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Abstract

Fourth-order tensors play a fundamental role in signal processing, wireless commu-
nication systems, image processing, data analysis and higher-order statistics. In this
paper, we introduce a Z-identity tensor and establish two Z-eigenvalue inclusion
sets for fourth-order tensors, which are sharper than some existing results. Numerical
examples are proposed to verify the efficiency of the obtained results. As applica-
tions, we provide some checkable sufficient conditions for the positive definiteness of
fourth-order symmetric tensors. Further, we propose upper bounds on the Z-spectral
radius of fourth-order nonnegative tensors and estimate the convergence rate of the
greedy rank-one algorithms under suitable conditions.
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1 Introduction

Consider the following homogeneous polynomials with spherical constraint:

n
min fa(x) = Ax™ = Z Qiyiy..im X Xiy - - - Xi,
i1,02,.im=1 (]])

st x'x= 1,

where x € R",m,n > 2, fa(x) is a homogeneous polynomial of degree m with n
variables and A € RI™-"1 is an mth-order n-dimensional real tensor with entries [13,
15]:

iy ..ip, GR, ijeNz{l,...,n}, j:l,...,m.

The positive definiteness of homogeneous polynomials plays an important role in
medical resonance [1,2], automatic control [5,6,14] and imaging spectral hypergraph
theory [12,17]. For instance, in diffusion weighted magnetic resonance image pro-
cessing, to analyze the connectivity of the tissues being scanned, we need to compute
the diffusivity at each image lattice point and approximate it by a positive definite
tensor [16]. Clearly, the critical points of (1.1) satisty the following equations of for
some A € R :

A" ' =ax and x'x =1, (1.2)

where (Ax"~1); = Ziz ’’’’’ ineN Giiy..inXis - - - Xi,,. The real number A and the real
vector x satisfying with (1.2) are called Z-eigenvalue and Z-eigenvector, respectively.

Note that f 4(x) is positive definite if and only if tensor A is positive definite, and
that an even-order real symmetric tensor is positive definite if and only if all of its
Z-eigenvalues are positive [15]. Some effective algorithms for finding Z-eigenvalue
and the corresponding eigenvector have been implemented [3,10,12,17,24-26,28].
When m and n are very large, it is difficult to compute all the Z-eigenvalues or the
smallest Z-eigenvalue. Thus, many researchers turned to investigating the inclusion
sets of Z-eigenvalues [3,7,11,19-23]. Unfortunately, the mentioned inclusion sets
always include zero and could not be used to identify the positive definiteness of .A
and homogeneous polynomials. Recently, there have been breakthroughs in judging
the positive definiteness of fourth-order tensors [8,29]. Based on special structure of
fourth-order tensor, Zhao [29] proposed a Gersgorin-type E-eigenvalue inclusion set,
which can identify the positive definiteness.

Lemma 1.1 (Corollary 1of [29]) Let A = (ai,iriziy) € R with ajiii = aiijj +
ajjij +aijji, i, j € N,i # j.Ifforeachi € N

aijii > Ri(A) — V,-Zi A,

. .. . A
then A is positive definite, where Ri(A) = 3, i ienl@iiniigl 77 (A) =

Z(ig,i3,i4)eZ,~ |aii2i3i4 |
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It is noted that the localization sets given in Lemma 1.1 need to satisfy the condition
ajjii = ajijj + ajjij + a;jji, which is a relatively strict condition. To overcome the
drawback, we want to introduce Z-identity tensor and establish new Z-eigenvalue
inclusion sets to test the positive definiteness of .A. Meanwhile, He et al. [8] proposed
some Z-eigenvalue inclusion sets based on classification of indicator sets, which can
identify the positive definiteness of fourth-order tensors. However, some information
of a given eigenvector x = (x, ..., x,) T on fourth-order tensors is not fully mined,
suchasmax;«jen |Xi||x;| < % Inspired by these results, we want to explore properties
of eigenvectors of fourth-order tensors and establish sharp Z-eigenvalue inclusion sets
by a Z-identity tensor, which show that new Z-eigenvalue inclusion sets are tighter
than existing results. Further, we propose some sufficient conditions for testing the
positive definiteness of fourth-order tensors and estimate the convergence rate of the
greedy rank-one algorithms under suitable conditions.

The remainder of the paper is organized as follows. In Sect. 2, some definitions and
preliminary results are recalled. In Sect. 3, two sharp Z-eigenvalue inclusion sets with
n parameters are established. In Sect. 4, some sufficient conditions are proposed for
identifying positive definiteness of fourth-order tensors. Further, the upper bounds on
Z-spectral radius of weakly symmetric nonnegative tensors are given and the conver-
gence rate of the greedy rank-one algorithms is estimated.

2 Preliminaries

In this section, we firstly introduce important definitions of tensors [3,10,15].

Definition 2.1 Let A and 7, be mth-order n-dimensional tensors.

(i) We define o7(A) as the set of all Z-eigenvalues of A. Assume o7 (A) # @. Then
the Z-spectral radius of A is denoted by

p(A) = max{|A| : A € 0 (A)}.
(ii) We say that A is symmetric if
Vrmely,,

ail---iﬂl = ai?‘[(l)"-iﬂ("l) ’

where I}, is the permutation group of m indices.
(iii) We say that A is weakly symmetric if the associated homogeneous polynomial
Ax™ satisfies
VA" = mAx"™ .

Obviously, if tensor A is symmetric, then A weakly symmetric. However, the
converse result may not hold.

Definition 2.2 We call Z; € RI*"! a fourth-order Z-identity tensor if

sz3 =x with x'x = 1.
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108 L.Sunetal.

