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Abstract
Let G be a simple graph. By an independent set in G, we mean a set of pairwise
non-adjacent vertices in G. The independence polynomial of G is defined as IG(z) =
i0+ i1z+ i2z2+· · ·+ iαzα , where im = im(G) is the number of independent sets in G
with cardinalitym andα = α(G) denotes the cardinality of a largest independent set in
G (known as the independence number ofG). LetGk denote the k-times lexicographic
product of G with itself. The set of roots of IGk is known to converge as k tends to ∞,
with respect to the Hausdorff metric, and the limiting set is known as the independence
attractor. The independence fractal of a graph is the limiting set of roots of the reduced
independence polynomial IGk − 1 of Gk as k tends to ∞. In this article, we consider
the independence fractals of graphs with independence number 3. We attempt to find
all such graphs whose independence fractal is a line segment. It is shown that the
independence fractal and the independence attractor coincide when the earlier is a
line segment. The line segment turns out to be an interval [− 4

k , 0] for k ∈ {1, 2, 3, 4}.
It is found that each of these graphs have 9 vertices and there are exactly 13 such
disconnected graphs.We show that there does not exist any connected graph for k = 4.
For k = 1, there are 17 such connected graphs and for k = 2, 3 the number is quite
large.
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1 Introduction

Throughout this article, we consider simple graphs. Let G be a graph with vertex set
V (G) and edge set E(G). If two vertices u and v are adjacent in G, we denote it by
u ∼ v. An independent set in G is a set of pairwise non-adjacent vertices in it. An
independent set with cardinalitym is called an m-independent set. Let im = im(G) be
the number of m-independent sets in G. The independence polynomial of G (Gutman
and Harary, [9]) is defined as IG(z) = i0+ i1z+ i2z2+· · ·+ iαzα , where α = α(G) is
the cardinality of a largest independent set. The number α is called the independence
number of the graph G. Indeed, more than one independent set with cardinality α are
possible. Note that, for any graph G, i0 = 1, i1 is the number of vertices in G and
iα �= 0. The reduced independence polynomial ofG is defined as i1z+i2z2+· · ·+iαzα

and is denoted by fG(z). The roots of independence polynomials have been studied
by many researchers. In [6], Brown et al. have found a family of graphs for which the
roots of independence polynomials are dense in (−∞, 0]. Further, classes of graphs
have been constructed with roots of their independence polynomials dense in C. It
has been proved in [7] that the roots of the independence polynomials of clawfree
graphs are real. It is also known that the root of an independence polynomial with
the smallest modulus is a negative real number [8]. Another important aspect is to
characterize nonisomorphic graphs with the same independence polynomial. Any two
such graphs are called independence equivalent. In [10], Zhang has constructed the
independence equivalent graphs for general simple graphs and also mentioned some
properties concerning the independence polynomial of paths and cycles.

Let G ∪ H denote the disjoint union of two graphs G and H . It is known [1,9] that
IG∪H (z) = IG(z)IH (z). Given two graphs G and H , the lexicographic product (or
composition) of G with H , denoted by G[H ], is defined as the graph with vertex set
V (G[H ]) = V (G)×V (H). Two vertices (u, v) and (u′, v′) in V (G[H ]) are adjacent
in G[H ] if and only if either u ∼ u′ in G, or u = u′ and v ∼ v′ in H . This amounts to
replacing each vertex of G with a copy of H and joining two vertices of two different
copies according to the adjacency of vertices of G. The k-times lexicographic product
of a graph G with itself is denoted by Gk . The set of roots of IGk is finite and hence
a compact subset of the complex plane C for each k. The sequence of roots of IGk is
known to converge as k tends to ∞, with respect to the Hausdorff metric defined on
the set of all compact subsets of C. The limiting set is usually a fractal and is referred
by Brown et al. [5] as the independence attractor of the concerned graph. Let it be
denoted by A(G). Similarly, the independence fractal of a graph G is defined as the
limiting set of the set of roots of the reduced independence polynomial fGk as k tends
to ∞. It is denoted by F(G). The Julia set of a polynomial P , denoted by J(P), is the
boundary of the set of all points z such that its forward orbit {z, P(z), P2(z), · · · } is
bounded. Though a number of equivalent definitions of Julia set of a polynomial are
available in the literature, the one we have just stated is sufficient for the purpose. The
following result has been established in [5].

123



Graphs Whose Independence Fractals are Line Segments 57

Theorem 1.1 For every graph G, F(G) = J(fG).

This is a nontrivial and important link between the iterative behavior of the reduced
independence polynomial and the limit set of roots of fGk . In [5], Brown et al. have
also established a connectionbetween the independence attractor and the independence
fractal of a nonempty (with at least one edge) graph. More specifically, it is proved that
A(G) = F(G) whenever −1 is either not a root of IG(z) or is a simple root of IG(z).
In all other cases, A(G) ⊃ F(G) and is the closure of

⋃
k≥1 f

−k
G (−1). Independence

fractals of paths, cycles, wheels and certain trees are investigated by Alikhani and
Peng [1].

Independence fractals of connected graphs are not necessarily connected (with
respect to the standard topology of the extended complex plane). In fact, for every
graph G with independence number at least 2, the independence fractal of G[Kn] is
disconnected for sufficiently large n (see [5]), where Kn is the complete graph on n
vertices.Note that,G[Kn] is connected if and only ifG is connected. The independence
fractals of connected graphs can also be connected. This follows from Theorem 3.4
which is proved in the current article. On the other hand, the independence fractal
of mKn , m disjoint copies of Kn is connected when n = 2 and m is even (whereas
it is totally disconnected for all other natural numbers m and n) [5]. In view of all
these possibilities, characterizing all graphs with connected independence fractals
seems to be nontrivial. Exploiting the Mandelbrot set, Brown et al. [5] completely
settle this issue for graphs with independence number 2. They state that the methods
shall not work for graphs with higher independence numbers. We deal with graphs
with independence number 3. All such graphs whose independence fractal is a line
segment, one of the simplest possible connected independence fractals, are described.

Some preliminary ideas including Mantel’s theorem are presented in Sect. 2. The
general form of a cubic polynomial that qualifies to be the independence polynomial of
a graphwith independence number 3 andwhose independence fractal is a line segment
is found to be I k(z) = 1 + 9z + 6kz2 + k2z for k = 1, 2, 3, 4, 5 (Theorem 2.2). The
case k = 5 is actually not possible (Theorem 3.1 and Theorem 4.1), and the aforesaid
line segment indeed turns out to be [− 4

k , 0] for k = 1, 2, 3, 4. The proof exploits a
connection to the well-known Chebyshev polynomials. The last case k = 4 is possible
only when G is disconnected. Further, it is proved that the independence fractal of
such a graph coincides with its independence attractor (Theorem 2.1). These are the
contents of Sect. 2. Connected graphs whose independence fractal is a line segment are
found in Sect. 3. It is shown that there are no connected graphs whose independence
polynomial is I 5(z) (Theorem 3.1) or I 4(z) (Theorem 3.2). For k = 3, 2, we are able
to show existence in terms of particular types of examples. For k = 2, an algorithm is
provided to construct all such graphs. It is shown that there are exactly 17 connected
graphs for k = 1 (Theorem 3.4). Section 4 determines all the 13 disconnected graphs
(Theorem 4.1). The independence polynomials of such graphs are found to be either
I 2(z) or I 4(z).

Given a vertex v in G, the open neighborhood of v, denoted by N (v), is the set of
all vertices of G that are adjacent to v. Note that v is not in the open neighborhood of
itself. The degree of v, denoted by d(v), is the number of edges incident on v. This is
precisely the cardinality of N (v). The closed neighborhood of v, denoted by N [v], is
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the union of N (v) and {v}. A vertex v of a graph is called a pendant vertex if d(v) = 1.
For a set S, the cardinality of S is denoted by |S|.

