

Trung's Construction and the Charney–Davis Conjecture

Ashkan Nikseresht¹ · Mohammad Reza Oboudi1

Received: 19 January 2020 / Revised: 19 March 2020 / Published online: 18 April 2020 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020

Abstract

We consider a construction by which we obtain a simple graph $Tr(H, v)$ from a simple graph *H* and a non-isolated vertex v of H . We call this construction "Trung's construction." We prove that $Tr(H, v)$ is well covered, W_2 or Gorenstein if and only if *H* is so. Also, we present a formula for computing the independence polynomial of $Tr(H, v)$ and investigate when the independence complex of $Tr(H, v)$ satisfies the Charney–Davis conjecture. As a consequence of our results, we show that the independence complex of every Gorenstein planar graph with girth at least four satisfies the Charney–Davis conjecture.

Keywords Gorenstein simplicial complex · Edge ideal · Trung's construction · Independence polynomial

Mathematics Subject Classification 13F55 · 05E40 · 13H10 · 05C31

1 Introduction

Throughout this paper, *K* is a field, $S = K[x_1, \ldots, x_n]$ and *G* denotes a simple undirected graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set $E(G)$. Recall that the *edge ideal* $I(G)$ of *G* is the ideal of *S* generated by $\{x_i x_j | v_i v_j \in E(G)\}\)$. Many researchers have studied how algebraic properties of *S*/*I*(*G*) relate to combinatorial properties of *G* (see [\[6](#page-7-0)[,7](#page-7-1)[,14](#page-7-2)[,17\]](#page-7-3) and references therein). Recall that *G* is called a Gorenstein (resp. Cohen–Macaulay or CM for short) graph over *K*, if *S*/*I*(*G*) is a Gorenstein (resp. CM) ring. When *G* is Gorenstein (resp. CM) over every field, we

Communicated by Siamak Yassemi.

Mohammad Reza Oboudi mr_oboudi@yahoo.com

B Ashkan Nikseresht ashkan_nikseresht@yahoo.com

¹ Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71457-13565, Iran

say that *G* is Gorenstein (resp. CM). Finding combinatorial conditions on a graph equivalent to being Gorenstein has recently gained attention. For example, in [\[7](#page-7-1)] a characterization of planar Gorenstein graphs of girth at least four is presented. Also in [\[17](#page-7-3)], a condition on a planar graph equivalent to being Gorenstein is stated.

An importance of characterization of Gorenstein graphs comes from the Charney– Davis conjecture on the Euler characteristic of certain manifolds (see [\[3](#page-6-0)[,16\]](#page-7-4)). This conjecture could be restated in terms of independence polynomials of Gorenstein graphs (see [2.1\)](#page-2-0).

In this paper, first we recall some needed concepts and preliminary results. Then in Sect. [3,](#page-3-0) we show that planar Gorenstein graphs with girth at least four satisfy the Charney–Davis conjecture. All Gorenstein graphs with girth four are constructed using a recursive construction. We call a more general form of this recursive construction "Trung's construction" and show that this construction preserves several properties related to independent sets such as being well covered, W_2 or Gorenstein. We also present a formula for computing the independence polynomial of graphs constructed using Trung's construction and study when these graphs satisfy the Charney–Davis conjecture.

2 Preliminaries

Recall that a *simplicial complex* Δ on the vertex set $V = \{v_1, \ldots, v_n\}$ is a family of subsets of *V* (called *faces*) with the property that $\{v_i\} \in \Delta$ for each $i \in [n] = \{1, ..., n\}$ and if $A \subseteq B \in \Delta$, then $A \in \Delta$. In the sequel, Δ always denotes simplicial complex. Thus, the family $\Delta(G)$ of all cliques of a graph G is a simplicial complex called the *clique complex* of *G*. Also, $\Delta(G)$ is called the *independence complex* of *G*, where *G* denotes the complement of G. Note that the elements of $\Delta(G)$ are independent sets of *G*. The ideal of *S* generated by $\{\prod_{v_i \in F} x_i | F \subseteq V \text{ is a non-face of } \Delta\}$ is called the *Stanley–Reisner ideal* of Δ and is denoted by I_{Δ} , and S/I_{Δ} is called the *Stanley– Reisner algebra* of Δ over *K*. Therefore, we have $I_{\Delta(\overline{G})} = I(G)$. Many researchers have studied the relation between combinatorial properties of Δ and algebraic properties of S/I_{Δ} , see, for example, [\[6](#page-7-0)[,10](#page-7-5)[,11](#page-7-6)[,14\]](#page-7-2) and their references.

