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Abstract
The irregularity of a graph G is the sum of |deg(u) − deg(v)| over all edges uv of G.
In this paper, this invariant is considered on π -permutation graphs, Fibonacci cubes,
and trees. An upper bound on the irregularity of π -permutations graphs is given, and
π -permutation graphs that attain the equality are characterized. The concept of the
irregularity is extended to arbitrary edge subsets and applied to permutation edges
of π -permutation graphs. An exact formula for the irregularity of Fibonacci cubes is
proved. An upper bound on the irregularity of trees in terms of the diameter is given,
and trees that attain the equality are characterized.
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1 Introduction

The degree of a vertex v of a graphG = (V (G), E(G)) is denoted by degG(v). Graphs
in which all vertices have the same degree, that is, regular graphs, are in the center of
interest of the graph theory community. If G is not regular, then it is called irregular,
cf. [5], and one is interested in how irregular it is. For this sake, let the imbalance
imbG(e) of an edge e = uv ∈ E(G) be defined by

imbG(e) = | degG(u) − degG(v)| .

The imbalance of an edge is thus a local measure of non-regularity of a given graph,
cf. [7], where Ramsey problems with repeated degrees were investigated. To measure
graph’s global non-regularity, different approaches have been proposed; they are nicely
presented in two recent papers [4,31]. One of the most natural such measures is the
irregularity irr(G) of G (lately also called the Albertson index) defined as [6]:

irr(G) =
∑

uv∈E(G)

| degG(u) − degG(v)| =
∑

e∈E(G)

imbG(e) .

Let us explicitly mention some of the papers in which the irregularity has been studied.
In [29] related extremal problems are proved; the paper [40] reports several bounds on
irregularity; the paper [15] gives a spectral bound for graph irregularity that improves
a bound from [40]; in [20] bipartite graphs having maximum possible irregularity are
determined; the irregularity of some graph families that are important in chemistry
is reported in [3]; for the irregularity of cacti see [25]; see also [30] for the role of
irregularity indices used as molecular descriptors. We also point out that graphs in
which imbG(e) = 1 holds for all edges have been recently investigated in [18] and
named stepwise irregular graphs.

In this paper we focus on the irregularity of three classes of graphs: π -permutation
graphs, Fibonacci cubes, and trees. In the next section we give an upper bound on
the irregularity of π -permutation graphs which is, roughly speaking, stronger by a
factor of 4 than the corresponding bound for general graphs. We also characterize
the π -permutation graphs that attain the equality. In Sect. 3 we extend the concept
of the irregularity to arbitrary edge subsets and prove a related upper bound for the
irregularity of permutation edges in π -permutation graphs. In Sect. 4 we prove an
exact formula for the irregularity of Fibonacci cubes. In the final section we prove an
upper bound for the irregularity of trees in terms of the diameter and characterize the
graphs that attain equality. We also give bounds for the irregularity of π -permutation
graphs over trees.

In the rest of the introduction we give some further, basic definitions used in this
paper. All graphs in this paper are simple and connected. The order (= number of
vertices) and the size (= number of edges) of a graph G = (V (G), E(G)) are denoted
with n(G) andm(G), respectively. IfW ⊆ V (G), then 〈W 〉 denotes the subgraph ofG
induced byW . Theminimumand themaximumdegrees of vertices fromG are denoted
by δ(G) and �(G), respectively. A vertex v ∈ V (G) with degG(v) = n(G) − 1 is a
universal vertex of G. The distance dG(u, v) between vertices u and v of a graph G
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is the number of edges on a u, v-geodesic. The diameter diam(G) of G is the length
of a longest geodesic in G. For a positive integer n we will denote the set {1, . . . , n}
with [n].

2 �-Permutation Graphs

Let G ′ and G ′′ be disjoint copies of a graph G, and let π : V (G ′) → V (G ′′) be
a bijection; in other words, π is a permutation on V (G). The π -permutation graph
Gπ of G has the vertex set V (Gπ ) = V (G ′) ∪ V (G ′′) and the edge set E(Gπ )

= E(G ′) ∪ E(G ′′) ∪ Eπ
G , where

Eπ
G = {uv : u ∈ V (G ′), v ∈ V (G ′′), v = π(u)} .