2 Preliminaries

A graph which does not contain a K3 as a subgraph is known as a triangle free graph.
The total number of edges in a triangle free graph is going to be useful and we present
a well-known result on it, the Mantel’s theorem [4]. For a real number x , the floor
function 
x� denotes the largest integer not exceeding x .

Mantel’s Theorem (1907)

If a simple graph with n ≥ 2 vertices is triangle free, then it has at most n2
4 edges.

Such a graph has exactly
⌊
n2
4

⌋
edges if and only if it is a complete bipartite graph

Kn1,n2 , where n1, n2 are as follows:

(i) if n is even, then n1 = n2 = n
2 ,

(ii) if n is odd, then n1 = n+1
2 and n2 = n−1

2 .

The Chebyshev polynomial of degree d is defined recursively as

Td+1(z) = 2zTd(z) − Td−1(z),

where T0(z) = 1 and T1(z) = z. For example, T2(z) = 2z2 −1 and T3(z) = 4z3 −3z.
An important aspect of these polynomials is demonstrated by the following well-
known result. A proof can be found in [2]. A subset E of C∪{∞} is called completely
invariant under a polynomial P if P(E) ⊆ E and P−1(E) ⊆ E .

Theorem 2.1 Suppose that T is a polynomial (with complex coefficients) of degree d,
where d ≥ 2. Then, the interval [−1, 1] is completely invariant under T if and only if
T is Td or −Td.

The Chebyshev polynomial of third degree is of interest to us. Let ±T3 denote T3 or
−T3. Following lemma determines all possible cubic reduced independence polyno-
mials whose independence fractal is a line segment.

Theorem 2.2 The independence fractal of a graph with independence number 3 is
a line segment if and only if the reduced independence polynomial of the graph is
9z + 6kz2 + k2z3 for some k ∈ {1, 2, 3, 4, 5}.
Proof Let G be a graph with α(G) = 3 and fG(z) = i1z + i2z2 + i3z3. If the
independence fractal F(G) is a line segment L , then the Julia set of fG is L by
Theorem 1.1. It follows from Theorem 3.2.4 of [2] that L is completely invariant
under fG , that is, fG(L) ⊆ L and f−1

G (L) ⊆ L .
Let the midpoint, length and the angle of inclination with the positive real axis of L

bedenoted by z0, l and θ , respectively. Then,φ(z) = az+bmaps [−1, 1]onto L ,where
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a = l
2e

iθ and b = z0. Thus, φ−1(fG(φ)) is a cubic polynomial which keeps [−1, 1]
completely invariant. Now, it follows from Theorem 2.1 that φ−1(fG(φ)) = ±T3. The
coefficients of fG remain to be determined for completing the proof.

Since i3 �= 0, it follows that i2 �= 0 and i1 �= 0. Further, ±T3(z) = fG (az+b)−b
a .

Differentiating both sides once and putting z = 0, we get that f ′G(b) = 3 or −3.
Similarly, it follows by differentiating both sides twice and putting z = 0 that f ′′G(b) =
0. This means that,

i1 + 2i2b + 3i3b
2 = ±3 and b = −i2

3i3
�= 0.

Thus, we have

i1 − i22
3i3

= ±3. (1)

Since the constant term in the Chebyshev polynomial of degree 3 is 0, it follows that
fG(b) = b. In other words, i1b+i2b2+i3b3 = b. Since b �= 0, we get i1+i2b+i3b2 =
1, which after putting the value of b gives that

i22
3i3

= 3(i1 − 1)

2
. (2)

Putting this in Equation (1), it is seen that i1 = −3 or 9. Clearly, the first possibility
cannot be true giving that i1 = 9. Thus, the graphG must have 9 vertices and it follows
from Equation (2) that i22 = 36i3. Since i2 ≤ (9

2

) = 36, i3 ≤ 36. Further, i2 = 36

would mean i3 = 36. But, in this case G has no edge giving that i3 = (9
3

) = 84 which
is a contradiction. Therefore, i2 < 36. Since i3 needs to be a perfect square of an
integer and is smaller than 36, i3 ∈ {1, 4, 9, 16, 25} and the corresponding values of i2
will be 6, 12, 18, 24 and 30, respectively. Hence, fG(z) = fkG(z) := 9z + 6kz2 + k2z3

for some k ∈ {1, 2, 3, 4, 5}.
Conversely, if fG(z) = fkG(z) for some k ∈ {1, 2, 3, 4, 5}, then fkG(z) is conjugate

to T3(z) = 4z3 − 3z via φk(z) = 2
k (z − 1). More precisely, T3(z) = φ−1

k fkG(φk(z))
for all z and for all k ∈ {1, 2, 3, 4, 5}. The proof now follows from Theorem 2.1. ��

It is important to note that the Julia set of each fkG(z) = 9z + 6kz2 + k2z3 is a
line segment. Indeed, the Julia set of fkG is φk([−1, 1]) which is nothing but [− 4

k , 0].
Further, the independence fractals coincide with the independence attractors as given
below.

Corollary 2.1 If the independence fractal of a graph with independence number 3 is a
line segment, then its independence attractor and independence fractal coincide.

Proof Let fkG be the reduced independence polynomial of a graph G, with indepen-
dence number 3 and let I kG(z) = 1 + fkG(z) be its independence polynomial. Then,

I kG(−1) = −8 + 6k − k2 = 0 only when k = 2 or 4. Since I kG
′
(−1) = −3 or 9 for
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these k’s, −1 is a simple root of I kG(z). Thus, the point −1 is either not a root or a
simple root of I kG for k = 1, 2, 3, 4, 5. It now follows from the previous Theorem and
Remark 2 of [5] that the independence attractor and the independence fractal coincide
whenever the later is a line segment for a graph with independence number 3. ��

3 Connected Graphs

This section is devoted to determine connected graphs whose independence fractals
are line segments. It is seen in the previous section that any graph whose independence
fractal is a line segment must have fkG(z) as its reduced independence polynomial for
some k ∈ {1, 2, 3, 4, 5}. Note that all such graphs are with 9 vertices.

3.1 No GraphsWhen k = 5 and 4

The following theorem deals with the case k = 5.

Theorem 3.1 There is no connected graph whose independence polynomial is 1 +
9z + 30z2 + 25z3.

Proof Suppose that there is a connected graph G whose independence polynomial
is 1 + 9z + 30z2 + 25z3. Since G is connected and has 9 vertices, G has at least 8
edges. However, since i2 = 30, G has 6 edges. This is a contradiction, and the proof
completes. ��
A subgraph of a graph G induced by a subset S of V (G) is a graph with vertex set
S and with the edges of G whose end vertices are in S. We denote the complement
graph of G by Gc. For a vertex v of a graph G, let B3[v](G) denote the set of all
3-independent sets in G containing v and i3[v](G) = |B3[v](G)|. In order to deal with
the case k = 4, the following lemma is needed.

Lemma 3.1 If G is a connected graph and IG(z) = 1 + 9z + 24z2 + 16z3, then G
does not have any pendant vertex.

Proof Suppose that G has a pendant vertex. Let it be v1 and v1 ∼ v2. If H is the
subgraph of G induced by V (G) \ {v1, v2}, then H has seven vertices and does not
have any 3-independent set. Therefore, Hc has seven vertices and does not contain
any triangle. By Mantel’s theorem, Hc has at most 12 edges. In other words, H has at
least

(7
2

) − 12 = 9 edges. Since G is connected, there is an edge in G joining v2 with
a vertex of H . In other words, d(v2) ≥ 2. Since 12 = |E(G)| = |E(H)| + d(v2),
d(v2) ≤ 3.

If d(v2) = 3, then it follows from the Mantel’s theorem (applied to Hc) that H has
exactly 9 edges and H = Kc

4,3. In other words, H is the disjoint union of K4 and K3.
In this case, since G is connected, v2 is adjacent to a vertex of K3 as well as to a vertex
of K4. Consequently, i3[v1](G) = 12 and i3[v2](G) = 6. However, the total number of
3-independent sets in G is 16.

