
Bull. Malays. Math. Sci. Soc. (2020) 43:4361–4374
https://doi.org/10.1007/s40840-020-00926-7

The Exact Riemann Solutions to the Generalized
Pressureless Euler Equations with Dissipation

Qingling Zhang1 · Fen He2

Received: 9 September 2019 / Revised: 27 February 2020 / Published online: 19 March 2020
©Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020

Abstract
The Riemann solutions for the generalized pressureless Euler equations with a dissi-
pation term are constructed explicitly. It is shown that the delta shock wave appears in
Riemann solutions in some situations. The generalized Rankine–Hugoniot conditions
of the delta shock wave are established, and the exact position, propagation speed and
strength of the delta shock wave are given explicitly. Unlike the homogeneous case, it
is shown that the dissipation termmakes contact discontinuities and delta shock waves
bend into curves and the Riemann solutions are not self-similar anymore. Moreover,
as the dissipation term vanishes, the Riemann solutions converge to the corresponding
ones of the generalized pressureless Euler equations. Finally, we give the application
of our results on two typical examples.
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1 Introduction

In this paper, we consider the following generalized pressureless Euler equations with
dissipation
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{
vt + (v f (u))x = 0,
(vu)t + (vu f (u))x = −αvu,

(1.1)

with initial data

(v, u)(x, 0) = (v±, u±), ±x > 0, (1.2)

where f (u) is given to be a smooth and strictly monotone function, the sign of v

is assumed to be unchanging and α > 0 is the constant dissipation coefficient. The
dissipation term first appeared in [8] to reflect the clustering mechanism. If α = 0,
namely the dissipation vanishes, then system (1.1) becomes the so-called generalized
pressureless Euler equations, whose Riemann problem was solved by Yang [25] in
1999. Then Yang and Sun solved the Riemann problem with delta initial data in [26]
and obtained solutions with four kinds of different structures. Furthermore, Huang
[9] solved the Cauchy problem by generalized potential. Mitrovic and Nedeljkov [14]
studied its delta shock waves obtained as a limit of two shock waves. Recently, some
research has been done on the generalized pressureless Euler equations with source
term (see [29] for its Riemann problem with friction).

While if α = 0, and f (u) = u, v ≥ 0, then (1.1) becomes the noted pressureless
Euler equations, which are also called transport equations [1,2]. It can be used to
describe some important physical phenomena, such as the motion of free particles
sticking together under collision and the formation of large scale structures in the
universe [24]. The transport equations have been studied extensively since 1994. The
existence of measure solutions of the Riemann problem was first proved by Bouchut
[1], and the existence of the global weak solutionswas obtained byBrenier andGrenier
[2] and Weinan et al. [24]. Sheng and Zhang [19] discovered that the delta shock
and vacuum states do occur in the Riemann solutions to the transport equation by
the vanishing viscosity method. For more results about the Cauchy problem, one
can refer to [10,22,23]. Recently, some research has been done on the pressureless
Euler equations with source term. Ha et al. [8] first solved its Cauchy problem with
dissipation by generalized potential in which the model is used to reflect the clustering
mechanism of animals in nature. Shen solved its Riemann problemwith friction which
contained delta shocks and vacuum states in [15]. For more research on conservation
laws with source term, one can refer to [6,7,16,18] and the references cited therein.

Motivated by the research above, in this paper, we will focus on the generalized
pressureless Euler equations with dissipation as presented in (1.1). Our main goal is
to explore how the delta shock solution develops under the influence of the dissipation
term. There are two difficulties lie in dealing with the Riemann problem for nonho-
mogeneous system (1.1). On one hand, under the influence of the dissipation term,
the state variable u changes exponentially with respect to t , and the characteristics
are curved, so the Riemann solutions of (1.1) and (1.2) are not self-similar anymore.
To overcome this difficulty, by the generalized characteristic analysis and the simi-
lar derivation for generalized Rankine–Hugoniot conditions for the nonhomogeneous
systems in [15,16,18], we obtain the generalized Rankine–Hugoniot conditions for
(1.1). On the other hand, since the generality of the function f (u), the delta shock
solution cannot be formulated concretely and explicitly. To overcome it, we will prove
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the existence and uniqueness of the delta shock solution qualitatively by skilled analy-
sis. From this point of view, our result generalizes the result in [8] on Riemann problem
aspects. In future, we will furthermore consider the Cauchy problem for (1.1). More-
over, with the obtained result for the Riemann problem (1.1) and (1.2), we can easily
deal with the nonlinear geometric optic system with dissipation.

