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Abstract
It is well known that the Carathéodorymetric is a natural generalization of the Poincaré
metric, namely, the hyperbolic metric of the unit disk. In 2016, the Hurwitz metric
was introduced by D. Minda in arbitrary proper subdomains of the complex plane
and he proved that this metric coincides with the hyperbolic metric when the domains
are simply connected. In this paper, we define a new metric which generalizes the
Hurwitz metric in the sense of Carathéodory. Our main focus is to study its various
basic properties in connection with the Hurwitz metric.

Keywords Hyperbolic density · Hurwitz density · Kobayashi density · Carathéodory
density · Conformal mapping · Covering mapping
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1 Introduction

Studying families of holomorphic functions associated with the hyperbolic metric
always remains the hot topic in geometric function theory. Several researchers (for
instance see [2,5,6]) have introduced new metrics which are closely related to the
hyperbolic metric and established their comparison properties in possible situations.
In particular, the generalized Kobayashi metric is one such metric which is always
greater than or equal to the hyperbolic metric (see [3, Proposition 1]). The generalized
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Kobayashimetric in a domain is defined by the smallest push forward of the hyperbolic
metric from a hyperbolic domain to a plane domain by holomorphic functions. In [3],
it is further proved that the generalized Kobayashi metric agrees with the hyperbolic
metric on simply connected domains (see also [4]). Coincidence of the hyperbolic and
the generalized Kobayashi densities on other plane domains are studied in [7]. More-
over, the Kobayashi density satisfies the generalized Schwarz lemma for holomorphic
function between two domains.

In 2016, Minda introduced a new metric, namely, the Hurwitz metric that also
exceeds the hyperbolic metric in hyperbolic domains (see [6]) and investigated several
basic properties such as distance decreasing property, conformal invariance property,
domain monotonicity property, bilipschitz equivalent properties with the hyperbolic
and the quasihyperbolic metrics. In our recent work (see [1]), we studied a new metric
that generalizes the Hurwitz metric in the sense of Kobayashi. This new work focuses
on some basic properties of this generalized metric.

On the other hand, the classical Carathéodory metric is another generalized metric
which is always less than or equal to the hyperbolic metric. The Carathéodory metric
in a domain is the largest pull back of the hyperbolic metric. Similar to the case of the
Kobayashi metric, the Carathéodory metric also agrees with the hyperbolic metric on
simply connected domains. Furthermore, it satisfies the generalized Schwarz lemma
for holomorphic function between two domains. Analogous to theCarathódorymetric,
in this paper, we generalize the Hurwitz metric and study its basic properties.

Rest of this document is organized as follows: Section 2 contains preliminary
information including terminology, definitions and well known results. We define
the generalized Hurwitz metric in the sense of Carathéodory in Sect. 3 and study its
various properties including distance decreasing property for special class of holo-
morphic function between two domains. Finally, Sect. 4 is devoted to the distance
between two points induced by the generalized Hurwitz metric.

2 preliminaries

Throughout the paper, unless it is specified, we assume that � is an arbitrary domain
and Y is a proper subdomain in C, the complex plane. Symbolically, we write � ⊂ C

and Y � C. We denote H(�, Y ) by the set of all holomorphic functions from � into
Y . For a fixed w ∈ �, we define the following notation:

Hs
w(�,Y ) = {h ∈ H(�, Y ), h(w) = s, h(z) �= s for all z ∈ � \ {w}}.

The open unit disk {z ∈ C : |z| < 1} is denoted by D. The family {h ∈ Hw
0 (D,Y ) :

h′(0) > 0} is known as theHurwitz family. More about the Hurwitz family and several
other classes of holomorphic functions analogous to the Hurwitz family are discussed
in [6]. By setting

F ′(0) = rY (w) = max{h′(0) : h ∈ Hw
0 (D,Y ), h′(0) > 0},

the Hurwitz density is defined as
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ηY (w) = 2

F ′(0)
= 2

rY (w)
.

