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Abstract
In this note, by using gradients of Gateaux differentiable G-increasing functions we
prove some refinements of the following Tam’s triangle-type inequality:

t+(x + y) ≤ t+(x) + t+(y) for x, y ∈ g

in the context of a compact connected Lie groupG with Lie algebra g and correspond-
ing Weyl chamber t+. We also establish refinements of Tam’s inequality:

a+(x + y) ≤ a+(x) + a+(y) for x, y ∈ p

for a real semisimple Lie algebra g with Cartan decomposition g = k + p, a maximal
abelian subalgebra a in p and its closed Weyl chamber a+.

Keywords Compact connected Lie group · Semisimple Lie algebra · Triangle-like
inequality

Mathematics Subject Classification 22E30 · 22E60

1 Motivation

We begin our presentation with notation and terminology quoted from [6].
Let G be a compact connected Lie group and g be its Lie algebra. Assume T is a

maximal torus of G and t is the Lie algebra of T . By t+, we denote a closed Weyl
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chamber in t. For a given element x ∈ g, the symbol t+(x) represents the unique
element of the set t+ ∩ Gx , where Gx = {g · x : g ∈ G} and g · x = (Ad g)x .

Let 〈·, ·〉 be a G-invariant inner product on g. The dual cone of t+ is given by
t∗+ = {x ∈ g : 〈x, v〉 ≥ 0 for all v ∈ t+}. This cone generates the preorder ≤ on g by
y ≤ x iff x − y ∈ t∗+ for x, y ∈ g. In addition, a related preorder ≺ can be defined by
y ≺ x iff y ∈ convGx for x, y ∈ g, where convGx is the convex hull of the G-orbit
{g · x : g ∈ G} (cf. [3, Corollary B.3]). It is known that ≤ and ≺ coincide on t+ [1,
Proposition 18].

In [6, Theorem 7] T.-Y. Tam presented a triangle-type inequality for connected
compact groups, as follows

t+(x + y) ≤ t+(x) + t+(y) for x, y ∈ g, (1)

where t+(z) denotes the unique element in t+∩Gz corresponding to an element z ∈ g.
A similar framework works in the context of real semisimple Lie algebras. Let g be

a real semisimple Lie algebra with a Cartan decomposition g = k + p, where p 
= 0.
Let a be a maximal abelian subalgebra in p and a+ be a closed Weyl chamber in a.

The Killing form 〈·, ·〉 is positive definite on p, so we can define the dual cone of
a+ by a∗+ = {x ∈ p : 〈x, v〉 ≥ 0 for all v ∈ p}. Then we introduce the preorder ≤ on
p by y ≤ x iff x − y ∈ a∗+ for x, y ∈ p.

Let K be the maximal compact subgroup in the adjoint group Int (g). So, Ad K is
maximal compact subgroup of AdG. We define preorder ≺ in the following manner:
y ≺ x iff y ∈ conv Kx for x, y ∈ p, where conv Kx is the convex hull of the K -orbit
Kx = {k · x : k ∈ K } with k · x = (Ad k)x (cf. [3, Corollary B.3]). The preorders
≤ and ≺ coincide on a+ [2, Lemma 3.2]. For an element x ∈ p, the symbol a+(x)
represents the unique element of the set a+ ∩ Kx , where Kx = {k · x : k ∈ K } and
k · x = (Ad k)x .

In [6, Theorem 2] T.-Y. Tam showed that

a+(x + y) ≤ a+(x) + a+(y) for x, y ∈ p. (2)

In this note, our purpose is to show refinements of inequalities (1) and (2) by employ-
ing gradients of differentiable real functions increasing with respect to corresponding
preorder ≺ (cf. [6]).

2 Results for Compact Connected Lie Groups

In this section, we consider the Lie algebra g of a compact connected Lie group G.
We use the norm ‖·‖ = 〈·, ·〉1/2 on g generated by a G-invariant inner product 〈·, ·〉
on g. The group G acts on g by AdG. The preorder ≺ is defined in Sect. 1.

A function Φ defined on g is called G-invariant if

Φ(g · x) = Φ(x) for all x ∈ g and g ∈ G.
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We say that a function Φ : g → R is G-increasing, if for x, y ∈ g,

y ≺ x implies Φ(y) ≤ Φ(x).

