
Bull. Malays. Math. Sci. Soc. (2021) 44:9–16
https://doi.org/10.1007/s40840-020-00933-8

Trung’s Construction and the Charney–Davis Conjecture

Ashkan Nikseresht1 ·Mohammad Reza Oboudi1

Received: 19 January 2020 / Revised: 19 March 2020 / Published online: 18 April 2020
©Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020

Abstract
We consider a construction by which we obtain a simple graph Tr(H , v) from a
simple graph H and a non-isolated vertex v of H . We call this construction “Trung’s
construction.” We prove that Tr(H , v) is well covered, W2 or Gorenstein if and only
if H is so. Also, we present a formula for computing the independence polynomial
of Tr(H , v) and investigate when the independence complex of Tr(H , v) satisfies
the Charney–Davis conjecture. As a consequence of our results, we show that the
independence complexof everyGorenstein planar graphwith girth at least four satisfies
the Charney–Davis conjecture.

Keywords Gorenstein simplicial complex · Edge ideal · Trung’s construction ·
Independence polynomial
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1 Introduction

Throughout this paper, K is a field, S = K [x1, . . . , xn] and G denotes a simple
undirected graph with vertex set V(G) = {v1, . . . , vn} and edge set E(G). Recall that
the edge ideal I (G) of G is the ideal of S generated by {xi x j |viv j ∈ E(G)}. Many
researchers have studied how algebraic properties of S/I (G) relate to combinatorial
properties of G (see [6,7,14,17] and references therein). Recall that G is called a
Gorenstein (resp. Cohen–Macaulay or CM for short) graph over K , if S/I (G) is a
Gorenstein (resp. CM) ring. When G is Gorenstein (resp. CM) over every field, we
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say that G is Gorenstein (resp. CM). Finding combinatorial conditions on a graph
equivalent to being Gorenstein has recently gained attention. For example, in [7] a
characterization of planar Gorenstein graphs of girth at least four is presented. Also
in [17], a condition on a planar graph equivalent to being Gorenstein is stated.

An importance of characterization of Gorenstein graphs comes from the Charney–
Davis conjecture on the Euler characteristic of certain manifolds (see [3,16]). This
conjecture could be restated in terms of independence polynomials of Gorenstein
graphs (see 2.1).

In this paper, first we recall some needed concepts and preliminary results. Then
in Sect. 3, we show that planar Gorenstein graphs with girth at least four satisfy the
Charney–Davis conjecture. All Gorenstein graphswith girth four are constructed using
a recursive construction. We call a more general form of this recursive construction
“Trung’s construction” and show that this construction preserves several properties
related to independent sets such as being well covered, W2 or Gorenstein. We also
present a formula for computing the independence polynomial of graphs constructed
using Trung’s construction and study when these graphs satisfy the Charney–Davis
conjecture.

2 Preliminaries

Recall that a simplicial complex �on the vertex setV = {v1, . . . , vn} is a family of sub-
sets of V (called faces) with the property that {vi } ∈ � for each i ∈ [n] = {1, . . . , n}
and if A ⊆ B ∈ �, then A ∈ �. In the sequel, � always denotes simplicial complex.
Thus, the family �(G) of all cliques of a graph G is a simplicial complex called the
clique complex of G. Also, �(G) is called the independence complex of G, where G
denotes the complement of G. Note that the elements of �(G) are independent sets
of G. The ideal of S generated by {∏vi ∈F xi |F ⊆ V is a non-face of �} is called
the Stanley–Reisner ideal of � and is denoted by I�, and S/I� is called the Stanley–
Reisner algebra of � over K . Therefore, we have I�(G) = I (G). Many researchers
have studied the relation between combinatorial properties of � and algebraic prop-
erties of S/I�, see, for example, [6,10,11,14] and their references.