By the dimension of a face *F* of Δ , we mean $|F| - 1$ and the dimension of Δ is defined as $\max{\dim(F)|F \in \Delta}$. Let f_i be the number of *i*-dimensional faces of Δ (if $\Delta \neq \emptyset$, then $f_{-1} = 1$), then $(f_{-1}, \ldots, f_{d-1})$ is called the f -*vector* of Δ , where $d - 1 = \dim(\Delta)$. Now, define *h_i*'s such that $h(t) = \sum_{i=0}^{d} h_i t^i = \sum_{i=0}^{d} f_{i-1} t^i (1 - t^i)$ $(t)^{d-i}$. Then, *h*(*t*) is called the *h*-*polynomial* of Δ . It can be shown that the Hilbert series of S/I_{Δ} is $h(t)/(1-t)^d$ (see [\[6](#page-7-0), Proposition 6.2.1]). Denote by $\alpha(G)$ the *independence number* of *G*, that is, the maximum size of an independent set of *G*. Then, the polynomial $I(G, x) = \sum_{i=0}^{\alpha(G)} a_i x^i$, where a_i is the number of independent sets of size *i* in *G*, is called the *independence polynomial* of *G*. Note that $a_i = f_{i-1}$ where $(f_{-1},..., f_{\alpha(G)-1})$ is the *f*-vector of $\Delta(G)$. There are many papers related to this polynomial in the literature, see, for example, [\[9\]](#page-7-7) and the references therein. It is easy to check that the *h*-polynomial $h(t)$ of $\Delta(\overline{G})$ is $(1-t)^{\alpha(G)}I(G, t/(1-t)).$

A simplicial complex Δ is said to be *Gorenstein*^{*} when S/I_{Δ} is Gorenstein over the field of rational numbers Q (for the definition of Gorenstein rings and other algebraic

notions, the reader is referred to [\[2](#page-6-1)]), and there is no vertex v of Δ such that $\{v\} \cup F \in \Delta$ for every $F \in \Delta$. Note that if $\Delta = \Delta(G)$, then Δ is Gorenstein* if and only if *G* is Gorenstein over $\mathbb Q$ and has no isolated vertex.

The Charney–Davis conjecture states that if Δ is a Gorenstein* "flag" complex of dimension $2e - 1$, then $(-1)^e h(-1) \ge 0$. Recall that Δ is called flag when every minimal non-face of Δ has two elements. This is equivalent to $\Delta = \Delta(G)$ where G is the graph whose edges are minimal non-faces of Δ . This shows that the Charney– Davis conjecture can be stated in the language of graph theory (see below). In [\[16,](#page-7-4) Problem 4], Richard P. Stanley mentioned this conjecture as one of the "outstanding open problems in algebraic combinatorics" at the start of the twenty-first century. This conjecture was proved in dimension 3 in [\[4](#page-6-2)] and Stanley in [\[15](#page-7-8)] showed that this conjecture holds for barycentric subdivisions of shellable spheres. To see some other cases under which this conjecture is established, see $[1,5]$ $[1,5]$. The following is a "more graph theoretical" restatement of the Charney–Davis conjecture.

Conjecture 2.1 (Charney & Davis) *If G is a graph with no isolated vertices which is Gorenstein over* Q *and* α(*G*) *is even, then*

$$
(-1)^{\frac{\alpha(G)}{2}} I\left(G, -\frac{1}{2}\right) \ge 0.
$$

Next, we recall some properties of Gorenstein graphs. A graph *G* is called*well covered*, if all maximal independent sets of *G* have size $\alpha(G)$ and it is said to be a W_2 *graph*, if $|V(G)| \geq 2$ and every pair of disjoint independent sets of G are contained in two disjoint maximum independent sets. In some texts, W_2 graphs are called 1-wellcovered graphs. The following lemma states the relation of Gorenstein graphs and W2 graphs.

