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Abstract
The stabilization problem of uncertain systems with multiple time delays is studied
under a delay-dependent impulsive control scheme. This control strategy is established
to guarantee the robust exponential stabilization of the system in consideration and
the robust practical exponential stabilization of the perturbed one. The effectiveness
of Theorem 2 is illustrated by a numerical example.

Keywords Impulsive control · Uncertain system · Multiple time delays · Robust
stability
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1 Introduction

Impulsive effects exist widely in the world. As we know, the state of systems is
often subject to instantaneous disturbances and experiences abrupt changes at certain
instants, which might be caused by frequent changes or other suddenly noises. These
systems are called impulsive systems, which are governed by impulsive differential
equations. As known, the impulsive phenomenon is ubiquitous in the real world such
as the mechanical systems with impacts [1], optimal control models in economics
[2], orbital transfer of satellite [3], synchronization in chaotic secure communication
systems [4], and so on.

Although impulses always appear as a form of disturbances in nature, they also can
be used to control some special dynamical behaviors. As a representative example in
dynamic portfolio management, we note that the dynamical behavior stock value of a
particular investor can be described by an impulsive control system.More specifically,
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we see thatwhen a certain amount of stock is purchased or sold, the stock value changes
instantaneously to a new value. This situation is exactly like an impulsive control being
applied to the dynamical system. The timings of the purchasing and selling of stock
as well as the amount of the stock involved in each transaction can all be considered
as decision variables to be determined by the investor.

The concept of impulsive control was firstly proposed by Yang Tao [5], and actu-
ally, it appears along with the opening of modern control theory. In this direction,
many research work has been investigated. An impulsive controller was established
to achieve the robust synchronization of uncertain dynamical networks [6], where the
impulsive intervals have a finite upper bound. In [7], an impulsive-observer-based
controller was designed to achieve an exponential stability result of linear impul-
sive systems. The consensus problem of second-order multi-agent systems (MASs)
via impulsive control using position-only information with communication delays is
studied in [8]. Also, using the concept of average impulsive gain, the synchroniza-
tion of Lur’e networks was studied by designing a pinning impulsive controller in [9]
and the synchronization problem for heterogenous impulsive complex networks was
investigated in [10]. Lu et al. in [11] and Wang et al. in [12] proposed also the concept
of average impulsive interval.

Impulsive control, as an important control means, may be in many cases more
efficient than continuous control since the former is implemented only at impulsive
instants, while the latter does so at every moment. Sometimes even only impulsive
control can be used for control purpose. For example, a central bank cannot change its
interest rate everyday in order to regulate the money supply in a financial market. The
main idea of this method is to change the states of a system whenever some conditions
are satisfied. Moreover, in networked systems, by using an impulsive control strategy,
the driven network receives the signals from the driving system only in discrete times
and the amount of conveyed information is decreased. This is predominant in practice
due to reduced control cost.

As a class of infinite-dimensional systems, delay systems usually have complicated
structures which lead to complex dynamics. The effects of time delay on system
dynamics are bilateral; namely, it may not only cause the degradation of performance
or some undesired dynamics of a system but also, inversely, make an unstable system
stable or a system possess certain desired performance which is not possessed before.
Furthermore, if control strategies are applied to the communication security systems
or the networked dynamical systems [13,14], then transmission delays and sampling
delays are always inevitable in the process of information exchange. For example, these
delays are induced by the networked environments, such as controller- to-actuator
delays and sensor-to-controller delays. In this work, motivated by this point of view,
it is not surprising but rather essential to consider a delayed control scheme to model
many practical problems and in order to guarantee its effectiveness.

The main contribution of this paper lies in the following aspects. Firstly, a mixed
control strategy which acts both in continuous and impulsive times is proposed by
virtue of Dirac impulsive function to stabilize a class of uncertain nonlinear systems
with multiple state delay. It is of great importance to point out that introducing a
time-varying delay in the control scheme is more realistic and the chosen protocol can
be easily implemented in practice since no instantaneous control input information
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Robust Stabilization of Delay Systems: Hybrid Control 469

is needed and this allows to improve performance. It is noted that the constructed
impulsive function in this paper can be nonlinear which extend many existing results
in which the linear impulsive function is required. Next, the same control strategy is
adopted to practical stabilization of the perturbed system in which the origin is not
necessarily an equilibrium point.