Hence, a π -permutation graph is obtained from two disjoint copies of a given graph
by adding a matching between them. This concept was introduced half a century ago
in [11] and further investigated in a series of papers including [10,14,17,19,39]. We
point out that the term “permutation graph” is also frequently used for intersection
graphs of the lines representing a permutation; see, for example, [13]. In this paper we
are only interested in the former interpretation which will be emphasized by speaking
of π -permutation graphs and by the notation Gπ .

Let Gπ be a π -permutation and G ′ and G ′′ be two isomorphic copies of G in Gπ .
If u ∈ V (G), then the vertices corresponding to u in G ′ and G ′′ will be denoted,
respectively, by u′ and u′′. We begin with the following simple result.

Proposition 2.1 If G is a graph and π is a permutation on V (G), then

irr(Gπ ) = 2 · irr(G) +
∑

u∈V (G)

| degG(u) − degG(π(u))| .

In particular, if π induces an automorphism of G, then irr(Gπ ) = 2 · irr(G).

Proof Let G ′ and G ′′ be the isomorphic copies of G in Gπ . If u ∈ V (G), then
degGπ (u′) = degGπ (u′′) = degG(u) + 1, and, consequently, E(G ′) and E(G ′′) each
contribute irr(G) to irr(Gπ ). For the same reason, each matching edge u′π(u′) con-
tributes | degG(u) − degG(π(u))| to irr(Gπ ), and, consequently, the first assertion
follows. The second assertion then follows because automorphisms preserve degrees.

	

In [2,36] it was proved in two different ways that if G is a graph of order n = n(G),

then

irr(G) ≤
⌊n
3

⌋ ⌈
2n

3

⌉ (⌈
2n

3

⌉
− 1

)
=

⌊n
3

⌋ (
n −

⌊n
3

⌋) (
n −

⌊n
3

⌋
− 1

)
. (1)

Moreover, let K Sp,q , p, q ≥ 1, be the clique-star graph, that is, the join of a complete
graph Kp and an edge-less graph K̄q . (The join of graphs G and H is the graph
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obtained from the disjoint union of G and H by adding all possible edges between
vertices of G and vertices of H .) Then, the equality in (1) is attained if and only if
G is K S⌊

n
3

⌋
,
⌈
2n
3

⌉ or, if n ≡ 2 mod 3, G is K S⌈
n
3

⌉
,
⌊
2n
3

⌋, see [2, Theorem 2.2]. This

immediately implies the following lemma which we need in the proof of our below
result analogous to (1) for π -permutation graphs.

Lemma 2.2 If G is a graph of maximum irregularity among all graphs of order n, then
G has at most � n

3 � universal vertices.

Theorem 2.3 If G is a graph of order n = n(G) and π is a permutation on V (G),
then

irr(Gπ ) ≤ 2
⌈n
3

⌉ (⌊
2n

3

⌋2

− 1

)
.

Moreover, the equality holds if and only if G = K S⌈
n
3

⌉
,
⌊
2n
3

⌋.

Proof Let a graph G and a permutation π of V (G) be selected such that the graph
Gπ has the maximum irregularity among all permutation graphs over graphs of order
n. Let V (G) = U ∪ W , where U = {u1, . . . , us} is the set of universal vertices of G
and W = V (G) \ U = {w1, . . . , wn−s}. Without loss of generality, we may assume
that degG(w1) ≤ · · · ≤ degG(wn−s). Under these assumptions and with Lemma 2.2
in mind, we may assume without loss of generality that

π(u′
i ) = w′′

i , π(w′
i ) = u′′

i , i ∈ [s], and π(w′
s+i ) = w′′

n−i+1, i ∈ [n − s] . (2)

Let G ′ be the spanning subgraph of G obtained from G by removing all the edges of
〈W 〉. If e = uw ∈ E(G), where u ∈ U and w ∈ W , then

imbG ′(e) = imbG(e) + deg〈W 〉(w) . (3)

