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Abstract

Let K, — Ci denote the graph obtained from the complete graph K, by deleting k
edges of a cycle Cy, that is, a nearly complete graph. In this paper, we completely
determine the structure of the sandpile group of K,, — Cy for3 <k <n — 2.
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1 Introduction

The sandpile group is originated from the Abelian Sandpile Model in statistical physics
[5]. In fact, the sandpile group pops up in many different fields under different names,
such as the critical group in the chip-firing game [2—4], the Picard group or the Jacobian
group in the divisor theory of graphs [1], the group of components on arithmetical
graphs [8], etc.

In [7], Lorenzini studied the structure of the sandpile group of a complete graph
with edges of two disjoint paths P, and P} deleted. He showed thatifa+b = n—1 and
ged(a, b) = 1, then S(K, — P, — Pp) is cyclic, and at the same time, he suggested
that the sandpile groups of K, — C,,—1 and K,, — C, are never cyclic but with the
problems open. Then, in 2011, Norine and Whalen [10] not only showed the other
direction of the first result is also true, but settled the case K, — C,,—1 by completely
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determining the structure of its sandpile group. Motivated by the above two papers,
we shall consider the sandpile group of the graph K,, — Cy for 3 < k < n — 2 in this
paper.

Let G = (V, E) be a finite loopless graph with n vertices. Then, its Laplacian
matrix L(G) = D(G) — A(G), where D(G) = diag(dy, da, ...,d,) and A(G) are
the degree matrix and the adjacency matrix of G, respectively. Thinking of L(G) as a
linear map Z" — 7, its cokernel has the form

cokerL(G) = 7"/ L(G)Z" = Z.&® S(G),

where S(G) is the sandpile group on G in the sense of isomorphism.

For v € V(G), we define the reduced Laplacian f,v as the submatrix of L(G)
obtained by omitting the row and column corresponding to v. Then, it is well known
that for any v € V(G),

S(G) = 7"V JL,Z" " = coker(Ly).

That is, coker(I:U) is independent of the choice of vertex v. Thus, we simply write iv
as L.

Recall that two matrices A, B € Z™*" are (unimodular) equivalent (written
A ~ B)[9]ifthereexist P € GL(m,Z),Q € GL(n, Z),suchthat B = PAQ.Equiv-
alently, B is obtained from A by a sequence of integer row and column operations that
are invertible over the ring Z of integers. For any square integer matrix A, it is equiva-

lent to a unique diagonal matrix S(A) = diag(sy, s2, .. ., S») ( the Smith normal form)
whose entries are nonnegative and s; divides s;+1(i = 1, ..., n—1).Itcanbe seen eas-
ily that A ~ B implies coker A = coker B. So if the Smith normal form of the reduced
Laplacianf,isdiag(sl, 82, ..y 8p—1),Wherel =51 =+ =5, 1 <5, <---<s$,_1,

then the sandpile group of G
S(G) = Zsr @ ZSV+1 DD an,l ’

where Z, = Z/aZ. s,, ..., s, are called invariant factors of S(G), and u(G) =n—r
is the minimum number of generators of S(G).

The rest of the paper is arranged as follows: In Sect. 2, we give several lemmas
which are needed for the main results. In Sect. 3, we determine the explicit structure
of the sandpile group of K,, — C¢,(3 < k < n — 2). In Sect. 4, as applications of the
main results, we deduce more explicit results for the sandpile group of K,, — Cy for
k=3,4,5,6,7 and prime k.

2 Preliminaries

In this section, we shall first give several lemmas.
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Lemma 2.1 [9] Suppose that A is an n x n integer matrix, and its Smith normal form
is diag(sy, $2, ..., Sp). Then,

A;

where A; (called i-th determinant divisor) is the greatest common divisor of the i X i
minors of A. By convention Ag 1= 1.