An equivalent definition of the Hurwitz density can be found in [1]. A domain Y is
said to be hyperbolic provided its complement C \ Y contains at least two points. The
supremum of {|h′(0)| : h ∈ H(D,Y )} leads to the definition of the hyperbolic density.
Indeed, for any point w ∈ Y the hyperbolic density λY is defined as

λY (w) = 2

|g′(0)|,

where g is a universal covering mapping from D onto Y . Note that existence of such
g is guaranteed by the uniformization theorem. Analogous to the hyperbolic density,
we now describe the maximizer for the Hurwitz family. For s ∈ Y , there exists a
holomorphic covering map F : D\{0} → Y \{s}which extends toD holomorphically
in such a way that F(0) = s and F ′(0) > 0. This is determined by the subgroup
generated by the curve, namely the circle centered at s and radius ρ, for some ρ > 0,
in Y \ {s} of the fundamental group of Y \ {s}. The function F is the unique extremal
function for the Hurwitz-extremal problem max{h′(0) : h ∈ Hw

0 (D,Y ), h′(0) > 0}
and is defined as the Hurwitz covering map (see [6]).

3 Carathéodory Density of the Hurwitz Metric

In [1], by adopting the idea of the Kobayashi metric, we generalized the Hurwitz
density for a domain � ⊂ C and Y � C as follows:

ηY�(w) = inf
ηY (s)

|h′(s)| ,

where ηY is the Hurwitz density on Y and the infimum is taken over all h ∈ H(Y ,�)

satisfying h(s) = w, h(t) �= w for all t ∈ Y \{s}, and h′(s) �= 0.We name the quantity
ηY� by the Kobayashi density of the Hurwitz metric of � relative to Y .

As stated at the end of Sect. 1, this section is devoted to the introduction of a new
density that generalizes the Hurwitz density in the sense of Carathéodory. This is
defined as follows:

Definition 3.1 Let w ∈ � � C. For an element s ∈ D, we define a new quantity

C D,s
� (w) = sup ηD(h(w))|h′(w)|, (3.1)

where the supremum is taken over all h ∈ H(�, D) such that h(w) = s, h(z) �= s for
all z ∈ � \ {w}, i.e. for all h ∈ Hs

w(�, D). We call this quantity by the Carathéodory
density of the Hurwitz metric of � relative to D. Setting C D

� := C D,0
� .
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Remark 3.2 (1) Note that on simply connected domains the Hurwitz density agrees
with the hyperbolic density, so one can replace ηD by the hyperbolic density λD
in Definition 3.1.

(2) If� = C, then by Liouville’s theorem, the only holomorphic function from� into
D is a constant function, which does not belong to the class Hs

w(�, D). Hence,
it can be defined that C D,s

C
(w) = 0 when the set Hs

w(�, D) becomes empty. It
suggests us to assume that Hs

w(�, Y ) �= ∅ throughout the paper for an arbitrary
base domain Y � C.

The first basic property of the Carathéodory density of the Hurwitz metric C D,s
� is

that the supremum is attained by some holomorphic function h ∈ Hs
w(�, D) in (3.1).

Proposition 3.3 Let� � C be a domain andH0
w(�, D) �= ∅. Then, the Carathéodory

density of the Hurwitz metric C D

� can be computed by the formula:

C D

� (w) = 2 max{|h′(w)| : h ∈ H0
w(�, D)}.