By the dimension of a face F of �, we mean |F | − 1 and the dimension of � is
defined as max{dim(F)|F ∈ �}. Let fi be the number of i-dimensional faces of �

(if � �= ∅, then f−1 = 1), then ( f−1, . . . , fd−1) is called the f -vector of �, where
d − 1 = dim(�). Now, define hi ’s such that h(t) = ∑d

i=0 hi t i = ∑d
i=0 fi−1t i (1 −

t)d−i . Then, h(t) is called the h-polynomial of �. It can be shown that the Hilbert
series of S/I� is h(t)/(1 − t)d (see [6, Proposition 6.2.1]). Denote by α(G) the
independence number of G, that is, the maximum size of an independent set of G.
Then, the polynomial I (G, x) = ∑α(G)

i=0 ai xi , where ai is the number of independent
sets of size i in G, is called the independence polynomial of G. Note that ai = fi−1
where ( f−1, . . . , fα(G)−1) is the f -vector of �(G). There are many papers related to
this polynomial in the literature, see, for example, [9] and the references therein. It is
easy to check that the h-polynomial h(t) of �(G) is (1 − t)α(G) I (G, t/(1 − t)).

A simplicial complex� is said to beGorenstein* when S/I� is Gorenstein over the
field of rational numbers Q (for the definition of Gorenstein rings and other algebraic
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notions, the reader is referred to [2]), and there is no vertex v of� such that {v}∪F ∈ �

for every F ∈ �. Note that if � = �(G), then � is Gorenstein* if and only if G is
Gorenstein over Q and has no isolated vertex.

The Charney–Davis conjecture states that if � is a Gorenstein* “flag” complex of
dimension 2e − 1, then (−1)eh(−1) ≥ 0. Recall that � is called flag when every
minimal non-face of � has two elements. This is equivalent to � = �(G) where G
is the graph whose edges are minimal non-faces of �. This shows that the Charney–
Davis conjecture can be stated in the language of graph theory (see below). In [16,
Problem 4], Richard P. Stanley mentioned this conjecture as one of the “outstanding
open problems in algebraic combinatorics” at the start of the twenty-first century. This
conjecture was proved in dimension 3 in [4] and Stanley in [15] showed that this
conjecture holds for barycentric subdivisions of shellable spheres. To see some other
cases under which this conjecture is established, see [1,5]. The following is a “more
graph theoretical” restatement of the Charney–Davis conjecture.

Conjecture 2.1 (Charney & Davis) If G is a graph with no isolated vertices which is
Gorenstein over Q and α(G) is even, then

(−1)
α(G)
2 I

(

G,−1

2

)

≥ 0.

Next,we recall someproperties ofGorenstein graphs.AgraphG is calledwell covered,
if all maximal independent sets of G have size α(G) and it is said to be a W2 graph,
if |V(G)| ≥ 2 and every pair of disjoint independent sets of G are contained in
two disjoint maximum independent sets. In some texts, W2 graphs are called 1-well-
covered graphs. The following lemma states the relation of Gorenstein graphs andW2
graphs.

Lemma 2.2 ([7, Lemma 3.1]) Every Gorenstein graph without isolated vertices is a
W2 graph.

Recall that if F ∈ �, then link�(F) = {A \ F |F ⊆ A ∈ �}. Suppose that
F ⊆ V(G). By N[F], we mean F ∪ {v ∈ V(G)|uv ∈ E(G) for some u ∈ F} and we
set G F = G \ N[F]. We simply write Gv instead of G{v}.Thus if F is independent,
then link�(G)F = �(G F ). Another combinatorial property of a Gorenstein* graph
G is that it has an Eulerian independence complex, that is, G is well covered and
I (G F ,−1) = (−1)α(G F ) for every independent set F of G. (One can readily check
that this condition is equivalent to �(G) being an Euler complex as defined in [2,
Definition 5.4.1].)

Lemma 2.3 (i) A graph without isolated vertices is Gorenstein (over K ) if and only
if it has an Eulerian independence complex and is CM (over K ).

(ii) If G has an Eulerian independence complex and α(G) is odd, then I (G,−1/2)
= 0.

Proof Part (i) is an especial case of [2,Theorem5.5.2]. For part (i), note that ifh(t) is the
h-polynomial of�(G), then by the Dehn–Sommerville equation ([2, Theorem 5.4.2]),
we have h(−1) = 0. But h(−1) = 2α(G) I (G,−1/2) and the result follows. �	
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(a) (b)

Fig. 1 a A graph H ; b Tr(H , v)

Since every link of every CM simplicial complex is CM, one of the consequences
of the above result is the following.

Corollary 2.4 Suppose that G is a Gorenstein graph (over K ), then for every non-
maximal independent set F of G, the graph G F is also Gorenstein (over K ).