Note that the fourth-order Z-identity tensor is not unique in general. For instance, each
fourth-order tensor in the following is a Z-identity tensor:
Case 1

1, ifi=jandk=1
Z2iju = {0, otherwise.

Case 2 (Property 2.4 of [10]):

ifi=j=k=1,ijkleN
ifi=j#k=1ij.kleN
ifi=k#j=1,i j.kleN
ifi=14k=j,i j.kleN

otherwise.

@2)iju =

O W= W= W= =

Next, we partition the index sets and recall some properties on Z-eigenvalues of a
tensor [8,29]. For k,i € N, define

AR = {(iy, i3, i4) : at least two of the indices iy, i3, i4 are equal to k and i €
{i2, i3, ia}};

AR = {(iy, i3, i4) : at least two of the indices iy, i3, i4 are equal to k and i ¢
{ia, i3, ia}};

A=AV UATU.. . UA"; A=ATUA2U...UAY,

A'=A\AT A = (2, 03.04) 12, 3,14 € NIA;

AN = {(iz,i3,14) € At (2,03, i4) & A and (2, 73, i4) & A}

Lemma 2.1 (Theorem 5 of [29]) Let A = (aiipisiy) € R4 with ajjii = aiijj
+ aijij + aijji. i, j € N,i # j. Then
oe(A) CT(A) = U T;(A),
ieN
where T;(A) = {z € C : |z — ajjiil| < Ri(A) — riAi(A)} and r,-Ai(.A) =
Z(iz,i3,i4)eAi [@iiisisl-

Lemma 2.2 (Theorem 5 of [8]) Let A = (aj,..,,) € R*™. Then

sAHcrA=( J T)JJM),

i jEN,i#j ieN

where Yij(A) = {z € B = (12l = B (A) = r} (D12l = B} (A) = r (A) <
B A+ ADER (A + Y (AL Mi(A) = (@ € R 2] = B (A) -
r2'(A)) < 0} and
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Ai Ai
B> (A) = max Z |Giisisia| ¢ 7 (A) = Z |@iipizials

(i2,i3,i4) €Ak (i2.i3,i4)€A!

B (A) = max Y il A= Y il

eN B
(i,i3,i4)€AK (i2,i3,i4)€A!

N A
Bj" (A) = max Yo ajniil {7 A= Y @il

(i2.i3,i4)€AN (i2.i3,i4)eA]

N Al
ﬂ (A) ma]\)]( Z |aji2i3i4| s rj (A) = Z |aji2i3i4|-

(i2,i3,i4)€AK] (i2,i3,i4) €A/

3 Sharp Z-eigenvalue Inclusion Sets with Parameters

In this section, we establish two sharp Z-eigenvalue inclusion theorems for fourth-
order tensors. We begin our work by collecting the information of ), £jeN | 1]

Lemma 3.1 Forany x € R", if
x%—}—x%—}—...—}—x,%: 1,

then

Further, max;xjen |x;i|x;| < %
Proof Define Lagrange function
fxg, ... xn)_xlzx )»(xl—i-xl—i-...—i-x,%—l),

where A denotes Lagrange multiplier. For all i # j, deriving the above equation x;
and x;, respectively, we get

2x12.x,' = 2AX;,
2xi2x j = 2Ax;j.

Hence, we obtain xi2 = xJZ., A= % Particularly, set

V2

x,-::l:xj::I:T,xn:O,n;éi,j
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110 L.Sunetal.

Withxlz—}—x%—}—...—}—x,%:l.So,

max xizsz <
i#jeN

Bl

Further,

| =

max |x;||x;| <
i%jeN

m}

Theorem 3.1 Let A = (ai,iyizi,) € R and T, be an Z-identity tensor given in
Definition 2.2. For any o = («1, .. ., a,,)T e R", then,

oA S Q4 ) =i ),

ieN
where Qi(A,@) = [z € R : |z —ai| < y2 (A a) + B (A) + irA ),
rf(A) = D (in.inig)ea |inizis|s and VA (A @) = maxien (X, i igyeat |iinisiy —
ai(IZ)ii2i3i4|}v ﬁlAl(A) = maxkEN{Z(iz,i:;,u)EAk’T |aii2i3i4|}~ Further, G(A) -

Mocar A ).

Proof Let (1, x) be a Z-eigenpair of A and 7, € RI*"! be a Z-identity tensor, i.e.,
Ax? =ax =2Zzx3, xTx =1. (3.1)

Assume |x;| = maXx;ep |xi|, then O < |x;| < 1. From the rth equality of (3.1), we
have

E )\(IZ)tiQi3i4xi2xi3xi4 = § AtirizigXipXizXig- (32)

i2,i3,i4€N i2,i3,i4€N

Hence, for any real number o, it follows that

()\' - Olt)xl‘ = Z ()\ - at)(IZ)ti2i3i4xi2-xi3-xi4

i2,i3,i4€N
= § (ati2i3i4 — 0 (IZ)ti2i3i4)-xi2-xi3xi4
i2,i3,i4€N
= E (arigisis — @t (T2 iiizia) Xir XisXig + E QtinizigXinXizXiy
(i2.i3.i4) €A (i2.i3.i4) €A
= E (ati2i3i4 —a (IZ)ti2i3i4)xi2xi3xi4 + E AtirizigXipXiz Xiy
(i2,i3,i4) €A’ (i2,i3,i4)EAT
+ E AtinizigXipXizXig- (33)

(in,i3,i4)€A
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Taking modulus in (3.3) and using the triangle inequality and for any k € N, we get

—allxl ==l Y ToigisisXinXisXiy |

i2,i3,i4eN

< Y Wannisis — € (T2)izisia ) |10y 165 |13, |

(i2,i3,i4)€A!