Proof Since the members of the family H0
w(�, D) are uniformly bounded by 1, by

Montel’s theorem, H0
w(�, D) is a normal family. By Definition 3.1, there exists a

sequence of holomorphic functions hn ∈ H0
w(�, D) such that 2|h′

n(w)| → C D

� (w),

since hn(w) = 0 andηD(0) = λD(0) = 2. Furthermore, by the openmapping theorem,
there exists a subsequence hnk of hn which converges to either an open map h or a
constant map. Since hn ∈ H(�, D), it follows that |h(z)| ≤ 1 for all z ∈ �. Note that,
if h(z) attains 1 for some z ∈ �, then by the maximum modulus principle, |h| = 1,
contradicting to the fact that h(w) = 0. Moreover, by Hurwitz theorem, there exists
an N ∈ N such that hnk and h have the same number of zeros for all nk ≥ N in
some neighborhood of w. Since h(z) �= 0 for all z ∈ � \ {w}, we conclude by the
uniqueness of limit that 2|h′(w)| = C D

� (w), which completes the proof. 
�
Remark 3.4 By a suitable composition of the disk automorphism with the function
obtained in Proposition 3.3, we can prove the existence of the holomorphic function
h in Definition 3.1 when s �= 0.

Alike to the case of coinciding of the hyperbolic andCarathéodory density on simply
connected domains, we now prove that the Hurwitz density η� and the Carathéodory
density of the Hurwitz metric C D,s

� too agree on simply connected domains �.

Proposition 3.5 If � � C is a simply connected domain, then the Carathéodory
density of theHurwitzmetricC D,s

� coincideswith theHurwitz densityη� aswell aswith

the Kobayashi density of the Hurwitz metric ηD�. That is, we have C
D,s
� ≡ η� ≡ ηD�.

Proof By the distance decreasing property of the Hurwitz density (see [6, Theo-
rem 6.1]), for a point w ∈ � and for any h ∈ Hs

w(�, D) we have ηD(h(w))|h′(w)| ≤
η�(w). By taking supremum over all h ∈ Hs

w(�, D), in one hand, we obtain
C D,s

� (w) ≤ η�(w).On the other hand, to prove the reverse inequality, we consider the
conformal homeomorphism f : � → D which is guaranteed by Riemann mapping
theorem. By [6, Corollary 6.2], it follows that
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η�(w) = ηD(h(w))|h′(w)| ≤ C D,s
� (w),

where the inequality holds by Definition 3.1. Thus, we have the identity C D,s
� ≡ η�.

The second required identity follows from [1,Corollary 3.10], completing the proof.

�

Due to [1, Corollary 3.10], the Kobayashi density of the Hurwitz metric ηD� and the
Hurwitz density η� both agree on any domain �, whereas in the following result we
show that on non-simply connected domains the Carathéodory density of the Hurwitz
metric C D,s

� is strictly less than the Hurwitz density η�.

Proposition 3.6 Let � � C be a non-simply connected domain and C D

� > 0. Then
for an element w ∈ � we have the strict inequality: C D

� (w) < η�(w).

Proof Let w ∈ �. Since � � C, there exists a Hurwitz covering map g : D → �

with g(0) = w. By Proposition 3.3, there exists a function h ∈ H0
w(�, D) such that

C D

� (w) = 2|h′(w)| = ηD(h(w))|h′(w)| (3.2)

holds, since h(w) = 0 and ηD(0) = λD(0) = 2. Thus, we observe that the composition
h◦g is a holomorphic function fromD toD that fixes the origin. Since� is non-simply
connected, the covering map g cannot be one–one and hence the composition h ◦ g
can never be conformal. Thus, by the classical Schwarz lemma we conclude the strict
inequality

λD((h ◦ g)(0))|(h ◦ g)′(0)| < λD(0).

Note that the hyperbolic density coincides with the Hurwitz density on simply con-
nected hyperbolic domains (see [6, p. 15]). Therefore, it follows that

ηD((h ◦ g)(0))|(h ◦ g)′(0)| < ηD(0). (3.3)

Since g is a Hurwitz covering map, by [6, Theorem 6.1], we have the equality

η�(g(0))|g′(0)| = ηD(0). (3.4)

Combining (3.3) and (3.4), we obtain from (3.2) that

C D

� (w) = ηD(h(w))|h′(w)| = ηD((h ◦ g)(0))
|(h ◦ g)′(0)|

|g′(0)| <
ηD(0)

|g′(0)| = η�(w),

where the second equality follows by the chain rule. 
�
Since the Hurwitz density can be defined on a proper subdomain of the complex

plane, a natural way of further generalizing the Carathéodory density of the Hurwitz
metric C D,s