If e ∈ E(〈W 〉), then imbG(e) ≤ n − s − 3 and consequently

∑

e∈E(〈W 〉)
imbG(e) ≤ 1

2

∑

w∈W
deg〈W 〉(w)(n − s − 3) . (4)

Setting

X =
∑

e∈Eπ
G

imb(G ′)π (e) − imbGπ (e) ,
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and having in mind that Eπ
G = Eπ

G ′ , we can do the following estimations:

X = 2
s∑

i=1

(
imb(G ′)π (u′

iw
′′
i ) − imbGπ (u′

iw
′′
i )

)

+ 2
n−s∑

i=1

|imb(G ′)π (w′
s+iw

′′
n−i+1) − imbGπ (w′

s+iw
′′
n−i+1)|

≥ 2
s∑

i=1

deg〈W 〉(wi ) − 2
n−s∑

i=1

| deg〈W 〉(ws+i ) − deg〈W 〉(wn−i+1)|

≥ 2

(
s∑

i=1

deg〈W 〉(wi ) −
n−s∑

i=s+1

deg〈W 〉(wi ) .

)
(5)

From (3)–(5) we get

irr((G ′)π ) − irr(Gπ ) ≥ 2
n−s∑

i=1

deg〈W 〉(wi )s −
n−s∑

i=1

deg〈W 〉(wi )(n − s − 3)

+ 2

(
s∑

i=1

deg〈W 〉(wi ) −
n−s∑

i=s+1

deg〈W 〉(wi )

)

≥ 2

(
s − 1

2
(n − s − 3) − 1

) n−s∑

i=1

deg〈W 〉(wi )

= (3s − n + 1)
n−s∑

i=1

deg〈W 〉(wi ) .

Since Gπ has maximum irregularity and the expression 3s − n + 1 is positive for
s ≥ � n

3 �,we infer that∑n−s
i=1 deg〈W 〉(wi ) = 0.Hence,G is a clique-star graph K Ss,n−s .

For a fixed value of s we have

max{irr(K Sπ
s,n−s) : π is a permutation} = 2s((n − s)2 − 1) .

If f (s) = 2s((n − s)2 − 1), then f (s) is maximized at s = � n
3 �. Therefore, we

conclude that

irr(Gπ ) ≤ 2
⌈n
3

⌉ (⌊
2n

3

⌋2

− 1

)
.

	

Note that if n = n(G), then n(Gπ ) = 2n. Hence, the upper bound of Theorem 2.3

bounds irr(Gπ ) from the above with, roughly, 1
27n(Gπ )3. On the other hand, the gen-

eral bound (1) yields, roughly, 4
27n(Gπ )3. Hence, Theorem 2.3 improves the general
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upper bound in the case of π -permutation graphs by, roughly speaking, again a factor
of 4.

3 Irregularity of Edge Subsets and �-Permutation Graphs

As a variant of the irregularity measure, Abdo et al. [1] suggested to consider the
imbalance over all pairs of vertices, introducing in this way the total irregularity
irrt (G) of a graph G with

irrt (G) =
∑

{u,v}⊆V (G)

| degG(u) − degG(v)| .

The total irregularity has been comparedwith the irregularity in [12] see also [9,35,38].
However, for our purposes, it is useful to extend the concept of irregularity from the
sum of the imbalances of all the edges of a graph to arbitrary edge subsets. More
precisely, if F ⊆ E(G), then let

irrG(F) =
∑

f ∈F
imb( f ) .

Note that with this notation irr(G) = irrG(E(G)) and that Proposition 2.1 reads as:

irr(Gπ ) = 2 · irr(G) + irrGπ (Eπ
G) .

Hence, irrGπ (Eπ
G) is of special interest, and in our next result we give a sharp upper

bound for it.

Theorem 3.1 If G is a graph of order n and π a permutation on V (G), then

irrGπ (Eπ
G) ≤ 2

⌊
n − 1

2

⌋ ⌈
n − 1

2

⌉
.

Moreover, equality holds if and only if G = K S⌊
n−1
2

⌋
,
⌈
n+1
2

⌉ or G = K S⌈
n−1
2

⌉
,
⌊
n+1
2

⌋.