This paper is organized as follows: In Sect. 2, a model description and preliminar-
ies are provided. In Sect. 3, some criteria on the robust stabilization for the model in
consideration are stated and proved. In Sect. 4, the problem of robust practical stabi-
lization of the perturbed system is studied. In Sect. 5, a numerical example is given to
illustrate the effectiveness of Theorem 2.

2 Model Description and Preliminaries

Throughout this paper, we always use PT , λmin(P) and λmax(P) to denote the
transpose, the smallest and the largest eigenvalues of a symmetrical real matrix P,

respectively. The notation P > 0 is that the matrix P is a positive definite matrix.
The vector (or matrix) norm is taken to be the Euclidean, denoted by ‖ . ‖
Consider the class of nonlinear continuous systems with multiple time-varying

delays described by

ẋ(t) = [A + ΔA]x(t) + [B + ΔB]x(t − τ0(t))

+
m−1∑

i=1

gi (x(t − τi (t))) (1)

where

– x(t) ∈ R
n is the system state vector;

– A, B are n × n constant matrices;
– ΔA and ΔB are the uncertain matrices, which vary within the range of

‖ ΔA ‖≤ γ, ‖ ΔB ‖≤ β, (2)

where α, β are known nonnegative constants.
– gi : Rn → R

n, i ∈ {1, 2, . . . ,m − 1} are continuous vector-valued functions;
– the time delay functions τi (.) may be unknown, time-varying, but they should be
bounded by known positive constants τi , i ∈ {0, 1, . . . ,m − 1}, i.e., 0 ≤ τi (t) ≤
τi .

Assume that system (1) satisfies the following initial condition: x(t) = φ(t) for all
t ∈ [−τM , 0] where τM = max{τ0, . . . , τm−1} and φ ∈ Cn,τM := C([−τM , 0],Rn)

which is the Banach space of all continuous functions mapping the interval [−τM , 0]
to Rn equipped with the norm ‖φ(t)‖τM = sup

−τM≤s≤t
| φ(s) | .

In the remainder of this paper, we introduce the following assumptions: (H1) For
i ∈ {1, 2, . . . ,m − 1}, gi (0) = 0 and there exist n × n positive definite matrices
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Mi , i ∈ {1, 2, . . . ,m − 1} such that for all x, y ∈ R
n

‖ gi (x) − gi (y) ‖2≤ (x − y)T Mi (x − y), (3)

In order to study the robust exponential stabilization problem of the uncertain delay
system (1), we introduce a control input u(t, x(t)) into system (1) and further establish
the following control system:

ẋ(t) = [A + ΔA]x(t) + [B + ΔB]x(t − τ0(t))

+
m−1∑

i=1

gi (x(t − τi (t))) + u(t, x(t)), (4)

where u(t, x(t)) = u1(t, x(t)) + u2(t, x(t)) and

u1(t, x(t)) =
∞∑

k=1

Ik(t)[Fx(t) + Gx(t − τm(t))],

u2(t, x(t)) =
∞∑

k=1

δ(t − tk)[Pk(x(t)) − x(t)], (5)

here F and G are two n × n constant matrices, the time delay function τm(.) satisfies
0 ≤ τm(t) ≤ τm , Pk : Rn → R

n is a vector-valued function for each k ∈ Z
+ =

{1, 2, . . .}, δ(.) denotes the Dirac function, and Ik(t) is given by

Ik(t) =
{
1, tk−1 < t ≤ tk;
0, otherwise.

With 0 < t1 < t2 < · · · < tk < ... and lim
k→∞ tk = ∞. It is clear from (5) that for

∀k ∈ Z
+, we have

u1(t, x(t)) = Fx(t) + Gx(t − τm(t)), t ∈ (tk−1, tk]. (6)

From (4) and (5), we see that u2(t, x(t)) = 0 at t �= tk and for any small enough
constant h > 0

x(tk + h) − x(tk) =
∫ tk+h

tk
[(A + ΔA)x(s)

+(B + ΔB)x(s − τ0(s))

+
m−1∑

i=1

gi (x(s − τi (s))) + u(s, x(s))]ds

=
∫ tk+h

tk
[(A + ΔA)x(s)