Lemma 2.2 ([\[7](#page-7-1), Lemma 3.1]) *Every Gorenstein graph without isolated vertices is a W*² *graph.*

Recall that if $F \in \Delta$, then $\text{link}_{\Delta}(F) = \{A \setminus F | F \subseteq A \in \Delta\}$. Suppose that *F* ⊆ V(*G*). By N[*F*], we mean *F* ∪ {*v* ∈ V(*G*)|*uv* ∈ E(*G*) for some *u* ∈ *F*} and we set $G_F = G \setminus N[F]$. We simply write G_v instead of $G_{\{v\}}$. Thus if *F* is independent, then $\lim_{\Delta(G)} F = \Delta(G_F)$. Another combinatorial property of a Gorenstein* graph *G* is that it has an *Eulerian independence complex*, that is, *G* is well covered and $I(G_F, -1) = (-1)^{\alpha(G_F)}$ for every independent set *F* of *G*. (One can readily check that this condition is equivalent to $\Delta(G)$ being an Euler complex as defined in [\[2,](#page-6-1) Definition 5.4.1].)

Lemma 2.3 (i) *A graph without isolated vertices is Gorenstein (over K) if and only if it has an Eulerian independence complex and is CM (over K).*

(ii) *If G has an Eulerian independence complex and* $\alpha(G)$ *is odd, then* $I(G, -1/2)$ = 0*.*

Proof Part (i) is an especial case of [\[2,](#page-6-1) Theorem 5.5.2]. For part (i), note that if $h(t)$ is the *h*-polynomial of $\Delta(G)$, then by the Dehn–Sommerville equation ([\[2,](#page-6-1) Theorem 5.4.2]), we have $h(-1) = 0$. But $h(-1) = 2^{\alpha(G)} I(G, -1/2)$ and the result follows.

Fig. 1 a A graph H ; **b** Tr(H , v)

Since every link of every CM simplicial complex is CM, one of the consequences of the above result is the following.

Corollary 2.4 *Suppose that G is a Gorenstein graph (over K), then for every nonmaximal independent set F of G, the graph* G_F *is also Gorenstein (over K).*

3 Trung's Construction and the Charney–Davis Conjecture

In [\[12](#page-7-9)], a method for constructing a W_2 graph from another W_2 graph is presented and it is shown that all planar W_2 graphs with girth 4 are constructed by successively applying this method on a certain graph on eight vertices. In [\[7](#page-7-1)], it is proved that all such graphs are indeed Gorenstein. Recently, Trung generalized this construction, see [\[17](#page-7-3), Proposition 3.9], and showed that this generalized construction preserves the Gorenstein property. Here, we recall this generalized construction and show that this construction preserves several properties related to independence complex of a graph.

Definition 3.1 Suppose that *H* is a graph and *v* is a non-isolated vertex of *H*. Let *a*, *b* and *c* be three new vertices. Join *c* to *b* and to every neighbor of *v*; join *b* to *a*; and join *a* to *v*. We denote the obtained graph by $Tr(H, v)$ and call this construction "Trung's construction."

This construction is illustrated in Fig. [1.](#page-3-1) Here, we show that many properties of the independence complex of a graph are preserved by Trung's construction.

Theorem 3.2 Let H be a graph and v a non-isolated vertex of H. If $G = \text{Tr}(H, v)$, *then*

(i) $\alpha(G) = \alpha(H) + 1;$

(ii) *G is Gorenstein (over K) if and only if H is Gorenstein (over K).*

Proof (i) is clear. (ii): (⇐) [\[17](#page-7-3), Proposition 3.9]; (\Rightarrow) Noting that *H* = *G_b*, this follows from (2.4). \Box from (2.4) .