Now let ay (), br(t), cx(t) and di(t) be four sequences satisfying the same lin-
ear recurrence relation: yi (1) = tyx—1(t) — yr—2(¢) with initial values as follows,
respectively,

ap(t) =1, ai(t) =t,
bo(t) = 2, bi(t) =t;
co()y=1, c1(t)=t+1;
do(t)y=1, di(t)=1t-1.

Solving the linear recurrence relations, it is easy to obtain that

ar () = O At

1
Vi2 —4
bi(r) = 2K + 24

1 k k

cr(t) = :(M(M — D+ 21502 = 1);
1

di(t) = =5 ({01 + D+ 23024 D);

where

t+ 12 —4 bl 12 —4
=~ 2=~

A
! 2 2

are two roots of the characteristic equation x> — rx + 1 = 0.

Lemma 2.2 For ay(t), bi(t), cx(t) and di(t) as defined above, we have
(1) if k = 2m, then

am () = cm(t)dp (1);
axm (1) + 1 = ap ()b ().

() ifk =2m — 1, then

Am—1(t) = am—1()by (1);
am—1() — 1 = cu_1(1)dp (1).
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3

thy (1) — 2by—1(t) = (t* — B)ap 1 (1);
tem(t) — 2Cm_1(t) = (t + 2)dp (1).

Proof Using the facts AjAy = 1, A1 + Ay =1, A — Ay = +/t2 — 4. It is easy to check
the identities. O

Note that if 7 is an integer, then ay (¢), by (¢), cx(¢) and di () are integer sequences.
Let gcd(a, b) denote the greatest common divisor of @ and b. Then, we have the
following results.

Lemma 2.3 Let t be an integer, then for any m > 1,

ged(am (1), am—1(1)) = ged(cm (1), cm—1(1)) = ged(dm (1), dp-1(1)) = 1

and

ged (b (1), by—1(1)) = ged (2, 1).

Proof We only need to notice that for any sequence x,, satisfying x, = tx,_1 — x,_2,

ged(xp, Xp—1) = ged(Xp—1, Xp—2) = -+ = ged (x1, x0).
Thus, the results follow directly. O
Using the fact
.0
.0
0l =g
000---1{, .

for k > 1, we obtain the following result.
Lemma 2.4 Fork > 3, let

t10---
1¢1---0

Ar(r) = 01¢---0

—_—

100---¢

kxk
then
det Ay (1) = @ _4)ar2n—1(t)v if k=2m;
HKO=0 +2d2 ), k= om .
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Proof 1t is easy to see that
det Ag (1) = tag—1 (1) = 2(ar—2(t) + (= 1)).
(1) If k = 2m, then by Lemma 2.2

det Ag(t) = tasm—1(t) — 2(azm—2(t) + 1)
= tam—1 (Db (t) — 2am—1(1)by—1(1))
= m—1() (b (1) — 2by—1 (1))
= (> —daZ_ ).

(2) If k = 2m + 1, then by Lemma 2.2 again

det Ag (1) = taom (1) — 2(azm—1(t) — 1)
= 1em()dm (1) — 2¢m—1(t)dp (1)
= dp (1) (tcm (1) — 2¢m—1(1))
= (t +2)d2(1).

Now the proof is completed. O

3 The Sandpile Group of K,, — Cj

After the preparatory work we have done in the above section, in this section, we
shall give the explicit structure of the sandpile group of the graph G = K, — Ci
for3 <k <n-—2 Let V(G) = {l,...,n}, by symmetry, we may assume that
di=dy=---=dy =n—3and dyy; = --- = d, = n — 1. Then, the Laplacian
matrix of G has the form

n-3 0 -1 .- 0 —1 - —1
0 n—=3 0 -+ —1 —1 - —1
-1 0 n—=3- =1 —1 -+ —1
E=1 "0 1 -1 .on=3 -1 ... 21
-1 =1 =1 «+ =1 n—=1--- —1
-1 =1 =1 -« =1 =1 ---n—1

nxn

Deleting the last row and column from L to obtain the reduced Laplacian matrix, L of
G. For L, first subtracting the last row of L from all other rows, and then subtracting
the last column from all other columns. We get