+(B + ΔB)x(s − τ0(s))
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+
m−1∑

i=1

gi (x(s − τi (s)))]ds

+
∫ tk+h

tk
u1(s, x(s))ds + Pk(x(tk))

−x(tk). (7)

Let h → 0+, then we can obtain from (7)

x(t+k ) = Pk(x(tk)) (8)

According to (6) and (8), system (4) can be rewritten as follows:

ẋ(t) = [A + ΔA]x(t) + [B + ΔB]x(t − τ0(t))

+
m−1∑

i=1

gi (x(t − τi (t))) + Fx(t)

+Gx(t − τm(t)), t �= tk
x(t+k ) = Pk(x(tk)), k ∈ Z

+

x(t) = φ(t) ∀t ∈ [−τ, 0]. (9)

where τ = max{τM , τm}.
For each function Pk(.), k ∈ Z

+, the following assumption is introduced
(H2) Pk(0) = 0 and there is an n × n positive definite matrix Pk such that

PT
k (x)Pk(x) ≤ xT Pkx, ∀x ∈ R

n .

Lemma 1 (Zhang et al.[15]) Let P be an n× n positive definite matrix, Q be an n× n
symmetrical matrix, then for any x ∈ Rn we have

λmin(P
−1Q)xT Px ≤ xT Qx ≤ λmax(P

−1Q)xT Px .

3 Robust Stabilization Analysis

In this section, we prove that under the control scheme (5) the zero solution of the
uncertain system (1) is globally exponentially stable for any ΔA,ΔB satisfying (2).

Theorem 1 Let θ = inf
k∈N(tk − tk−1) > 0. Under assumptions (H1) and (H2), if there

exist n × n matrix Q > 0, constants p > 0, λ > 0 and εi > 0, (i = 1, . . . ,m − 1)
such that the following conditions hold

(a) QA + AT Q + FT Q + QF +
m−1∑

i=1

εi Q
2 +

(
p + 4 + γ 2λmax(Q)

λmin(Q)

)
Q < 0;
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(b) λ − p + ln δ

θ
+

m∑

i=0

αi e
λτi < 0, where

– δ = sup
k∈N

{δk}, δk = max{1, λmax(Q)λmax(Q
−1Pk)}.

– αi = λmax(Q−1Mi )

εi
; ∀1 ≤ i ≤ m − 1, α0 = λmax(BT QB)

λmin(Q)
+ β2λmax(Q)

λmin(Q)
and

αm = λmax(GT QG)

λmin(Q)
;

Then, the system (1) is robustly exponentially stable under the control strategy (5).

Proof Consider the following auxiliary function:V (t) = xT (t)Qx(t), which implies
that ∀t �= tk

λmin(Q) ‖ x(t) ‖2 ≤ V (t) ≤ λmax(Q) ‖ x(t) ‖2 . (10)

Using condition (a) of Theorem 1, the Dini right derivative of V with respect to time
t along the solution of system (9) is calculated and estimated as follows: ∀t �= tk,

D+V (t) ≤ xT (t)[AT Q + QA + FT Q + QF +
m−1∑

i=1

εi Q
2

+(4 + γ 2λmax(Q)

λmin(Q)
)Q]x(t) (11)

+
m∑

i=0

αi V (t − τi (t))

< −pV (t) +
m∑

i=0

αi V (t − τi (t)), (12)

When t = tk, from assumption (H2) and (10), we obtain

V (t+k ) ≤ λmax(Q)xT (tk)Pkx(tk)

≤ λmax(Q)λmax(Q
−1Pk)V (tk)

≤ δkV (tk), (13)

where δk = max(1, λmax(Q)λmax(Q−1Pk)). At this level, consider the following
comparison system

Ẇ (t) = −pW (t) +
m∑

i=0

αiW (t − τi (t)), t �= tk

W (t+k ) = δkW (tk), k ∈ Z
+

W (t) = λmax(Q) ‖ x(t) ‖2 ∀t ∈ [−τ, 0]. (14)
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Let W (t) be the unique solution of the impulsive delay system (14).
It is clear that V (t) ≤ W (t), ∀t ≥ 0. (see [16])
Clearly, when t ∈ [−τ, 0] we have

W (t) ≤ λmax(Q) ‖ x(t) ‖2
≤ 2δλmax(Q) ‖ x(0) ‖2τ e−λt , (15)