If d(v2) = 2, then the subgraph H induced by V (G) \ {v1, v2} must have 10
edges. Thus, i3[v1](G) = i2(H) = (7

2

) − 10 = 11. Further, i3[v2](G) is the number
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of 2-independent sets in the subgraph induced by V (H) \ {v3}, where v2 ∼ v3. This
number is at least

(6
2

) − 9 = 6 which gives that i3(G) = i3[v1](G) + i3[v2](G) ≥ 17.
This is a contradiction proving that G does not have any pendant vertex. ��
For two non-adjacent vertices u, v of a graph G, let N (u, v) denote the set of all
vertices of G which are adjacent either to u or to v and N [u, v] = N (u, v) ∪ {u, v}.
Also, let i3[u,v](G) denote the number of 3-independent sets in G containing u and v.

Theorem 3.2 There is no connected graph whose independence polynomial is 1 +
9z + 24z2 + 16z3.

Proof If G is a connected graph such that IG(z) = 1 + 9z + 24z2 + 16z3, then it
has 9 vertices, 12 edges, i3(G) = 16 and there are no 4-independent set in G. By
Lemma 3.1, there is no pendant vertex in G. Since

∑

v∈V (G)

d(v) = 2|E(G)| = 24

and |V (G)| = 9, there must be at least three vertices of degree 2 in G. If these
three vertices are mutually adjacent, then G becomes disconnected. Therefore, at
least two of them are non-adjacent. Suppose that u, v ∈ V (G) such that u � v and
d(u) = d(v) = 2.

Let u1, u2 ∈ N (u) and Hu be the subgraph ofG induced by V (G)\N [u]. Now, Hu

has 6 vertices and i3(Hu) = 0. ApplyingMantel’s theorem to the complement of Hu , it
is found that Hu has at least

(6
2

)−9 = 6 edges. SinceG is connected and is without any
pendant vertex, |E(Hu)| ∈ {6, 7, 8}. Similarly, it can be seen that |E(Hv)| ∈ {6, 7, 8},
where Hv is the subgraph G induced by V (G) \ N [v]. The number of elements in
the set N (u) ∩ N (v) can only be 0, 1 or 2. The proof will be complete by obtaining
contradictions in each of these cases.

Case 1
Suppose that |N (u) ∩ N (v)| = 0. Then, there is a triangle with vertices in
V (G)\N [u, v]. Let the vertices of this triangle bew1, w2 andw3. Further, this
triangle is a subgraph of Hu as well as of Hv and {w1, w2, w3} = Hu ∩ Hv .
Since |E(G)| = 12, the sum of edges in Hu and Hv is 15. In view of the
discussion in the previous paragraph, one of Hv and Hu has 8 edges and the
other has 7 edges. Without loss of generality suppose that |E(Hu)| = 8 and
|E(Hv)| = 7. In other words, i3[u](G) = 15−8 = 7 and i3[v](G) = 15−7 =
8. Since there are exactly three 3-independent sets containing both u and v

(namely, {u, w1, v}, {u, w2, v} and {u, w3, v}), |B3[u] ∪ B3[v]| = 12. Let Vu,v

denote V (G) \ {u, v}. Since i3(G) = 16, the number of 3-independent sets in
Vu,v is exactly 4, that is,

i3(G) − i3[u](G) − i3[v](G) + i3[u,v](G) = 4. (3)

Further, |E(Hv)| = 7. There is an edge joining a vertex from {u1, u2} and a
vertex from {w1, w2, w3}. Without loss of generality, assume that u1 ∼ w1.
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If the other edge of Hv is not between u1, u2 then it will be between u2 and
one of w1, w2, w3 which will lead to a 4-independent set containing v, u1, u2
and the wi which is neither adjacent to u1 nor to u2. Thus, u1 ∼ u2.
Suppose that v1, v2 ∈ N (v). Note that G has no 4-independent set. So, if
v1 � v2 then, each wi is adjacent either to v1 or to v2. Since |E(Hu)| = 8,
one of vi , say v1 is adjacent to two vertices of {w1, w2, w3}, say to w1 and to
w2 and then v2 will be adjacent to w3. Thus, v1 ∼ w1, v1 ∼ w2, v2 ∼ w3 and
the graph is as given in Fig. 1a. The 3-independent sets in Vu,v are

{v1, w3, u1}, {v1, w3, u2}, {v2, w1, u2}, {v2, w2, u1}, {v2, w2, u2},
{v1, v2, u1}, {v1, v2, u2}.

However, this contradicts (3).
Suppose that v1 ∼ v2. If both v1, v2 are adjacent to w1, then any one of
{u1, u2}, one of {w2, w3} and one of {v1, v2} form a 3-independent set in Vu,v ,
and there are 8 such choices. This gives that the number of 3-independent sets
in Vu,v is 8 which is not true in view of (3). If both v1, v2 are adjacent to
wi , i �= 1, then it can be observed that the number of 3-independent sets in
Vu,v is 6, which again contradicts (3).
Let v1 and v2 be adjacent to two different vertices of {w1, w2, w3} and
the other w j be adjacent neither to v1 nor to v2. If j = 1 then, with-
out loss of generality assume that v1 ∼ w2 and v2 ∼ w3. The resulting
graph is shown in Fig. 1e, and there are six 3-independent sets in Vu,v ,
namely, {u1, w2, v2}, {u1, w3, v1}, {u2, w1, v1}, {u2, w1, v2}, {u2, w2, v2} and
{u2, w3, v1}.However, this is not possible by (3). If j �= 1 then, assume with-
out loss of generality that v1 ∼ w1 and v2 ∼ w3 and the graph is given in
Fig. 1d. Now, the 3-independent sets in Vu,v are

{u1, w2, v1}, {u1, w2, v2}, {u1, w3, v1}, {u2, w1, v2}, {u2, w2, v1},
{u2, w2, v2}, {u2, w3, v1},

which contradicts (3).
Now, consider the case when exactly one vi , say v1 is adjacent to two ver-
tices of {w1, w2, w3}. Then, one wk is not adjacent to v1. If k = 2, then
the graph is given in Fig. 1b. For each i, j ∈ {1, 2}, {ui , w2, v j } is a 3-
independent set in Vu,v . In view of (3), there are no other 3-independent
set in Vu,v . But {u1, w3, v2} is such a set and (3) is contradicted. Simi-
lar contradiction shall arise for k = 3. If k = 1, then v1 ∼ w2 and
v1 ∼ w3 and the graph is given in Fig. 1c. All the 3-independent sets
in Vu,v are {u1, w2, v2}, {u1, w3, v2}, {u2, w1, v1}, {u2, w1, v2}, {u2, w2, v2}
and {u2, w3, v2}, which contradicts (3).

Case 2
If N (u) ∩ N (v) is singleton, then V (G) \ N [u, v] has four vertices
{w1, w2, w3, w4}. Since G has no 4-independent set, each pair of these ver-
tices must be adjacent in G. Let v1 ∈ N (u) ∩ N (v). Further, suppose that
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u1 w1 v1 v

u u2 w2

b c

d

a

e

v2w3

w1 v1

v2 vw3w2u2u

u1 u1 w1 v1

vw3w2u2u v2

u1 w1 v1

u u2 w2 w3 v2

v

u1 w1 v1

u u2 w2 w3 v2 v

Fig. 1 Some possible graphs when |N (u) ∩ N (v)| = 0

u1 ∼ u, u1 �= v1 and v2 ∼ v, v2 �= v1.
Let v1 � u1. If u1 ∼ v2, then one of wi ’s is adjacent to a vertex from
{v1, v2, u1}. Each of these 12 choices gives rise to the same graph, up to iso-
morphism.Without loss of generality, assume thatw1 ∼ v2 and the graph is as
given inFig. 2a.But in this case, i3[u,v](G) = 4, i3[u,v2](G) = 3, i3[v,u1](G) =
4, i3[v1,v2](G) = 3 and i3[u1,v1](G) = 4. This gives that i3(G) ≥ 18, a con-
tradiction to the fact that i3(G) = 16. If u1 � v2, then it is adjacent to one of
the wi ’s giving rise to a 4-independent set containing u1, v1 and v2.
If v1 ∼ u1, then the graph is as given in Fig. 2b. We have i3[u,v](G) =
4, i3[u,v2](G) = 3, i3[u1,v](G) = 4, i3[u1,v2](G) = 3 and i3[v1,v2](G) = 3. In
other words, i3(G) ≥ 17, which is a contradiction to i3(G) = 16.

