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Abstract
The three-dimensional magnetohydrodynamics equation with damping is considered
in this paper. Global attractor of the 3Dmagnetohydrodynamics equations with damp-
ing is proved for 4 ≤ β < 5 with any α > 0.
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1 Introduction

In this paper, we consider the following three-dimensional magnetohydrodynamics
(MHD) equations with damping:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u − ν�u + (u · ∇)u − (b · ∇)b + α|u|β−1u + ∇(p + |b|2
2 ) = f1(x),

∂t b − κ�b + (u · ∇)b − (b · ∇)u = f2(x),
∇ · u = 0, ∇ · b = 0,
u|∂D = b|∂D = 0,
u|t=0 = u0, b|t=0 = b0,

(1.1)
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where D ⊆ R
3 is a bounded domain with the boundary ∂D and t > 0. u, b are

the fluid velocity and magnetic field, respectively. f1(x), f2(x) are the external body
force. p is the pressure, β ≥ 1 is constant, and α is the damping coefficient. The
constants ν, κ ≥ 0 are kinematic viscosity and magnetic resistivity. For simplicity, we
set ν = κ = 1.

The magnetohydrodynamic model has been investigated by many authors. In [12],
Sermange and Temam have proved the well-posedness of solutions for MHD system
in a bounded and a periodic domain. At the same time, regularity properties and
attractors were also obtained. In [1], the pullback attractors and well-posedness of
solutions of 2D MHD system were proved by using the Galerkin method. Based on
the well-posedness of strong solutions of 3D MHD system that is difficult problem,
many authors in [3,6,18,19,21] have studied the attractors and invariant measures of
solutions of 3D-modified MHD system. Our result improves the early results in [21].

The damping term is very important for proving thewell-posedness of 3DMHDsys-
tem. In previous years, well-posedness and regularity of solutions of 3DNavier–Stokes
system with damping were proved in [2,20]. In [4,5,7–9,11], the global existence of
strong solution for 3D Navier–Stokes system with damping was proved for β > 3
with any α > 0 and α ≥ 1

4 as β = 3. Moreover, the global well-posedness of the
3D magnetohydrodynamics equations with damping was proved for β ≥ 4 with any
α > 0 in [16]. Based on [10], global well-posedness of the 3D magneto–micropolar
equations with damping was proved for β ≥ 4 with any α > 0. The existence and
regularity of the trajectory attractor of 3D modified Navier–Stokes equations were
proved in [17].

To obtain the existence of attractors for the three-dimensional magnetohydrody-
namics equations with damping, we overcome the main difficulty lies in dealing with
the nonlinear term (u · ∇)u, (u · ∇)b, (b · ∇)u, (b · ∇)b and F(u) = α|u|β−1u. C is a
nonnegative constant which may change from line to line.

This paper is organized as follows. In Sect. 2, we give some preliminaries and main
Theorem 2.1. In Sect. 3, the uniform estimate of solutions for system (1.1) is proved.
In Sect. 4, the existence of a global attractor for system (1.1) is proved.

2 Preliminaries

In this paper, the inner products and norms are defined by

(u, v) =
∫

D
u · vdx, ∀u, v ∈ H , ((u, v)) =

∫

D
∇u · ∇vdx, ∀u, v ∈ V ,

and || · ||2 = (·, ·), ||∇ · ||2 = ((·, ·)), V = {u ∈ (C∞
0 (D))3 : divu = 0}, H = the

closure of V in (L2(D))3 and V = the closure of V in (H1
0 (D))3. The L p−norm is

given by || · ||p. By using the Poincaré inequality, there exists a positive constant λ1
such that

√
λ1(||u|| + ||b||) ≤ ||∇u|| + ||∇b||, ∀u, b ∈ V , (2.1)
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here, λ1 represents the minimum of between the first eigenvalue of −�u and the
first eigenvalue of −�b. Let F(u) = α|u|β−1u and D(A) = H2(D) ∩ V . Here,
P is the orthogonal projection of (L2(D))3 onto H such that Au = −P�u and
Ab = −P�b. For u, v ∈ V , we define the bilinear form B(u, v) = P((u · ∇)v). We
define g(u) = PF(u). Now, we rewrite system (1.1) as follows in the abstract form:

⎧
⎨

⎩

∂t u + Au + B(u, u) − B(b, b) + g(u) = f1,
∂t b + Ab + B(u, b) − B(b, u) = f2,
u|t=0 = u0, b|t=0 = b0.

