

Refinements of Triangle-Like Inequalities in Lie's Framework

Marek Niezgoda1

Received: 13 November 2019 / Revised: 27 February 2020 / Published online: 4 June 2020 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020

Abstract

In this note, by using gradients of Gateaux differentiable *G*-increasing functions we prove some refinements of the following Tam's triangle-type inequality:

 $t_{+}(x + y) \leq t_{+}(x) + t_{+}(y)$ for $x, y \in \mathfrak{g}$

in the context of a compact connected Lie group G with Lie algebra $\mathfrak g$ and corresponding Weyl chamber t_{+} . We also establish refinements of Tam's inequality:

 $a_{+}(x + y) < a_{+}(x) + a_{+}(y)$ for $x, y \in \mathfrak{p}$

for a real semisimple Lie algebra g with Cartan decomposition $g = \mathfrak{k} + \mathfrak{p}$, a maximal abelian subalgebra α in β and its closed Weyl chamber α_+ .

Keywords Compact connected Lie group · Semisimple Lie algebra · Triangle-like inequality

Mathematics Subject Classification 22E30 · 22E60

1 Motivation

We begin our presentation with notation and terminology quoted from [\[6\]](#page-7-0).

Let *^G* be a compact connected Lie group and g be its Lie algebra. Assume *^T* is a maximal torus of *G* and t is the Lie algebra of *T*. By t_{+} , we denote a closed Weyl

Communicated by Rosihan M. Ali.

B Marek Niezgoda bniezgoda@wp.pl; marek.niezgoda@up.lublin.pl

¹ Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland

chamber in t. For a given element $x \in \mathfrak{g}$, the symbol $f_+(x)$ represents the unique element of the set $t_+ \cap Gx$, where $Gx = \{g \cdot x : g \in G\}$ and $g \cdot x = (Ad g)x$.

Let $\langle \cdot, \cdot \rangle$ be a *G*-invariant inner product on g. The dual cone of f_{+} is given by $y \le x$ iff $x - y \in t^*$ for $x, y \in g$. In addition, a related preorder \prec can be defined by
y \prec *x* iff *y* ∈ conv *G x* for *x y* ∈ *g* where conv *G x* is the convex hull of the *G*-orbit χ^* = {*x* ∈ g : $\langle x, v \rangle$ ≥ 0 for all $v \in \{+\}$. This cone generates the preorder \leq on g by χ < *x* iff $x - v \in t^*$ for $x \vee v \in \mathfrak{a}$. In addition, a related preorder \prec can be defined by *y* \prec *x* iff *y* ∈ conv *Gx* for *x*, *y* ∈ g, where conv *Gx* is the convex hull of the *G*-orbit $\{g \cdot x : g \in G\}$ (cf. [\[3,](#page-7-1) Corollary B.3]). It is known that \leq and \leq coincide on f_{+} [\[1,](#page-6-0) Proposition 18].

In [\[6](#page-7-0), Theorem 7] T.-Y. Tam presented a triangle-type inequality for connected compact groups, as follows

$$
t_{+}(x+y) \le t_{+}(x) + t_{+}(y) \quad \text{for } x, y \in \mathfrak{g},\tag{1}
$$

where $t_{+}(z)$ denotes the unique element in $t_{+} \cap Gz$ corresponding to an element $z \in \mathfrak{g}$.

A similar framework works in the context of real semisimple Lie algebras. Let g be a real semisimple Lie algebra with a Cartan decomposition $g = \mathfrak{k} + \mathfrak{p}$, where $\mathfrak{p} \neq 0$.
Let g be a maximal abelian subalgebra in n and g, be a closed Weyl chamber in g. Let a be a maximal abelian subalgebra in $\mathfrak p$ and $\mathfrak a_+$ be a closed Weyl chamber in $\mathfrak a$.