@ Springer



630 Y.Zhou, H. Chen

n—2 1 O --- 1 0---00
1 n=2 1 -+ 0 0---00
0 1 n-2 0 0---00
I~ 1 0 0 ---n=20---00 =<Ak(n0—2)g)’
0 0 0 0 0---1n0
0 0 0 0 0---01 (n—1)x(n—1)
where
n---00
B=|: .
0---n0
0 01) 0 Cyxm—1-n
That is,
S(Ky — Cr) = (Zy)" "2 @ coker (Ax(n — 2)). 1)

Remark Note that K,, — Cy can be viewed as the join of the graph Ky — Cy with the
complete graph K, _i. The structure of the sandpile group of this family of graphs
had been addressed in [6,11]. (1) is just the same result of Theorem 1 (1) in [6]. In
the following, we first determine the explicit structure of coker (Ax(n —2)). Then, we
determine all invariant factors of S(K,, — Cy).

Theorem 3.1 For the Smith normal form of Ax(n — 2), we have

n—2 1 o --- 1 10---00

1 n—2 1 --- 0 01---00

Ak(n—2)= 0 1 n—2-.--. 0 ~ D Do
: : : 00---51 0

kxk 00--- 082/,

where

E {am_l(n —2)ged(2,n), if k =2m;
1 fr—

dm(n —2), if k=2m+1.
n(n—4) . _ .
5 = | gearamst  Fk=2m;
nsi, if k=2m+1.

Proof Note that there exists a (k — 2) x (k — 2) minor in Ay (n — 2) with value 1
(deleting the first and the k—th columns, the k — 1-th and k-th rows, respectively). So
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Al == Ag_2 = 1. Also Ay = det Ay (n — 2) is given in Lemma 2.4. The only
remain is to compute Ax_p. Since Ax(n — 2) is a circulant matrix, so does its adjoint
matrix adj(Ax(n — 2)). Hence,

Apoy =ged(Aijii j=1,....k)=ged(Aij; j=1,...,k),

where A;j(1 < j < k) is the algebraic cofactor of ij—element of Ag(n — 2). For

simplicity, let (x1, x2,...,xx) = (A11, A12, ..., A1x). Note that x; = xp40—;( =
2,3,...,k)since Ag(n — 2) is a symmetric circulant matrix. From
n—2 1 0o --- 1 X1 det A (n — 2)
1 n—-2 1 --- 0 X3 0

0 1 n—-2--- 0 x3 | — 0
Xk 0
we obtain that

detAry(n —2) = (n—2)x1 +2x;
X1+ =2x+x3=0=x3=—x1—n—-2)x
X+ M —=2x3+x4=0=>x4=—x— (n—2)x3

Xp2+ M —=Dxp1 +x=0= xp = —xp2 — (0 — 2)xp—1.

That is, x3, .. ., xx can be represented linearly by x1, x3.
So

Ax—1 = ged(x1, x2, ..., xk) = ged(xq, x2).
n-2 1 --- 0

1 n—-2--- 0
xp=An=| . : : =ap_1(n—2)

0 0 o n =204 g
1ln—-—2 1 -.-0
ol 0 n—2---0
x2=A12=A1k=(_1)+': : : :
1 0 0o .--1
= (=D (1 + (= Drag_a(n — 2))
= (D" — g —2),

(k=1)x ((k—1)
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So by Lemma 2.1,

51 = Mgt = ged(ag—1(n —2), ag—2(n — 2) + (= DF);
_ det Ax(n —2)
- . .