(2.2)

Now, we introduce the main result as follows.

Theorem 2.1 Assume that 4 ≤ β < 5 with any α > 0, (u0, b0) ∈ V × V and
f1, f2 ∈ H. The operator {S(t)}t≥0 of the three-dimensional MHD equations with
damping system (2.2) satisfies

S(t)(u0, b0) = (u(t), b(t)).

{S(t)}t≥0 is defined in the space V ×V . System (2.2) has a (V ×V , H2×H2)−global
attractor that satisfies the following.

(i) The global attractor A is invariant and compact in H2 × H2.
(ii) The global attractorA attracts bounded subset of V × V in relation to the norm

topology of H2 × H2.

3 Uniform Estimate

Firstly, we will prove the uniform estimates of strong solutions for system (2.2) as
t → ∞. We show the existence of attractors by using the following estimates.

Lemma 3.1 Let (u0, b0) ∈ V × V and f1, f2 ∈ H for 4 ≤ β < 5 with any α > 0.
There exists a constant t0 such that

||u(t)||2 + ||b(t)||2 ≤ C, (3.1)
∫ t+1

t
(||∇u(s)||2 + ||∇b(s)||2 + ||u(s)||β+1

β+1)ds ≤ C . (3.2)

Proof Multiplying the first equation of (2.2) by u and the second equation of (2.2) by
b, integrating over D, then we have

d

dt
(||u(t)||2 + ||b(t)||2) + 2

(
||∇u||2 + ||∇b||2 + α||u||β+1

β+1

)
= 2( f1, u) + 2( f2, b)

≤ ||∇u||2 + ||∇b||2 + 1

λ1
(|| f1||2 + || f2||2).
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Hence,

d

dt
(||u(t)||2 + ||b(t)||2) + ||∇u||2 + ||∇b||2 + α||u||β+1

β+1 ≤ 1

λ1
(|| f1||2 + || f2||2),

(3.3)

and

d

dt
(||u(t)||2 + ||b(t)||2) + λ1(||u||2 + ||b||2) ≤ 1

λ1
(|| f1||2 + || f2||2). (3.4)

Applying the Gronwall inequality, it is easy to get

||u(t)||2 + ||b(t)||2 ≤ (||u0||2 + ||b0||2)e−λ1t + 1

λ21
(|| f1||2 + || f2||2). (3.5)

Let t0 = max{− 1
λ1

ln || f1||2+|| f2||2
λ21(||u0||2+||b0||2) , 0}. For any t ≥ t0,

||u(t)||2 + ||b(t)||2 ≤ 2

λ21
(|| f1||2 + || f2||2) ≤ C . (3.6)

Integrating (3.3) on [t, t + 1] and applying above inequality (3.6), we get for any
t ≥ t0,

∫ t+1

t
(||∇u(s)||2 + ||∇b(s)||2 + α||u(s)||β+1

β+1)ds ≤ ||u(t)||2 + ||b(t)||2 + 1

λ1
(|| f1||2 + || f2||2)

≤ C .