Theorem 3.3 Let H be a graph and v a non-isolated vertex of H. Then, $G = \text{Tr}(H, v)$ *is well covered if and only if H is so.*

Proof Let *F* be a maximal independent set of *G*. We show that there is a maximal independent set of *H* with $|F|$ −1 vertices. Note that $|F \cap {a, b, c}|$ equals 1 or 2. In the latter case, $F \cap \{a, b, c\} = \{a, c\}$ and $(F \cap V(H)) \cup \{v\}$ is a maximal independent set of *H*. Now, suppose that $F \cap \{a, b, c\} = \{a\}$. If $F \setminus \{a\}$ is not a maximal independent set of *H*, then $\{x\} \cup F \setminus \{a\}$ is an independent set of *H* for some $x \in V(H)$. Since $F \cup \{x\}$ is not independent in *G*, *x* is adjacent to *a*, that is, $x = v$. This means that N_H(v) ∩ F = Ø, where N_H(v) is the neighborhood of v in *H*. Thus, $F \cup \{c\}$ is an independent set of *G* larger than *F*, a contradiction. Thus, $F \setminus \{a\}$ is a maximal independent set of *H*. Similarly, in other cases that $|F \cap \{a, b, c\}| = 1$, one can conclude that $F \cap V(H)$ is a maximal independent set of H. Consequently, cardinality of each maximal independent sets of *G* is exactly one more than the cardinality of some maximal independent set of *H*. Conversely, each maximal independent set of *H* can be extended to a maximal independent set of *G* with exactly one more vertex. From this, the result follows.

Remark 3.4 The argument in the proof of [\(3.3\)](#page-3-3) shows that maximal independent sets of $\text{Tr}(H, v)$ are exactly the sets of the form $A \cup \{a\}$, $A \cup \{b\}$, $B \cup \{c\}$, $B \cup \{b\}$ or $B \cup \{a, c\} \setminus \{v\}$, where *A*, *B* are maximal independent sets of *H* with $v \in B \setminus A$.

Theorem 3.5 Let H be a graph and v a non-isolated vertex of H. Then, $G = \text{Tr}(H, v)$ *is W*² *if and only if H is so.*

Proof (\Rightarrow): By [\[8](#page-7-10), Lemma 3.3], for each independent set *F* of *G* with $|F| < \alpha(G)$, G_F is W₂. Taking $F = \{b\}$, we deduce that $H = G_F$ is W₂.

 (\Leftarrow) : Let *A*, *B* be disjoint independent sets of *G*. We must find disjoint maximum size independent sets *A*', *B*' of *G* such that $A \subseteq A'$, $B \subseteq B'$. We consider several cases:

Case 1: $c \notin A$ and $v \in B$. Then, $A_0 = A \cap H$ and $B_0 = B \cap H$ are disjoint independent sets of *H* and we can extend them to disjoint maximal independent sets A'_0 and B'_0 of *H*, respectively. If $A \cap \{a, b\}$ is nonempty, then let $E = A \cap \{a, b\}$ and if $A \cap \{a, b\} = \emptyset$, let $E = \{a\}$. Now, set $A' = A'_0 \cup E$. If $b \in B$, let $B' = B'_0 \cup \{b\}$; else, let $B' = B'_0 \cup \{c\}$. One can readily check that *A'* and *B'* satisfy the required conditions.

Case 2: *c* ∈ *A* and v ∈ *B*. Let $A_0 = A ∩ H_v$ and $B_0 = B ∩ H_v$. Note that by [\[13,](#page-7-11) Theorem 3], H_v is W₂ with $\alpha(H_v) = \alpha(H) - 1$. Suppose that A'_0 and B'_0 are disjoint maximal independent extensions of A_0 and B_0 in H_v . Now, $A' = A'_0 \cup \{c, a\}$ and $B' = B'_0 \cup \{v, b\}$ are disjoint maximum size independent sets of *G*. Since $c \in A$ and $v \in B$, we have $A \cap N_H(v) = \emptyset$ and $B \cap N_H(v) = \emptyset$. Therefore, $A \cap H = A_0$ and $B \cap H = B_0 \cup \{v\}$ and it follows that $A \subseteq A'$ and $B \subseteq B'$, as required.

Note that if $v \in A$, then by changing the names of *A* and *B*, case 1 or 2 occurs. So we can assume that $v \notin A \cup B$.