The Killing form $\langle \cdot, \cdot \rangle$ is positive definite on p, so we can define the dual cone of \mathfrak{a}_+ by $\mathfrak{a}_+^* = \{x \in \mathfrak{p} : \langle x, v \rangle \ge 0 \text{ for all } v \in \mathfrak{p} \}.$ Then we introduce the preorder \le on \mathfrak{p} by $v \le x$ iff $x - y \in \mathfrak{a}^*$ for $x, y \in \mathfrak{p}$. p by *y* ≤ *x* iff $x - y \in \mathfrak{a}_+^*$ for $x, y \in \mathfrak{p}$.
Let *K* be the maximal compact subg

Let *K* be the maximal compact subgroup in the adjoint group Int (g) . So, Ad *K* is maximal compact subgroup of Ad *G*. We define preorder \prec in the following manner: *y* $\lt x$ iff *y* ∈ conv *K x* for *x*, *y* ∈ *p*, where conv *K x* is the convex hull of the *K*-orbit $Kx = \{k \cdot x : k \in K\}$ with $k \cdot x = (Ad k)x$ (cf. [\[3](#page-7-1), Corollary B.3]). The preorders \le and \lt coincide on \mathfrak{a}_+ [\[2,](#page-6-1) Lemma 3.2]. For an element *x* ∈ p, the symbol $\mathfrak{a}_+(x)$ represents the unique element of the set $a_+ \cap Kx$, where $Kx = \{k \cdot x : k \in K\}$ and $k \cdot x = (Ad k)x$.

In [\[6](#page-7-0), Theorem 2] T.-Y. Tam showed that

$$
\mathfrak{a}_+(x+y) \le \mathfrak{a}_+(x) + \mathfrak{a}_+(y) \quad \text{for } x, y \in \mathfrak{p}.\tag{2}
$$

In this note, our purpose is to show refinements of inequalities (1) and (2) by employing gradients of differentiable real functions increasing with respect to corresponding preorder \prec (cf. [\[6](#page-7-0)]).

2 Results for Compact Connected Lie Groups

In this section, we consider the Lie algebra g of a compact connected Lie group *^G*. We use the norm $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$ on g generated by a *G*-invariant inner product $\langle \cdot, \cdot \rangle$ on g. The group *G* acts on g by Ad *G*. The preorder \prec is defined in Sect. [1.](#page-0-0)

A function ^Φ defined on g is called *G-invariant* if

$$
\Phi(g \cdot x) = \Phi(x) \quad \text{for all } x \in \mathfrak{g} \quad \text{and} \quad g \in G.
$$

We say that a function $\Phi : \mathfrak{g} \to \mathbb{R}$ is *G*-increasing, if for $x, y \in \mathfrak{g}$,

 $y \prec x$ implies $\Phi(y) \leq \Phi(x)$.

In order to state our results, we need to employ the convex cone *C* of all *G*-increasing real functions defined on g as well as the cone preorder $\leq_{\mathcal{C}}$ generated by \mathcal{C} , as follows: given two real functions $\varphi : \mathfrak{g} \to \mathbb{R}$ and $\psi : \mathfrak{g} \to \mathbb{R}$, we use the notation $\psi \leq_{\mathcal{C}} \varphi$ whenever the difference function $\varphi - \psi$ is *G*-increasing on g.

Given two vectors *x*, $y \in \mathfrak{g}$, if there exists a $g \in G$ such that $x \in g$ \mathfrak{t}_+ and $y \in g$ \mathfrak{t}_+ , then

$$
t_{+}(x+y) = t_{+}(x) + t_{+}(y). \tag{3}
$$

In this note, we take the convention that the Gateaux differentiability of a function $\Phi : \mathfrak{g} \to \mathbb{R}$ means the existence of the directional derivative

$$
\nabla_h \Phi(y) = \lim_{t \to 0} \frac{\Phi(y + th) - \Phi(y)}{t}
$$
 (4)

at each point $y \in \mathfrak{g}$ and in each direction $h \in \mathfrak{g}$, and moreover that the map $\mathfrak{g} \ni h \rightarrow$ $\nabla_h \Phi(y) \in \mathbb{R}$ is continuous and linear as a function of *h*. Consequently, there exists the gradient $\nabla \Phi(y) \in \mathfrak{g}$ satisfying the condition

$$
\nabla_h \Phi(y) = \langle \nabla \Phi(y), h \rangle \quad \text{for all} \quad h \in \mathfrak{g}.\tag{5}
$$