Lemma 3.2 Let (u0, b0) ∈ V × V and f1, f2 ∈ H for 4 ≤ β < 5 with any α > 0.
There exists a t1 such that for every t ≥ t1,

||∇u(t)||2 + ||∇b(t)||2 + ||u||β+1 ≤ C . (3.7)

Proof Inspired by [16], it is easy to get for β ≥ 4 with any α > 0,

||∇u(t)||2 + ||∇b(t)||2 +
∫ t

0
(||�u(s)||2 + ||�b(s)||2)ds

+
∫ t

0
(|||u| β−1

2 ∇u||2 + ||∇|u| β+1
2 ||2)ds ≤ C . (3.8)

Multiplying the L2−inner product of the first equation of (1.1) by ut , then we get

||ut ||2 + 1

2

d

dt
||∇u||2 + α

β + 1

d

dt
||u||β+1

β+1 = −
∫

D
(u · ∇)uutdx +

∫

D
(b · ∇)butdx + ( f1, ut )

≤ 1

2
||ut ||2 + || f1||2 + C ||u · ∇u||2 + C ||b · ∇b||2. (3.9)
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It is easy to get that

||ut ||2 + d

dt
||∇u||2 + d

dt
||u||β+1

β+1 ≤ C || f1||2 + C ||u · ∇u||2 + C ||b · ∇b||2. (3.10)

For the second term on the right-hand side of inequality (3.10), inspired by Theorem
1.1 in [10], we deduce

C ||u · ∇u||2 ≤ C
∫

D
|u|2|∇u| 4

β−1 |∇u|2− 4
β−1 dx

≤ C(|||u| β−1
2 ∇u||2 + ||∇u||2). (3.11)

Inspired by Theorem 1.2 in [16] and Theorem 1.1 in [7], we get for β ≥ 4

||b(t)||3 β+1
β−1

≤ C . (3.12)

For the third term on the right-hand side of inequality (3.10), using (3.12), then we get

C ||b · ∇b||2 ≤ C ||b||23(β+1)
β−1

||∇b||26(β+1)
β+5

≤ C ||b||23(β+1)
β−1

||∇b|| 4
β+1 ||�b|| 2(β−1)

β+1

≤ C(||∇b||2 + ||�b||2). (3.13)

Integrating (3.10) on [0, t] and applying inequalities (3.11) and (3.13) to get

||u||β+1 ≤ C, ∀t ≥ t0 + 1 ≡ t1. (3.14)

Lemma 3.3 Let (u0, b0) ∈ V × V and f1, f2 ∈ H for 4 ≤ β < 5 with any α > 0.
There exists a t2 such that for every t ≥ t2,

∫ t+1

t
(||�u||2 + ||�b||2 + |||u| β−1

2 ∇u||2)ds ≤ C . (3.15)

Proof By (3.8), there exists a t2 such that for any t ≥ t2

∫ t+1

t
(||�u||2 + ||�b||2 + |||u| β−1

2 ∇u||2)ds ≤ C . (3.16)

Lemma 3.4 Let (u0, b0) ∈ V × V and f1, f2 ∈ H for 4 ≤ β < 5 with any α > 0.
There exists a t3 such that for every t ≥ t3,

||ut ||2 + ||bt ||2 ≤ C . (3.17)
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Proof Multiplying the first equation of (1.1) by ut and the second equation of (1.1) by
bt , integrating the result on D, then we have

||ut ||2 + ||bt ||2 + 1

2

d

dt
(||∇u||2 + ||∇b||2) + α

β + 1

d

dt
||u||β+1

β+1

≤ ||ut ||2 + ||bt ||2
2

+ || f1||2 + || f2||2

+ C ||u · ∇u||2 + C ||b · ∇b||2 + C ||b · ∇u||2 + C ||u · ∇b||2

= ||ut ||2 + ||bt ||2
2

+ || f1||2 + || f2||2 +
4∑

i=1

Ii . (3.18)

For I1, inspired by Theorem 1.1 in [10], we get

I1 ≤ C
∫

D
|u|2|∇u| 4

β−1 |∇u|2− 4
β−1 dx

≤ C(|||u| β−1
2 ∇u||2 + ||∇u||2). (3.19)

For I2, by Sobolev inequality and (3.12), we get

I2 ≤ C ||b||23(β+1)
β−1

||∇b||26(β+1)
β+5

≤ C ||b||23(β+1)
β−1

||∇b|| 4
β+1 ||�b|| 2(β−1)

β+1

≤ C(||∇b||2 + ||�b||2). (3.20)