This paper is organized as follows. Section 2 solves the Riemann problem (1.1) and
(1.2). The generalized Rankine–Hugoniot conditions are given, and the existence and
uniqueness of the delta shock solution are established under the generalized Rankine–
Hugoniot conditions and the generalized entropy condition. In Sect. 3, two typical
examples are given to show the application of our results. Finally, discussions and
conclusions are made in Sect. 4.

2 Riemann Problem for System (1.1)

In this section, we focus on solving the Riemann problem (1.1) and (1.2). Without loss
of generality, we always assume that f ′(u) > 0, v ≥ 0 throughout this paper, since
the rest cases can be discussed in a similar way.

For smooth solutions, (1.1) can be written as

{
vt + (v f (u))x = 0,
ut + f (u)ux = −αu,

(2.1)

which is nonstrictly hyperbolic with a double eigenvalue λ1 = λ2 = f (u), and both
λ1, λ2 being linearly degenerate according to [17].

The characteristic equations of (2.1) are

dx

dt
= f (u),

du

dt
= −αu,

dv

dt
= −v f (u)x . (2.2)

So for the given initial point (x0, 0), the characteristic curve of (1.1) through this
point and the value of (v, u) along the characteristic curve before intersection can be
expressed, respectively, as

v = v−, u = u−e−αt , x =
∫ t

0
f (u−e−αt )dt + x0, x0 < 0, (2.3)

v = v+, u = u+e−αt , x =
∫ t

0
f (u+e−αt )dt + x0, x0 > 0. (2.4)

Now we start to discuss the Riemann problem (1.1) and (1.2) in three cases.
Case 1 u− = u+.
In this case, the left state (v−, u−e−αt ) and the right state (v+, u+e−αt ) are con-

nected by a contact discontinuity J : x(t) = ∫ t
0 f (u−e−αt )dt = ∫ t

0 f (u+e−αt )dt . So
the solution is

(v, u)(x, t) =
{

(v−, u−e−αt ), x <
∫ t
0 f (u−e−αt )dt,

(v+, u+e−αt ), x >
∫ t
0 f (u+e−αt )dt .

(2.5)
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Fig. 1 The characteristic
analysis of the delta shock wave
for the Riemann problem (1.1)
and (1.2) when u− > u+

Case 2 u− < u+.
It is easy to see between the two characteristic curves x1(t) = ∫ t

0 f (u−e−αt )dt and
x2(t) = ∫ t

0 f (u+e−αt )dt originated from (0,0); no point lies on characteristic curves
originated from x-axis. So vacuum appears in the domain D = {(x, t) : x1(t) < x <

x2(t)}. Then the solution can be expressed as

(v, u)(x, t) =
⎧⎨
⎩

(v−, u−e−αt ), x < x1(t),
vacuum, x1(t) < x < x2(t),
(v+, u+e−αt ), x > x2(t).

(2.6)

Case 3 u− > u+.
It is obvious that the characteristic curves for the Riemann problem (1.1) and (1.2)

overlap in the domain � = {(x, t) : x2(t) < x < x1(t)} such that singularity will
happen in �. Let us draw Fig. 1 to explain this phenomenon in detail.

