⎟⎟⎟⎟⎠

k×k

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
x3
...

xk

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

det Ak(n − 2)
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ ,

we obtain that

det Ak(n − 2) = (n − 2)x1 + 2x2
x1 + (n − 2)x2 + x3 = 0 ⇒ x3 = −x1 − (n − 2)x2
x2 + (n − 2)x3 + x4 = 0 ⇒ x4 = −x2 − (n − 2)x3
...

xk−2 + (n − 2)xk−1 + xk = 0 ⇒ xk = −xk−2 − (n − 2)xk−1.

That is, x3, . . . , xk can be represented linearly by x1, x2.
So

�k−1 = gcd(x1, x2, . . . , xk) = gcd(x1, x2).

x1 = A11 =

∣∣∣∣∣∣∣∣∣

n − 2 1 · · · 0
1 n − 2 · · · 0
...

...
...

0 0 · · · n − 2

∣∣∣∣∣∣∣∣∣
(k−1)×(k−1)

= ak−1(n − 2)

x2 = A12 = A1k = (−1)k+1 ·

∣∣∣∣∣∣∣∣∣

1 n − 2 1 · · · 0
0 1 n − 2 · · · 0
...

...
...

...

1 0 0 · · · 1

∣∣∣∣∣∣∣∣∣
(k−1)×((k−1)

= (−1)k+1 · (1 + (−1)kak−2(n − 2))

= (−1)k+1 − ak−2(n − 2),
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632 Y. Zhou, H. Chen

So by Lemma 2.1,

⎧⎨
⎩
s1 = �k−1 = gcd(ak−1(n − 2), ak−2(n − 2) + (−1)k);
s2 = det Ak(n − 2)

s1
.

(1) If k = 2m, then by Lemmas 2.2, 2.3 and 2.4

s1 = gcd(a2m−1(n − 2), a2m−2(n − 2) + 1)

= gcd(am−1(n − 2)bm(n − 2), am−1(n − 2)bm−1(n − 2))

= am−1(n − 2)gcd(bm(n − 2), bm−1(n − 2))

= am−1(n − 2)gcd(2, n − 2)

= am−1(n − 2)gcd(2, n),

s2 = (n2 − 4n)a2m−1(n − 2)

am−1(n − 2)gcd(2, n)

= n(n − 4)

gcd2(2, n)
s1.

(2) If k = 2m + 1, then by Lemmas 2.2, 2.3 and 2.4

s1 = gcd(a2m(n − 2), a2m−1(n − 2) − 1)

= gcd(cm(n − 2)dm(n − 2), cm−1(n − 2)dm(n − 2))

= dm(n − 2)gcd(cm(n − 2), cm−1(n − 2))

= dm(n − 2),

s2 = nd2m(n − 2)

dm(n − 2)

= ns1.

�	
In order to give all invariant factors of S(Kn − Ck), we need the following result

about ak(n − 2).

Lemma 3.2

ak(n − 2) = n fk(n) + (−1)k(k + 1),

where fk(n)’s are all integers.

Proof We prove the result by induction on k.
First a0(n − 2) = 1, a1(n − 2) = n − 2, so f0(n) = 0, f1(n) = 1 are integers.
Now suppose ak−1(n − 2) = n fk−1(n) + (−1)k−1k, ak−2(n − 2) = n fk−2(n) +

(−1)k−2(k − 1), where fk−1(n) and fk−2(n) are integers. Then, by ak(n − 2) =
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The Sandpile Group of a Family of Nearly Complete Graphs 633

(n − 2)ak−1(n − 2) − ak−2(n − 2),

ak(n − 2) = (n − 2)(n fk−1(n) + (−1)k−1k) − (n fk−2(n) + (−1)k−2(k − 1))

= n((n − 2) fk−1(n) − fk−2(n) + (−1)k−1k) + (−1)k2k − (−1)k(k − 1)

= n((n − 2) fk−1(n) − fk−2(n) + (−1)k−1k) + (−1)k(k + 1)

= n fk(n) + (−1)k(k + 1),

where fk(n) = (n − 2) fk−1(n) − fk−2(n) + (−1)k−1k is an integer since fk−1(n)

and fk−2(n) are integers. This completes the proof. �	
Now we are ready to give the main result.

