

Refinements of Triangle-Like Inequalities in Lie's Framework

Marek Niezgoda¹

Received: 13 November 2019 / Revised: 27 February 2020 / Published online: 4 June 2020 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020

Abstract

In this note, by using gradients of Gateaux differentiable *G*-increasing functions we prove some refinements of the following Tam's triangle-type inequality:

 $\mathfrak{t}_+(x+y) \le \mathfrak{t}_+(x) + \mathfrak{t}_+(y) \text{ for } x, y \in \mathfrak{g}$

in the context of a compact connected Lie group G with Lie algebra \mathfrak{g} and corresponding Weyl chamber \mathfrak{t}_+ . We also establish refinements of Tam's inequality:

$$\mathfrak{a}_+(x+y) \le \mathfrak{a}_+(x) + \mathfrak{a}_+(y)$$
 for $x, y \in \mathfrak{p}$

for a real semisimple Lie algebra \mathfrak{g} with Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$, a maximal abelian subalgebra \mathfrak{a} in \mathfrak{p} and its closed Weyl chamber \mathfrak{a}_+ .

Keywords Compact connected Lie group · Semisimple Lie algebra · Triangle-like inequality

Mathematics Subject Classification 22E30 · 22E60

1 Motivation

We begin our presentation with notation and terminology quoted from [6].

Let G be a compact connected Lie group and \mathfrak{g} be its Lie algebra. Assume T is a maximal torus of G and t is the Lie algebra of T. By \mathfrak{t}_+ , we denote a closed Weyl

Communicated by Rosihan M. Ali.

Marek Niezgoda bniezgoda@wp.pl; marek.niezgoda@up.lublin.pl

¹ Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland

chamber in t. For a given element $x \in \mathfrak{g}$, the symbol $\mathfrak{t}_+(x)$ represents the unique element of the set $\mathfrak{t}_+ \cap Gx$, where $Gx = \{g \cdot x : g \in G\}$ and $g \cdot x = (\operatorname{Ad} g)x$.

Let $\langle \cdot, \cdot \rangle$ be a *G*-invariant inner product on \mathfrak{g} . The dual cone of \mathfrak{t}_+ is given by $\mathfrak{t}^*_+ = \{x \in \mathfrak{g} : \langle x, v \rangle \ge 0 \text{ for all } v \in \mathfrak{t}_+\}$. This cone generates the preorder \le on \mathfrak{g} by $y \le x$ iff $x - y \in \mathfrak{t}^*_+$ for $x, y \in \mathfrak{g}$. In addition, a related preorder \prec can be defined by $y \prec x$ iff $y \in \text{conv } Gx$ for $x, y \in \mathfrak{g}$, where conv Gx is the convex hull of the *G*-orbit $\{g \cdot x : g \in G\}$ (cf. [3, Corollary B.3]). It is known that \le and \prec coincide on \mathfrak{t}_+ [1, Proposition 18].

In [6, Theorem 7] T.-Y. Tam presented a triangle-type inequality for connected compact groups, as follows

$$\mathfrak{t}_{+}(x+y) \le \mathfrak{t}_{+}(x) + \mathfrak{t}_{+}(y) \quad \text{for } x, y \in \mathfrak{g}, \tag{1}$$

where $\mathfrak{t}_+(z)$ denotes the unique element in $\mathfrak{t}_+ \cap Gz$ corresponding to an element $z \in \mathfrak{g}$.

A similar framework works in the context of real semisimple Lie algebras. Let \mathfrak{g} be a real semisimple Lie algebra with a Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$, where $\mathfrak{p} \neq 0$. Let \mathfrak{a} be a maximal abelian subalgebra in \mathfrak{p} and \mathfrak{a}_+ be a closed Weyl chamber in \mathfrak{a} .