Similarly, we also have

I3 ≤ C ||b||23(β+1)
β−1

||∇u|| 4
β+1 ||�u|| 2(β−1)

β+1

≤ C(||∇u||2 + ||�u||2). (3.21)

For I4, applying the Sobolev inequality, we get

I4 ≤ C ||u||2β+1||∇b||22(β+1)
β−1

≤ C ||u||2β+1||∇b|| 2(β−2)
β+1 ||�b|| 6

β+1

≤ C(||∇b||2 + ||�b||2). (3.22)

123



Attractors of the 3D Magnetohydrodynamics Equations with… 343

Adding up (3.18)–(3.22), we get

||ut ||2 + ||bt ||2 + d

dt
(||∇u||2 + ||∇b||2) + d

dt
||u||β+1

β+1

≤ C(|| f1||2 + || f2||2) + C(||∇b||2 + ||�b||2 + ||∇u||2 + ||�u||2 + |||u| β−1
2 ∇u||2).

(3.23)

By Lemma 3.2–Lemma 3.3, integrating (3.23) in time from t to t + 1, it is easy to get

∫ t+1

t
(||ut (s)||2 + ||bt (s)||2)ds ≤ C . (3.24)

We apply ∂t to the first equation of (2.2) and multiply the L2−inner product by ut .
Similarly, we apply ∂t to the second equation of (2.2) and multiply the L2−inner
product by bt . Then we get

1

2

d

dt
(||ut ||2 + ||bt ||2) + ||∇ut ||2 + ||∇bt ||2 ≤ |

∫

D
ut∇uutdx | + |

∫

D
bt∇butdx |

+ |
∫

D
ut∇bbtdx | + |

∫

D
bt∇ubtdx | −

∫

D
F ′(u)ututdx =

9∑

i=5

Ii . (3.25)

For I9, by Lemma 2.4 in [14], we have I9 ≤ 0.
For I5, by using Sobolev inequality and Lemma 3.2, we get

I5 ≤ C ||ut || 12 ||∇ut || 32 ||∇u||
≤ 1

4
||∇ut ||2 + C ||ut ||2||∇u||4

≤ 1

4
||∇ut ||2 + C ||ut ||2. (3.26)

For I8, similarly, then we get

I8 ≤ 1

4
||∇bt ||2 + C ||bt ||2. (3.27)

For I6 and I7, by Gagliardo–Nirenberg inequality and Lemma 3.2, we get

I6 + I7 ≤ C ||ut ||4||bt ||4||∇b||
≤ C ||ut || 14 ||∇ut || 34 ||bt || 14 ||∇bt || 34 ||∇b||
≤ 1

4
||∇ut ||2 + 1

4
||∇bt ||2 + C(||ut ||2 + ||bt ||2)||∇b||4

≤ 1

4
||∇ut ||2 + 1

4
||∇bt ||2 + C(||ut ||2 + ||bt ||2). (3.28)
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Adding up (3.25)–(3.28), we get

d

dt
(||ut ||2 + ||bt ||2) + ||∇ut ||2 + ||∇bt ||2 ≤ C(||ut ||2 + ||bt ||2). (3.29)

Applying the uniform Gronwall’s lemma, there exists a t3 such that for any s ≥ t3

||ut (s)||2 + ||bt (s)||2 ≤ C . (3.30)

Lemma 3.5 Let (u0, b0) ∈ V × V and f1, f2 ∈ H for 4 ≤ β < 5 with any α > 0.
There exists a t4 such that for every t ≥ t4,

||Au(t)|| + ||Ab(t)|| ≤ C . (3.31)

Proof By using the Minkowski inequality, we deduce

||Au|| + ||Ab|| ≤ ||ut || + ||bt || + || f1|| + || f2|| + ||B(u, u)||
+ ||B(b, b)|| + ||B(u, b)|| + ||B(b, u)|| + α||u|u|β−1||

= ||ut || + ||bt || + || f1|| + || f2|| +
5∑

i=1

Ji . (3.32)

By the Sobolev inequality, we have

J1 ≤ C ||u||∞||∇u|| ≤ C ||∇u|| 32 ||Au|| 12 ≤ 1

4
||Au|| + C ||∇u||3. (3.33)

For J2, similarly, then we also have

J2 ≤ 1

4
||Ab|| + C ||∇b||3. (3.34)

For J3, applying the Sobolev inequality, we deduce

J3 ≤ C ||u||∞||∇b|| ≤ C ||∇u|| 12 ||Au|| 12 ||∇b|| ≤ 1

8
||Au|| + C ||∇u||2 + C ||∇b||4.