52
(1) If kK = 2m, then by Lemmas 2.2, 2.3 and 2.4

s1 = ged(aom—1(n = 2), azm—2(n —2) + 1)
= ged(am—1(n — 2)by(n — 2), am—1(n — 2)by—1(n —2))
=au—1(n —2)gcd(by(n —2), by—_1(n — 2))
=au—1(n —2)ged(2,n —2)
=a,—1(n —2)gcd(2,n),
(n*— 4n)ar2nfl(n —2)
am—1(n —2)ged(2, n)
nn —4)
= ey

sy =

(2) If k = 2m + 1, then by Lemmas 2.2, 2.3 and 2.4

s1 = ged(aym(n —2), aam—1(n —2) — 1)
= ged(cn(n — 2)dy(n —2), cu—1(n — 2)dy (n — 2))
=dn(n —2)gcd(cn(n —2), cp—1(n — 2))

=dpy(n —2),

nd,%l(n —2)

s = —"—-

dy(n—2)
=nsi.

]

In order to give all invariant factors of S(K,, — Cx), we need the following result
about a;(n — 2).

Lemma 3.2
ar(n = 2) = nfe() + (=D k + 1),
where fi.(n)’s are all integers.
Proof We prove the result by induction on k.
Firstag(n —2) = 1,a1(n —2) =n — 2,50 fo(n) =0, fi(n) = 1 are integers.

Now suppose ax—1(n —2) = nfi—1(n) + (=D "k, ar_o(n — 2) = nfi_a(n) +
(=D 2(k — 1), where fi_i(n) and fy_(n) are integers. Then, by ax(n — 2) =
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(n —2)ax—1(n — 2) —ap_2(n —2),

ar(n —2) = (n — 2)(nfi—1(n) + (=D k) — (nfca(n) + (=D* 2k — 1))

n((n —2) fie1(n) — frea(m) + (D0 + (=D*2k — (=D (k — 1)
n((n —2) fio1(n) — fiea(n) + (=D 1) + (=¥ (k + 1)

nfi(n) + (=D (k + 1),

where fr(n) = (n — 2) fr—1(n) — fr—2(n) + (—1)k’1k is an integer since fr_1(n)
and fr_»(n) are integers. This completes the proof. O

Now we are ready to give the main result.
Theorem 3.3 For the nearly complete graph G = K, — Cy (3 < k < n —2), we have
(1) ifk =n — 2, then

S(G) = Zy, @ Ly,;

2) if3 <k <n-—23, then

Ly ® - B Ly ®Lys, ® ZLs,, if ged(n, k) = 1;
~—————
S(G) = no3k
Li ®Ln ® - ® Ly ®Ln.g, ®ZLy,, if ged(n, k) =i,(1 <i <k);
———™ !
n—3—k
where
= am—1(n —2)ged2,n), if k=2m;
"= duin—2), if k=2m+1;
and

nn—4) . _ .
5y = { ged?@m®l ’f k= 2m;
nsi, if k=2m+1.

Proof By Theorem 3.1, we have

1

52

) —1xm-1)
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Obviously, S(G) = Z;, ® Zs, fork =n — 2.
For3 <k <n-—3,let

) =ty > (n—k)

Note that both s; and # divide s», so it is not difficult to get that

Ai(A) =n'"lged(s1,n), i=1,....n—k—2;
Apk—1(A) =" 251, Ayg(A) = n"F 255,

Now we shall show that gcd(sy, n) = ged(n, k). First, for k = 2m, by Lemma 3.2

st =am—1(n —2)gcd(2, n)
= (0fm-1(n) + (=1)""'m)gcd (2, n)
= nfp-1(n)ged(2,n) + (=1)" "' ged(2, mym,
so ged(sy,n) = ged(ged(2,n)ym,n) = ged(2m,n) = ged(n, k). Then, for k =
2m + 1, by Lemma 3.2 again
s1=dn(n —2)
=aun —2) —ap-1(n —2)
=nfu(m) + (=D"™(m + 1) — (nfy—1(0) + (=" 'm)
=n(fu(n) = fn—1(m) + (=D"2m + 1),
so ged(sy,n) = ged(2m + 1,n) = gecd(n, k). That is, for any case, gcd(sy, n) =

ged(n, k).
So by Lemma 2.1, we have

A ~ diag (gcd(n,k),n, ..., m ~s1,sz>.

Now the results about S(G) follow directly. O

Recall that the minimum number of generators of the sandpile group S(G) is
denoted by u(G). From the above theorem, we immediately derive the following
corollary.