3 Trung’s Construction and the Charney–Davis Conjecture

In [12], a method for constructing a W2 graph from another W2 graph is presented
and it is shown that all planar W2 graphs with girth 4 are constructed by successively
applying this method on a certain graph on eight vertices. In [7], it is proved that
all such graphs are indeed Gorenstein. Recently, Trung generalized this construction,
see [17, Proposition 3.9], and showed that this generalized construction preserves the
Gorenstein property. Here, we recall this generalized construction and show that this
construction preserves several properties related to independence complex of a graph.

Definition 3.1 Suppose that H is a graph and v is a non-isolated vertex of H . Let a, b
and c be three new vertices. Join c to b and to every neighbor of v; join b to a; and join
a to v. We denote the obtained graph by Tr(H , v) and call this construction “Trung’s
construction.”

This construction is illustrated in Fig. 1. Here, we show that many properties of the
independence complex of a graph are preserved by Trung’s construction.

Theorem 3.2 Let H be a graph and v a non-isolated vertex of H. If G = Tr(H , v),
then

(i) α(G) = α(H) + 1;
(ii) G is Gorenstein (over K ) if and only if H is Gorenstein (over K ).

Proof (i) is clear. (ii): (⇐) [17, Proposition 3.9]; (⇒) Noting that H = Gb, this follows
from (2.4). �	
Theorem 3.3 Let H be a graph and v a non-isolated vertex of H. Then, G = Tr(H , v)

is well covered if and only if H is so.

Proof Let F be a maximal independent set of G. We show that there is a maximal
independent set of H with |F |−1 vertices. Note that |F ∩{a, b, c}| equals 1 or 2. In the
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Trung’s Construction and the Charney–Davis Conjecture 13

latter case, F ∩ {a, b, c} = {a, c} and (F ∩V(H))∪ {v} is a maximal independent set
of H . Now, suppose that F ∩ {a, b, c} = {a}. If F \ {a} is not a maximal independent
set of H , then {x} ∪ F \ {a} is an independent set of H for some x ∈ V(H). Since
F ∪ {x} is not independent in G, x is adjacent to a, that is, x = v. This means that
NH (v) ∩ F = ∅, where NH (v) is the neighborhood of v in H . Thus, F ∪ {c} is
an independent set of G larger than F , a contradiction. Thus, F \ {a} is a maximal
independent set of H . Similarly, in other cases that |F ∩ {a, b, c}| = 1, one can
conclude that F ∩V(H) is a maximal independent set of H . Consequently, cardinality
of each maximal independent sets of G is exactly one more than the cardinality of
some maximal independent set of H . Conversely, each maximal independent set of
H can be extended to a maximal independent set of G with exactly one more vertex.
From this, the result follows. �	

Remark 3.4 The argument in the proof of (3.3) shows that maximal independent sets
of Tr(H , v) are exactly the sets of the form A ∪ {a}, A ∪ {b}, B ∪ {c}, B ∪ {b} or
B ∪ {a, c} \ {v}, where A, B are maximal independent sets of H with v ∈ B \ A.

Theorem 3.5 Let H be a graph and v a non-isolated vertex of H. Then, G = Tr(H , v)

is W2 if and only if H is so.

Proof (⇒): By [8, Lemma 3.3], for each independent set F of G with |F | < α(G),
G F is W2. Taking F = {b}, we deduce that H = G F is W2.

(⇐): Let A, B be disjoint independent sets of G. We must find disjoint maximum
size independent sets A′, B ′ of G such that A ⊆ A′, B ⊆ B ′. We consider several
cases:

Case 1: c /∈ A and v ∈ B. Then, A0 = A ∩ H and B0 = B ∩ H are disjoint
independent sets of H and we can extend them to disjoint maximal independent sets
A′
0 and B ′

0 of H , respectively. If A ∩ {a, b} is nonempty, then let E = A ∩ {a, b} and
if A ∩ {a, b} = ∅, let E = {a}. Now, set A′ = A′

0 ∪ E . If b ∈ B, let B ′ = B ′
0 ∪ {b};

else, let B ′ = B ′
0 ∪ {c}. One can readily check that A′ and B ′ satisfy the required

conditions.
Case 2: c ∈ A and v ∈ B. Let A0 = A ∩ Hv and B0 = B ∩ Hv . Note that by [13,