The Killing form $\langle \cdot, \cdot \rangle$ is positive definite on \mathfrak{p} , so we can define the dual cone of \mathfrak{a}_+ by $\mathfrak{a}_+^* = \{x \in \mathfrak{p} : \langle x, v \rangle \ge 0 \text{ for all } v \in \mathfrak{p}\}$. Then we introduce the preorder \le on \mathfrak{p} by $y \le x$ iff $x - y \in \mathfrak{a}_+^*$ for $x, y \in \mathfrak{p}$.

Let *K* be the maximal compact subgroup in the adjoint group Int (\mathfrak{g}). So, Ad *K* is maximal compact subgroup of Ad *G*. We define preorder \prec in the following manner: $y \prec x$ iff $y \in \operatorname{conv} Kx$ for $x, y \in \mathfrak{p}$, where $\operatorname{conv} Kx$ is the convex hull of the *K*-orbit $Kx = \{k \cdot x : k \in K\}$ with $k \cdot x = (\operatorname{Ad} k)x$ (cf. [3, Corollary B.3]). The preorders \leq and \prec coincide on \mathfrak{a}_+ [2, Lemma 3.2]. For an element $x \in \mathfrak{p}$, the symbol $\mathfrak{a}_+(x)$ represents the unique element of the set $\mathfrak{a}_+ \cap Kx$, where $Kx = \{k \cdot x : k \in K\}$ and $k \cdot x = (\operatorname{Ad} k)x$.

In [6, Theorem 2] T.-Y. Tam showed that

$$\mathfrak{a}_{+}(x+y) \le \mathfrak{a}_{+}(x) + \mathfrak{a}_{+}(y) \quad \text{for } x, y \in \mathfrak{p}.$$
⁽²⁾

In this note, our purpose is to show refinements of inequalities (1) and (2) by employing gradients of differentiable real functions increasing with respect to corresponding preorder \prec (cf. [6]).

2 Results for Compact Connected Lie Groups

In this section, we consider the Lie algebra \mathfrak{g} of a compact connected Lie group G. We use the norm $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$ on \mathfrak{g} generated by a *G*-invariant inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} . The group *G* acts on \mathfrak{g} by Ad *G*. The preorder \prec is defined in Sect. 1.

A function Φ defined on g is called *G*-invariant if

$$\Phi(g \cdot x) = \Phi(x)$$
 for all $x \in \mathfrak{g}$ and $g \in G$.

We say that a function $\Phi : \mathfrak{g} \to \mathbb{R}$ is *G*-increasing, if for $x, y \in \mathfrak{g}$,

 $y \prec x$ implies $\Phi(y) \leq \Phi(x)$.

In order to state our results, we need to employ the convex cone C of all *G*-increasing real functions defined on \mathfrak{g} as well as the cone preorder \leq_C generated by C, as follows: given two real functions $\varphi : \mathfrak{g} \to \mathbb{R}$ and $\psi : \mathfrak{g} \to \mathbb{R}$, we use the notation $\psi \leq_C \varphi$ whenever the difference function $\varphi - \psi$ is *G*-increasing on \mathfrak{g} .

Given two vectors $x, y \in g$, if there exists a $g \in G$ such that $x \in g \mathfrak{t}_+$ and $y \in g \mathfrak{t}_+$, then

$$t_+(x+y) = t_+(x) + t_+(y).$$
 (3)

In this note, we take the convention that the Gateaux differentiability of a function $\Phi : \mathfrak{g} \to \mathbb{R}$ means the existence of the directional derivative

$$\nabla_h \Phi(y) = \lim_{t \to 0} \frac{\Phi(y + th) - \Phi(y)}{t}$$
(4)

at each point $y \in \mathfrak{g}$ and in each direction $h \in \mathfrak{g}$, and moreover that the map $\mathfrak{g} \ni h \rightarrow \nabla_h \Phi(y) \in \mathbb{R}$ is continuous and linear as a function of *h*. Consequently, there exists the gradient $\nabla \Phi(y) \in \mathfrak{g}$ satisfying the condition

$$\nabla_h \Phi(y) = \langle \nabla \Phi(y), h \rangle \quad \text{for all} \quad h \in \mathfrak{g}.$$
(5)