Now, we shall prove that

W (t) ≤ 2δλmax(Q) ‖ x(0) ‖2τ e−λt ,∀t ≥ 0. (16)

In fact, if the assertion (16) is not true, then from (15) and the continuity of the functions
W with respect to t ≥ 0, there exists a time t∗ > 0 such that

W (t∗) ≥ 2δλmax(Q) ‖ x(0) ‖2τ e−λt∗ (17)

and

W (t) < 2δλmax(Q) ‖ x(0) ‖2τ e−λt ,∀0 < t < t∗. (18)

According to the solution’s expression of W (t), the conditions (b) of Theorem 1,
tk − tk−1 ≥ θ,∀k ∈ N and using inequalities (11), (17) and (18), we obtain the
following estimate

W (t∗) ≤ δλmax(Q) ‖ x(0) ‖2τ e−(p− ln δ
θ

)t∗

+δ

∫ t∗

0
e−(p− ln δ

θ
)(t∗−s)(

m∑

i=1

αiW (s − τi (s))
)
ds

< δλmax(Q) ‖ x(0) ‖2τ e−(p− ln δ
θ

)t∗

+δe−(p− ln δ
θ

)t∗ ×
[
λmax(Q) ‖ x(0) ‖2τ ×

(
m∑

i=1

αi e
λτi

)
×

∫ t∗

0
e(p−λ− ln δ

θ
)sds

]

< 2δλmax(Q) ‖ x(0) ‖2τ e−λt∗ .

which leads to a contradiction with (17) and so the estimate (16) holds. Finally, we
have for all t ≥ −τ,

‖ x(t) ‖ ≤
√

2δ
λmax(Q)

λmin(Q)
‖ x(0) ‖τ e− λ

2 t .

��
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Corollary 1 Let θ = inf
k∈N(tk − tk−1) > 0. Under assumptions (H1) and (H2), if there

exist constants p > 0, λ > 0 and εi > 0, (i = 1, . . . ,m − 1) such that the following
conditions hold

(a) A + AT + FT + F +
( m−1∑

i=1

εi + p + 4 + γ 2
)
I < 0;

(b) λ − p + ln δ

θ
+

m∑

i=0

αi e
λτi < 0, where

– δ = sup
k∈N

{δk}, δk = max{1, λmax(Pk)}.

– αi = λmax(Mi )

εi
; ∀1 ≤ i ≤ m−1, αm = λmax(G

TG), andα0 = λmax(BT B)+β2.

Then, the system (1) is robustly exponentially stable under the control scheme (5).

4 Robust Practical Stabilization Analysis

Consider the nonlinear uncertain time-varying delay system:

ẋ(t) = [A + ΔA]x(t) + [B + ΔB]x(t − τ0(t)) + f (t, x(t))

+
m−1∑

i=1

gi (x(t − τi (t))) + u(t, x(t)), (19)

inwhichwe introduce the control input (5),where f : R+×R
n −→ R

n is a continuous
function satisfying

‖ f (t, x(t)) ‖2≤ �, � ≥ 0. (20)

According to (6) and (8), system (19) can be rewritten as follows:

ẋ(t) = [A + ΔA]x(t) + [B + ΔB]x(t − τ0(t))

+ f (t, x(t)) + Fx(t) +
m−1∑

i=1

gi (x(t − τi (t)))

+Gx(t − τm(t)), t �= tk
x(t+k ) = Pk(x(tk)), k ∈ Z

+

x(t) = φ(t) ∀t ∈ [−τ, 0]. (21)

Remark 1 The map f represent in many practical control systems, the perturbed term
which could result from nonlinear systems modeling, disturbances, uncertainties, etc.
Condition (20) leads us to study the robust practical exponential stability in the sense
of the following definition.
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Definition 1 Equation (21) is said to be robustly globally uniformly practically expo-
nentially stable (or convergent to a ball with radius r ≥ 0), if there exists a pair
of positive constants β and γ such that the solution x(t; t0, φ(0)) of (21) satisfies
∀t ≥ t0 ≥ 0

‖ x(t; t0, φ(0)) ‖≤ r + β sup
−τ≤s≤0

‖ φ(s) ‖ exp(−γ (t − t0)),

for all initial function φ ∈ PC[[−τ, 0],Rn] and any uncertainties ΔA,ΔB satisfying
(2).