In accordance with [\[4,](#page-7-2) Theorem 2.1], a Gateaux differentiable *G*-increasing function $\Phi : \mathfrak{g} \to \mathbb{R}$ with continuous gradient $\nabla \Phi(\cdot)$ satisfies the condition

$$
\nabla \Phi(g \, \mathfrak{t}_+(y)) \in g \, \mathfrak{t}_+ \quad \text{for all } g \in G \text{ and } y \in \mathfrak{g}. \tag{6}
$$

Theorem 1 Let φ and ψ be Gateaux differentiable real functions on g with continuous *gradients* ∇ϕ(·) *and* ∇ψ(·)*, respectively. Suppose that*

$$
0 \leq_{\mathcal{C}} \psi \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} ||\cdot||^2, \tag{7}
$$

i.e., the functions ψ *,* $\varphi - \psi$ *and* $\frac{1}{2} || \cdot ||^2 - \varphi$ *are G-increasing on* g*. If* $x, y \in \mathfrak{a}$ *then*

If $x, y \in \mathfrak{a}$ *then*

$$
t_{+}(x + \nabla \varphi(y)) + t_{+}(y - \nabla \varphi(y)) \prec t_{+}(x + \nabla \psi(y)) + t_{+}(y - \nabla \psi(y)). \tag{8}
$$

Remark [1](#page-2-1) Observe that for any points $x, y \in \mathfrak{g}$, statement [\(8\)](#page-2-0) in Theorem 1 shows the *anti-isotonity* of the functional

$$
\phi \to \mathfrak{t}_+(x + \nabla \phi(y)) + \mathfrak{t}_+(y - \nabla \phi(y))
$$

 \mathcal{D} Springer

with ϕ running over the set of all Gateaux differentiable real functions defined on g. Here the anti-isotonity is with respect to the pair (\leq_C , \prec) on the set

$$
\left\{\phi: \mathfrak{g} \to \mathbb{R}: 0 \leq_{\mathcal{C}} \phi \leq_{\mathcal{C}} \frac{1}{2} \|\cdot\|^2\right\}.
$$

Proof By making use of [\(1\)](#page-1-0), we obtain

$$
\begin{aligned} \mathfrak{t}_+(x+\nabla\varphi(y)) &= \mathfrak{t}_+(x+\nabla\psi(y)+\nabla\varphi(y)-\nabla\psi(y)) \\ &\prec \mathfrak{t}_+(x+\nabla\psi(y))+\mathfrak{t}_+(\nabla\varphi(y)-\nabla\psi(y)). \end{aligned} \tag{9}
$$

The preorder \prec restricted to t_{+} is a cone preorder on t_{+} , so we have

$$
\mathfrak{t}_{+}(x+\nabla\varphi(y)) + \mathfrak{t}_{+}(y-\nabla\varphi(y)) \prec \mathfrak{t}_{+}(x+\nabla\psi(y)) + \mathfrak{t}_{+}(\nabla\varphi(y)-\nabla\psi(y)) + \mathfrak{t}_{+}(y-\nabla\varphi(y)).
$$
\n(10)

For the element $y \in \mathfrak{g}$, there exists a $g \in G$ such that $y = g \cdot \mathfrak{t}_+(y) \in g \mathfrak{t}_+$. Because of the *G*-increase in the functions ψ and $\varphi - \psi$, it follows from [\(6\)](#page-2-2) that

$$
\nabla \psi(y) \in g \mathfrak{t}_{+},
$$

$$
\nabla \varphi(y) - \nabla \psi(y) = \nabla (\varphi - \psi)(y) \in g \mathfrak{t}_{+}
$$