Case 3: $v \notin A \cup B$ and $a, c \in A$. Let $A_0 = (A \cap H) \cup \{v\}$ (A_0 is independent because $c \in A$ and hence $N_H(v) \cap A = \emptyset$ and $B_0 = B \cap H$ and extend them to disjoint maximum independent sets A'_0 and B'_0 of *H*. Now, $A' = (A'_0 \setminus \{v\}) \cup \{a, c\}$ and $B' = B'_0 \cup \{b\}$ have the required properties.

Case 4: $v \notin A \cup B$, $c \in A$ and $a \notin A$. Let $A_0 = (A \cap H) \cup \{v\}$ and $B_0 = B \cap H$ and extend them to disjoint maximum independent sets A'_0 and B'_0 of H. Set $A' = A'_0 \cup \{c\}$. If *b* ∈ *B*, set *B*^{\prime} = *B*₀^{\prime} ∪ {*b*}, and if *b* ∉ *B*, set *B*^{\prime} = *B*₀^{\prime} ∪ {*a*}.

Case 5: *v*, *c* ∉ *A* ∪ *B* and *a* ∈ *A*. Let $A_0 = A ∩ H$ and $B_0 = B ∩ H$ and extend them to disjoint maximum independent sets A'_0 and B'_0 of *H*. Set $B' = B'_0 \cup \{b\}$, and if *v* ∈ *A*₀, set *A*^{\prime} = (*A*₀^{\setminus} {*v*}) ∪ {*a*, *c*}; else, set *A*^{\prime} = *A*₀^{\setminus} {*a*}.

Case 6: *v*, *a*, *c* ∉ *A* ∪ *B* and *b* ∈ *B*. Let $A_0 = A$ and $B_0 = B \cap H$ and extend them to disjoint maximum independent sets A'_0 and B'_0 of *H*. Set $B' = B'_0 \cup \{b\}$, and if *v* ∈ *A*₀^{*'*}, let *A'* = *A*₀^{*'*} ∪ {*c*}, and if *v* ∉ *A*₀^{*'*}, set *A'* = *A*₀^{*'*} ∪ {*a*}.

Case 7: *v*, *a*, *b*, *c* \notin *A* ∪ *B*. Let *A*^{\prime} and *B*^{\prime} be disjoint maximum size independent sets of *H* containing *A* and *B*, respectively. Then, *v* is not in at least one of A'_0 or B'_0 , say $v \notin A'_0$. Then, $A' = A'_0 \cup \{a\}$ and $B' = B'_0 \cup \{b\}$ have the required properties. \Box

In the next theorem, we present a formula for computing the independence polynomial of $Tr(H, v)$ in terms of independence polynomials of *H* and H_v .

Theorem 3.6 *Let H be a graph and* v *be a non-isolated vertex of H. Then,*

$$
I(\text{Tr}(H, v), x) = (2x + 1)I(H, x) + (x + x^2)I(H_v, x).
$$

Proof Throughout the proof, *F* always denotes an independent set of $G = \text{Tr}(H, v)$ with $|F| = i$. We denote $F \cap \{a, b, c\}$ by F_0 . Also for any graph Γ by $a_i(\Gamma)$, we mean the number of independent sets of Γ with cardinality *i*. If $i < 0$, we set $a_i(\Gamma) = 0$. Note that $F_0 = \emptyset$ if and only if F is an independent set of H with size *i*. Thus, there are $a_i(H)$ such *F*'s. Also, $F_0 = \{a\}$ if and only if $F = F_1 \cup \{a\}$ for an independent set F_1 of $H - v$ with $|F_1| = i - 1$. Thus, there are $a_{i-1}(H - v)$ choices of F with $F_0 = \{a\}$. Similarly, there are $a_{i-1}(H)$ choices of *F* with $F_0 = \{b\}$.