In order to state our results, we need to employ the convex cone C of allG-increasing
real functions defined on g as well as the cone preorder≤C generated by C, as follows:
given two real functions ϕ : g → R and ψ : g → R, we use the notation ψ ≤C ϕ

whenever the difference function ϕ − ψ is G-increasing on g.
Given two vectors x, y ∈ g, if there exists a g ∈ G such that x ∈ g t+ and y ∈ g t+,

then
t+(x + y) = t+(x) + t+(y). (3)

In this note, we take the convention that the Gateaux differentiability of a function
Φ : g → R means the existence of the directional derivative

∇hΦ(y) = lim
t→0

Φ(y + th) − Φ(y)

t
(4)

at each point y ∈ g and in each direction h ∈ g, and moreover that the map g � h →
∇hΦ(y) ∈ R is continuous and linear as a function of h. Consequently, there exists
the gradient ∇Φ(y) ∈ g satisfying the condition

∇hΦ(y) = 〈∇Φ(y), h〉 for all h ∈ g. (5)

In accordance with [4, Theorem 2.1], a Gateaux differentiable G-increasing func-
tion Φ : g → R with continuous gradient ∇Φ(·) satisfies the condition

∇Φ(g t+(y)) ∈ g t+ for all g ∈ G and y ∈ g. (6)

Theorem 1 Let ϕ andψ be Gateaux differentiable real functions on gwith continuous
gradients ∇ϕ(·) and ∇ψ(·), respectively. Suppose that

0 ≤C ψ ≤C ϕ ≤C
1

2
‖·‖2, (7)

i.e., the functions ψ , ϕ − ψ and 1
2‖·‖2 − ϕ are G-increasing on g.

If x, y ∈ g then

t+(x + ∇ϕ(y)) + t+(y − ∇ϕ(y)) ≺ t+(x + ∇ψ(y)) + t+(y − ∇ψ(y)). (8)

Remark 1 Observe that for any points x, y ∈ g, statement (8) in Theorem 1 shows the
anti-isotonity of the functional

φ → t+(x + ∇φ(y)) + t+(y − ∇φ(y))
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with φ running over the set of all Gateaux differentiable real functions defined on g.
Here the anti-isotonity is with respect to the pair (≤C,≺) on the set

{
φ : g → R : 0 ≤C φ ≤C

1

2
‖·‖2

}
.

Proof By making use of (1), we obtain

t+(x + ∇ϕ(y)) = t+(x + ∇ψ(y) + ∇ϕ(y) − ∇ψ(y))

≺ t+(x + ∇ψ(y)) + t+(∇ϕ(y) − ∇ψ(y)). (9)

The preorder ≺ restricted to t+ is a cone preorder on t+, so we have

t+(x + ∇ϕ(y)) + t+(y − ∇ϕ(y)) ≺ t+(x + ∇ψ(y)) + t+(∇ϕ(y) − ∇ψ(y)) + t+(y − ∇ϕ(y)).

(10)

For the element y ∈ g, there exists a g ∈ G such that y = g · t+(y) ∈ g t+. Because
of the G-increase in the functions ψ and ϕ − ψ , it follows from (6) that

∇ψ(y) ∈ g t+,

∇ϕ(y) − ∇ψ(y) = ∇ (ϕ − ψ) (y) ∈ g t+

[see (6)]. This via (3) ensures that

t+(∇ψ(y)) + t+(∇ϕ(y) − ∇ψ(y)) = t+(∇ψ(y) + ∇ϕ(y) − ∇ψ(y)) = t+(∇ϕ(y)).

In consequence, we get

t+(∇ϕ(y) − ∇ψ(y)) = t+(∇ϕ(y)) − t+(∇ψ(y)). (11)

Since

∇
(
1

2
‖·‖2

)
(y) = y

and the functions ϕ = ψ + (ϕ − ψ) and ∇ 1
2‖·‖2 − ϕ are G-increasing, we deduce

from (6) that

∇ϕ(y) ∈ g t+,

y − ∇ϕ(y) = ∇
(
1

2
‖·‖2

)
(y) − ∇ϕ(y) = ∇

(
1

2
‖·‖2 − ϕ

)
(y) ∈ g t+.

and therefore by (3) we have

t+(∇ϕ(y)) + t+(y − ∇ϕ(y)) = t+(∇ϕ(y) + y − ∇ψ(y)) = t+(y),
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and next
t+(y − ∇ϕ(y)) = t+(y) − t+(∇ϕ(y)). (12)

Similarly, the function

1

2
‖·‖2 − ψ =

(
1

2
‖·‖2 − ϕ

)
+ (ϕ − ψ)

is G-increasing, because ψ , ϕ − ψ and 1
2‖·‖2 − ϕ are so. Hence, via (6) we have

∇ψ(y) ∈ g t+,

y − ∇ψ(y) = ∇
(
1

2
‖·‖2

)
(y) − ∇ψ(y) = ∇

(
1

2
‖·‖2 − ψ

)
(y) ∈ g t+.

This and (3) yield
t+(y − ∇ψ(y)) = t+(y) − t+(∇ψ(y)). (13)

Finally, by (11)–(13) and (10) we obtain

t+(x + ∇ϕ(y)) + t+(y − ∇ϕ(y))

≺ t+(x + ∇ψ(y)) + t+(∇ϕ(y)) − t+(∇ψ(y)) + t+(y) − t+(∇ϕ(y))

= t+(x + ∇ψ(y)) − t+(∇ψ(y)) + t+(y) = t+(x + ∇ψ(y)) + t+(y − ∇ψ(y)),

as claimed. ��
As a corollary to Theorem 1, we now present a refinement of the triangle-type

inequality (1).