Case 3
Let N (u) ∩ N (v) have two elements. Then, each pair of vertices in V (G) \
N [u, v] must be adjacent in order to avoid a 4-independent set containing
u, v. Thus, there is a K5 on V (G) \ N [u, v]. However, this gives that G has
at least 14 edges contradicting |E(G)| = 12.

��

3.2 Graphs ExistWhen k = 3 and 2

The case k = 3 is different from earlier situations in the sense that there do exist
connected graphs whose independence polynomial is 1 + 9z + 18z2 + 9z3. Though
there are many such graphs (computationally found to be 2601 using maple), we are
providing here examples showing that the vertices can have all possible degrees.

Consider the graphs in Fig. 3. All are with independence polynomial 1 + 9z +
18z2 + 9z3. Further, observe that there are vertices with degrees 3, 4 and 5 in the
first graph, the second graph has a vertex with degree 8 and also has a vertex with
degree 2, the third graph has a vertex with degree 7 as well as a vertex with degree
1, and the fourth graph has a vertex with degree 6. Hence, for each 1 ≤ j ≤ 8 there
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Fig. 2 Possible graphs when |N (u)
⋂

N (v)| = 1

Fig. 3 Some graphs with independence polynomial 1 + 9z + 18z2 + 9z3

is a connected graph with a vertex of degree j whose independence polynomial is
1 + 9z + 18z2 + 9z3.

Note that the second graph has vertex with maximum degree, that is, 8. It can be
shown that there are exactly four such graphs. To prove this, we need to know the
graphs whose independence polynomial is 1 + nz + 18z2 + 9z3 for n = 7, 8. The
following two lemmas deal with this.

Lemma 3.2 There is no graph whose independence polynomial is 1+7z+18z2+9z3.

Proof If there is a graph H with independence polynomial 1+ 7z + 18z2 + 9z3, then
it has 7 vertices and 3 edges. Thus, it is disconnected.

Since the independence number of H is 3, it has at most three components. Let
it have 3 components H1, H2 and H3. Then, the independence polynomial of each
component is linear. Suppose that IHi (z) = 1 + ni z for i = 1, 2, 3. Since IH (z) =
IH1(z)IH2(z)IH3(z), we have

n1 + n2 + n3 = 7, n1n2n3 = 9 and n1n2 + n2n3 + n1n3 = 18.

The possible values for (n1, n2, n3) satisfying the first two equations are (3, 3, 1),
(1, 3, 3), and (3, 1, 3). But, none of these satisfies the third equation.

If H has two components, then the independence polynomial of one component
is linear and that of the other is quadratic. Let these polynomials be 1 + n1z and
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1+n2z+mz2. Then, n1m = 9, n1+n2 = 7 and n1n2+m = 18. The possible values of
(n1, n2,m) satisfying the first two equations are (1, 6, 9) and (3, 4, 3). However, none
of these satisfies the third equation proving that there is no graph whose independence
polynomial is 1 + 7z + 18z2 + 9z3. ��
Lemma 3.3 If there is a connected graph whose independence polynomial is 1+8z+
18z2 + 9z3, then the following are true.

(i) It has no pendant vertex.
(ii) The degree of every vertex is either 2 or 3 and the number of vertices with degree

3 is four which is same as the number of vertices with degree 2.
(iii) There are two adjacent vertices v1 and v2 such that d(v1) = d(v2) = 2 and they

are with a common neighbor.

Consequently, there is exactly one such graph.

Proof Let H be a connected graph whose independence polynomial is 1+8z+18z2+
9z3.

(i) Suppose that H has a pendant vertex u and that is adjacent to u1. Then, there are
10−d(u1) edges connecting the vertices of V (H)\ {u, u1}. Hence, the number of
2-independent sets of H not containing u1 and u is

(6
2

)−(10−d(u1)) = 5+d(u1).
Since every 3-independent set contains eitheru oru1,wehave i3[u](H) = 5+d(u1)
and i3[u1](H) = 4 − d(u1). Therefore, d(u1) ≤ 4.
If d(u1) = 4, then i3[u](H) = 9 and i3[u1](H) = 0, which means that the three
vertices of V (H) \ N [u1] are mutually adjacent. Now, each 3-independent set of
H consists of one of these three vertices, u and a vertex from N (u1) \ {u}. In this
case, no vertex of N (u1) \ {u} is adjacent to any vertex in V (H) \ N [u1]. But this
means that H is not connected, contrary to the assumption.
If d(u1) = 3, then i3[u1](H) = 1 and each pair of vertices in V (H)\N [u1], except
one are adjacent. Let N (u1) \ {u} = {u2, u3}. If u2 ∼ u3, then one of these along
with the two non-adjacent vertices of V (H) \ N [u1] forms a 3-independent set. If
u2 � u3, then u2, u3 and one vertex from V (H) \ {N [u2, u3] ∪ {u}} (which con-
tains at least two elements) forms a 3-independent set. In both the situations, there
is a 3-independent set not containing u, and hence a 4-independent set containing
u. This cannot be true.
If d(u1) = 2, let N (u1) = {u, v}. Then, i3[u1](H) = 2 and each pair of vertices in
V (H) \ N [u1], except two pairs are adjacent. This leads to a disconnected graph
which is not true. Clearly, d(u1) = 1wouldmean a disconnected graph. Therefore,
the graph H has no pendant vertex.