In this case, the ball D(0, r) will be globally uniformly exponentially stable.

Theorem 2 Let θ = inf
k∈N(tk − tk−1) > 0. Under assumptions (H1) and (H2), if there

exist n × n matrix Q > 0, constants p > 0, λ > 0 and εi > 0, (i = 0, . . . ,m − 1)
such that the following conditions hold

(a) QA + AT Q + FT Q + QF +
m−1∑

i=0

εi Q
2 +

(
p + 4 + γ 2λmax(Q)

λmin(Q)

)
Q < 0;

(b) λ − p + ln δ

θ
+

m∑

i=0

αi e
λτi < 0, where

δ = sup
k∈N

{δk}, δk = max{1, λmax(Q)λmax(Q
−1Pk)}.

αi = λmax(Q−1Mi )

εi
; ∀1 ≤ i ≤ m − 1,

α0 = λmax(BT QB)
λmin(Q)

+ β2λmax(Q)
λmin(Q)

and αm = λmax(GT QG)

λmin(Q)
;

Then, the system (19) is robustly practically exponentially stable under the control

strategy (5) with radius r =
√

δ�

λmin(Q)ε0λ
.

Proof Keeping the same function:V (t) = xT (t)Qx(t),which satisfies (10), then from
condition (a) of Theorem 2 and (20), the Dini right derivative of V with respect to
time t along the solution of system (21) is estimated as follows: ∀t �= tk,

D+V (t) ≤ xT (t)[AT Q + QA + FT Q + QF +
m−1∑

i=0

εi Q
2

+(4 + γ 2λmax(Q)

λmin(Q)
)Q]x(t) (22)
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+
m∑

i=0

αi V (t − τi (t)) + �

ε0

< −pV (t) +
m∑

i=0

αi V (t − τi (t)) + �

ε0
, (23)

When t = tk, we have

V (t+k ) ≤ δkV (tk), (24)

where δk = max(1, λmax(Q)λmax(Q−1Pk)).Aswe proceeded in Theorem1, consider
the following comparison system

Ẇ (t) = −pW (t) +
m∑

i=0

αiW (t − τi (t)) + �

ε0
, t �= tk

W (t+k ) = δkW (tk), k ∈ Z
+

W (t) = λmax(Q) ‖ x(t) ‖2 ∀t ∈ [−τ, 0]. (25)

Let W (t) be the unique solution of the impulsive delay system (25).
Recall that V (t) ≤ W (t), ∀t ≥ 0. Clearly, when t ∈ [−τ, 0] we have

W (t) ≤ ≤ 2δλmax(Q) ‖ x(0) ‖2τ e−λt + δ�

ε0λ
,

Using the same technique of reduction to absurdity, we prove that

W (t) ≤ 2δλmax(Q) ‖ x(0) ‖2τ e−λt + δ�

ε0λ
,∀t ≥ 0

Then, we have for all t ≥ −τ,

‖ x(t) ‖ ≤
√

2δ
λmax(Q)

λmin(Q)
‖ x(0) ‖τ e− λ

2 t +
√

δ�

λmin(Q)ε0λ
.

Corollary 2 Let θ = inf
k∈N(tk − tk−1) > 0. Under assumptions (H1) and (H2), if there

exist constants p > 0, λ > 0 and εi > 0, (i = 0, . . . ,m − 1) such that the following
conditions hold

(a) A + AT + FT + F +
( m−1∑

i=0

εi + p + 4 + γ 2
)
I < 0;

(b) λ − p + ln δ

θ
+

m∑

i=0

αi e
λτi < 0, where
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– δ = sup
k∈N

{δk}, δk = max{1, λmax(Pk)}.

– αi = λmax(Mi )

εi
; ∀1 ≤ i ≤ m−1, αm = λmax(G

TG), andα0 = λmax(BT B)+β2.

Then, the system (19) is robustly practically exponentially stable under controller (5)

with radius r =
√

δ�

ε0λ
.