Theorem 3.3 For the nearly complete graph G = Kn −Ck (3 ≤ k ≤ n − 2), we have

(1) if k = n − 2, then

S(G) ∼= Zs1 ⊕ Zs2;

(2) if 3 ≤ k ≤ n − 3, then

S(G) ∼=

⎧⎪⎪⎨
⎪⎪⎩
Zn ⊕ · · · ⊕ Zn︸ ︷︷ ︸

n−3−k

⊕Zns1 ⊕ Zs2 , if gcd(n, k) = 1;

Zi ⊕ Zn ⊕ · · · ⊕ Zn︸ ︷︷ ︸
n−3−k

⊕Z n
i ·s1 ⊕ Zs2 , if gcd(n, k) = i, (1 < i ≤ k);

where

s1 =
{
am−1(n − 2)gcd(2, n), if k = 2m;
dm(n − 2), if k = 2m + 1;

and

s2 =
{

n(n−4)
gcd2(2,n)

s1, if k = 2m;
ns1, if k = 2m + 1.

Proof By Theorem 3.1, we have

L̃ ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
s1

s2
n

. . .

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n−1)×(n−1)

.
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Obviously, S(G) ∼= Zs1 ⊕ Zs2 for k = n − 2.
For 3 ≤ k ≤ n − 3, let

A =

⎛
⎜⎜⎜⎜⎜⎝

s1
s2

n
. . .

n

⎞
⎟⎟⎟⎟⎟⎠

(n−k)×(n−k)

.

Note that both s1 and n divide s2, so it is not difficult to get that

�i (A) = ni−1gcd(s1, n), i = 1, . . . , n − k − 2;
�n−k−1(A) = nn−k−2s1, �n−k(A) = nn−k−2s1s2.

Now we shall show that gcd(s1, n) = gcd(n, k). First, for k = 2m, by Lemma 3.2

s1 = am−1(n − 2)gcd(2, n)

= (n fm−1(n) + (−1)m−1m)gcd(2, n)

= n fm−1(n)gcd(2, n) + (−1)m−1gcd(2, n)m,

so gcd(s1, n) = gcd(gcd(2, n)m, n) = gcd(2m, n) = gcd(n, k). Then, for k =
2m + 1, by Lemma 3.2 again

s1 = dm(n − 2)

= am(n − 2) − am−1(n − 2)

= n fm(n) + (−1)m(m + 1) − (n fm−1(n) + (−1)m−1m)

= n( fm(n) − fm−1(n)) + (−1)m(2m + 1),

so gcd(s1, n) = gcd(2m + 1, n) = gcd(n, k). That is, for any case, gcd(s1, n) =
gcd(n, k).

So by Lemma 2.1, we have

A ∼ diag

(
gcd(n, k), n, . . . , n,

n

gcd(n, k)
· s1, s2

)
.

Now the results about S(G) follow directly. �	
Recall that the minimum number of generators of the sandpile group S(G) is

denoted by μ(G). From the above theorem, we immediately derive the following
corollary.

Corollary 3.4 Let G = Kn − Ck (3 ≤ k ≤ n − 2), we have

(1) if k = n − 2, then μ(G) = 2;
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The Sandpile Group of a Family of Nearly Complete Graphs 635

(2) if 3 ≤ k ≤ n − 3, then

μ(G) =
{
n − k − 1, if gcd(n, k) = 1;
n − k, if gcd(n, k) = i, (1 < i ≤ k).

Remark It is worthy of pointing out that our method can be used to determine the
sandpile group of any graph as Kn − ∪t

i=1Cki , where Cki are mutual disjoint cycles
and satisfy 3 ≤ k1 + k2 + · · · + kt ≤ n − 2. It is also not difficult to deduce that the
sandpile groups of these graphs are never cyclic.