In accordance with [4, Theorem 2.1], a Gateaux differentiable *G*-increasing function $\Phi : \mathfrak{g} \to \mathbb{R}$ with continuous gradient $\nabla \Phi(\cdot)$ satisfies the condition

$$\nabla \Phi(g \mathfrak{t}_+(y)) \in g \mathfrak{t}_+ \text{ for all } g \in G \text{ and } y \in \mathfrak{g}.$$
 (6)

Theorem 1 Let φ and ψ be Gateaux differentiable real functions on \mathfrak{g} with continuous gradients $\nabla \varphi(\cdot)$ and $\nabla \psi(\cdot)$, respectively. Suppose that

$$0 \leq_{\mathcal{C}} \psi \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} \|\cdot\|^2, \tag{7}$$

i.e., the functions ψ , $\varphi - \psi$ and $\frac{1}{2} \|\cdot\|^2 - \varphi$ are *G*-increasing on \mathfrak{g} .

If $x, y \in \mathfrak{g}$ then

$$\mathfrak{t}_{+}(x + \nabla\varphi(y)) + \mathfrak{t}_{+}(y - \nabla\varphi(y)) \prec \mathfrak{t}_{+}(x + \nabla\psi(y)) + \mathfrak{t}_{+}(y - \nabla\psi(y)).$$
(8)

Remark 1 Observe that for any points $x, y \in g$, statement (8) in Theorem 1 shows the *anti-isotonity* of the functional

$$\phi \to \mathfrak{t}_+(x + \nabla \phi(y)) + \mathfrak{t}_+(y - \nabla \phi(y))$$

🖄 Springer

with ϕ running over the set of all Gateaux differentiable real functions defined on \mathfrak{g} . Here the anti-isotonity is with respect to the pair ($\leq_{\mathcal{C}}$, \prec) on the set

$$\left\{\phi:\mathfrak{g}\to\mathbb{R}:0\leq_{\mathcal{C}}\phi\leq_{\mathcal{C}}\frac{1}{2}\|\cdot\|^{2}\right\}.$$

Proof By making use of (1), we obtain

$$\mathfrak{t}_{+}(x + \nabla\varphi(y)) = \mathfrak{t}_{+}(x + \nabla\psi(y) + \nabla\varphi(y) - \nabla\psi(y))$$

$$\prec \mathfrak{t}_{+}(x + \nabla\psi(y)) + \mathfrak{t}_{+}(\nabla\varphi(y) - \nabla\psi(y)). \tag{9}$$

The preorder \prec restricted to \mathfrak{t}_+ is a cone preorder on \mathfrak{t}_+ , so we have

$$\mathfrak{t}_{+}(x + \nabla\varphi(y)) + \mathfrak{t}_{+}(y - \nabla\varphi(y)) \prec \mathfrak{t}_{+}(x + \nabla\psi(y)) + \mathfrak{t}_{+}(\nabla\varphi(y) - \nabla\psi(y)) + \mathfrak{t}_{+}(y - \nabla\varphi(y)).$$
(10)

For the element $y \in \mathfrak{g}$, there exists a $g \in G$ such that $y = g \cdot \mathfrak{t}_+(y) \in g \mathfrak{t}_+$. Because of the *G*-increase in the functions ψ and $\varphi - \psi$, it follows from (6) that

$$\nabla \psi(y) \in g \mathfrak{t}_+,$$

$$\nabla \varphi(y) - \nabla \psi(y) = \nabla (\varphi - \psi) (y) \in g \mathfrak{t}_+$$

[see (6)]. This via (3) ensures that

 $\mathfrak{t}_{+}(\nabla\psi(y)) + \mathfrak{t}_{+}(\nabla\varphi(y) - \nabla\psi(y)) = \mathfrak{t}_{+}(\nabla\psi(y) + \nabla\varphi(y) - \nabla\psi(y)) = \mathfrak{t}_{+}(\nabla\varphi(y)).$