(ii) Recall that H has 8 vertices and 10 edges. Since d(v) ≥ 2 for each v ∈ V (H),
H cannot have any vertex with degree 7. Further, if H has a vertex v with degree
6, then all other vertices have degree two. Note that |V (H) \ N [v]| = 1 and the
vertex in V (H) \ N [v] is adjacent to 2 vertices of N (v). Thus, there are only 2
edges between the six vertices of N (v) leading to a 4-independent set in N (v),
which is not possible.
If H has a vertex v with degree 5, then there are 6 vertices of degree 2 each and
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one vertex of degree 3. Further, it is seen that the two vertices of V (H) \ N [v] are
adjacent. (Otherwise, there would be at least 4 edges incident to these 2 vertices
and hence there will be at most one edge between the five vertices of N (v). This
leads to a 4-independent set in N (v).) Let v ∼ vi , i = 1, 2, 3, 4, 5 and the 2
vertices in V (H) \ N [v] are u1 and u2. To avoid a 4-independent set in H , there
must be two edges between the 5 vertices in N (v) with distinct end vertices. Let
v1 ∼ v2 and v3 ∼ v4. Further, v5 must be adjacent to either u1 or u2 as d(v5) ≥ 2.
If v5 is adjacent to exactly one of them, say u1, then the remaining edge in H must
connect u2 with one of v1, v2, v3, v4, say v1 (all four cases are same). In that case,
u2, v2, v3, v5 will give a 4-independent set. If v5 is adjacent to both u1 and u2,
then i3(H) = 12, which is not possible.
Now, if H has a vertex v with degree 4, then there is an edge between two vertices
of V (H) \ N [v] in order to avoid a 4-independent set in H . Suppose that V (H) \
N [v] = {u1, u2, u3} and u1 ∼ u2. For the same reason, there should be an edge
between two vertices, say v1, v2 of N (v). Let the other two vertices of N (v) be
denoted by v3, v4.
If u1, u2 and u3 are mutually adjacent, then at least one of {u1, u2, u3}, say u1 is
not adjacent to any vertex of N (v) in order to ensure E(H) = 10. Then in order
to avoid 4-independent set in H there must be an edge between v3 and v4. Since
H is connected, the remaining edge must be between one vertex of {u2, u3} and
one vertex of N (v) leading to i3(H) = 10, which is not true.
If u1 ∼ u2, u1 ∼ u3 and u2 � u3, then there is a 4-independent set whenever
u2 and u3 are incident to a single vertex of N (v). If u2 and u3 are incident to
different vertices of N (v), then it can be seen that the resulting graph has either a
4-independent set or more than nine 3-independent sets, none of which is true. In
fact, if u2 ∼ v1 and u3 ∼ v2 then recall that v1 ∼ v2. In this case, the remaining
edge is between v3 and v4 and i3(H) = 11. If u2 ∼ v3 and u3 ∼ v4, then in
order to avoid a 4-independent set (containing v3, v4, u1 and one of v1 or v2) v3
should be adjacent to v4. Then, as observed in the previous case i3(H) = 11. If u2
is adjacent to one of v1, v2 and u3 is adjacent to one of v3, v4, then for the same
reason as above v3 must be adjacent to v4. Then, without loss of generality assume
that u2 ∼ v2 and u3 ∼ v4. Now, v3, u2, u3, v1 form a 4-independent set contrary
to our assumption.
If u1 ∼ u2, u1 � u3 and u2 � u3, then u1 is adjacent to some vertex of N (v) and
u2 is adjacent to some vertex of N (v). Further, another two edges are incident to
u3. Consequently, the edge between v1 and v2 is the only remaining edge.
Now, if N (u3) = {v1, v2}, then u2 ∼ v3 and u1 ∼ v4 giving that i3(H) = 11.
Suppose that N (u3) = {v3, v4}. If u1 ∼ v1 and u2 ∼ v2 (or in the other way), there
will be a 4-independent set {v3, v4, v1, u2}. If u1 ∼ v1 and u2 ∼ v1, then also we
get a 4-independent set. If u1 is adjacent to one of v1 or v2 and u2 is adjacent to
one of v3 or v4, then in each case we will get a 4-independent set. If both u1 and
u2 are adjacent to one vertex of v3 or v4 (not both), then i3(H) = 12. If u1 ∼ v3
and u2 ∼ v4 (or in the other way), then also i3(H) = 12.
If N (u3) = {v2, v3}, then v4 is adjacent to one of u1, u2. If v4 ∼ u1, then u2 is
adjacent to a vertex of N (v). If u2 ∼ v1, then {v2, v3, v4, u2} is a 4-independent
set. If u2 ∼ v2, then {v1, v3, v4, u2} is a 4-independent set. If u2 ∼ v3, then
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{v1, u3, v4, u2} is a 4-independent set. If u2 ∼ v4, then i3(H) = 11. The other
case when N (u3) = {v1, v3}, {v1, v4}, {v2, v4} leads to contradiction in a similar
way.
Thus, d(v) = 2 or 3 for each v ∈ V (H). Since

∑
d(v) = 20, the number of

vertices with degree 3 is exactly four and each of the other four vertices has degree
2.

(iii) Consider the four vertices of H with degree 2 each. Since, there is no 4-independent
set in H , there is an edge between two of them, say v1 and v2. Let v2 ∼ v3 and
v1 ∼ v4. We need to show that v3 = v4.
On the contrary, suppose that v3 �= v4. If d(v3) = d(v4) = 2, then v3 � v4
(because H is connected). If v3 and v4 are adjacent to the same vertex, say v5, then
each pair of vertices in V (H)\{v1, v2, v3, v4, v5} is adjacent and d(v5)must be 4,
contrary to (ii). If v3 and v4 are adjacent to two different vertices, say to v5 and v6,
respectively, then there are 5 edges between the vertices of V (H)\{v1, v2, v3, v4}.
In fact, each pair of this set are adjacent except v5, v6. But in that case, the graph
is as given in Fig. 4a and i3(H) = 10, a contradiction.
Suppose that one of v3 or v4, say v3 has degree 3. Now, if v3 ∼ v4 and d(v4) = 3,
then |N (v3) ∩ N (v4)| = 1 or 0. The first case leads to the graph Fig. 4b since the
three vertices of V (H) \ (N [v3] ∪ {v1}) are mutually adjacent. This graph has 10
independent sets with cardinality 3 each, a contradiction. In the second case, using
the same argument it is found that |E(H)| = 10, which cannot be true. If v3 ∼ v4
and d(v4) = 2 then v5, the vertex in N (v3) and different from both v2, v4, must
have degree 3 leading to the graph given in Fig. 4c. This graph has a 4-independent
set, a contradiction.
Now suppose that v3 � v4. Let N (v3) \ {v2} = {v5, v6} and the other two vertices
be v7 and v8. Since v1 � v3, wemust have v7 ∼ v8. Let d(v4) = 2. If v4 is adjacent
to v5 (or v6), then v6, v7, v8 (v5, v7, v8, respectively) have to be mutually adjacent
in order to avoid a 4-independent set containing v2, v4. This gives the graph given
in Fig. 4d for which i3(H) = 11, a contradiction. If v4 is adjacent to v7 (or
v8) then the vertices v5, v6, v8 (or v5, v6, v7, respectively) are mutually adjacent,
leading to the graph as given in Fig. 4e for which i3(H) = 10, a contradiction.
Considering d(v4) = 3, it is observed that without loss of generality N (v4)\{v1} is
{v5, v6}, {v7, v8} or {v5, v7}. The first and the second situations give rise to graphs
Fig. 4f and g, respectively, for each of which i3(H) = 10, a contradiction. In
the third case, both v2 and v4 are non-adjacent to each of v6 and v8, giving that
v6 ∼ v8. Also, v1 � v3 gives that v7 ∼ v8. Now, v5 ∼ v6, v5 ∼ v7, v5 ∼ v8, or
v6 ∼ v7 leading to graphs Fig. 4h–j, respectively, the first two situations leading
to the same graph. But each of these graphs has at least ten 3-independent sets,
contrary to the fact.
This proves that d(v1) = d(v2) = 2, and these are adjacent to a common vertex.
In other words, v3 = v4.

It is now clear that d(v3) = 3. Let N (v3) \ {v1, v2} = {v4}. If d(v4) = 3, then v4
is adjacent to both v5 and v6 implying v7 ∼ v8. If v5 � v6, then there is only one
graph as given by Fig. 4k for which i3(H) = 10, a contradiction. If v5 ∼ v6, then the
graph is as given in Fig. 4b for which i3(H) = 10. Thus, d(v4) = 2 and consequently,
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Fig. 4 Graphs used in the proof of Lemma 3.3 (ii)

Fig. 5 The graph with
independence polynomial
1 + 8z + 18z2 + 9z3

the vertex adjacent to v4, say v5 and different from v3 has degree 3. Hence, there is
exactly one graph whose independence polynomial is 1 + 8z + 18z2 + 9z3, which is
given in Fig. 5. ��

Theorem 3.3 There are exactly 4 connected graphs with independence polynomial
1 + 9z + 18z2 + 9z3 and having a vertex of degree 8.

Proof Let G be a graph whose independence polynomial is 1 + 9z + 18z2 + 9z3.
Then, it has 9 vertices and 18 edges. Let n be the number of vertices of degree 8 in G.
Then, the sum of degrees of all vertices is at least 8n + (9− n)n, which is bigger than
36 whenever n ≥ 3. If n = 2, then the subgraph of G induced by the vertices with
degree less than 8 must have three edges, seven vertices and nine 3-independent sets.
In other words, its independence polynomial is 1+ 7z + 18z2 + 9z3. However, this is
not possible by Lemma 3.2. Therefore, G can have at most one vertex with degree 8.