Proof Let Gπ be a permutation graph that has maximum irrGπ (Eπ
G) among all G of

order n and all permutations on V (G). Moreover, assume that among such graphs,
G has maximum number of universal vertices. Let U = {u1, . . . , us} and W =
{w1, . . . , wn−s} be the sets of its universal and its non-universal vertices, respectively,
defined just as in the proof of Theorem 2.3. Then, (2) applies also to π .

We claim that degW (wi ) = 0 for i ∈ [n − s]. On the contrary, suppose that
degW (wn−s) ≥ 1. Let wp and wq be two adjacent vertices in W , where wn−s

is adjacent to wp and non-adjacent to wq . Consider the following transformation:
remove the edge wpwq and then add an edge between wn−s and wq . Let H be
the newly obtained graph. Then, we have degH (wn−s) = degG(wn−s) + 1 and
degH (wp) = degG(wp) − 1. Moreover, the degrees of the other vertices remain
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the same. If π(w′
n−s) = w′′

q , then imbH (w′
n−sπ(w′

n−s)) = imbG(w′
n−sπ(w′

n−s))+2;
otherwise, imbH (w′

n−sπ(w′
n−s)) = imbG(w′

n−sπ(w′
n−s)) + 1.

Also for wq we have imbH (w′
qπ(w′

q)) ≥ imbG(w′
qπ(w′

q)) − 1. Therefore,
irrH (Eπ

H ) ≥ irrG(Eπ
G)). Then we apply the above transformation until wn−s is adja-

cent to all vertices of W . As we have assumed that G has the largest possible number
of universal vertices, we have a contradiction.

Hence, degW (wn−s) = 0 and consequently degW (wi ) = 0, i ∈ [n − s]). This
implies that irrGπ (Eπ

G) = ∑s
i=1 imb(uiwi ) = 2(n − 1 − s)s. By Lemma 2.2, s ≤

� n
2 �. Hence, irrGπ (Eπ

G) is maximized when s = � n−1
2 � or s = � n−1

2 � and then
G = K Sp,q where p = � n−1

2 � or p = � n−1
2 � and q = n − p. 	


We close this section with a certain sub-additivity result on irrGπ (Eπ
G), where πα

denotes the composition of the permutations π and α.

Theorem 3.2 If π and α are permutations on V (G), then

irrGπα (Eπα
G ) ≤ irrGπ (Eπ

G) + irrGα (Eα
G) .

Proof Set β = πα. Then, having in mind that the degree of each vertex of Gβ (as well
as of Gπ and Gα) is larger by 1 than the degree of its corresponding vertex in G, we
can estimate as follows:

irrGβ (Eβ
G) =

∑

v∈V (G)

imbGβ (v′β(v′)) =
∑

v∈V (G)

| degGβ (β(v′)) − degGβ (v′)|

=
∑

v∈V (G)

| degG(β(v)) − degG(v)|

=
∑

v∈V (G)

| degG(β(v)) − degG(α(v)) + degG(α(v)) − degG(v)|

≤
∑

v∈V (G)

(| degG(β(v)) − degG(α(v))| + | degG(α(v)) − degG(v)|)

=
∑

v∈V (G)

| degGπ (π(v)) − degGπ (v)|

+
∑

v∈V (G)

| degGα (α(v)) − degGα (v)|

= irrGπ (Eπ
G) + irrGα (Eα

G)

and we are done. 	


4 Fibonacci Cubes

Fibonacci cubes were introduced by Hsu [21] as an interconnection network model.
Afterward, they have been studied from different perspectives; the developments until
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2013 are summarized in the survey article [23]. Among the subsequent develop-
ments on Fibonacci cubes we point out the studies of the structure of their induced
hypercubes [16,27,33] and the investigations of their domination invariants [8,22,32].
Moreover, Fibonacci cubes can be recognized in linear time [37]. In this section we
add to the literature on the Fibonacci cubes their irregularity.