+ Y lamiillxi Xl + D i1, |12 x|

(i2,i3,i4)€ AT (i2,i3,i4)€A
< max Z [Qririzia — U (L2 1igizial ¢ 1%
keN

(i,i3,i4) AN

1
tmax s Y aiil plul S D0 sl bl

keN _ -
(i,i3,i4)EAN (in,i3,i4)EA

=y (A o) x| + B (A) x| + —r, A A x|, (3.4)

ie, A —oal < y,At (A, o) + ,B,A[(.A) + %F,A (A), which implies that & € Q;(A, o).
It follows from the arbitrariness of « that 0 (A) C (), cpn (A, ). i

Remark 3.1 (i) From Theorem 5 of [29], for a;;;; = aiij; +aijij +aijji, we observe

Ri(A)—rf (A= Z Giiyigis| = Z |@iiyizisl + Z iiyiyisl-

(i2,i3,i4) A1 (i2,i3,i4) AT (i2,i3.i4)€A

Setting o; = ajjj;, from Theorem 3.1, we obtain
Qi (A, ajjii) = {Z eR:|z—ayiil < BP (A) + (A)}

It is easy to verify that

B () = max Do il { =Y. i

(i2,i3,i4) € AN (i2,i3,i4) €A

and

1 % 1 .
EriA(A) = 5 Z |aii2i3i4| =< Z |aii2i3i4|’ Vi € N,

(i2.i3,i4)€A (i2.i3,i4)€A
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which show ,BiAi (A)—i— (A) < Ri(A)-rP (A) Thus, Q; (A, aiiii) € I'i(A)
foralli € N.Further, ﬂaeRn Q(A, ) C I"(A).Hence, the result of Theorem 3.1
is always sharper than the result given in Theorem 5 of [29].

(ii) When a;;;; # aijjj + aijij + aijji, we cannot determine the distribution of Z-

eigenvalues by Theorem 5 of [29]. However, Theorem 3.1 still works.

(iii) Similar to the above characterizations, setting @ = 0, we prove that Theorem 3.1

can determine Z-eigenvalues more accurately than that of Theorem 4 of [8].

Theorem 3.2 Let A = (ai,iyizi,) € R4 and T, be an Z-identity tensor given in
Definition 2.2. For any a = (a1, .. ., oz,,)T c R", then,

s oA =] [ oA,

ieN jeN,j#i

where (I)i,j(A, o) = ('Pi,j(.A, o) U ./\/li,j(.A, 05)),

Pij(A ) = {z €R: (|z — il — A (A ) — A () - %A (A))

j I Aj
x <|z —ajl =y Aoy = o (A))
< (ﬂ,-“ )+ 57 <A)) (ﬂff W+ 5 (A))} ,

Mij(Aa) =z eR: |z — o] — v (A, ai)fﬁA?'f(A)

1 .
A/(A)<0and e —ajl -y (A, a])—f ) <o),

VZN (A ) = kmea}il( { Z Giiyiziy — (IZ)1121314|} a7 (A)

(i2.i3,i3) AR

= Y lajiniyl

(i2.i3.i4) €AV

A AJ
B (A) = max Do il (Y A= D 1ajiisigls

(i2,i3,ia)€ AR (i2,i3,i2)eAT

B (A) = ma;vci 3 |aii2i3i4|},r,-é’<A>= ST it

(i2.i3,i4)€ Ak (i2,i3,i2)€A]
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ﬂiAw (A) = ineali,( Z Giiyizig] ( riAJ (A) = Z |iisisiy -
(12,3 1) € A Grizineh]

(in, i3, ig) & AK

(i, i3.14) ¢ A

Proof Let (1, x) be a Z-eigenpair of A and Z; € RI*"! be a Z-identity tensor. Setting
|x;] = max;ep |x;|, then one has 0 < |x;| < 1. For any s # ¢ € N and any real
number «;, from the 7th equality of (3.1), we have

A —a)x; = Z A = a) T2 tizisiaXinXisXiy

i,i3,i4€N

= E (aririnia — (T2 tinisiy ) Xiz XisXig
i,i3,i4€N

= E (atigisis — @t (T2 iinizig) Xir XisXiy + E AtiniyigXinXizXiy
(i2,i3,i4)€A (i2,i3,i4)€A

= E (atizizia — (T2 tinisiy)Xir XisXiy + E AtirizigXinXizXiy
(i2,03,i4) EA! (i2,13,i4)EAS
+ E AtiyizigXipXizXiy + E AtiyizigXipXizXig

(ir,13,14) € A (i2,i3,i4) €A’

(i2,03,14) ¢ A
(i2,03,i4) ¢ A®

+ Z AtiyizigXipXizXig- (35)

(i2.i3,i4) €A’

Taking modulus in (3.5) and using the triangle inequality and for any k € N, we obtain

n—allxl = —all D (T2)isisiaXisXiy i |

i7,i3,i4s€N
< Z (atigisis = e (T2 itinisis) |1Xin |1Xi5 1% |
(i2,i3,i4)EAT
Y aniisia 1 i x| + > \asigisia |1 | i3 1 |
(B3, l)en? (i2,i3,i4) € A

(i2,i3,14) & A
(i2,13,i4) ¢ A®

+ Y il s X+ Y @il 1x i x|

(i2,i3,i4)€AS (i2,i3,i4) €A
< max E |atiyiniy — 0 (T2)1iisiy | ¢ 1%7|+max E |@riyizis] ¢ 1%s]
keN keN
(i2.i3,i4) €Ak (i2,i3,i4)€AKS
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1
+ max Z Atiyisi x|+ = Z Atinisiy||X
keN | t12l3l4| | ll 2 L ) | tlzl3t4|| sl
(i2,i3,i4) € A (2,03,i)€A
(i2, i3, ia) ¢ AF
(i, i3, 14) ¢ AP