� by changing the base domain from the unit disk to a proper subdomain
Y of C . The definition is as follows:
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Definition 3.7 Let Y � C and � ⊂ C be domains. For w ∈ � and s ∈ Y , the
Carathéodory density of the Hurwitz metric of � relative to the base domain Y is
defined as

C Y ,s
� (w) = sup ηY (h(w))|h′(w)|,

where the supremum is taken over all h ∈ H(�, Y ) such that h(w) = s, h(z) �= s for
all z ∈ � \ {w}, i.e. for all h ∈ Hs

w(�, Y ).

In [1], we have noticed that the Kobayashi density of the Hurwitzmetric ηY� exceeds
over the Hurwitz density η�, whereas in the case of the Carathéodory density of the
Hurwitz metricC Y ,s

� , we prove that it lacks the Hurwitz density on proper subdomains
of C.

Proposition 3.8 Let � and Y be proper subdomains of the complex plane C. If for an
element s ∈ Y , we assume C Y ,s

� > 0 then

η�(w) ≥ C Y ,s
� (w)

holds for every w ∈ �.

Proof By the distance decreasing property of the Hurwitz density, for w ∈ �, s ∈ Y
and for any h ∈ Hs

w(�, Y ) we have

ηY (h(w))|h′(w)| ≤ η�(w).

Taking the supremum over all h ∈ Hs
w(�, Y ) on both sides, we obtain

C Y ,s
� (w) ≤ η�(w).

Since w ∈ � was arbitrary, we conclude the proof as desired. 
�
Recall that the Hurwitz density and the hyperbolic density agree on simply con-

nected domains. Analogous to this, we now prove that upon some specific conditions
the Carathéodory density of the Hurwitz metricC Y ,s

� and the Hurwitz density η� coin-
cide and in a more special situation, they also coincide with the Kobayashi density of
the Hurwitz metric ηY�.

Proposition 3.9 Let �,Y � C be domains. Suppose that for every s ∈ Y there exists
a pointw ∈ � and a holomorphic covering map gs : �\{w} → Y \{s}which extends
to a holomorphic function g : � → Y with g(w) = s and g′(w) �= 0. If C Y ,s

� > 0,
then

C Y ,s
� ≡ η�.

In particular, when Y = �, we have

C�,w
� ≡ η� ≡ ζ�

� .
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Proof By the distance decreasing property of the Hurwitz density (see the second part
of [6, Theorem 6.1]), we have

ηY (g(w))|g′(w)| = η�(w).

Now, plugging the holomorphic covering map gs into Definition 3.7, on the one hand
we obtain

C Y ,s
� (w) ≥ ηY (g(w))|g′(w)| = η�(w).

On the other hand, the reverse inequality follows from Proposition 3.8. Since w is
arbitrary, theCarathéodory density of theHurwitzmetricC Y ,s

� and theHurwitz density
η� both agree over �.

The proof of the second part is a combination of the above identity that we just
proved and the identity proved in [1, Proposition 3.9]. 
�

An instant corollary to Proposition 3.9 is that on simply connected domains both the
Hurwitz density η� and the Carathéodory density of the Hurwitz metric C Y ,s

� agree.

Corollary 3.10 If � � C be a simply connected domain and Y � C be an arbitrary
domain, then

C Y ,s
� ≡ η�,

where s ∈ Y .

Proof Since Y � C, there exists a Hurwitz covering map g : D → Y . Now, � � C

being a simply connected domain, by Riemann mapping theorem, we would get a
conformal mapping h : � → D with h(w) = 0 and h′(w) > 0 for some w ∈ �.
Then the composition g ◦ h is a holomorphic covering map from � \ {w} onto Y \ {s}
for some s ∈ Y that can be extended from � onto Y by taking w to s. The proof now
follows by Proposition 3.9. 
�

Recall that the hyperbolic density λ�, the Hurwitz density η� and the Kobayashi
density of the Hurwitz metric ηY� satisfy the distance decreasing property. Note that,
in the case of the hyperbolic metric the distance decreasing property is also known as
the generalized Schwarz-Pick lemma. Alike to these properties we here show that the
Carathéodory density of the Hurwitz metric C Y ,s

� too satisfies the distance decreasing
property.