Let u be a vertex of G with degree 8. The subgraph H induced by all the vertices
of G except u has 8 vertices and 10 edges. Since there is no independent set in G
containing u, each 3-independent set of G is a 3-independent set of H and vice versa.
This gives i3(H) = 9. Further, H has 8 vertices, 10 edges and no 4-independent set.
In other words, IH (z) = 1 + 8z + 18z2 + 9z3.

Suppose that H is disconnected. If it has three components with n1, n2 and n3
vertices, then the independence polynomial of each component is linear and their
product is 1+8z+18z2+9z3. Comparing the coefficients, it is found thatn1+n2+n3 =
8 and n1n2n3 = 9. However, no such natural numbers n1, n2, n3 exist proving that H
cannot have three components. Let H have two components H1, H2 with independence

123



Graphs Whose Independence Fractals are Line Segments 69

Fig. 6 Graphs with a vertex of maximum degree when k = 3

polynomials IH1 and IH2 respectively. Since their product is a cubic polynomial,
one is linear and the other is a quadratic polynomial. Let IH1(z) = 1 + n1z and
IH2(z) = 1 + n2z + mz2 for some n1, n2,m ∈ N. Comparing the coefficients of
their product with those of IH (z), it is found that n1 + n2 = 8, n1n2 + m = 18 and
n1m = 9. Therefore, n1 = 3 = m and n2 = 5, and the graph H1 is K3, H2 has 5
vertices and 7 edges. Since the total degree of all vertices of H2 is 14, there is a vertex v

of H2 with degree one or two. Letting d(v) = 1, it is seen that none of the six edges of
H2 is incident to v. Since there are 4 other vertices, these are mutually adjacent. Thus,
H2 contains K4 as a subgraph, one vertex of which is joined to v. Therefore, G is the
fourth graph of Fig. 6. Now, suppose that d(v) = 2 and v1, v2 are adjacent to v. Then,
there are five edges between the vertices of V (H2) \ {v}. In other words, exactly one
edge is missing from the complete graph on the 4 vertices of V (H2) \ {v}. This edge
(to be missed) must be incident on one of v1, v2, else there would be a 3-independent
set in H2 contrary to the situation. If this edge is taken between v1 and v2, then we get
G as the second graph given in Fig. 6. If this edge is not between v1 and v2, then we
get the third graph of Fig. 6.

If H is connected, then it follows from Lemma 3.3 that there is exactly one graph.
The resulting graph G is the first one in Fig. 6. ��

For k = 2, connected graphs do exist (computationally, the number of all such
graphs is found to be 902). Instead of finding all these graphs, we give an algorithm
to generate them. Let T3 be the set of all graphs with exactly 3 triangles such that
each vertex as well as each edge of the graph is part of a triangle. It is easy to observe
that T3 contains exactly 9 nonisomorphic graphs T1, T2, . . . , T9 (see Fig. 7 for an easy
understanding). We give an algorithmwhich will generate all connected graphs whose
independence polynomial is 1 + 9z + 12z2 + 4z3, taking inputs from T3.

The algorithm will first generate a graph with 9 vertices, 12 edges, 4 triangles, no
K4 as its subgraph and such that each of its vertices has degree strictly less than 8. The
complement of such a graphG has 9 vertices, 12 independent sets with cardinality 2, 4
independent sets with cardinality 3 and no 4-independent set. Further, it is connected.
(If it is disconnected, then it has a component with k vertices, where 2 ≤ k ≤ 7. Then,
G can have at most

(k
2

)
+

(9−k
2

) = k2 − 9k + 36 ≤ 22 number of edges for 2 ≤ k ≤ 7,
leading to a contradiction). Let us define the following three properties of a graph:

P1 : the graph does not contain a K4 as its subgraph,
P2 : the graph does not contain more than four triangles,
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Fig. 7 All the graphs in T3

P3 : the graph does not contain a vertex of degree 8.

Algorithm

For H ∈ T3, if |V (H)| < 9 then consider a new graph H ′ by adding 9 − |V (H)|
number of isolated vertices to H . Then, add a triangle in one of the following ways
such that the resulting graph has properties P1, P2 and P3. Note that, for each such
H ′ at least one of the following can be executed.

1. By inserting a single edge: Consider two non-adjacent vertices u, v of H ′ such
that N (u)

⋂
N (v) �= ∅ and insert an edge between them.

2. By inserting two edges: Consider two adjacent vertices u, v of H ′ and a vertex w

such that u � w and v � w. Then insert two edges, one between u and w, and the
other between v and w.

3. By inserting three edges: Consider three mutually non-adjacent vertices u, v, w of
H ′ and join the three edges between them.

If the graph obtained by applying any one of the above three steps has less than 12
edges, then insert additional edges so that the resulting graph, say H ′′, has 12 edges
and it satisfies P1, P2 and P3.

Now, the complement of H ′′ is connected and it has 9 vertices, 24 edges and the
number of 3-independent sets is 4, as desired. The detailed algorithm is provided in
Sect. 5 (Appendix).
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a dcb

Fig. 8 Some examples of complementary graphs when k = 2

The following example demonstrates that for each 1 ≤ j ≤ 8, there is connected
graphwith a vertex of degree j whose independence polynomial is 1+9z+12z2+4z3.

Example 3.1 Consider the four graphs in Fig. 8. The complement of each graph is
connected and is with independence polynomial 1 + 9z + 12z2 + 4z3.

Observe that the graphs in Fig. 8a and b have been obtained from T4 ∈ T3, first
by adding 3 isolated vertices, then adding one triangle by inserting 3 edges, and then
adding another edge. Similarly, the graph in Fig. 8d has been obtained from T9 ∈ T3,
first by adding 2 isolated vertices, then adding one triangle by inserting 2 edges, and
then adding another edge. The graph in Fig. 8c has been obtained from T9 ∈ T3, first
by adding 2 isolated vertices, then adding one triangle by inserting 3 edges.

Further, there are vertices of degree 3, 4, 5, 6, 7 in the complement of the graph
in Fig. 8a. The complement of the graph in Fig. 8b has a vertex with degree 8. The
complement of the graph given in Fig. 8c has a vertex with degree 2 whereas that of
Fig. 8d has a pendant vertex.

3.3 All GraphsWhen k = 1

Here, we consider the last case k = 1 and find all possible connected graphs whose
independence polynomial is 1+ 9z + 6z2 + z3. Let Pn denote the path on n vertices.

Theorem 3.4 There are exactly 17 connected graphs whose independence polynomial
is 1 + 9z + 6z2 + z3.

Proof Let G be a connected graph with independence polynomial 1+ 9z + 6z2 + z3.
Then, clearly G has 9 vertices and 30 edges. Since there is exactly one 3-independent
set, G can be obtained by deleting three edges (but no vertex) of a triangle from K9
(denoted by K9 \ K3), followed by deleting 3 suitable edges.

In order to find all connected graphs with 1 + 9z + 6z2 + z3 as independence
polynomial, it is sufficient to count the total number of different ways to delete three
suitable edges from K9 \ K3. Let v1, v2 and v3 be the vertices of K3. We say an edge
of K9 \ K3 is interior if it is not incident on any vertex of {v1, v2, v3}. Note that there
are exactly 15 interior edges and they form a K6. To obtain G, one may delete three
interior edges, three non-interior edges, or at least one interior and one non-interior
edge. Thus, we have the following three cases.

Case 1 (Three interior edges): Note that a complete graph on three vertices cannot
be deleted from K9 \ K3 since this will give rise to another 3-independent set
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in G in addition to {v1, v2, v3}. There are only two non-complete connected
graphs with three edges, namely star on four vertices (that with one vertex
which has degree 3) and P4. These two graphs (along with the triangle) are
given in Fig. 9(A) and 9(B). There are only two disconnected graphs with
three edges, namely 3K2 and P3∪K2. These are given in Fig. 9(C) and 9(D).
Deletion of each of these four graphs from K9 \ K3 gives a desired graph,
and the resulting graphs are not isomorphic. Therefore, the total number of
nonisomorphic connected graphs obtained by deleting any three interior edges
from K9 \ K3 is 4.