Theorem 2 Let ϕ be a Gateaux differentiable real function on g with continuous gra-
dient ∇ϕ(·). Suppose that

0 ≤C ϕ ≤C
1

2
‖·‖2, (14)

i.e., the functions ϕ and 1
2‖·‖2 − ϕ are G-increasing on g.

If x, y ∈ g then

t+(x + y) ≺ t+(x + ∇ϕ(y)) + t+(y − ∇ϕ(y)) ≺ t+(x) + t+(y). (15)

Proof It follows from (14) that

0 ≤C ψ ≤C ϕ ≤C
1

2
‖·‖2

with ψ = 0. By applying Theorem 1 with ∇ψ(y) = 0, we obtain

t+(x + ∇ϕ(y)) + t+(y − ∇ϕ(y)) ≺ t+(x + ∇ψ(y)) + t+(y − ∇ψ(y))

= t+(x) + t+(y).
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By virtue of (14), we get

0 ≤C ϕ ≤C ψ ≤C
1

2
‖·‖2

with ψ = 1
2‖·‖2. By using Theorem 1 with ∇ψ(y) = y, we establish

t+(x + y) = t+(x + ∇ψ(y))

+t+(y − ∇ψ(y)) ≺ t+(x + ∇ϕ(y)) + t+(y − ∇ϕ(y)).

This completes the proof. ��
Corollary 1 Let 0 ≤ t ≤ 1. If x, y ∈ g then

t+(x + y) ≺ t+(x + t y) + t+(y − t y) ≺ t+(x) + t+(y). (16)

Proof The function ‖·‖ = 〈·, ·〉1/2 is G-increasing on g, because it is convex and G-
invariant. Therefore, the functions 1

2‖·‖2, ϕ = t 12‖·‖2 and 1
2‖·‖2 − ϕ = (1− t) 12‖·‖2

are G-increasing on g. That is,

0 ≤C ϕ ≤C
1

2
‖·‖2.

So, by Theorem 2 with ∇ϕ(y) = t y, we infer that inequality (16) holds valid. ��

3 Results for Real Semisimple Lie Algebras

In this section, we show corresponding results to those in Sect. 2 for a real semisimple
Lie algebra g with a Cartan decomposition g = k + p, p 
= 0, and with a maximal
abelian subalgebra a in p equipped with a fixed closed Weyl chamber a+ in a. The
inner product 〈·, ·〉 on p is the restriction of Killing form, and as previously the norm
is given by ‖·‖ = 〈·, ·〉1/2. The preorder ≺ is defined in Sect. 1.

The maximal compact subgroup in the adjoint group Int (g) is denoted by K . It acts
on p by Ad K , i.e., k · x = (Ad k)x for k ∈ K and x ∈ p.

A function Φ defined on p is called K-invariant if

Φ(k · x) = Φ(x) for all x ∈ p and k ∈ K .

We say that a function Φ : p → R is K-increasing, if for x, y ∈ p,

y ≺ x implies Φ(y) ≤ Φ(x).

Here, by definition, the convex cone C consists of all K -increasing real functions
defined on p. The cone preorder ≤C induced by C is defined as follows: for any two
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real functions ϕ : p → R and ψ : p → R, we write ψ ≤C ϕ provided that the
difference function ϕ − ψ is K -increasing on p.

Theorem 3 Let ϕ andψ be Gateaux differentiable real functions on pwith continuous
gradients ∇ϕ(·) and ∇ψ(·), respectively. Suppose that

0 ≤C ψ ≤C ϕ ≤C
1

2
‖·‖2, (17)

i.e., the functions ψ , ϕ − ψ and 1
2‖·‖2 − ϕ are K -increasing on p.

If x, y ∈ p then

a+(x + ∇ϕ(y)) + a+(y − ∇ϕ(y)) ≺ a+(x + ∇ψ(y)) + a+(y − ∇ψ(y)). (18)

Proof The proof of Theorem 3 is similar to that of Theorem 1, and therefore omitted.��
An analog of Theorem 2 is the following.

Theorem 4 Let ϕ be a Gateaux differentiable real function on p with continuous gra-
dient ∇ϕ(·). Suppose that

0 ≤C ϕ ≤C
1

2
‖·‖2, (19)

i.e., the functions ϕ and 1
2‖·‖2 − ϕ are K -increasing on p.

If x, y ∈ p then

a+(x + y) ≺ a+(x + ∇ϕ(y)) + a+(y − ∇ϕ(y)) ≺ a+(x) + a+(y). (20)

Proof Use a similar method as in the proof of Theorem 2. ��
Finally, we present an analog of Corollary 1.

Corollary 2 Let 0 ≤ t ≤ 1. If x, y ∈ p then

a+(x + y) ≺ a+(x + t y) + a+(y − t y) ≺ a+(x) + a+(y). (21)

Proof It follows easily from Theorem 4 applied to the function ϕ = t 12‖·‖2 with
∇ϕ(y) = t y. ��
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