The formation of singularity for the solution to Riemann problem (1.1) and (1.2)
is due to the overlap of linearly degenerate characteristics. Thus, the nonclassical
situation appears for certain initial data where the Cauchy problem usually does not
own a weak L∞-solution. In order to solve the Riemann problem (1.1) and (1.2) in the
framework of nonclassical solutions, motivated by [3,13,19–21], a solution containing
a weighted δ-measure supported on a curve should be introduced.

Definition 2.1 To define themeasure solution, a two-dimensional weighted δ-measure
p(s)δS supported on a smooth curve S = {(x(s), t(s)) : a < s < b} can be defined
as

〈p(s)δS, ψ(x(s), t(s))〉 =
∫ b

a
p(s)ψ(x(s), t(s))

√
x ′(s)2 + t ′(s)2ds, (2.7)

for any ψ ∈ C∞
0 (R × R+).

For convenience, we usually select the parameter s = t and use w(t) =√
1 + x ′(t)2 p(t) to denote the strength of delta shock wave from now on. In what

follows, let us provide the definition of delta shock wave solution to the Riemann
problem (1.1) and (1.2) in the sense of distributions below. One can also refer to
[4,5,11,12] about the more exact definition of generalized delta shock wave solution
for related systems with delta measure initial data.
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Definition 2.2 Let (v, u) be a pair of distributions in which v has the form as follows:

v(x, t) = v̂(x, t) + w(x, t)δS, (2.8)

in which v̂, u ∈ L∞(R × R+). Then it is called as the delta shock wave solution to
the Riemann problem (1.1) and (1.2) if it satisfies

{ 〈v,ψt 〉 + 〈v f (u), ψx 〉 = 0,
〈vu, ψt 〉 + 〈vu f (u), ψx 〉 = 〈αvu, ψ〉, (2.9)

for any ψ ∈ C∞
0 (R × R+). Here we take

〈vu f (u), ψ〉 =
∫ ∞

0

∫ ∞

−∞
v̂u f (u)ψdxdt + 〈w(t)uδ(t) f (uδ(t))δS, ψ〉,

as an example to explain the inner product, in which we use the symbol S to express
the smooth curve with the Dirac delta function supported on it; uδ(t) is the assignment
of u on this delta shock wave S.

With the above definition, if u− > u+, a piecewise smooth solution of the Riemann
problem (1.1) and (1.2) should be introduced in the form

(v, u)(x, t) =
⎧⎨
⎩

(v−, u−e−αt ), x < x(t),
(w(t)δ(x − x(t)), uδ(t)), x = x(t),
(v+, u+e−αt ), x > x(t),

(2.10)

where x(t), w(t) and σ(t) = x ′(t) denote, respectively, the location, weight and
propagation speed of the delta shock and uδ(t) is the assignment of u on this delta
shock wave curve such that uδ(t)eαt is assumed to be a constant. It is remarkable that
the value of u should be given on the delta shock curve x = x(t) such that the product
of v and u can be defined in the sense of distributions.

With the similar analysis and derivation as in [15,16,18,29], by using Green’s
formulas and integral by parts in (2.9), we can obtain the following generalized
Rankine–Hugoniot condition

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = σ(t) = f (uδ(t)),
dw(t)
dt = [v]σ(t) − [v f (u)],

d(w(t)uδ(t))
dt + αw(t)uδ(t) = [vu]σ(t) − [vu f (u)],

(2.11)

where [ρ] = ρ(x(t) + 0) − ρ(x(t) − 0) denotes the jump across the discontinuity.
Moreover, we supplement the so-called generalized entropy condition

f (u+e−αt ) < σ(t) = f (uδ(t))) < f (u+e−αt ), (2.12)

123



4366 Q. Zhang, F. He

which is equivalent to

u+e−αt < uδ(t) < u−e−αt . (2.13)

In this sense, the solution containing δ-function is unique.
Now we solve (2.11) with initial condition

(x, w)|t=0 = (0, 0). (2.14)