1
+ E Z |ati2i3i4‘|-xt|

(i2,i3,i4)€A’

' 5 s 1 s 1 x5
=y~ (A a)lx + BE (Alxs| + R (A)lxe] + Er,A (A)lxs| + Er,A (A)]x; .
(3.6)

Therefore,

t 1,5 AS s 1 AS
(IA=—a | =y (A a)=BE (A —=rf (A)x | < (BE (A>+5r,A (A)lxs]. (3.7)

R —

If [x,] = 0, by (3.7), we deduce |A — a;| — 12" (A, ) — BA™ (A) — LrA(A) < 0.
Further, we obtain A € P; (A, @) or A € M; (A, ).
Otherwise, |xs| > 0. Forany s # ¢ € N, from the sth equality of (3.1), it holds that

A —a)x; = Z A — a5) (D7) sipiziaXir XizXiy

i7,i3,i4€N

= E (asizisis — s (T2 sininia) XinXiz Xiy
i7,i3,i4€N

= E (asiziziy — ots (IZ)si2i3i4)xi2xi3xi4 + E AsinizigXipXizXiy
(i2,13,i4) €A (i2,i3,i4)€A

= E (asiisis — s (T2 sinizia ) Xin Xiz Xiy
(i2,13,i4)€AS
+ E AsirizigXipXizXiy
(i2,i3,i4) €A’
+ E AsirizigXipXizXiy + E AsinizigXip XizXiy - (38)

(i2»i3yi4)€&? (i2,i3,i4)EAS

Taking modulus in (3.8) and using the triangle inequality and for any k € N, we
obtain
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[A — ogllxs| = |A — o] Z (Z2)sirizisXir XizXiy |

i7,i3,is€N
< D Washisis — @s@sinisia) 1o 1xis 1xi L+ Y asigiia|1xi x|,
(i2,i3,i4) €A’ (i2,i3,i4) EAY
+ D asiil s x4+ Y (@sigii |1 i1, |
(i2,i3,i4)EAS (in,i3,i4)€AS

< max Z Agirinia — Qs (L7)siriai Xg| + max Z Agirizia ¢ |X
= { | Sipi3iq s( Z)Slgl3l4|}| sl kenN | Sini3iq | t|

(i2,i3,i4)€AKS (i2,3,i4)€AKS

+ Y a4 Y [asipimil 1 i 1]

(i2,i3,i4)€AS (in,i3,i4) €A’

s H 1 % 1 x5
< 78 (A ag) x| + B (Alx | + Erf (A x| + Erﬁ (A)lx]. (3.9)

Thus,

K 1 AS 5 1 AS
(M —ayl = v& (A o) — Erf (A)) Ixs] < (B (A) + =r& (W) Ix . (3.10)

s

When |1 — o] — 72 (A, o) = B2 (A) = 3r2(A) = 0 or |1 — o — 2" (A, )
— %rSA'Y (A) > 0, multiplying inequalities (3.7) with (3.10), we have

5 1 A5 s 1 AS
(Ih = el = 7 (A @) =B (A =2 ()12 = ] = 1 (A @) = 57 (A)
s 1 zs 5 1 35
< (B (A + 57 (DIBS (A + 58 (A),
which implies that A € P; (A, a).
t r AS
When [ — a;] — 2 (A @) — B (A) — LrA(A) < 0 and A — o] —
VSAS (A, ag) — %VSAS (A4) < 0, then » € M, (A, «). Thus, the desired result
holds. From the arbitrariness of s, we have A € [y ;4 Pr,s(A, ). Further,
A€ Uien Njen, jzi ®i.j (A ). It follows from the arbitrariness of « that oz (A) <
maeR" CD(A, O!) O
Now, we give a proof to show ® (A, o) € Q(A, «).

Corollary 3.1 Let A € R4 and I; € R be a Z-identity tensor given in Defini-
tion 2.2. For any real vector a = (1, .. ., otn)T e R", then

0z(A) € P(A o) € QA a).
Proof For any A € ®(A, «), we now break up the argument into two cases.
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Case 1 Without loss of generality, there exists € N, for any s € N, s # ¢ such that
A € Prs(A, @), that is,

' s 1 x5
<|/\ —ar| =y (A ) — BT (A) — Er,A (A))
X (M — | — )/SAS (A, o) — lrs&. (-A))
K 1 AS K
< (ﬁ,A (A) + Erﬁ (A)) (ﬂA (A) + —r (A))

If (B2 (A) + 12 (A)) (BA" (A) + 1rd (4) = 0, then Ih—arl — 2 (A ) —
A”(.A) 1 AS(A) <0, o0r|r—as —y2 YA, ) — 5 AS(.A) < 0, which implies

that A € Q,(A @) Qs (A a) C Q(A a)
IF (B2 (A) + 32 (ADBE (A) + 3r (A) > 0, we have
(12— el = v (A ) = B (A) = 3 ()
(B2 O + 52 )
(1% = el = & (A @) = 12 (W)
(B A+ 38 W)

<1

Therefore,

(1% = arl = (A ) = B (A) = 32 (W)
(B2 (A + 4r2 ()

<1

or

(% —as = 7 (Aay) = 3 (W) _
(B (A) + 38 (A) -

which implies that 2 € Q;(A, o) | 25(A4, o) € Q(A, o).
Case 2 There exists t € N, forany s € N, s # ¢t such that A € M, (A, «), that is,