(3.35)

For J4, similarly, then we also have

J4 ≤ 1

4
||Ab|| + C ||∇b||2 + C ||∇u||4. (3.36)

For J5, since
β−3
2 < 1 for 4 ≤ β < 5, applying the Young’s inequality, we get

J5 = α||u||β2β ≤ C ||�u|| β−3
2 ||∇u|| β+3

2 ≤ 1

8
||Au|| + C ||∇u|| β+3

5−β . (3.37)
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Substituting (3.33)–(3.37) into (3.32), it is easy to get that for any t ≥ t4,

||Au|| + ||Ab|| ≤ C . (3.38)

Lemma 3.6 Let (u0, b0) ∈ V × V and f1, f2 ∈ H for 4 ≤ β < 5 with any α > 0.
There exists a t5 such that for every t ≥ t5,

||∇ut ||2 + ||∇bt ||2 ≤ C, (3.39)
∫ t+1

t
(||∇ut (s)||2 + ||∇bt (s)||2)ds ≤ C . (3.40)

Proof We integrate inequality (3.29) from t to t + 1 and use the Lemma 3.4 to get

∫ t+1

t
(||∇ut (s)||2 + ||∇bt (s)||2)ds ≤ ||ut (t)||2 + ||bt (t)||2 + C

∫ t+1

t
(||ut ||2 + ||bt ||2)ds

≤ C . (3.41)

By virtue of Lemma 3.5, then we deduce

||u(t)||D(A) + ||b(t)||D(A) ≤ C .

Applying the Agmon inequality, it is easy to get

||u(t)||∞ + ||b(t)||∞ ≤ C . (3.42)

We apply ∂t to the first equation of (2.2) and multiply the L2−inner product by Aut .
Similarly, we apply ∂t to the second equation of (2.2) and multiply the L2−inner
product by Abt . Then we also have

1

2

d

dt
(||∇ut ||2 + ||∇bt ||2) + ||Aut ||2 + ||Abt ||2

≤ |
∫

D
ut∇uAutdx | + |

∫

D
u∇ut Autdx | + |

∫

D
bt∇bAutdx | + |

∫

D
b∇bt Autdx |

+ |
∫

D
ut∇bAbtdx | + |

∫

D
u∇bt Abtdx | + |

∫

D
bt∇uAbtdx | + |

∫

D
b∇ut Abtdx |

+ |
∫

D
F ′(u)ut Autdx | =

9∑

i=1

Ki . (3.43)

For K1 and K2, applying the Sobolev inequality and Lemma 3.5, we get

K1 ≤ C ||∇ut ||||∇u|| 12 ||Au|| 12 ||Aut ||
≤ 1

16
||Aut ||2 + C ||∇ut ||2, (3.44)
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and

K2 ≤ C ||∇u||||∇ut || 12 ||Aut || 32
≤ 1

16
||Aut ||2 + C ||∇ut ||2. (3.45)

For K3 and K4, we get by using the similar method

K3 ≤ C ||∇bt ||||∇b|| 12 ||Ab|| 12 ||Aut ||
≤ 1

16
||Aut ||2 + C ||∇bt ||2, (3.46)

and

K4 ≤ C ||∇b||||∇bt || 12 ||Abt || 12 ||Aut ||
≤ 1

16
||Aut ||2 + 1

4
||Abt ||2 + C ||∇bt ||2. (3.47)