5 Numerical Example

To illustrate Theorem 2, we consider the system (19) with the following parame-
ters: A = 2, B = 1, γ = 1, β = 1, f (t, x(t)) = cos(x(t)), g1(x(t − τ1(t))) =
sin(x(t − τ1(t))), g2(x(t − τ2(t))) = 1

1 + x(t − τ2(t))
, τ0(t) = π

10

1

1 + t
, τ1(t) =

et

1 + et
, τ2(t) = et

1 + 2et
, then M1 = M2 = 1, � = 1, τ = 1. In controller (5),

selecting Pk(x) = 0, 6x + 0, 1 sin(x), F = −10,G = −1 then Pk = 0, 49. Finally,
by choosing tk − tk−1 = 0.1 for all k ∈ N, Q = 1, ε0 = ε1 = ε2 = 1, p = 7, we take
λ  0.3.

So, all conditions of Theorem 2 hold and then system (19) is robustly practically
exponentially stable toward the ball of radius r = 1.85 under the control strategy (5)
for every uncertainties in the range of (2).

6 Conclusion

In the present paper, an impulsive delayed-control strategy is established by virtue
of Dirac impulsive function to robustly exponentially stabilize a class of continuous
multiple time delays system and its perturbed one. A numerical example is given to
demonstrate the synthesis procedure of the proposed control scheme. Since impulsive
control is an efficient method to deal with the dynamical systems which cannot be
controlled by continuous control method, the present result may be expected to have
some applications to many practical control problems.

References

1. Pfeiffer, F.G., Foerg,M.O.:On the structure ofmultiple impact systems.NonlinearDyn. 42(2), 101–112
(2005)

2. Haltara, D., Ankhbayar, G.: Using the maximum principle of impulse control for ecology-economical
models. Ecol. Model. 261(2), 150–156 (2008)

3. Benford, J., Swegle, J.: Space applications of high power microwaves. IEEE Trans. Plasma Sci. 36(3),
569–581 (2008)

4. Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems, theory
and application to secure communication. IEEE Trans. Circuits Syst. 44, 976–988 (1997)

5. Yang, T.: Impulsive Control Theory, vol. 272. Springer, Berlin (2001)

123



478 I. Ellouze

6. Liu, B., Liu, X., Chen, G., Wang, H.: Robust impulsive synchronization of uncertain dynamical net-
works. IEEE Trans. Circuits Syst. I 52(7), 1431–1441 (2005)

7. Ellouze, I., Vivalda, J.-C., Hammami, M.A.: A separation principle for linear impulsive systems. Eur.
J. Control 20, 105–110 (2014)

8. Wang, Y.-W., Yi, J.-W.: Consensus in second-order multi-agent systems via impulsive control using
position-only information with heterogeneous delays. IET Control Theory Appl. 9(3), 336–345 (2015)

9. Wang, Y., Lu, J., Liang, J., Cao, J., Perc, M.: Pinning synchronization of nonlinear coupled Lur’e
networks under hybrid impulses. IEEE Trans. Circuits Syst. II 66(3), 432–436 (2019)

10. Zhang, W., Tang, Y., Wu, X., Fang, J.A.: Synchronization of nonlinear dynamical networks with
heterogenous impulses. IEEE Trans. Circuits Syst. I 61(4), 1220–1228 (2017)

11. Lu, J., Ho, D.W.C., Cao, J.: A unified synchronization criterion for impulsive dynamical networks.
Automatica 46(7), 1215–1221 (2010)

12. Wang, Y.-W., Zhang, J.-S., Liu, M.: Exponential stability of impulsive positive systems with mixed
time-varying delays. IET Control Theory Appl. 8(15), 1537–1542 (2014)

13. Wang, H., Duan, S., Huang, T., Tan, J.: Synchronization of memristive delayed neural networks via
hybrid impulsive control. Neurocomputing 267, 615–623 (2017)

14. Liu, S., Xie, L., Lewis, F.L.: Synchronization of multi-agent systems with delayed control input infor-
mation from neighbors. Automatica 47, 2152–2164 (2011)

15. Zhang, H., Guan, Z., Ho, D.W.C.: On synchronization of hybrid switching and impulsive networks.
In: 45th IEEE Conference on Decision and Control 1, 2765 (2006)

16. Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time Delay Systems. Birkauser, Boston (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Robust Stabilization of Delay Systems: Hybrid Control
	Abstract
	1 Introduction
	2 Model Description and Preliminaries
	3 Robust Stabilization Analysis
	4 Robust Practical Stabilization Analysis
	5 Numerical Example
	6 Conclusion
	References