[see (6)]. This via (3) ensures that

 $t_{+}(\nabla \psi(y)) + t_{+}(\nabla \phi(y) - \nabla \psi(y)) = t_{+}(\nabla \psi(y) + \nabla \phi(y) - \nabla \psi(y)) = t_{+}(\nabla \phi(y)).$

In consequence, we get

$$
\mathfrak{t}_{+}(\nabla \varphi(y) - \nabla \psi(y)) = \mathfrak{t}_{+}(\nabla \varphi(y)) - \mathfrak{t}_{+}(\nabla \psi(y)). \tag{11}
$$

Since

$$
\nabla \left(\frac{1}{2} \|\cdot\|^2\right)(y) = y
$$

and the functions $\varphi = \psi + (\varphi - \psi)$ and $\nabla \frac{1}{2} || \cdot ||^2 - \varphi$ are *G*-increasing, we deduce from (6) that

$$
\nabla \varphi(y) \in g \mathfrak{t}_{+},
$$

$$
y - \nabla \varphi(y) = \nabla \left(\frac{1}{2} \|\cdot\|^2\right)(y) - \nabla \varphi(y) = \nabla \left(\frac{1}{2} \|\cdot\|^2 - \varphi\right)(y) \in g \mathfrak{t}_{+}.
$$

and therefore by [\(3\)](#page-2-3) we have

$$
t_{+}(\nabla \varphi(y)) + t_{+}(y - \nabla \varphi(y)) = t_{+}(\nabla \varphi(y) + y - \nabla \psi(y)) = t_{+}(y),
$$

and next

$$
t_{+}(y - \nabla \varphi(y)) = t_{+}(y) - t_{+}(\nabla \varphi(y)).
$$
\n(12)

Similarly, the function

$$
\frac{1}{2} ||\cdot||^2 - \psi = \left(\frac{1}{2} ||\cdot||^2 - \varphi\right) + (\varphi - \psi)
$$

is *G*-increasing, because ψ , $\varphi - \psi$ and $\frac{1}{2} || \cdot ||^2 - \varphi$ are so. Hence, via [\(6\)](#page-2-2) we have

$$
\nabla \psi(y) \in g \mathfrak{t}_{+},
$$

$$
y - \nabla \psi(y) = \nabla \left(\frac{1}{2} \|\cdot\|^2\right)(y) - \nabla \psi(y) = \nabla \left(\frac{1}{2} \|\cdot\|^2 - \psi\right)(y) \in g \mathfrak{t}_{+}.
$$

This and [\(3\)](#page-2-3) yield

$$
\mathfrak{t}_+(y - \nabla \psi(y)) = \mathfrak{t}_+(y) - \mathfrak{t}_+(\nabla \psi(y)).
$$
 (13)

Finally, by (11) – (13) and (10) we obtain

$$
t_{+}(x + \nabla \varphi(y)) + t_{+}(y - \nabla \varphi(y))
$$

$$
\prec t_{+}(x + \nabla \psi(y)) + t_{+}(\nabla \varphi(y)) - t_{+}(\nabla \psi(y)) + t_{+}(y) - t_{+}(\nabla \varphi(y))
$$

$$
= t_{+}(x + \nabla \psi(y)) - t_{+}(\nabla \psi(y)) + t_{+}(y) = t_{+}(x + \nabla \psi(y)) + t_{+}(y - \nabla \psi(y)),
$$

as claimed. \Box

As a corollary to Theorem [1,](#page-2-1) we now present a refinement of the triangle-type inequality [\(1\)](#page-1-0).