4 More Explicit Results for Some Special k

In this section, as applications of Theorem 3.3, we give more explicit results for the
sandpile group of Kn − Ck for k = 3, 4, 5, 6, 7 and prime k.

Theorem 4.1 For the nearly complete graph G = Kn − C3, we have

(1) if G = K5 − C3, then

S(G) ∼= Z2 ⊕ Z10;

(2) if n ≥ 6, then

S(G) ∼=
{
Z3 ⊕ (Zn)

n−6 ⊕ Zp(n−3) ⊕ Zn(n−3), if n = 3p;
(Zn)

n−6 ⊕ (Zn(n−3))
2, if n = 3p + 1 or 3p + 2.

Theorem 4.2 For the nearly complete graph G = Kn − C4, we have

(1) if G = K6 − C4, then

S(G) ∼= Z8 ⊕ Z24;

(2) if n ≥ 7, then

S(G) ∼=
⎧⎨
⎩
Z4 ⊕ (Zn)

n−7 ⊕ Z2p(n−2) ⊕ Z2p(n−2)(n−4), if n = 4p;
Z2 ⊕ (Zn)

n−7 ⊕ Zn(n−2) ⊕ Z(2p+1)(n−2)(n−4), if n = 4p + 2;
(Zn)

n−7 ⊕ Zn(n−2) ⊕ Zn(n−2)(n−4), if n = 4p + 1 or 4p + 3.

Theorem 4.3 For the nearly complete graph G = Kn − C5, we have

(1) if G = K7 − C5, then

S(G) ∼= Z19 ⊕ Z133;

(2) if n ≥ 8, then

S(G) ∼=
{
Z5 ⊕ (Zn)

n−8 ⊕ Zp(n−2)(n−3)−p ⊕ Zn(n−2)(n−3)−n, if n = 5p;
(Zn)

n−8 ⊕ (Zn(n−2)(n−3)−n)
2, otherwise.
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Theorem 4.4 For the nearly complete graph G = Kn − C6, we have

(1) if G = K8 − C6, then

S(G) ∼= Z70 ⊕ Z560;

(2) if n ≥ 9, then

S(G) ∼=

⎧⎪⎪⎨
⎪⎪⎩
Z6 ⊕ (Zn)

n−9 ⊕ Z2p(n−1)(n−3) ⊕ Z3p(n−1)(n−3)(n−4), if n = 6p;
Z2 ⊕ (Zn)

n−9 ⊕ Zn(n−1)(n−3) ⊕ Z(3p+1)(n−1)(n−3)(n−4), if n = 6p + 2;
Z3 ⊕ (Zn)

n−9 ⊕ Z(2p+1)(n−1)(n−3) ⊕ Zn(n−1)(n−3)(n−4), if n = 6p + 3;
(Zn)

n−9 ⊕ Zn(n−1)(n−3) ⊕ Zn(n−1)(n−3)(n−4), if n = 6p + 1 or 6p + 5.

Theorem 4.5 For the nearly complete graph G = Kn − C7, we have

(1) if G = K9 − C7, then

S(G) ∼= Z281 ⊕ Z2529;

(2) if n ≥ 10, then

S(G) ∼=
{
Z7 ⊕ (Zn)

n−10 ⊕ Zp(n−1)(n−2)(n−4)+p ⊕ Zn(n−1)(n−2)(n−4)+n, if n = 7p;
(Zn)

n−10 ⊕ (Zn(n−1)(n−2)(n−4)+n)
2, otherwise.

In fact, for any odd prime k = 2m + 1, we have the following result.

Theorem 4.6 For the nearly complete graph G = Kn −Ck. If k = 2m + 1 is a prime,
then

(1) if G = Kk+2 − Ck, then

S(G) ∼= Zdm (k) ⊕ Z(k+2)dm(k);

(2) if n ≥ k + 3, then

S(G) ∼=
{
Zk ⊕ (Zn)

n−k−3 ⊕ Zpdm (n−2) ⊕ Zndm(n−2), if n = kp;
(Zn)

n−k−3 ⊕ (Zndm(n−2))
2, otherwise.
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