' 75 1 %5
A — oy — V;A (A, o) — ,3[A (A) — ErzA (A) < 0and
K 1 AS
= sl =y (A ) = S (A) <0,

Obviously, A € (A, a)(2(A @) € Q(A, o). Thus, we obtain the desired
results. O
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Table 1 Comparisons among He’s method [8], Zhao’s method [29] and our method

References Inclusion sets

Theorem 4 of [8] O(A) = {z e R: |z] < 18.0000}

Theorem 5 of [8] T(A) ={z e R: |z < V54 +9 ~ 16.3485)
Theorem 5 of [29] ['(A) ={z€C:|z—9| <11.0000}

Theorem 7 of [29] O ={zeC:|z—9] = 5433 ~ 10.3723)
Theorem 3.1 QA @) ={z e R:|z—9] <9.0000}

Theorem 3.2 DA a) ={z € R:|z—9| < /54 ~ 7.3485}.

Table 2 Comparisons between He’s method [8] and our method

References Inclusion sets

Theorem 4 of [8] O(A) = {z € R: |z| <26.0000}

Theorem 5 of [8] T(A) = {z € R |z] < 30 + /240 ~ 22.7459}
Theorem 3.1 QA a) ={z e R: =9 <z < 25.0000}
Theorem 3.2 D(A, @) ={z € R:—-53739 < 7 <20.9373}

Now, we introduce Example 1 of [29] to show the improvement of the obtained
results.

Example 3.1 Let A = (a;ju) € R42 pea symmetric tensor with elements defined as
follows:

ann =9,a22 =9,a1122 =3, a12220 =2, a2111 = 3.

By computations, all different E-eigenvalues are 3.9045, 9.000 — 5.7686i, 9.000 +
5.7686i, 14.0955. Setting ¢ = (9, 9T and Z-identity tensor as Case 2 in Defini-
tion 2.2, we obtain that different estimations given in the literature are shown (Table
1.

Since a;ij; # aiijj +aijij +aijji, Theorems 5-7 of [29] are invalid in the following
example. Hence, our results are compared with Theorem 4 and Theorem 5 of [8]. The
following example reveals that the results given in Theorems 3.1-3.2 are sharper than
some existing results.

Example 3.2 Consider symmetric the tensor A = (a;jx1) € R*3] with entries defined
as follows:

ain =7,a20 =8,a3333 =9, a1122 = 2, a1133 = 2, a3z = 3;
Qijkl = | a1222 = a3111 = a2 = 2, a1333 = az111 = a333 = 0;

a3 = az123 = azipz = L.

Setting @ = (6.5, 8, 7.5)—r and Z-identity tensor as Case 2 in Definition 2.2, we
obtain that different estimations given in the literature are shown (Table 2).
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4 Applications

In this section, based on the inclusion sets Q (A, o) and ® (A, ) in Theorems 3.1
and 3.2, we propose some sufficient conditions for the positive definiteness of fourth-
order symmetric tensors, as well as the estimations of Z-spectral radius.

4.1 Positive Definiteness of Fourth-Order Symmetric Tensors

We establish some sufficient conditions to check the positive definiteness of fourth-
order symmetric tensor 4 without the condition a;;;; = a;; jj +aijij + aijji. Before
proceeding further, we introduce the results of [8].

Lemma 4.1 (Theorem 16 of [8]) Let A € R*"! be a symmetric tensor with :31'” >
0,...,8" > 0and

min{gl, ..., B} = C;.
ieN
Ifforalli,je N,j #1i,
C; > riN(A)
and
(€ = (C; = () > B A+ (W) B (A) + 8 (A),
where ﬁili = Z(iz,i3,i4)EA1i |a[j2[3j4|, ey /3:’” = Z(iz,i3,i4)EA"i |a[j2[3j4|, then A is

positive definite.

Theorem 4.1 Let A be a Z-eigenvalue of A = (ai,iyizi,) € R4 and T, € R4 pe a
Z-identity tensor given in Definition 2.2. Fori € N, if there exists positive real vector
o= (xy,..., ot,,)T such that

i i 1 3
o > v (A ) + B (A + 51 (A), (CRY
then ). > 0. Further, if A is symmetric, then A is positive definite and f 4(x) defined

in (1.1) is positive definite.

Proof Suppose on the contrary that A < 0. From Theorem 3.1, there exists t € N with
A€ QA ), ie.,
t T 1 %
=l =y (A + B (A) + S (A
Further, it follows from «; > 0 and A < O that

t f 1 A
ar < A= <y (A o)+ BE (A + Er,Aut),

@ Springer



Further Study on Z-eigenvalue Localization Set and... 119

which contradicts (4.1). Thus, 2 > 0. When A4 is a symmetric tensor and all Z-
eigenvalues are positive, A is positive definite and f 4(x) defined in (1.1) is positive
definite. O

Theorem 4.2 Let A be a Z-eigenvalue of A = (a;,i5isiy) € R4 and T, € RI*1 pe
a Z-identity tensor given in Definition 2.2. Fori # j € N, if there exists positive real
vectora = (aq, ..., C(n)T such that the following two statements hold:

i ij I Aj j 1 A
<ai — A (A ) — BET (A — Er,.A (A)) <a,- v (A ) - zrjA' (A))
j [N, j 1 Ai
> (ﬁiA (A + Erﬁ (A)) <ﬂ,~A (A) + Er,-A (A)>, 4.2)

i ij 1 Aj j 1 Rj
o =y (Aan) = B (A = or (A 2 00r oy =y (A ej) = 57 (A) 2 0,
4.3)

then ). > 0. Further, if A is symmetric, then A is positive definite and f 4(x) defined
in (1.1) is positive definite.