A Fibonacci string of length n is a binary string b1 . . . bn with bi · bi+1 = 0 for
1 ≤ i < n, that is, a binary string that contains no consecutive 1s. The Fibonacci
cube �n , n ≥ 1, is the graph whose vertices are all Fibonacci strings of length n,
two vertices being adjacent if they differ in a single coordinate. It is well known that
|V (�n)| = Fn+2, where F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn , n ≥ 0, are the
Fibonacci numbers.

Theorem 4.1 If n ≥ 1, then

irr(�n) = 2

5

(
(n − 1)Fn + 2nFn−1

)
.

Proof We proceed by induction on n. By a direct computation we see that irr(�1) = 0,
irr(�2) = 2, irr(�3) = 4, irr(�4) = 10, and irr(�5) = 20; hence, the stated formula
holds for n ≤ 5. From now on assume that n ≥ 6.

Define the following subsets of vertices of �n :

An = {00b3 . . . bn : b3, . . . , bn ∈ {0, 1}} ,

Bn = {10b3 . . . bn : b3, . . . , bn ∈ {0, 1}} ,

Cn = {010b4 . . . bn : b4, . . . , bn ∈ {0, 1}} .

The sets An , Bn , and Cn are disjoint and V (�n) = An ∪ Bn ∪ Cn . In addition, the
subgraphs 〈An〉, 〈Bn〉, and 〈Cn〉 are isomorphic to�n−2,�n−2, and�n−3, respectively.
Since each vertex from Bn has exactly one neighbor outside Bn (more precisely in
An), we see that

• irr�n (E(〈Bn〉)) = irr(�n−2).

Similarly, since each vertex from Cn has exactly one neighbor outside Cn (more
precisely in An), we get

• irr�n (E(〈Cn〉)) = irr(�n−3).

Consider now the edges uv from G[An], where u = 00u3 . . . un and v = 00v3 . . . vn .
If u3 = v3, then u and v have the same number of neighbors outside An . Hence,
the irregularity of uv in �n is equal to the irregularity of the corresponding edge in
G[An] = �n−2. Suppose now that u = 000u4 . . . un and v = 001v4 . . . vn . In this
case v4 = 0 and hence, also u4 = 0, so that u = 0000u5 . . . un and v = 0010v5 . . . vn .
The irregularity of such an edge in �n is by 1 larger than the irregularity of the
corresponding edge in �n−2. Since there are precisely Fn−2 such edges, we get

• irr�n (E(〈An〉)) = irr(�n−2) + Fn−2.
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We still need to consider the edges between An and Bn and between An and Cn . (Note
that there are no edges between Bn and Cn .)

Consider first the edges uv between An and Bn , in which case u = 00u3 . . . un
and v = 10u3 . . . un . Among them, the edges where u = 0000u5 . . . un contribute
Fn−2, the edges where u = 0010u5 . . . un contribute nothing, and the edges where
u = 00010u6 . . . un contribute Fn−3. Hence,

• the contribution of the edges between An and Bn is Fn−2 + Fn−3.

Consider next the edges uv between An and Cn , in which case u = 000u4 . . . un and
v = 010u3 . . . un . Among them, the edges where u = 0000u5 . . . un contribute 2Fn−2
and the edges where u = 00010u6 . . . un contribute Fn−3. Hence,

• the contribution of the edges between An and Cn is 2Fn−2 + Fn−3.

We have thus considered all the edges of �n . Putting together the above itemized
contributions, we infer that

irr(�n) = 2 · irr(�n−2) + irr(�n−3) + 4Fn−2 + 2Fn−3

= 2 · irr(�n−2) + irr(�n−3) + 2Fn .

Using the induction assumption we thus get

irr(�n) = 4

5

(
(n − 3)Fn−2 + 2(n − 2)Fn−3

)

+2

5

(
(n − 4)Fn−3 + 2(n − 3)Fn−4

)
+ 2Fn

= 2

5

(
(n − 1)Fn + 2nFn−1

)
,

where the last equality follows by a lengthy but straightforward computation using the
definition of the Fibonacci numbers. 	


In [28] it is proved that m(�n) = (nFn+1 + 2(n + 1)Fn)/5. Hence, Theorem 4.1
has the following interesting consequence.