Similarly, we deduce

8∑

i=5

Ki ≤ C ||∇ut ||||∇b|| 12 ||Ab|| 12 ||Abt || + C ||∇u||||∇bt || 12 ||Abt || 32

+ C ||∇bt ||||∇u|| 12 ||Au|| 12 ||Abt || + C ||∇b||||∇ut || 12 ||Aut || 12 ||Abt ||
≤ 1

8
||Aut ||2 + 1

4
||Abt ||2 + C(||∇ut ||2 + ||∇bt ||2). (3.48)

For K9, by (3.42), we have

K9 ≤ C ||u||β−1∞ ||ut ||||Aut ||
≤ 1

8
||Aut ||2 + C ||ut ||2 for t ≥ t4. (3.49)

Summing up (3.43)–(3.49), we get

d

dt
(||∇ut ||2 + ||∇bt ||2) ≤ C(||∇ut ||2 + ||∇bt ||2). (3.50)

By the uniform Gronwall’s lemma, there exists a t5 such that for every t ≥ t5,

||∇ut ||2 + ||∇bt ||2 ≤ C . (3.51)
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4 Global Attractors

In this section, we will show the existence of a global attractor for system (2.2) in
H2 × H2. Inspired by [13,14], we introduce the following the main lemmas.

Lemma 4.1 {S(t)}t≥0 is Lipschitz continuous in V × V .

Proof Let (u1, b1) and (u2, b2) be two solutions of system (2.2) with initial values
(u01, b01) and (u02, b02). We set ū = u1 − u2 and b̄ = b1 − b2. We multiply the inner
product with Aū and Ab̄, respectively. Then we get

1

2

d

dt
(||∇ū||2 + ||∇b̄||2) + ||Aū||2 + ||Ab̄||2

≤ α

∫

D
||u1|β−1u1 − |u2|β−1u2||Aū|dx +

∫

D
|ū∇u1Aū|dx +

∫

D
|u2∇ū Aū|dx

+
∫

D
|b̄∇b1Aū|dx +

∫

D
|b2∇b̄Aū|dx +

∫

D
|u1∇b̄Ab̄|dx +

∫

D
|ū∇b2Ab̄|dx

+
∫

D
|b̄∇u1Ab̄|dx +

∫

D
|b2∇ū Ab̄|dx =

9∑

i=1

Li . (4.1)

Inspired by [13,14], since
∫ t
0 (||u1||2(β−1)

3(β−1) +||∇u2||2(||u1||2(β−2)
6(β−2) +||u2||2(β−2)

6(β−2)))ds <

C for 4 ≤ β < 5, then we get

L1 ≤ 1

8
||Aū||2 + C(||u1||2(β−1)

3(β−1) + ||∇u2||2(||u1||2(β−2)
6(β−2) + ||u2||2(β−2)

6(β−2)))||∇ū||2.
(4.2)

For L2 and L3, applying the Sobolev inequality, we have

L2 ≤ C ||∇ū||||∇u1|| 12 ||Au1|| 12 ||Aū||
≤ 1

16
||Aū||2 + C ||∇u1||||Au1||||∇ū||2, (4.3)

and

L3 ≤ C ||∇u2||||∇ū|| 12 ||Aū|| 32
≤ 1

16
||Aū||2 + C ||∇u2||4||∇ū||2. (4.4)

Similarly, for the rest of terms L4 − L9, we get

L4 + L5 ≤ C ||∇b̄||||∇b1|| 12 ||Ab1|| 12 ||Aū|| + C ||∇b2||||∇b̄|| 12 ||Ab̄|| 12 ||Aū||
≤ 1

8
||Aū||2 + 1

8
||Ab̄||2 + C(||∇b1||||Ab1|| + ||∇b2||4)||∇b̄||2, (4.5)
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L6 + L7 ≤ C ||∇u1||||∇b̄|| 12 ||Ab̄|| 32 + C ||∇ū||||∇b2|| 12 ||Ab2|| 12 ||Ab̄||
≤ 1