Theorem 3], Hv is W2 with α(Hv) = α(H) − 1. Suppose that A′
0 and B ′

0 are disjoint
maximal independent extensions of A0 and B0 in Hv . Now, A′ = A′

0 ∪ {c, a} and
B ′ = B ′

0 ∪ {v, b} are disjoint maximum size independent sets of G. Since c ∈ A and
v ∈ B, we have A ∩ NH (v) = ∅ and B ∩ NH (v) = ∅. Therefore, A ∩ H = A0 and
B ∩ H = B0 ∪ {v} and it follows that A ⊆ A′ and B ⊆ B ′, as required.

Note that if v ∈ A, then by changing the names of A and B, case 1 or 2 occurs. So
we can assume that v /∈ A ∪ B.

Case 3: v /∈ A ∪ B and a, c ∈ A. Let A0 = (A ∩ H) ∪ {v} (A0 is independent
because c ∈ A and hence NH (v) ∩ A = ∅) and B0 = B ∩ H and extend them to
disjoint maximum independent sets A′

0 and B ′
0 of H . Now, A′ = (A′

0 \ {v}) ∪ {a, c}
and B ′ = B ′

0 ∪ {b} have the required properties.
Case 4: v /∈ A∪ B, c ∈ A and a /∈ A. Let A0 = (A∩ H)∪{v} and B0 = B ∩ H and

extend them to disjoint maximum independent sets A′
0 and B ′

0 of H . Set A′ = A′
0∪{c}.

If b ∈ B, set B ′ = B ′
0 ∪ {b}, and if b /∈ B, set B ′ = B ′

0 ∪ {a}.
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14 A. Nikseresht, M. R. Oboudi

Case 5: v, c /∈ A ∪ B and a ∈ A. Let A0 = A ∩ H and B0 = B ∩ H and extend
them to disjoint maximum independent sets A′

0 and B ′
0 of H . Set B ′ = B ′

0 ∪ {b}, and
if v ∈ A′

0, set A′ = (A′
0 \ {v}) ∪ {a, c}; else, set A′ = A′

0 ∪ {a}.
Case 6: v, a, c /∈ A ∪ B and b ∈ B. Let A0 = A and B0 = B ∩ H and extend

them to disjoint maximum independent sets A′
0 and B ′

0 of H . Set B ′ = B ′
0 ∪ {b}, and

if v ∈ A′
0, let A′ = A′

0 ∪ {c}, and if v /∈ A′
0, set A′ = A′

0 ∪ {a}.
Case 7: v, a, b, c /∈ A ∪ B. Let A′

0 and B ′
0 be disjoint maximum size independent

sets of H containing A and B, respectively. Then, v is not in at least one of A′
0 or B ′

0,
say v /∈ A′

0. Then, A′ = A′
0 ∪{a} and B ′ = B ′

0 ∪{b} have the required properties. �	
In the next theorem, we present a formula for computing the independence poly-

nomial of Tr(H , v) in terms of independence polynomials of H and Hv .

Theorem 3.6 Let H be a graph and v be a non-isolated vertex of H. Then,

I (Tr(H , v), x) = (2x + 1)I (H , x) + (x + x2)I (Hv, x).

Proof Throughout the proof, F always denotes an independent set of G = Tr(H , v)

with |F | = i . We denote F ∩{a, b, c} by F0. Also for any graph � by ai (�), we mean
the number of independent sets of � with cardinality i . If i < 0, we set ai (�) = 0.
Note that F0 = ∅ if and only if F is an independent set of H with size i . Thus, there
are ai (H) such F’s. Also, F0 = {a} if and only if F = F1 ∪ {a} for an independent
set F1 of H − v with |F1| = i − 1. Thus, there are ai−1(H − v) choices of F with
F0 = {a}. Similarly, there are ai−1(H) choices of F with F0 = {b}.

Now, assume that F0 = {c}. If v ∈ F , then F \ {v} is an independent set of Hv

with cardinality i − 2 and conversely by adding v and c to any such independent set
of Hv , we get an F with F0 = {c} and v ∈ F . Similarly, those F with F0 = {c} and
v /∈ F correspond to the independent sets of Hv with size i − 1. (Note that as c ∈ F ,
we have NH (v) ∩ F = ∅.) Therefore, there are totally ai−1(Hv) + ai−2(Hv) choices
for F with F0 = {c}.