Corollary 4.2 If n ≥ 2, then

irr(�n) = 2 · m(�n−1) .

To conclude the section we remark that in [34] the so-called boundary enumer-
ator polynomials Dk of hypercubes in Fibonacci cubes are considered and that the
proof of D1 has similarities with our proof of Theorem 4.1. Namely, D1 is related to∑

uv∈E(�n)
(deg(u) + deg(v) − 2) and the proof in [34] uses the same decomposition

as we do here. Both proofs were produced independently, though. (We are adding this
remark while preparing a revised version.)
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5 Trees

The irregularity of trees has been already investigated. In [26] the irregularity of trees
(and of unicyclic graphs) with given matching number was studied, while in [24] trees
with minimum/maximum irregularity among the trees with given degree sequence and
among the trees with given branching number were investigated. In the main result
of this section we add to these studies the irregularity of trees of a given diameter
and characterize the trees that attain the equality. Connecting the present section with
Sects. 2 and 3 we also find lower and upper bounds for the irregularity of the π -
permutation graph of an arbitrary tree.

Let Ti (n, d), 2 ≤ i ≤ d, n ≥ 2, d ≤ n − 1, denote the tree obtained from the path
Pd+1 by attaching n−d−1 leaves to the i th vertex of Pd+1. Note that n(Ti (n, d)) = n
and that diam(Ti (n, d)) = d. Observe also that if d = n − 1, then for every i the
graph Ti (n, d) = Ti (n, n− 1) is the path on n vertices. Recall also that a tree is called
a caterpillar if, after its leaves are removed, a path graph remains. In other words, a
caterpillar is obtained from a path graph by attaching some leaves to its vertices. Thus,
the trees Ti (n, d) belong to the class of caterpillars.

Theorem 5.1 If T is a tree of order n ≥ 2 and with diam(T ) = d, then

irr(T ) ≤ (n − d)(n − d + 1),

where the equality holds if and only if T ∈ {T2(n, d), . . . , Td(n, d)}.
Proof Let T be a tree of order n ≥ 2 and diameter d such that irr(T ) is the largest
possible.

We claim first that T is a caterpillar and assume on the contrary that it is not. Let P
be a diametrical path of T . Since T is not a caterpillar and the path P is diametrical, P
contains an inner vertex y such that the rooted tree Ty , defined as the maximal subtree
of T with V (Ty) ∩ V (P) = {y}, is of depth r ≥ 2. Clearly, n(Ty) ≥ 3.

Consider the following transformation. Let u ∈ V (Ty) be a vertex with dTy (y, u) =
r − 2. (If r = 2, then u = y.) Let A = {w1, . . . , wk} be the set of down-neighbors
of u in the rooted tree Ty and B = NT (u) − A. Let Si = NT (wi ) − {u}, i ∈ [k], and
S = ⋃k

i=1 Si . Set s = |S| and note that s = ∑k
i=1(degT (wi ) − 1). Let now T ′ be

the tree obtained from T by removing the edges between wi and the vertices of Si ,
i ∈ [k], and then adding edges between vertices of Si and u.

In T ′ the vertices wi , i ∈ [k], as well as all the vertices from S are leaves. The
contribution to the irregularity in T and T ′ differs only for the edges incident with u
and wi . Therefore, setting D = irr(T ′) − irr(T ), we have

D =
k∑

i=1

(imbT ′(uwi ) − imbT (uwi )) +
k∑

i=1

∑

x∈Si
(imbT ′(ux) − imbT (wi x))

+
∑

z∈B
(imbT ′(uz) − imbT (uz))

= F1 + F2 + F3 ,
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where

F1 =
k∑

i=1

[
((degT (u) + s) − 1) − | degT (u) − degT (wi )|

]
,

F2 =
k∑

i=1

∑

x∈Si

[
(degT (u) + s − 1) − (degT (wi ) − 1)

]
,

F3 =
∑

z∈B

[
(degT (u) + s − 1) − | degT (u) − degT (z)|] .