8
||Ab̄||2 + C(||∇u1||4 + ||∇b2||||Ab2||)(||∇ū||2 + ||∇b̄||2), (4.6)

and

L8 + L9 ≤ C ||∇b̄||||∇u1|| 12 ||Au1|| 12 ||Ab̄|| + C ||∇b2||||∇ū|| 12 ||Aū|| 12 ||Ab̄||
≤ 1

8
||Aū||2 + 1

8
||Ab̄||2 + C(||∇u1||||Au1|| + ||∇b2||4)(||∇ū||2 + ||∇b̄||2). (4.7)

Adding up (4.1)–(4.7), it is easy to get

d

dt
(||∇ū||2 + ||∇b̄||2) ≤ C[||∇u1||2 + ||∇u1||4 + ||u1||2(β−1)

3(β−1) + ||∇b1||||Ab1||
+ ||∇u2||2(||u1||2(β−2)

6(β−2) + ||u2||2(β−2)
6(β−2)) + ||∇u2||4

+ ||Au1||2 + ||∇b2||4 + ||∇b2||2 + ||Ab2||2](||∇ū||2 + ||∇b̄||2). (4.8)

Applying the Gronwall inequality and Lemma 3.1–Lemma 3.6, this completes the
proof of Lemma 4.1.

Lemma 4.2 Assume thatA is a (V × V , V × V )−global attractor for {S(t)}t≥0.A is
a (V × V , H2 × H2)−global attractor if and only if

(i) {S(t)}t≥0 is a bounded (V × V , H2 × H2)−absorbing set.
(ii) {S(t)}t≥0 is (V × V , H2 × H2)−asymptotically compact.

Firstly, wewill prove the operator {S(t)}t≥0 has a (V×V , V×V )−global attractor,
then by using above Lemma 4.2, we get the attractor is a (V × V , H2 × H2)−global
attractor. Let

B1 = {u, b ∈ V : ||∇u||2 + ||∇b||2 ≤ C}

and

B2 = {u, b ∈ D(A) : ||Au||2 + ||Ab||2 ≤ C}.

By above Lemma 3.2, we deduce that B1 is bounded absorbing set of {S(t)}t≥0 in the
space (V × V , V × V ). By above Lemma 3.5, we get that B2 is bounded absorbing
set of {S(t)}t≥0 in the space (V × V , H2 × H2). By Lemma 3.5, the {S(t)}t≥0 is
(V×V , V×V )-asymptotically compact. Inspired by [13–15],weget a (V×V , V×V )-
global attractorA. Finally,wewill show {S(t)}t≥0 is (V×V , H2×H2)-asymptotically
compact. We need the following lemma.

Lemma 4.3 Let (u0, b0) ∈ V × V and f1, f2 ∈ H for 4 ≤ β < 5 with any α > 0.
The dynamical system {S(t)}t≥0 is (V × V , H2 × H2)-asymptotically compact.
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Proof Assume that (u0n, b0n) is a bounded in V × V and tn → ∞. We will show
{S(tn)(u0n, b0n)} has a convergent subsequence in H2 × H2. Let

(un(t), bn(t)) = S(t)(u0n, b0n), (ūn(tn), b̄n(tn)) = (
∂un
∂t

|t=tn ,
∂bn
∂t

|t=tn ).

For the first equation and the second equation of (2.2), we get

Aun(tn) = f1 − ūn(tn) − B(un(tn), un(tn)) + B(bn(tn), bn(tn)) − g(un(tn)),

Abn(tn) = f2 − b̄n(tn) − B(un(tn), bn(tn)) + B(bn(tn), un(tn)).