Now, assume that $F_0 = \{c\}$. If $v \in F$, then $F \setminus \{v\}$ is an independent set of H_v with cardinality $i - 2$ and conversely by adding v and c to any such independent set of H_v , we get an *F* with $F_0 = \{c\}$ and $v \in F$. Similarly, those *F* with $F_0 = \{c\}$ and $v \notin F$ correspond to the independent sets of H_v with size $i - 1$. (Note that as $c \in F$, we have $N_H(v) \cap F = ∅$.) Therefore, there are totally $a_{i-1}(H_v) + a_{i-2}(H_v)$ choices for *F* with $F_0 = \{c\}$.

Finally, if $F_0 = \{a, c\}$, then $F \cap N_H[v] = \emptyset$ ($N_H[v]$ means N[v] computed in the graph *H*) and hence $F \cap H \subseteq H_v$. Consequently, there is a one-to-one correspondence between those *F* with $F_0 = \{a, c\}$ and independent sets of H_v with size *i* −2. So there are $a_{i-2}(H_v)$ choices for *F* with $F_0 = \{a, c\}.$

Totally, we get that $a_i(G) = a_i(H) + a_{i-1}(H - v) + a_{i-1}(H) + a_{i-1}(H_v) +$ 2 $a_{i-2}(H_v)$. Note that $a_{i-1}(H - v) + a_{i-2}(H_v) = a_{i-1}(H)$, because $a_{i-1}(H - v)$ is number of independent sets of *H* with cardinality $i - 1$ which do not contain v and $a_{i-2}(H_v)$ is the number of independent sets of *H* with size $i-1$ which contain v. We conclude that

$$
a_i(G) = a_i(H) + 2a_{i-1}(H) + a_{i-1}(H_v) + a_{i-2}(H_v).
$$

Multiplying by x^i and taking summation over $i = 0, ..., \alpha(G)$, we get the desired equation. equation. \Box

Corollary 3.7 *Let H be a graph without isolated vertices which is Gorenstein over* Q *such that* $\alpha(H)$ *is odd and assume that* $v \in V(H)$ *. Then,* $G = \text{Tr}(H, v)$ *satisfies the Charney–Davis conjecture if and only if* H_v *does so.*

Proof According to [\(3.6\)](#page-5-0), $I(G, -1/2) = (-1/4)I(H_v, -1/2)$. Using the equality $\alpha(H_v) = \alpha(G) - 2$, we conclude that $(-1)^{\alpha(G)/2}I(G, -1/2) \ge 0$ if and only if $(-1)^{\alpha(H_v)/2}I(H_v, -1/2) > 0$ as claimed $(-1)^{\alpha(H_v)/2} I(H_v, -1/2) > 0$, as claimed.

If we start with a cycle of length 5 (which we denote by C_5) and apply the Trung's construction repeatedly on vertices of degree 2, we get all planar Gorenstein graphs with girth 4 (see [\[7](#page-7-1), Lemma 3.2]). Thus, we deduce the following application of Trung's construction and Corollary [3.7.](#page-5-1) Recall that the Stanley–Reisner algebra of the disjoint union of two graphs is isomorphic to the tensor product of the Stanley–Reisner algebras of the two graphs. Hence, a graph is Gorenstein over *K* if and only if all of its connected components are Gorenstein over *K*.

Theorem 3.8 *Suppose that G is a planar Gorenstein graph without isolated vertices with girth* > 4 *and assume that* $\alpha(G)$ *is even. Then, the Charney–Davis conjecture holds for G.*

Proof We prove the statement by induction on $|V(G)|$. If G is not connected, say G is a disjoint union of G_1 and G_2 , then both G_1 and G_2 are Gorenstein graphs without isolated vertices. If $\alpha(G_1)$ and $\alpha(G_2)$ are odd, then according to [\(2.3\)](#page-2-1), $I(G_i, -1/2) =$ 0 for both *i*'s, and if $\alpha(G_1)$ and $\alpha(G_2)$ are even, then by the induction hypothesis, $(-1)^{\alpha(G_i)/2} I(G_i, -1/2) \ge 0$ for both $i = 1, 2$. Therefore, the result follows from the fact that $I(G, x) = I(G_1, x)I(G_2, x)$ (see, for example, [\[9,](#page-7-7) Section 2]).