Case 2 (Three non-interior edges): If the three non-interior edges to be deleted are
adjacent to v1, then the resulting graph is a desired one, as given in Fig. 9(E).
If all the three non-interior edges to be deleted are chosen to be adjacent either
to v2 or to v3 then the resulting graphs will be isomorphic to the earlier one.
If the two of the non-interior edges to be deleted are incident to vi ∈
{v1, v2, v3} and the other is incident to v j , j �= i , then a desired graph is
obtained, as given in Fig. 9(F). Lastly, if each of the three non-interior edges
to be deleted is adjacent to different vi ’s, i ∈ {1, 2, 3}, then the graph is given
in Fig. 9(G) which is not isomorphic to any other graph already obtained.
Therefore, the total number of nonisomorphic connected graphs obtained by
deleting three non-interior edges from K9 \ K3 is 3.

Case 3 (At least one interior and at least one non-interior edge): Depending on the
number of interior edges to be removed, we have two cases.

Subcase-A (Two interior edges and one non-interior edge): Let the 3 edges to
be removed be incident to a common vertex. Then, this vertex is different from
v1, v2 and v3. The subgraph with these edges, which are to be removed, must
be a star with three edges. This is as given in Fig. 10(A).
The only other connected subgraph that is to be removed from K9 \K3, to give
a desired graph is P3, where the two interior edges have a common vertex and
the other vertex (upon which one of these edges is incident) is adjacent to one
of {v1, v2, v3}, as given in Fig. 10(B). Therefore, there are two nonisomorphic
graphs obtained in this case, where the subgraph to be removed is connected.
If one interior edge and one non-interior edge have a common vertex, say
v, then the third edge is neither incident to v nor to the other end vertex of
the interior edge (otherwise, we get a graph already found in Fig. 10(A) and
Fig. 10(B)). In this case, we get a single desired graph as given in Fig. 10(C).
Let the non-interior edge have no common end vertex with any of the two inte-
rior edges.Depending onwhether the two interior edges share a commonvertex
or not, we get two nonisomorphic graphs, as given in Fig. 10(D) and (E).
Therefore, exactly 5 nonisomorphic graphs can be obtained by deleting two
interior and one non-interior edges from K9 \ K3.
Subcase-B (Two non-interior edges and one interior edge): Choose two non-
interior edges incident upon a single vi , i ∈ {1, 2, 3}. Let u, v be the vertices
adjacent to vi . Then, the third edge, which must be interior, can be chosen in
two ways: (i) it is incident either to u or to v (both leading to the same graph),
or (ii) it is incident neither to u nor to v, as given in Fig. 10(F) and (G),
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Fig. 9 Case I and II
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Fig. 10 Case III

respectively. Note that the edge joining u and v cannot be deleted as it will
lead to another 3-independent set different from {v1, v2, v3}. Thus, two such
nonisomorphic graphs are obtained in this situation.
Choose the two non-interior edges incident upon different vertices vi , v j ∈
{v1, v2, v3}. These two edges cannot be incident to a single vertex of K6 be-
cause then a 3-independent set, different from {v1, v2, v3} will arise leading to
a contradiction. Let the two non-interior edges are incident upon u and v. The
third edge to be deleted can be the one joining u and v giving rise to the graph
given in Fig. 10(H), can be incident to u but not to v (that incident to v but not
to u will give an isomorphic graph), as given in Fig. 10(I ) or can be incident
neither to u nor to v leading to the graph given in Fig. 10(J ). This gives rise
to 3 nonisomorphic graphs.
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Kite graph House graph Butterfly graph T

Fig. 11 Kite, House, Butterfly and T graphs

There are 4, 3 and 10 graphs in Cases 1, 2 and 3, respectively. Hence, there are
exactly 17 connected graphs up to isomorphism whose independence polynomial is
1 + 9z + 6z2 + z3. ��

4 Disconnected Graphs

In this section, we characterize all disconnected graphs whose independence polyno-
mial is a line segment. The following special graphs are needed. By Cn , we denote a
cycle on n vertices and T denotes the graph on 5 vertices obtained from P4 by attach-
ing a pendant to a vertex of degree 2. A kite graph is a connected graph on 5 vertices
which is obtained from K4 by deleting one edge and then attaching a new pendant
vertex to one vertex of degree 2. A house graph is a connected graph on 5 vertices
which is obtained by joining two non-adjacent vertices of C5 by an edge. A butterfly
graph is a connected graph on 5 vertices which is obtained by attaching two copies of
K3 at a vertex (see Fig. 11).

We need the following lemma to prove the main result of this section.

Lemma 4.1 There is no connected graph whose independence polynomial is 1+ 8z+
16z2.

Proof Let G be a graph whose independence polynomial is 1+ 8z + 16z2. Then, Gc

has 8 vertices, 16 edges and it does not contain any triangle. By Mantel’s theorem,
Gc is the complete bipartite graph K4,4. In other words, G is the disjoint union of two
copies of K4 and hence is disconnected completing the proof. ��
The following theorem proves that there are exactly 13 disconnected graphs up to
isomorphism whose independence fractal is a line segment.

Theorem 4.1 Let G be a disconnected graph with independence number 3. Its inde-
pendence fractal is a line segment if and only if it is one of the following:

1. K4 ∪ K4 ∪ K1
2. K1 ∪ (K8 \ C4)

3. K1 ∪ (K8 \ P5)
4. K1 ∪ (K8 \ T )

5. K1 ∪ (K8 \ K1,4)
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6. K1 ∪ (K8 \ (P3 ∪ P3))
7. K1 ∪ (K8 \ (P2 ∪ P4))
8. K1 ∪ (K8 \ (P2 ∪ K1,3))

9. K1 ∪ (K8 \ (2K2 ∪ P3))
10. K1 ∪ (K8 \ 4K2)

11. K4 ∪ K, where K is the kite graph
12. K4 ∪ H, where H is the house graph
13. K4 ∪ B, where B is the butterfly graph

Proof The independence fractal of a graph G with independence number 3 is a line
segment if and only if its independence polynomial is 1+ 9z + 6kz2 + k2z3 for some
k = 1, 2, 3, 4, 5 by Theorem 2.2. The degree of the independence polynomial of a
graph with m components is at least m. Therefore, G has two or three connected
components whenever G is disconnected. Recall that the independence polynomial of
a disconnected graph is the product of the independence polynomials of each connected
component of the graph.

If G has 3 components G1,G2 and G3, and Gi has ni vertices for i = 1, 2, 3, then
the independence polynomial of each Gi must be linear and IG(z) = (1 + n1z)(1 +
n2z)(1+ n3z) = 1+ (n1 + n2 + n3)z + (n1n2 + n2n3 + n1n3)z2 + n1n2n3z3. Since,
IG(z) = 1 + 9z + 6kz2 + k2z3, every set of possible values of n1, n2 and n3 must
satisfy n1n2n3 = k2, n1 +n2 +n3 = 9 and n1n2 +n2n3 +n1n3 = 6k for some k. For
k = 1, 2, 3, 5, this is clearly not possible. For k = 4, the possible values of (n1, n2, n3)
satisfying the first two equations are (4, 4, 1) (or one of its permutations). This also
satisfies the third equation. Therefore, IG1(z) = IG2(z) = 1+ 4z and IG3(z) = 1+ z
and consequently,G1 = G2 = K4 andG3 = K1. The resulting graph is K4∪K4∪K1,
as given in (1) of the statement of this theorem.