Theorem 2 *Let* ^ϕ *be a Gateaux differentiable real function on* g *with continuous gradient* ∇ϕ(·)*. Suppose that*

$$
0 \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} \|\cdot\|^2,\tag{14}
$$

i.e., the functions φ *and* $\frac{1}{2} || \cdot ||^2 - \varphi$ *are G-increasing on* g*. If* $x, y \in \mathfrak{g}$ *then*

If $x, y \in \mathfrak{g}$ *then*

$$
\mathfrak{t}_+(x+y) \prec \mathfrak{t}_+(x+\nabla\varphi(y)) + \mathfrak{t}_+(y-\nabla\varphi(y)) \prec \mathfrak{t}_+(x) + \mathfrak{t}_+(y). \tag{15}
$$

Proof It follows from (14) that

$$
0 \leq_{\mathcal{C}} \psi \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} ||\cdot||^2
$$

with $\psi = 0$. By applying Theorem [1](#page-2-1) with $\nabla \psi(y) = 0$, we obtain

$$
t_{+}(x + \nabla \varphi(y)) + t_{+}(y - \nabla \varphi(y)) \prec t_{+}(x + \nabla \psi(y)) + t_{+}(y - \nabla \psi(y))
$$

= t_{+}(x) + t_{+}(y).

² Springer

$$
\qquad \qquad \Box
$$

By virtue of [\(14\)](#page-4-1), we get

$$
0 \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \psi \leq_{\mathcal{C}} \frac{1}{2} \|\cdot\|^2
$$

with $\psi = \frac{1}{2} ||\cdot||^2$ $\psi = \frac{1}{2} ||\cdot||^2$ $\psi = \frac{1}{2} ||\cdot||^2$. By using Theorem 1 with $\nabla \psi(y) = y$, we establish

$$
t_{+}(x + y) = t_{+}(x + \nabla \psi(y))
$$

+t_{+}(y - \nabla \psi(y)) \prec t_{+}(x + \nabla \varphi(y)) + t_{+}(y - \nabla \varphi(y)).

This completes the proof.

Corollary 1 *Let* $0 \le t \le 1$ *. If* $x, y \in \mathfrak{g}$ *then*

$$
t_{+}(x+y) \prec t_{+}(x+ty) + t_{+}(y-ty) \prec t_{+}(x) + t_{+}(y). \tag{16}
$$

Proof The function $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$ is *G*-increasing on g, because it is convex and *G*invariant. Therefore, the functions $\frac{1}{2} ||\cdot||^2$, $\varphi = t \frac{1}{2} ||\cdot||^2$ and $\frac{1}{2} ||\cdot||^2 - \varphi = (1 - t) \frac{1}{2} ||\cdot||^2$ are *^G*-increasing on g. That is,

$$
0 \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} {\lVert \cdot \rVert}^2.
$$

So, by Theorem [2](#page-4-2) with $\nabla \varphi(y) = ty$, we infer that inequality [\(16\)](#page-5-0) holds valid. \square

3 Results for Real Semisimple Lie Algebras

In this section, we show corresponding results to those in Sect. [2](#page-1-2) for a real semisimple Lie algebra g with a Cartan decomposition $g = \mathfrak{k} + \mathfrak{p}, \mathfrak{p} \neq 0$, and with a maximal shelian subalgebra g in a culinned with a fixed closed Weyl chamber g, in g. The abelian subalgebra α in p equipped with a fixed closed Weyl chamber α_+ in α . The inner product $\langle \cdot, \cdot \rangle$ on p is the restriction of Killing form, and as previously the norm is given by $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$. The preorder \prec is defined in Sect. [1.](#page-0-0)

The maximal compact subgroup in the adjoint group Int (g) is denoted by *^K*. It acts on p by Ad *K*, i.e., $k \cdot x = (Ad k)x$ for $k \in K$ and $x \in \mathfrak{p}$.

A function ^Φ defined on p is called *K -invariant* if

$$
\Phi(k \cdot x) = \Phi(x) \text{ for all } x \in \mathfrak{p} \text{ and } k \in K.
$$

We say that a function $\Phi : \mathfrak{p} \to \mathbb{R}$ is *K*-increasing, if for $x, y \in \mathfrak{p}$,

$$
y \prec x \text{ implies } \Phi(y) \le \Phi(x).
$$

Here, by definition, the convex cone C consists of all K -increasing real functions defined on p. The cone preorder \leq_C induced by C is defined as follows: for any two

$$
\Box
$$

real functions $\varphi : \mathfrak{p} \to \mathbb{R}$ and $\psi : \mathfrak{p} \to \mathbb{R}$, we write $\psi \leq_{\mathcal{C}} \varphi$ provided that the difference function $\varphi - \psi$ is *K*-increasing on p.