Thus, we assume that *G* is connected. If *G* has girth \geq 5, then as *G* is W₂ and by [\[13,](#page-7-11) Theorem 7], $G \cong K_2$ or $G \cong C_5$, both of which satisfy the Charney–Davis conjecture. So we can suppose that girth(G) = 4. Then according to [\[7](#page-7-1), Lemma 3.2], *G* is constructed by several application of Trung's construction on C_5 , where in each application, the chosen vertex should be a vertex of degree 2. Thus, we can assume that $G = \text{Tr}(H, v)$, for a planar graph *H* of girth at least 4 which does not have any isolated vertex and $\deg_H(v) = 2$. Clearly, H_v is planar and has girth at least 4. Also, it is Gorenstein by (2.4) . If H_v has an isolated vertex, say y, then in H , y is adjacent to both neighbors of v (else $\deg_H(y) = 1$, which contradicts [\(2.2\)](#page-2-2)). Consequently, $\{y, v\} \cup N_H(v)$ is a 4-cycle in *H*. But this is against [\[12,](#page-7-9) Theorem 2], which says that every vertex on a 4-cycle in a W_2 graph has degree at least 3. Hence, H_v has no isolated vertex and the Charney–Davis conjecture holds for H_v by the induction hypothesis. Now, the result follows from (3.7) .

Acknowledgements The authors would like to thank the referee for his/her nice comments.

References

- 1. Brenti, F., Welker, V.: *f* -vectors of barycentric subdivisions. Math. Z. **259**, 849–865 (2008)
- 2. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1993)
- 3. Charney, R., Davis, M.: Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pac. J. Math. **171**, 117–137 (1995)
- 4. Davis, M., Okun, B.: Vanishing theorems and conjectures for the *l* 2-homology of right-angled Coxeter groups. Geom. Topol. **5**, 7–74 (2001)
- 5. Frohmader, A.: The Charney–Davis conjecture for certain subdivisions of spheres (preprint). [arXiv:0806.4213](http://arxiv.org/abs/0806.4213) (2008)
- 6. Herzog, J., Hibi, T.: Monomial Ideals. Springer, London (2011)
- 7. Hoang, D.T., Minh, N.C., Trung, T.N.: Cohen–Macaulay graphs with large girth. J. Algebra Appl. **14**, 7, paper no. 1550112 (2015)
- 8. Hoang, D.T., Trung, T.N.: A characterization of triangle-free Gorenstein graphs and Cohen– Macaulayness of second powers of edge ideals. J. Algebr. Combin. **43**, 325–338 (2016)
- 9. Levit, V.E., Mandrescu, E.: The independence polynomial of a graph:- a survey. In: Proceedings of the 1st International Conference on Algebraic Informatics, Aristotle Univ. Thessaloniki, Thessaloniki, pp. 233–254 (2005)
- 10. Nikseresht, A.: Chordality of clutters with vertex decomposable dual and ascent of clutters. J. Combin. Theory Ser. A **168**, 318–337 (2019)
- 11. Nikseresht, A., Zaare-Nahandi, R.: On generalization of cycles and chordality to clutters from an algebraic viewpoint. Algebra Colloq. **24**(4), 611–624 (2017)
- 12. Pinter, M.R.: A class of planar well-covered graphs with girth four. J. Graph Theory **19**(1), 69–81 (1995)
- 13. Pinter, M.R.: A class of well-covered graphs with girth four. Ars Combin. **45**, 241–255 (1997)
- 14. Stanley, R.P.: Combinatorics and Commutative Algebra. Birkhäuser, Boston (1996)
- 15. Stanley, R.P.: Flag *f* -vectors and the cd-index. Math. Z. **216**, 483–499 (1994)
- 16. Stanley, R.P.: Positivity problems and conjectures in algebraic combinatorics. In: Arnold, V. et al. (eds.), Mathematics: Frontiers and Prospectives, American Mathematical Society, pp. 295–320 (2000)
- 17. Trung, T.N.: A characterization of Gorenstein planar graphs. In: Hibi, T. (ed.), Advanced Studies in Pure Mathematics. The 50th Anniversary of Gröbner Bases, , vol. 77, pp. 399–409 (2018). [arXiv:1603.00326v2](http://arxiv.org/abs/1603.00326v2)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.