If G has two components G1 and G2 with n1 and n2 vertices, respectively, then one
of them, say G1 has independence number one and the other, G2 has independence
number two. Let IG1(z) = 1 + n1z and IG2(z) = 1 + n2z + mz2. Then, IG(z) =
1+ (n1 + n2)z + (n1n2 +m)z2 +mn1z3. The ordered pair (mn1, n1n2 +m) can take
the values only from the set {(1, 6), (4, 12), (9, 18), (16, 24), (25, 30)}.

The possible values of m, n1, n2 are given in Table 1. Therefore, the possible inde-
pendence polynomials ofG are Q1 = (1+z)(1+8z+4z2), Q2 = (1+4z)(1+5z+4z2)
or Q3 = (1 + z)(1 + 8z + 16z2). By Lemma 4.1, there is no connected graph whose
independence polynomial is 1 + 8z + 16z2. Therefore, Q3 cannot be the indepen-
dence polynomial of any graph satisfying the assumption of this theorem and with
exactly two components. In order to determine all graphs with two components whose
independence fractals are line segments, all connected graphs whose independence
polynomial is either 1 + 8z + 4z2 or 1 + 5z + 4z2 need to be characterized.

Let G2 be a connected graph such that IG2(z) = 1 + 8z + 4z2. Then, G2 can be
obtained by deleting 4 edges (but no vertices) from K8 in such a way that the resulting
graph has no 3-independent set. Let H be the subgraph of K8 having these 4 edges
and along with their end vertices. We shall show that there are 9 such nonisomophic
subgraphs which will mean that there are exactly 9 nonisomophic graphs with inde-
pendence polynomial 1 + 8z + 4z2. Note that such a subgraph has no isolated vertex
and does not contain any Kn with n ≥ 3. In particular, it is triangle free.
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Table 1 Possible values of m, n1 and n2

mn1 m n1 n2 n1n2 + m Remark/Independence polynomial

1 1 1 8 9 Not permissible

4 1 4 5 21 Not permissible

4 4 1 8 12 (1 + z)(1 + 8z + 4z2)

4 2 2 7 16 Not permissible

9 1 9 0 1 Not permissible

9 3 3 6 21 Not permissible

9 9 1 8 17 Not permissible

16 1 16 − − Not permissible

16 4 4 5 24 (1 + 4z)(1 + 5z + 4z2)

16 2 8 1 10 Not permissible

16 8 2 7 22 Not permissible

16 16 1 8 24 (1 + z)(1 + 8z + 16z2)

25 5 5 4 25 Not permissible

25 25 1 8 33 Not permissible

25 1 25 − − Not permissible

Thus, if H is connected, it cannot have a single pendant vertex. It is C4 whenever it
has no pendant vertex. This is as given in (2). If it has 2 pendant vertices, then it is P5,
as given in (3). It is T or K1,4 whenever it has 3 or 4 pendant vertices, respectively.
This is as given in (4) and (5) of this theorem. Clearly, it cannot have 5 ormore pendant
vertices.

If H is disconnected with two components, then there are two possibilities; each
component has two edges, or one has three and the other has one edge. The first case
implies H = P3 ∪ P3 giving (6) whereas H = P2 ∪ Ĥ in the second case where Ĥ
is a connected triangle free graph with three edges. It follows that Ĥ is P4 or K1,3,
giving (7) and (8) of this theorem, respectively.

If H has three components, then it is 2K2 ∪ P3 as given in (9) of the theorem. If H
has four components then it must be 4K2. This is (10) of this theorem.

Let G2 be a connected graph such that IG2(z) = 1 + 5z + 4z2. Since G2 can be
obtained by deleting four edges from K5. It has 6 edges. Further, if each vertex of G2
has degree at least 3, then the sum of degrees of all vertices will be at least 15. This
means that G2 has at least 7 edges, contrary to the fact. Therefore, G2 has a vertex
with degree one or two. Let v1 be a vertex of G2 with degree d(v1) ≤ 2.

If d(v1) = 1, then the vertex adjacent to v1, say v2 has degree at least two. None
of the other three vertices is adjacent to v1. Hence, there is an edge between each pair
of these three vertices (in order to avoid a 3-independent set). Each of the other two
edges joins v2 and one of {v3, v4, v5}. Thus, G2 is a kite graph, as given in (11) of the
statement of this theorem.

For d(v1) = 2, let v2 and v3 be adjacent to v1. There is an edge between v4 and
v5 since each of these is not adjacent to v1. Since G2 is connected, there is an edge
between a vertex from {v2, v3} and another from {v4, v5}. Let v2 ∼ v4, without loss of
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generality. The other choices do not give rise to any different graph. If v2 is adjacent to
v3, then the sixth edge joins v3, v4 or v3, v5 or v2, v5. The first case (where v3 ∼ v4)
gives a kite graph. The second situation (when v3 ∼ v5) gives rise to a house graph,
(12) of the statement of this theorem, whereas the third possibility means that G2 is
the butterfly graph, (13) of the statement of this theorem. If v2 is not adjacent to v3
then v5 is adjacent to one of {v2, v3}. This is to avoid any 3-independent set containing
v2, v3. Then, either v5 ∼ v2 or v5 ∼ v3. If v5 ∼ v2, then v3 ∼ v5 or v3 ∼ v4, both
imply that G2 is the house graph. If v3 ∼ v5, then v3 ∼ v4 or v2 ∼ v5, again both
imply that G2 is the house graph.

The converse is trivial. ��
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5 Appendix

By a set of graphs we mean here a set of nonisomorphic graphs. Thus, ∪I denote
union upto isomorphism such that for sets of graphs X and Y , X ∪I Y yields a set of
nonisomophic graphs from X and Y .

Algorithm 1 Algorithm for generating all nonisomophic connected graphs for Case
k = 2
1: procedure DCasek=2(T3)
2: R ← {} � Set of all graphs with the above property
3: for each H ∈ T3 do
4: if |V (H)| < 9 then
5: H ′ ← H ∪ N9−|V (H)|
6: else
7: H ′ ← H
8: for each pair of vertices u, v ∈ V (H ′) do
9: if u � v and N (u) ∩ N (v) �= ∅ then � Add triangle by inserting single edge
10: H ′′ ← H ′; E(H ′′) ← E(H ′) ∪ {(u, v)}
11: K ← addnEdges(H ′′, 12, P1 ∧ P2 ∧ P3)
12: R ← R ∪I K

13: for each triple of vertices u, v, w ∈ V (H ′) do
14: if u ∼ v and u � w and v � w then � Add triangle by inserting two edges
15: H ′′ ← H ′; E(H ′′) ← E(H ′) ∪ {(u, w), (v, w)}
16: K ← addnEdges(H ′′, 12, P1 ∧ P2 ∧ P3)
17: R ← R ∪I K

18: if u � v and u � w and v � w then � Add triangle by inserting three edges
19: H ′′ ← H ′; E(H ′′) ← E(H ′) ∪ {(u, v), (u, w), (v, w)}
20: K ← addnEdges(H ′′, 12, P1 ∧ P2 ∧ P3)
21: R ← R ∪I K

22: return R
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Algorithm2Algorithm to add n edges to a graphG under conditionP (= P1∧P2∧P3)
1: procedure addnEdges(G, n,P)
2: Require: n ≤ (|V (G)|

2
)

3: K ← {} � Set of egde extensions of G with n edges under condition P

4: a ← n − |E(G)| � Number of edges to add

5: b ← (|V (G)|
2

) − |E(G)| � Number of 2-independent sets
6: Label each 2-independent set of G from set {1, 2, . . . , b}
7: C ← All combinations of a-tuples with elements from {1, 2, . . . , b} � (b

a
)
tuples are generated

8: for each tuple t ∈ C do
9: G′ ← G; E(G′) ← E(G) ∪ {(u, v) | Label((u, v)) ∈ t & u, v ∈ V (G)}
10: Require: G′ � P

11: K ← K ∪I {G′}
12: return K
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