In consequence, we get

$$\mathfrak{t}_{+}(\nabla\varphi(y) - \nabla\psi(y)) = \mathfrak{t}_{+}(\nabla\varphi(y)) - \mathfrak{t}_{+}(\nabla\psi(y)).$$
(11)

Since

$$\nabla\left(\frac{1}{2}\|\cdot\|^2\right)(y) = y$$

and the functions $\varphi = \psi + (\varphi - \psi)$ and $\nabla \frac{1}{2} \| \cdot \|^2 - \varphi$ are *G*-increasing, we deduce from (6) that

$$\nabla \varphi(y) \in g \mathfrak{t}_{+},$$

$$y - \nabla \varphi(y) = \nabla \left(\frac{1}{2} \|\cdot\|^{2}\right)(y) - \nabla \varphi(y) = \nabla \left(\frac{1}{2} \|\cdot\|^{2} - \varphi\right)(y) \in g \mathfrak{t}_{+}.$$

and therefore by (3) we have

$$\mathfrak{t}_+(\nabla\varphi(y)) + \mathfrak{t}_+(y - \nabla\varphi(y)) = \mathfrak{t}_+(\nabla\varphi(y) + y - \nabla\psi(y)) = \mathfrak{t}_+(y),$$

Deringer

and next

$$\mathfrak{t}_{+}(y - \nabla \varphi(y)) = \mathfrak{t}_{+}(y) - \mathfrak{t}_{+}(\nabla \varphi(y)). \tag{12}$$

Similarly, the function

$$\frac{1}{2} \| \cdot \|^2 - \psi = \left(\frac{1}{2} \| \cdot \|^2 - \varphi \right) + (\varphi - \psi)$$

is G-increasing, because $\psi, \varphi - \psi$ and $\frac{1}{2} \| \cdot \|^2 - \varphi$ are so. Hence, via (6) we have

$$\nabla \psi(\mathbf{y}) \in g \mathfrak{t}_+,$$

$$y - \nabla \psi(\mathbf{y}) = \nabla \left(\frac{1}{2} \|\cdot\|^2\right) (\mathbf{y}) - \nabla \psi(\mathbf{y}) = \nabla \left(\frac{1}{2} \|\cdot\|^2 - \psi\right) (\mathbf{y}) \in g \mathfrak{t}_+.$$

This and (3) yield

$$\mathfrak{t}_{+}(y - \nabla \psi(y)) = \mathfrak{t}_{+}(y) - \mathfrak{t}_{+}(\nabla \psi(y)). \tag{13}$$

Finally, by (11)–(13) and (10) we obtain

$$\begin{split} \mathfrak{t}_{+}(x+\nabla\varphi(y)) + \mathfrak{t}_{+}(y-\nabla\varphi(y)) \\ \prec \mathfrak{t}_{+}(x+\nabla\psi(y)) + \mathfrak{t}_{+}(\nabla\varphi(y)) - \mathfrak{t}_{+}(\nabla\psi(y)) + \mathfrak{t}_{+}(y) - \mathfrak{t}_{+}(\nabla\varphi(y)) \\ = \mathfrak{t}_{+}(x+\nabla\psi(y)) - \mathfrak{t}_{+}(\nabla\psi(y)) + \mathfrak{t}_{+}(y) = \mathfrak{t}_{+}(x+\nabla\psi(y)) + \mathfrak{t}_{+}(y-\nabla\psi(y)), \end{split}$$

as claimed.

As a corollary to Theorem 1, we now present a refinement of the triangle-type inequality (1).

Theorem 2 Let φ be a Gateaux differentiable real function on \mathfrak{g} with continuous gradient $\nabla \varphi(\cdot)$. Suppose that

$$0 \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} \|\cdot\|^2, \tag{14}$$

i.e., the functions φ and $\frac{1}{2} \| \cdot \|^2 - \varphi$ are *G*-increasing on g.