Proof Suppose on the contrary that A < 0. It follows from Theorem 3.2 that A €
@ (A, o). Now, we divide the following argument into two cases.
Case 1 There exists r € N with A € P; (A, ) such that

(M el =y A = B - 3 (A))
(=l =7 e = 8 )
< <ﬂtN (A + %r?“’ (A)) (ﬁﬁ%A) + %rfs(A)) . Vs#teN.
Further, it follows from «; > 0 and A < 0 that
(at — 7~ (A ) — BT (A) - %r,“ (A)) (as & (A ) — %r}s (A))
< (e = Ao = 2 - 3rF )
x (I/\ — ol — v (A ) — %ré‘ (A))
< <ﬂ?s (A) + %r,“ (A)) (ﬂ?s (A + %r‘? (A)) :

which contradicts (4.2). Thus, A > 0.
Case 2 There exists t € N with & € M, (A, «) such that

' 75 1 %5
I —al =y (A o) — B (A)—zr,A (A) <0, ¥s£reN
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Table 3 Testing the positive definiteness of tensor A by Theorem 16 of [8]

(€ =P (ANC; = (A) BA A+ (AN BY (A + 2 (A)
i=1,j=2 22.5 18
i=1,j=3 225 18
i=2,j=1 22.5 15
i=2j= 225 15
i=3j=1 20.25 75
i=3,j=2 20.25 7.5

and
AS 1 Ax
A —os] — v (A o) — Ers (A) <0, Vs#teN.
Further, it follows from «; > 0,7 € N and A < O that
7.3 1 %5
a < =l <y () + B (A + o (A)
and
K 1 AS
o = = el <7 (A o) + 51 (A,

which contradict (4.3). Thus, A > 0.
From the above two cases, when A is symmetric, then A is positive definite and
fa(x) defined in (1.1) is positive definite. O

The following example shows the validity of Theorems 4.1-4.2.

Example 4.1 Consider the symmetric tensor A = (a;;1/) € RI*3! with entries defined
as follows:

ann =7.5,a22 =8,a3333 =7.5,a1122 = 3, a1133 = 2.5, a3z = 3;
ajjr = | @1222 = a3111 = a322 = 1,a1333 = as111 = a3z = 0;
a2z = az123 = azpz = 0.5.

By computations, we obtain that the minimum Z-eigenvalue and corresponding
with the Z-eigenvector are (A, X) = (6.1312, (0.8682, 0.1374, 0.4769)). Hence, A is
positive definite. From Lemma 4.1, it is easy to get that C; = 7.5, C, =8, C3 = 7.5,
we can calculate the following corresponding values (Table 3).

From Table 3, we verify

(o= ANC) = (W) > B A+ (ABY (D (A), YigjeN
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Table 4 Testing the positive

definiteness of tensor A by V,‘Al (A o) + ﬂiAl (A + %riA )
Theorem 4.1

i=1 5.5

i = 8

i= 5

Table 5 Testing the positive

definiteness of tensor A by Al A2

Theorem 4.2 i=1,j=2 29.25 18.00
i=1,j=3 36.00 11.25
i=2,j= 30.00 13.50
i=2,j=3 30.00 11.25
i=3,j=1 36.00 29.00
i=3,j= 39.00 18.00

and _
Ci >rf (A, YieN,

which imply that A is positive definite.

Taking o = (8.5, 8.5, 8.5)T and the Z-identity tensor as Case 2 in Definition 2.2,
from Theorem 4.1, we obtain the following corresponding values (Table 4).

It follows from Table 4 that

i H 1 %
o > yiA (A, o) —l—ﬂiA (A + EriA(.A), YieN,

which implies that A is positive definite.
By Theorem 4.2, we define

i i 1 3 j 1 %j
A= (ai =y (A =B (A= (A)) <a,- — v Ay = orf (A)) :
j 1 Ai j 1 A7
Ay = (ﬁ,-A (A + 57 (A)) (ﬁf (A + 57 (A))

and compute the following corresponding values (Table 5).
From Table 5, we verify

i ij I zj j 1 Rj
(ai — A (A ) — BT (A) — EriA (A)) <Olj - ){,~A (A, aj) — Er-/A (.A))
j 1 Aj i 1 Aj
> (,314 (A + Er,-A (A)) (ﬁf (A + Erf (A)), Vi#gjeN
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Table 6 Testing the positive definiteness of tensor A by Theorem 16 of [8]

@i = ;- B A+ ) EY A+ ()
i=1,j=2 0.84 0.72
i=1,j=3 0.56 0.30
i=2,j=1 0.84 0.72
i=2,j= 0.32 0.60
i=3,j=1 0.56 0.30
i=3,j=2 0.32 0.60
and
i ij 1 % j 1 %/
o =y (A ) = B (A = Sr (A 2 00r oy =y (A ) = 57 (A) 2 0,
Vi#jeN,

which show that A is positive definite.
The following example reveals that Theorem 4.2 can judge the positive definiteness
of fourth-order symmetric tensors more accurately than Theorem 4.1 and Lemma 4.1.

Example 4.2 Consider the symmetric tensor A = (qg; k) € R43! with entries defined
as follows:

ani =2,a22» =1.4,a3333 = 1, a1120 = 1.5, a1133 = 2, axn3; = 2;
ajjki = 3 a1222 = a3 = a2 = 0.2, a1333 = az2111 = az333 = 0;
ais = az123 = azipz = 0.1.

By computations, we obtain that the minimum Z-eigenvalue and corresponding with
the Z-eigenvector are (h, %) = (1.9799, (0.9987, 0.0057, 0.0501)). Hence, A is pos-
itive definite.