Finally, if F0 = {a, c}, then F ∩ NH [v] = ∅ (NH [v] means N[v] computed in the
graph H ) and hence F ∩ H ⊆ Hv . Consequently, there is a one-to-one correspondence
between those F with F0 = {a, c} and independent sets of Hv with size i −2. So there
are ai−2(Hv) choices for F with F0 = {a, c}.

Totally, we get that ai (G) = ai (H) + ai−1(H − v) + ai−1(H) + ai−1(Hv) +
2ai−2(Hv). Note that ai−1(H − v) + ai−2(Hv) = ai−1(H), because ai−1(H − v) is
number of independent sets of H with cardinality i − 1 which do not contain v and
ai−2(Hv) is the number of independent sets of H with size i − 1 which contain v. We
conclude that

ai (G) = ai (H) + 2ai−1(H) + ai−1(Hv) + ai−2(Hv).

Multiplying by xi and taking summation over i = 0, . . . , α(G), we get the desired
equation. �	
Corollary 3.7 Let H be a graph without isolated vertices which is Gorenstein over Q
such that α(H) is odd and assume that v ∈ V(H). Then, G = Tr(H , v) satisfies the
Charney–Davis conjecture if and only if Hv does so.
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Trung’s Construction and the Charney–Davis Conjecture 15

Proof According to (3.6), I (G,−1/2) = (−1/4)I (Hv,−1/2). Using the equality
α(Hv) = α(G) − 2, we conclude that (−1)α(G)/2 I (G,−1/2) ≥ 0 if and only if
(−1)α(Hv)/2 I (Hv,−1/2) ≥ 0, as claimed. �	

If we start with a cycle of length 5 (which we denote by C5) and apply the Trung’s
construction repeatedly on vertices of degree 2, we get all planar Gorenstein graphs
with girth 4 (see [7, Lemma 3.2]). Thus, we deduce the following application of
Trung’s construction and Corollary 3.7. Recall that the Stanley–Reisner algebra of the
disjoint union of two graphs is isomorphic to the tensor product of the Stanley–Reisner
algebras of the two graphs. Hence, a graph is Gorenstein over K if and only if all of
its connected components are Gorenstein over K .

Theorem 3.8 Suppose that G is a planar Gorenstein graph without isolated vertices
with girth ≥ 4 and assume that α(G) is even. Then, the Charney–Davis conjecture
holds for G.

Proof We prove the statement by induction on |V(G)|. If G is not connected, say G
is a disjoint union of G1 and G2, then both G1 and G2 are Gorenstein graphs without
isolated vertices. If α(G1) and α(G2) are odd, then according to (2.3), I (Gi ,−1/2) =
0 for both i’s, and if α(G1) and α(G2) are even, then by the induction hypothesis,
(−1)α(Gi )/2 I (Gi ,−1/2) ≥ 0 for both i = 1, 2. Therefore, the result follows from the
fact that I (G, x) = I (G1, x)I (G2, x) (see, for example, [9, Section 2]).

Thus, we assume that G is connected. If G has girth ≥ 5, then as G is W2 and
by [13, Theorem 7], G ∼= K2 or G ∼= C5, both of which satisfy the Charney–Davis
conjecture. So we can suppose that girth(G) = 4. Then according to [7, Lemma 3.2],
G is constructed by several application of Trung’s construction on C5, where in each
application, the chosen vertex should be a vertex of degree 2. Thus, we can assume
that G = Tr(H , v), for a planar graph H of girth at least 4 which does not have any
isolated vertex and degH (v) = 2. Clearly, Hv is planar and has girth at least 4. Also,
it is Gorenstein by (2.4). If Hv has an isolated vertex, say y, then in H , y is adjacent
to both neighbors of v (else degH (y) = 1, which contradicts (2.2)). Consequently,
{y, v} ∪ NH (v) is a 4-cycle in H . But this is against [12, Theorem 2], which says that
every vertex on a 4-cycle in aW2 graph has degree at least 3. Hence, Hv has no isolated
vertex and the Charney–Davis conjecture holds for Hv by the induction hypothesis.
Now, the result follows from (3.7). �	
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