Theorem 3.11 (Distance decreasing property) Let �1,�2 ⊂ C and Y � C be
domains. If there exists a holomorphic function f from �1 into �2 with f (a) =
b, f (s) �= b for all s ∈ �1 \ {a}, then

C Y ,c
�2

( f (a))| f ′(a)| ≤ C Y ,c
�1

(a),

where c ∈ Y .
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Proof If Hc
b(�2,Y ) = ∅, then C Y ,c

�2
= 0 and hence there is nothing to prove. There-

fore, without loss of generality we assume that Hc
b(�2,Y ) �= ∅.

By the definition of C Y ,c
�2

(b), for every ε > 0 there exists a holomorphic function
h from �2 into Y with h(b) = c, h(s) �= c for all s ∈ �2 \ {b} for some c ∈ Y , such
that

C Y ,c
�2

(b) − ε ≤ ηY (h(b))|h′(b)|. (3.5)

Suppose that f is a holomorphic function from �1 into �2 with f (a) = b, f (s) �= b
for all s ∈ �1 \ {a}. Now the composition function h ◦ f ∈ H(�1,Y ) satisfies
(h ◦ f )(a) = c. Furthermore, (h ◦ f )(t) �= c for all t ∈ �1 \ {a} as b /∈ f (�1) \ {a}
and c /∈ h(�2) \ {b}. Now, by plugging the map h ◦ f into the definition of C Y ,c

�1
(a),

it follows that

C Y ,c
�1

(a) ≥ ηY ((h ◦ f )(a))|(h ◦ f )′(a)| = ηY (h(b))|h′(b)|| f ′(a)|. (3.6)

Combining (3.5) and (3.6), we obtain

C Y ,c
�1

(a) ≥ (C Y ,c
�2

(b) − ε)| f ′(a)|

which holds for every ε > 0. Letting ε → 0, we have the desired inequality. 
�
As a direct consequence of Theorem 3.11, we obtain the conformal invariance

property andmonotonicity property of the Carathéodory density of the Hurwitz metric
C Y ,s

� as follows:

Corollary 3.12 (Conformal invariance property) If f is a conformal mapping from a
domain �1 ⊂ C onto another domain �2 ⊂ C, then for a base domain Y � C we
have

C Y ,s
�2

( f (w))| f ′(w)| = C Y ,s
�1

(w),

for all w ∈ �1 and s ∈ Y .

Corollary 3.13 (Domain monotonicity property) If �1 � �2 and Y are domains as in
Theorem 3.11, then C Y ,s

�2
(w) ≤ C Y ,s

�1
(w) for all w ∈ �1 and s ∈ Y .

Until now, we studied the properties of the Carathéodory density of the Hurwitz
metric C Y ,s

� by fixing the base domain Y . For two different base domains, the com-
parison result is given below.

Theorem 3.14 Let Y1,Y2 � C and � ⊂ C be subdomains. If for every point b ∈ Y2,
there exist a point a ∈ Y1 and a holomorphic covering map gb : Y1 \ {a} → Y2 \ {b}
which extends to the holomorphic function with gb(a) = b and g′

b(a) �= 0, then

C Y1,a
� (w) ≤ C Y2,b

� (w)

for all w ∈ �.

123



Carathéodory Density of the Hurwitz Metric on Plane… 4465

Proof By the distance decreasing property for Hurwitz density, it follows that

ηY2(gb(a))|g′
b(a)| = ηY1(a) (3.7)

since gb is the extended holomorphic covering map from Y1 onto Y2. Let ε > 0 be
arbitrary.