By Lemma 4.1, it is easy to get that C; = 2, C; = 1.4, C3 = 1, and we can
calculate the following corresponding values (Table 6).

Hence, A does not satisfy

(€ =& AN = () > B () + Y (AN B (A)
+r ), Vi#jeN,

which shows that Lemma 4.1 is not suitable to check the positive definiteness of .A.
By Theorem 4.1, for any positive real number o, we have

2 2
3 (A @) + B (A)
1 -
+§r2A(A) =max{|4.5 — as|, |[1.4 — |, |6 — 2|} + 1.2+ 0.3 > ay,
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Tal?lej 7 Testing the positive Al A,

definiteness of tensor .A by

Theorem 4.2 i=1,j=2 1.54 0.72
i=1,j=3 1.19 0.45
i=2,j=1 1.36 0.54
i=2,j= 0.56 0.45
i=3,j=1 1.19 0.36
i=3,j=2 0.77 0.72

which implies that Theorem 4.1 is not suitable to check the positive definiteness of .A.
However, taking @ = (4, 4, 3.5)—r and the Z-identity tensor as Case 2 in Defini-
tion 2.2, by Theorem 4.2, we define

i ij 1z j L Ri
A= (ai =¥ (A = B (A= (A)) <a,—yﬁ (A =31} (A)>,
j N j I Aj
Ay = (ﬂ?' A+ 5rf (A)) (ﬂ,-A (A + 57} (A))

and compute the following corresponding values (Table 7).
From Table 7, it holds that

<al- — A (AL o) — A () — %r?i (A)) (a J— v Ay - %rfj (A)>
> (514’ (A) + %ré" (A)) (ﬁff(A)+%rff(A)) VitjeN, ai—yA (A )
— B () — %riy(.A) > 00raj — 7/ (A aj) - %r{,@”(A) 20, Vi#jeN,
which imply that A is positive definite.

4.2 Estimations of Z-spectral Radius and Convergence Rate on the Greedy
Rank-One Algorithms

The best rank-one approximation of A = (a;,j,..i,) is to find a rank-one tensor
kx™ = (kxj X, . .. Xj,) such that

min {||A — kx™||F : xTx =1},
keR,x

where ||A]|F = \/Zil iyoim €N a?}izmim. When A is nonnegative and weakly sym-
metric, p(A)x(' is a best rank-one approximation of A, i.e.,

min ||A = x"||r = [JA = p(Axg'llF = IIAIG — p(AD2

keRxTx=1
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Further, the quotient on the residual of the best rank-one approximation of A is:

A= p(AxlF p(A)2
0o=—"" =[] — ,
1Al p A%

which can estimate the convergence rate of the greedy rank-one algorithm [4,9,18,19,
27]. Thus, we shall propose upper bounds of the Z-spectral radius and estimate the
convergence rate of greedy rank-one algorithms. We start this subsection with some
fundamental results of nonnegative tensors [3,8,29].

Lemma4.2 (Theorem 3.11 of [3]) Assume A is a weakly symmetric nonnegative ten-
sor. Then, p(A) = 1*, where \* denotes the largest Z-eigenvalue.

Lemma 4.3 (Corollary 4.10 of [3]) Assume A is a weakly symmetric nonnegative
tensor. Then,

p(A) > maxa; ;.
ieN

Lemma 4.4 (Theorem 11 of [29]) Let A = (aj,iyisiy) € R4 pe a weakly symmetric
nonnegative tensor with a;;;; = aj;jj + aijij + aijji,i #j € N. Then

p(A) = max(Ri(A) - N (),

R
where A; = A"\{i, i, i}, r; (A = Z(iz,i3,i4)€&' |aii2i3i4|-

Lemma 4.5 (Theorem 8 of [8]) Suppose A € RI*™ isweakly symmetric, nonnegative
and irreducible. Then

p(A) < max  {v, BA(A) + 2 (A,
i,jJEN,i#£]
where
V= %(ﬂ?" () + 8 () + B () + Y () + A (A)
and

Aij(A) = B (A + P () — B2 (A) = D (A)?
+4BA () + P A EY W) + Y ().

In the following, we shall devote to finding sharp upper bounds of the Z-spectral
radius of weakly symmetric nonnegative tensors.
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Theorem 4.3 Let A = (aj,isisi,) € R4 pe g weakly symmetric nonnegative tensor
and Ty € R™ be a Z-identity tensor given in Definition 2.2. For real vector a =
(ag, ..., ()ln)—r € R" with o; < max;ey a;;ii, then

i i 1 %
p(A) < max min {o; + > (A, o) + B2 (A) + =P (A)). (4.4)
ieN aecR” 2

Proof From Lemma 4.2, we assume that p(A) = A* is the largest Z-eigenvalue. It
follows from Theorem 3.1 that there exists ¢t € N such that

(A — arl < 12 (A ) + B2 () + %r,%t).
Then, we get
P = a1 () + Y () + 7B,
Further,
p(A) < max {ai + A (A e + BA (A + %r?(A)} :

Since « is chosen arbitrarily, it holds

ieN aeR”

p(A) < max min {Oli v (A e + B (A) + %r,-A (A)} .