If $x, y \in \mathfrak{g}$ then

$$\mathfrak{t}_+(x+y) \prec \mathfrak{t}_+(x+\nabla\varphi(y)) + \mathfrak{t}_+(y-\nabla\varphi(y)) \prec \mathfrak{t}_+(x) + \mathfrak{t}_+(y).$$
(15)

Proof It follows from (14) that

$$0 \leq_{\mathcal{C}} \psi \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} \| \cdot \|^2$$

with $\psi = 0$. By applying Theorem 1 with $\nabla \psi(y) = 0$, we obtain

$$\begin{aligned} \mathfrak{t}_+(x + \nabla\varphi(y)) + \mathfrak{t}_+(y - \nabla\varphi(y)) &\prec \mathfrak{t}_+(x + \nabla\psi(y)) + \mathfrak{t}_+(y - \nabla\psi(y)) \\ &= \mathfrak{t}_+(x) + \mathfrak{t}_+(y). \end{aligned}$$

Deringer

By virtue of (14), we get

$$0 \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \psi \leq_{\mathcal{C}} \frac{1}{2} \| \cdot \|^2$$

with $\psi = \frac{1}{2} \|\cdot\|^2$. By using Theorem 1 with $\nabla \psi(y) = y$, we establish

$$\mathfrak{t}_+(x+y) = \mathfrak{t}_+(x+\nabla\psi(y)) +\mathfrak{t}_+(y-\nabla\psi(y)) \prec \mathfrak{t}_+(x+\nabla\varphi(y)) + \mathfrak{t}_+(y-\nabla\varphi(y)).$$

This completes the proof.

Corollary 1 *Let* $0 \le t \le 1$. *If* $x, y \in \mathfrak{g}$ *then*

$$\mathfrak{t}_+(x+y) \prec \mathfrak{t}_+(x+ty) + \mathfrak{t}_+(y-ty) \prec \mathfrak{t}_+(x) + \mathfrak{t}_+(y). \tag{16}$$

Proof The function $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$ is *G*-increasing on \mathfrak{g} , because it is convex and *G*-invariant. Therefore, the functions $\frac{1}{2} \|\cdot\|^2$, $\varphi = t \frac{1}{2} \|\cdot\|^2$ and $\frac{1}{2} \|\cdot\|^2 - \varphi = (1-t) \frac{1}{2} \|\cdot\|^2$ are *G*-increasing on \mathfrak{g} . That is,

$$0 \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} \| \cdot \|^2.$$

So, by Theorem 2 with $\nabla \varphi(y) = ty$, we infer that inequality (16) holds valid. \Box

3 Results for Real Semisimple Lie Algebras

In this section, we show corresponding results to those in Sect. 2 for a real semisimple Lie algebra \mathfrak{g} with a Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}, \mathfrak{p} \neq 0$, and with a maximal abelian subalgebra \mathfrak{a} in \mathfrak{p} equipped with a fixed closed Weyl chamber \mathfrak{a}_+ in \mathfrak{a} . The inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{p} is the restriction of Killing form, and as previously the norm is given by $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$. The preorder \prec is defined in Sect. 1.

The maximal compact subgroup in the adjoint group Int (\mathfrak{g}) is denoted by *K*. It acts on \mathfrak{p} by Ad *K*, i.e., $k \cdot x = (\operatorname{Ad} k)x$ for $k \in K$ and $x \in \mathfrak{p}$.

A function Φ defined on p is called *K*-invariant if

$$\Phi(k \cdot x) = \Phi(x)$$
 for all $x \in \mathfrak{p}$ and $k \in K$.

We say that a function $\Phi : \mathfrak{p} \to \mathbb{R}$ is *K*-increasing, if for $x, y \in \mathfrak{p}$,

$$y \prec x$$
 implies $\Phi(y) \leq \Phi(x)$.