Theorem 3 *Let* ^ϕ *and* ^ψ *be Gateaux differentiable real functions on* p *with continuous gradients* ∇ϕ(·) *and* ∇ψ(·)*, respectively. Suppose that*

$$
0 \leq_{\mathcal{C}} \psi \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} ||\cdot||^2, \tag{17}
$$

i.e., the functions ψ *,* $\varphi - \psi$ *and* $\frac{1}{2} || \cdot ||^2 - \varphi$ *are K -increasing on* \mathfrak{p} *.* If $x \vee \varphi$ is then *If* $x, y \in \mathfrak{p}$ *then*

$$
\mathfrak{a}_+(x+\nabla\varphi(y)) + \mathfrak{a}_+(y-\nabla\varphi(y)) \prec \mathfrak{a}_+(x+\nabla\psi(y)) + \mathfrak{a}_+(y-\nabla\psi(y)). \tag{18}
$$

Proof The proof of Theorem [3](#page-6-2) is similar to that of Theorem [1,](#page-2-1) and therefore omitted. \Box

An analog of Theorem [2](#page-4-2) is the following.

Theorem 4 *Let* ^ϕ *be a Gateaux differentiable real function on* p *with continuous gradient* ∇ϕ(·)*. Suppose that*

$$
0 \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} ||\cdot||^2,\tag{19}
$$

i.e., the functions φ *and* $\frac{1}{2} ||\cdot||^2 - \varphi$ *are K -increasing on* φ *. If* $x, y \in \mathfrak{n}$ *then If* $x, y \in \mathfrak{p}$ *then*

$$
\mathfrak{a}_+(x+y) \prec \mathfrak{a}_+(x+\nabla\varphi(y)) + \mathfrak{a}_+(y-\nabla\varphi(y)) \prec \mathfrak{a}_+(x) + \mathfrak{a}_+(y). \tag{20}
$$

Proof Use a similar method as in the proof of Theorem [2.](#page-4-2)

Finally, we present an analog of Corollary [1.](#page-5-1)

Corollary 2 *Let* $0 \le t \le 1$ *. If* $x, y \in \mathfrak{p}$ *then*

$$
\mathfrak{a}_+(x+y) \prec \mathfrak{a}_+(x+ty) + \mathfrak{a}_+(y-ty) \prec \mathfrak{a}_+(x) + \mathfrak{a}_+(y). \tag{21}
$$

Proof It follows easily from Theorem [4](#page-6-3) applied to the function $\varphi = t \frac{1}{2} || \cdot ||^2$ with $\nabla \varphi(y) = ty.$

Compliance with Ethical Standards

Conflict of interest The author declares that he has no conflict of interest.

References

- 1. Bourbaki, N.: Elements de Mathematique, Groupes et Algebras de Lie. Hermann, Paris (1968)
- 2. Kostant, B.: On convexity, the Weyl group and Iwasawa decomposition. Ann. Sci. Ecole Norm. Sup. **6**, 413–460 (1973)
- 3. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York (2011)
- 4. Niezgoda, M.: An extension of Schur–Ostrowski's condition, weak Eaton triples and generalized AI functions. Linear Algebra Appl. **580**, 212–235 (2019)
- 5. Niezgoda, M.: On triangle inequality for Miranda–Thompson's majorization and gradients of increasing functions. Adv. Oper. Theory (2020). <https://doi.org/10.1007/s43036-019-00023-y>
- 6. Tam, T.-Y.: A unified extension of two results of Ky Fan on the sum of matrices. Proc. AMS **126**, 2607–2614 (1998)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.