IfHa
w(�,Y1) = ∅, then C Y1,a

� = 0 and hence there is nothing to prove. Therefore,
without loss of generality we assume thatHa

w(�, Y1) �= ∅.
By the definition of C Y1,a

� , for a ∈ Y1 and w ∈ �, there exists a function h ∈
Ha

w(�,Y1) such that

C Y1,a
� (w) ≤ ηY1(h(w))|h′(w)| + ε. (3.8)

Nowwenotice that the composed function gb◦h ∈ H(�,Y2) satisfies (gb◦h)(w) = b,
(gb ◦ h)(z) �= b for all z ∈ � \ {w}. Hence, gb ◦ h ∈ Hb

w(�,Y2). Applying gb ◦ h in
the definition of C Y2,b

� (w), we conclude that

C Y2,b
� (w) ≥ ηY2((gb ◦ h)(w))|(gb ◦ h)′(w)| = ηY2(gb(a))|g′

b(a)||h′(w)| (3.9)

for all w ∈ �. Combining (3.7), (3.8), (3.9) and applying the chain rule, we obtain

C Y1,a
� (w) ≤ ηY1(a)|h′(w)| + ε = ηY2(gb(a))|g′

b(a)||h′(w)| + ε ≤ C Y2,b
� (w) + ε

for all w ∈ �. Since ε is arbitrary, we can let it approach to zero to obtain the desired
inequality. 
�
Corollary 3.15 If Y1 and Y2 are conformally equivalent proper subdomains of C and
� is an arbitrary subdomain of C, then

C Y1,a
� (w) = C Y2,b

� (w)

holds for every w ∈ � and for some a ∈ Y1, b ∈ Y2.

Proof We consider the inverse image of the conformal mapping in Theorem 3.14 to
obtain the reverse inequality C Y1,a

� (w) ≥ C Y2,b
� (w). 
�

4 A Distance Function

In this section, we consider the usual distance function associated with the
Carathéodory density of the Hurwitz metric C Y ,s

� for the domains Y � C and � ⊂ C.
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Definition 4.1 Let Y � C and � ⊂ C be domains. For w1, w2 ∈ � and s ∈ Y , define

C Y
� (w1, w2) = inf

∫
γ

C Y ,s
� (w)|dw|,

where the infimum is taken over all rectifiable paths γ ⊂ � joining w1 to w2. If C Y
�

defines a metric, then we say (�,C Y
� ) a metric space.

It is easy to see from Definition 4.1 that C Y
� (w1, w1) = 0 and C Y

� (w1, w2) =
C Y

� (w2, w1) for any w1, w2 ∈ �. Further, it can also be verified that C Y
� satisfies the

triangle inequality. Hence, at least we can say that C Y
� is a pseudo-metric. At present

we do not know whether C Y
� defines a metric or not. However, we have a partial

solution to this whenever � ⊂ Y .

Theorem 4.2 If � ⊂ Y � C are domains, then (C Y
� ,�) becomes a metric space.

Proof Since C Y
� is a pseudo-metric on �, it is enough to show that C Y

� (w1, w2) > 0
for two distinct points w1, w2 ∈ �. Let γ be an arbitrary rectifiable curve joining w1
to w2 in �. Since � ⊂ Y , plugging the inclusion mapping i ∈ Hw

w(�,Y ) into the
definition of C Y ,w

� (w), we conclude that

∫
γ

C Y ,w
� (w)|dw| ≥

∫
γ

ηY (i(w))|i ′(w)||dw| =
∫

γ

ηY (w)|dw|

By the definition of Hurwitz distance (see [1]) between two points, it follows that

∫
γ

C Y ,w
� (w)|dw| > ηY (w1, w2).

Now, taking infimum over γ , we obtain

C Y
� (w1, w2) ≥ ηY (w1, w2) > 0,

where the last inequality follows from [1, Theorem 2.3]. Hence (�,C Y
� ) defines a

metric space, completing the proof. 
�
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