Here, by definition, the convex cone C consists of all *K*-increasing real functions defined on \mathfrak{p} . The cone preorder \leq_C induced by C is defined as follows: for any two

real functions $\varphi : \mathfrak{p} \to \mathbb{R}$ and $\psi : \mathfrak{p} \to \mathbb{R}$, we write $\psi \leq_{\mathcal{C}} \varphi$ provided that the difference function $\varphi - \psi$ is *K*-increasing on \mathfrak{p} .

Theorem 3 Let φ and ψ be Gateaux differentiable real functions on \mathfrak{p} with continuous gradients $\nabla \varphi(\cdot)$ and $\nabla \psi(\cdot)$, respectively. Suppose that

$$0 \leq_{\mathcal{C}} \psi \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} \|\cdot\|^2, \tag{17}$$

i.e., the functions ψ , $\varphi - \psi$ and $\frac{1}{2} \|\cdot\|^2 - \varphi$ are *K*-increasing on \mathfrak{p} . If $x, y \in \mathfrak{p}$ then

$$\mathfrak{a}_{+}(x + \nabla\varphi(y)) + \mathfrak{a}_{+}(y - \nabla\varphi(y)) \prec \mathfrak{a}_{+}(x + \nabla\psi(y)) + \mathfrak{a}_{+}(y - \nabla\psi(y)).$$
(18)

Proof The proof of Theorem 3 is similar to that of Theorem 1, and therefore omitted.□

An analog of Theorem 2 is the following.

Theorem 4 Let φ be a Gateaux differentiable real function on \mathfrak{p} with continuous gradient $\nabla \varphi(\cdot)$. Suppose that

$$0 \leq_{\mathcal{C}} \varphi \leq_{\mathcal{C}} \frac{1}{2} \|\cdot\|^2, \tag{19}$$

i.e., the functions φ and $\frac{1}{2} \| \cdot \|^2 - \varphi$ are *K*-increasing on \mathfrak{p} . If $x, y \in \mathfrak{p}$ then

$$\mathfrak{a}_+(x+y) \prec \mathfrak{a}_+(x+\nabla\varphi(y)) + \mathfrak{a}_+(y-\nabla\varphi(y)) \prec \mathfrak{a}_+(x) + \mathfrak{a}_+(y).$$
(20)

Proof Use a similar method as in the proof of Theorem 2.

Finally, we present an analog of Corollary 1.

Corollary 2 Let $0 \le t \le 1$. If $x, y \in \mathfrak{p}$ then

$$\mathfrak{a}_+(x+y) \prec \mathfrak{a}_+(x+ty) + \mathfrak{a}_+(y-ty) \prec \mathfrak{a}_+(x) + \mathfrak{a}_+(y).$$
(21)

Proof It follows easily from Theorem 4 applied to the function $\varphi = t \frac{1}{2} \| \cdot \|^2$ with $\nabla \varphi(y) = ty$.

Compliance with Ethical Standards

Conflict of interest The author declares that he has no conflict of interest.

References

- 1. Bourbaki, N.: Elements de Mathematique, Groupes et Algebras de Lie. Hermann, Paris (1968)
- Kostant, B.: On convexity, the Weyl group and Iwasawa decomposition. Ann. Sci. Ecole Norm. Sup. 6, 413–460 (1973)

- Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York (2011)
- Niezgoda, M.: An extension of Schur–Ostrowski's condition, weak Eaton triples and generalized AI functions. Linear Algebra Appl. 580, 212–235 (2019)
- Niezgoda, M.: On triangle inequality for Miranda–Thompson's majorization and gradients of increasing functions. Adv. Oper. Theory (2020). https://doi.org/10.1007/s43036-019-00023-y
- Tam, T.-Y.: A unified extension of two results of Ky Fan on the sum of matrices. Proc. AMS 126, 2607–2614 (1998)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.