Corollary 3.4 Let G = K, — Cy 3 <k <n —2), we have
(1) ifk =n—2, then n(G) = 2;
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2) if3 <k <n-—3, then

_fn—k-1, if ged(n, k) =1;
we) = {n—k, if ged(n, k) =i, (1 <i <k).

Remark 1t is worthy of pointing out that our method can be used to determine the
sandpile group of any graph as K, — Ulecki, where Cy, are mutual disjoint cycles
and satisfy 3 < k1 + ko + - - - + k; < n — 2. It is also not difficult to deduce that the
sandpile groups of these graphs are never cyclic.

4 More Explicit Results for Some Special k

In this section, as applications of Theorem 3.3, we give more explicit results for the
sandpile group of K, — Cy for k = 3,4,5, 6,7 and prime k.

Theorem 4.1 For the nearly complete graph G = K,, — C3, we have
(1) if G = K5 — C3, then

S(G) = Zy ® Zo:;
(2) ifn > 6, then

73 ® (Zn)" ® @ Zpu-3) ® Zyu—3), if n=3p;

SO = { (Zn)" ™0 & (Zn(n—3)*, if n=3p+1lor3p+2.

Theorem 4.2 For the nearly complete graph G = K,, — C4, we have
(1) if G = Kg — Cy, then

S(G) = Zg ® Zoa;

(2) ifn =17, then

Za ® (Zn)""" @ Zopm—2) ® Zopmn—2)n—4)» if n=4p;
S(G) =14 Zo ® (Zp)"" @ Znn—2) ® Zop+yn—2(n—t),  if n=4p+2;
(Z)" 7" @ Znn-2) ® Zn(n—2)(n—4)» if n=4p+1oré4p+3.

Theorem 4.3 For the nearly complete graph G = K,, — Cs, we have
(1) if G = K7 — Cs, then

S(G) = Z19 ® Zq33;
(2) ifn = 8, then

Zs ® (Zn)n_g @ Zp(n—2)(n—3)—p 57 Zn(n—2)(n—3)—m if n=>5p;

S(G) = { Zn)"™8 ® Lnn—2)(n—3)-n)*+ otherwise.
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Theorem 4.4 For the nearly complete graph G = K,, — Cg, we have
(1) if G = Kg — Cg, then

S(G) = Z70 @ Zseo:
(2) ifn > 9, then

Zs @ (Zn)"™° ® Zapi—1)n—3) B Lap(—1)(n—3)(n—4)» if n=6p;

Zo @ (Zn)"™° @ Zntu—1yn—3) ® ZGp+1)(n— -3 u—dys  if n=6p+2;

Z3 ® (Z)"™° ® Zep+1)(i-1)(1-3) ® Ln(i—1)(1—3)(n—4)» if n=06p+3;

(Z)"™° ® Znin—1)n—3) D Zn(n—1)(n—3)(n—4) if n=6p+1lor6p+5.

S(G) =

Theorem 4.5 For the nearly complete graph G = K,, — C7, we have
(1) if G = K9 — C7, then

S(G) = Zag1 ® Zas29;
(2) ifn > 10, then

S(G) = Z7 @ (Z)" """ @ Zpii—1)n—2)— 1)1 p ® Zni—1y(n—2)(n—4y+n>»  if 1 =7Tp;
Z)" 10 ® (Znin—1)(1-2)(n—4)4n) % otherwise.

In fact, for any odd prime k = 2m + 1, we have the following result.

Theorem 4.6 For the nearly complete graph G = K, — Cy. If k = 2m + 1 is a prime,
then

(1) if G = Kiya — Cy, then
S(G) = Za, (k) ® Lk+2)d, (k)
(2) ifn >k + 3, then

Zi ® (Zn)" "3 @ Zpapn—2) ® Zndpn—2),  if n=kp;

S(G) = { (Zn)n—k—3 o) (anm(n—Z))2v otherwise.
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