Thus, (4.4) holds. O

Theorem 4.4 Let A = (i, iyizi,) € R4 be a weakly symmetric nonnegative tensor
and Ty € RI%™ be a Z-identity tensor given in Definition 2.2. For real vector a =
(ag, ..., ()ln)—r € R" with o; < max;ep a;;ii, then

< i : A - Al
p(A) = ?éa}?jezv,gl%ew{v’ ai +y (Aai) + B (A)

= ; 1 %
+ riA'/ (A, a; + )/]-N (A, aj) + EV]'AJ (A},

| =

where

1 i ij 1 AJ j 1 AJ 1

V=7 (ai o+ (A + B2 (A) + 5r,.A’ A+ 7P (Aaj) + Eer A + Al.%j<A)) ,
i ij 1 Aj j 1 & 2

Apj(A) = (a,- —aj ™ Ao + B A + 2 W) -y (A - Er_,A’ut))

(B s gt ) (8 o+ 5 ).
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Proof From Lemma 4.2, we assume that p(A) = A* is the largest Z-eigenvalue. It
follows from Theorem 3.2 that p(A) € &, (A, o). Now, we break the proof into two

parts.
Case 1 There exists t € N with p(A) € Py (A, ) such that

(|p<A) —ay =y (Ao — B (A) — %r? (A))
x (|p<A) — o] = ¥ (A o) — %A (A))
< (ﬂ,“ (A) + %rﬁ (A)) (ﬁSAE (A) + %r}i (A)) . Vs#£1EN.
Then, solving for p(A), we get
p(A) < %(at o+ 1 (A + B2 (A)
+ %rtAE (A) + v (A, ay) + %r}x () + AL (),
where
Ars(A) = <a, —as + v (A a) + B () + %r?f (A) — 2 (A, ay) — %rSAS (A)>2
(B s ) (s e ¥ ).

Further, p(A) < max;eny %(oz,' + aj + )/Z-Ai (A, a;) + ﬂiAi“f (A + %ri&f A +
) . 1
yjA.l (A aj) + 5r J_Af (A) + A} ;(A)). Since « and j are chosen arbitrarily, it holds

1 i
A) < ; (v . A A, a;
P = rirgll\)/(jeN,gléljr»laeR” 2(al tajtys (A )
ij 1 xj j 1 x; 1
+ 827 (A) + Erﬁ’ A+ (A aj) + zer (A) + A7 (A).
Case 2 There exists t € N with p(A) € M, 5(A, @) such that

' 75 1 x5
PIA) < oy + 7 (A ) + B (A) + S (A),
K 1 AS
PAA) < o+ 7 (Aa) + 578 (A), Vs #reN.
Since « and j are chosen arbitrarily, one has

A) < max min o Al A, o;
p(A) < na jeN,i;ﬁj,aeR”{ ity ( i)
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Table 8 Upper bounds of p(A)

with different methods References Upper bound Parameter o
Theorem 8 of [8] p(A) <9.0000 No
Theorem 11 of [29] p(A) < 11.1000 No
Theorem 4.3 p(A) < 7.5000 a=3,3737T
Theorem 4.4 p(A) <7.0100 o= (3,3, 3)T

Al 1 A N 1 &
+BY A+ 5 Ay Ay + 5 ().
From the above two cases, the conclusion holds. O

The following numerical experiment shows the validity of Theorems 4.3 and 4.4,
and gives an estimation for the convergence rate of the greedy rank-one algorithms.

Example 4.3 Let A = (a;ji) € R“*3 pea symmetric tensor with elements defined as
follows:

aii = a2 =a3333 = 3,a1122 = a1133 = 42233 = 1;
Qijkl = § a1222 = a1333 = az111 = a2333 = 0, a3111 = azn = 1;
arez = aziz3 = 0.5,a3123 = 0.2

By simple computation, we obtain (p(A), x) = (5.5283, (0.6027, 0.6027, 0.5230))
and || A]|p = 7.7123. The bounds via different estimations given in the literature are
shown in Table 8.

Using Table 8 and Theorem 4.4, we give the best rank-one approximation of A

min A — kx™||F =/ IlAl1% — p(A)? > 3.2156
keR,keR" xTx=1

and the quotient on the residual of the best rank-one approximation of .4

_ Ao 22 460,
Alr I

Since a;jii # ajijj + a;jij + a;jji, Theorem 11 of [29] is invalid in the following
example. Hence, our results are compared with Theorem 8 of [8].

Example 4.4 Consider symmetric tensor A = (a;jx) € RI43] defined by

ann = 1.5,a20 =2.5,a3333 = 1.5, a1122 = 0.5, a1133 = 1, a3z = 0.5;
Qjjki = a1222 = a1333 = a2333 = a3111 = a2 = 0.1, a2111 = 0;
arz = az123 = 0.1, a3123 = 0.2.

By simple computation, we obtain (p(A), x) = (2.5388, (0.0592, 0.9906, 0.0980))
and || A||p = 4.5464. The bounds via different estimations given in the literature are
shown in Table 9.
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Table 9 Upper bounds of p(A) with different methods

References Upper bound Parameter o
Theorem 8 of [8] p(A) <4.6141 No

Theorem 4.3 p(A) <4.2000 o =(2252,225"
Theorem 4.4 p(A) <3.8822 o =(2.252,225"

From Table 9, by Theorem 4.4, we obtain the best rank-one approximation of .4

min A — kx™[|F = /IlAll% — p(A)? > 2.3661
keR,keR" xTx=1

and the quotient on the residual of the best rank-one approximation of .4

A= p(Ag Il _
1Al

> 0.5204.

5 Conclusions

In this paper, without the condition a;;;; # a;ijj + aijij + a;jji, we established new
Z-eigenvalue inclusion sets for fourth-order tensors by Z-identity tensor and proposed
some sufficient conditions for the positive definiteness based on exploring the infor-
mation of eigenvectors. Further, we gave upper bounds for the Z-spectral radius and
estimated the convergence rate of the greedy rank-one algorithms for fourth-order
nonnegative tensors. Note that the suitable parameter « has a great influence on the
numerical effects and positive definiteness of fourth-order tensors. Therefore, how to
select the suitable parameter « is our further research.
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