Now we have

F1 ≥
k∑

i=1

2 · min{degT (u) − 1, degT (wi ) − 1} > 0,

F2 =
k∑

i=1

∑

x∈Si

[
(degT (u) + s − 1) − (degT (wi ) − 1)

]

= s · degT (u) + s2 −
k∑

i=1

degT (wi )(degT (wi ) − 1)

= s · degT (u) + s2 −
k∑

i=1

(degT (wi ) − 1)2 − s

= s · (degT (u) − 1) + s2 −
k∑

i=1

(degT (wi ) − 1)2,

F3 =
∑

z∈B

[
(degT (u) + s − 1) − | degT (u) − degT (z)| ≥ −|B| · s] .

Note that |B| ∈ [2]. If |B| = 1, then

F2 + F3 ≥ (s + s2 −
k∑

i=1

(degT (wi ) − 1)2) − s ≥ 0 .

If |B| = 2, then u = y and degT (u) ≥ 3. Therefore,

F2 + F3 ≥ (2s + s2 −
k∑

i=1

(deg(wi ) − 1)2 − 2s) ≥ 0 .

Hence, if S �= ∅, then D > 0. Applying iteratively the above transformation as many
times as required, we arrive at a caterpillar.

Let now T be a caterpillar of diameter d, and let P be its diametrical path. Suppose
that T /∈ {T2(n, d), . . . , Td(n, d)}. Let v1 and v2 be vertices with the first and the
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second largest degree among the vertices of P , respectively. Note that deg(v1) ≥
deg(v2) ≥ 3. Let Si = N (vi ) − V (P), i ∈ [2]. Remove the edges between v2 and S2,
add edges between the vertices of S2 and v1, and denote the obtained tree with T ′. The
contribution of the edges incident by vertices v1 and v2 is changed in T ′ comparedwith
T , while the contribution of every other edge to the irregularity is the same. Therefore,
setting D = irr(T ′) − irr(T ), we have

D =
∑

w∈S1
(imbT ′(v1w) − imbT (v1w)) +

∑

w∈S2
(imbT ′(v1w) − imbT (v2w))

+
∑

w∈N (v1)∩V (P)

(imbT ′(v1w) − imbT (v1w))

+
∑

w∈N (v2)∩V (P)

(imbT ′(v2w) − imbT (v2w))

= |S1|(degT (v2) − 2) + (|S2|((degT (v1) − 2) − (degT (v2) − 1)
)

+2(degT (v2) − 2) +
∑

w∈N (v2)∩V (P)

(imbT ′(v2w) − imbT (v2w))

≥ |S1|
(
degT (v2) − 2

) + |S2|
(
degT (v1) − degT (v2) − 1

)

+2(degT (v2) − 2) − 2(degT (v2) − 2)

= (degT (v2) − 2)(2 degT (v1) + degT (v2) − 3) > 0 .

This proves the theorem. 	


To conclude the paper we find bounds for the irregularity of the π -permutation
graphs of tree.

Theorem 5.2 If T is a tree of order n ≥ 3 and π a permutation on V (T ), then

4 ≤ irr(T π ) ≤ 2n(n − 2) .

Moreover, the left equality holds if and only if T = Pn and π = id, and the right
equality holds if and only if T = Sn and π is a permutation that maps the center of
Sn into a leaf.

Proof From the fact that path Pn has the minimum possible irregularity among the
trees of order n ≥ 3, that is, irregularity 2, and by Proposition 2.1, we infer that
irr(T π ) ≥ irr(Pπ

n ) with equality holding if and only if T = Pn and π = id.
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Let π be an arbitrary permutation on V (T ). Then, we have

irr(T π ) = 2 · irr(T ) +
∑

v∈V (T )

| degT π (v′) − degT π (π(v′))|

≤ 2 · irr(T ) + 2
∑

v∈V (T )

| degT (v) − δ(T )|

= 2 · irr(T ) + 2(2m(T ) − n(T )δ(T ))

≤ 2 · irr(Sn) + 2(n − 2)

= irr(Sπ ′
n ).

In the last equality π ′ is a permutation on V (Sn) that maps the center of Sn to a leaf.
Since Sn is the only tree with maximum irregularity, the right equality holds if and
only if T = Sn and π is a permutation as just described. 	
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