By Lemma 3.5 and Lemma 3.6, then there exists a positive constant T > 0 such that
for every t ≥ T ,

||∇ ∂un
∂t

(t)|| + ||∇ ∂bn
∂t

(t)|| ≤ C, ||Aun(t)|| + ||Abn(t)|| ≤ C . (4.9)

When tn → ∞, there exists a N > 0 such that tn ≥ T for every n ≥ N . Applying
(4.9), we deduce for n ≥ N ,

||∇ūn(tn)|| + ||∇b̄n(tn)|| ≤ C, ||Aun(tn)|| + ||Abn(tn)|| ≤ C . (4.10)

Applying the compactness of embedding V ↪→ H and D(A) ↪→ V and (4.10), then
there exist (ū, b̄) ∈ V × V and (û, b̂) ∈ D(A) × D(A) such that

un(tn) → û strongly in V , (4.11)

bn(tn) → b̂ strongly in V , (4.12)

ūn(tn) → ū strongly in H , (4.13)

b̄n(tn) → b̄ strongly in H . (4.14)

By (4.10) and H2 ↪→ L∞, we get

||un(tn)||∞ + ||bn(tn)||∞ ≤ C, ∀n ≥ N . (4.15)

Inspired by [13,14], applying (4.11), we get

||F(un(tn)) − F(û)||2 ≤ C ||un(tn) − û||2 → 0, as n → ∞.

Hence,

g(un(tn)) → g(û) strongly in H . (4.16)
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Then, by Sobolev inequality, we have

||B(un(tn), un(tn)) − B(û, û)||2
≤ C(||(un(tn) · ∇)(un(tn) − û)||2 + ||(un(tn) − û) · ∇û||2)
≤ C(||∇un(tn)||2||∇(un(tn) − û)||||A(un(tn) − û)|| + ||∇(un(tn) − û)||2||∇û||||Aû||)
→ 0, as n → ∞. (4.17)

Similarly, we have

||B(bn(tn), bn(tn)) − B(b̂, b̂)||2
≤ C(||(bn(tn) · ∇)(bn(tn) − b̂)||2 + ||(bn(tn) − b̂) · ∇b̂||2)
≤ C(||∇bn(tn)||2||∇(bn(tn) − b̂)||||A(bn(tn) − b̂)|| + ||∇(bn(tn) − b̂)||2||∇b̂||||Ab̂||)
→ 0, as n → ∞,

||B(un(tn), bn(tn)) − B(û, b̂)||2 (4.18)

≤ C(||(un(tn) · ∇)(bn(tn) − b̂)||2 + ||(un(tn) − û) · ∇b̂||2)
≤ C(||∇un(tn)||2||∇(bn(tn) − b̂)||||A(bn(tn) − b̂)|| + ||∇(un(tn) − û)||2||∇b̂||||Ab̂||)
→ 0, as n → ∞, (4.19)

and

||B(bn(tn), un(tn)) − B(b̂, û)||2
≤ C(||(bn(tn) · ∇)(un(tn) − û)||2 + ||(bn(tn) − b̂) · ∇û||2)
≤ C(||∇bn(tn)||2||∇(un(tn) − û)||||A(un(tn) − û)|| + ||∇(bn(tn) − b̂)||2||∇û||||Aû||)
→ 0, as n → ∞. (4.20)

(4.17)–(4.20) imply that

−B(un(tn), un(tn)) + B(bn(tn), bn(tn)) → −B(û, û) + B(b̂, b̂) strongly in H ,

(4.21)

−B(un(tn), bn(tn)) + B(bn(tn), un(tn)) → −B(û, b̂) + B(b̂, û) strongly in H .

(4.22)

Applying (4.13), (4.14), (4.16), (4.21) and (4.22), then we get

Aun(tn) → f1 − ū − B(û, û) + B(b̂, b̂) − g(û) strongly in H , (4.23)

Abn(tn) → f2 − b̄ − B(û, b̂) + B(b̂, û) strongly in H , (4.24)

as n → ∞. We get {S(t)}t≥0 is (V × V , H2 × H2)-asymptotically compact.

Proof of Theorem 2.1 Applying Lemma 3.5, we get B2 = {u, b ∈ D(A) : ||Au||2 +
||Ab||2 ≤ C} denotes a bounded (V × V , H2 × H2)−absorbing set. Next, applying
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Lemma 4.3, we obtain the {S(t)}t≥0 is (V × V , H2 × H2)-asymptotically compact.
Finally, by Lemma 4.2, A is a (V × V , H2 × H2)−global attractor.
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