Moreover, we assume that v− and v+ are not all zero. Otherwise the solution is trivial.
By virtue of the knowledge about delta shock waves in [15,19–21,25,26], we find

that the solution of (2.11) and (2.14) can be assumed to take the following form:

x(t) =
∫ t

0
σ(t)dt =

∫ t

0
f (ũδe

−αt )dt, w(t) = w0(1 − e−αt ), uδ(t) = ũδe
−αt ,

(2.15)

where w0, ũδ are constants to be determined, and furthermore, the entropy condition
(2.13) is equivalent to

u+ < ũδ < u−. (2.16)

Substituting (2.15) into (2.11), noting that the last equation of (2.11) is equivalent
to

d(w(t)uδ(t)eαt )

dt
= [vueαt ]σ(t) − [vueαt f (u)],

so we have
{

αw0e−αt = [v]σ(t) − [v f (u)],
αw0e−αt ũδ = [vueαt ]σ(t) − [vueαt f (u)], (2.17)

from which by eliminating w0, we have

([v] f (ũδe
−αt ) − [v f (u)])ũδ − [vueαt ] f (ũδe

−αt ) + [vueαt f (u)] = 0. (2.18)

Let G(ũδ) be the left side of (2.18), then we can calculate that

G(u) = u(v+ − v−) f (ue−αt ) − (v+ f (u+e−αt ) − v− f (u−e−αt )u

− (v+u+ − v−u−) f (ue−αt )

+ v+u+ f (u+e−αt ) − v−u− f (u−e−αt ). (2.19)

By a simple computation, for u− > u+, we have

G(u+) = −v−(u− − u+)( f (u−e−αt ) − f (u+e−αt )) < 0, (2.20)
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and

G(u−) = v+(u− − u+)( f (u−e−αt ) − f (u+e−αt )) > 0. (2.21)

So one can easily check that

G(u+)G(u−) = −v−v+(u− − u+)2( f (u−e−αt ) − f (u+e−αt ))2 < 0. (2.22)

Moreover, differentiating G(u) with respect to u yields that

G ′(u) = v+( f (ue−αt ) − f (u+e−αt )) + v−( f (u−e−αt ) − f (ue−αt ))

+ (v+(u − u+) + v−(u− − u)) f ′(ue−αt )e−αt > 0, (2.23)

for u+ < u < u−. Hence, by using zero point theorem, we conclude that there exists
one and only one zero point of function G(u) in the interval (u+, u−). That is to say,
Eq. (2.18) owns a unique solution, denoted by ũδ , under the entropy condition (2.16).
Returning to the relation (2.15), then x(t) and w0 will be solved uniquely. Therefore,
by summarizing the above result, we have the following theorem.

Theorem 2.3 Assume that f ′(u) > 0, v ≥ 0, if u− > u+, the Riemann problem (1.1)
and (1.2) exists an unique delta shock wave solution of (2.10) where

x(t) =
∫ t

0
σ(t)dt =

∫ t

0
f (ũδe

−αt )dt, w(t) = w0(1 − e−αt ), uδ(t) = ũδe
−αt ,

(2.24)

and the constants w0 and ũδ are uniquely determined by (2.16)–(2.18).

From the above discussions, it can be concluded that the Riemann problem (1.1) and
(1.2) can be solved by contact discontinuities, vacuum or delta shock wave connecting
two states (v±, u±e−αt ), where the characteristics, the contact discontinuities and the
delta shock wave are curved. Precisely, if u− < u+, then the Riemann solution of (1.1)
and (1.2) can be expressed as (2.6), which consists of two contact discontinuities with
the vacuum state between them (see Fig. 2). If u− > u+, then the Riemann solution
of (1.1) and (1.2) can be expressed as (2.10) and (2.24), which is a delta shock wave
connecting two states (v±, u±e−αt ) directly (see Fig. 3).

Obviously, Theorem 2.3 is also true for the case f ′(u) > 0, v ≤ 0. Moreover,
similar results can be obtained for the cases f ′(u) < 0, v ≥ 0 and for the case
f ′(u) < 0, v ≤ 0. Thus, we have the following theorem.

Theorem 2.4 Assume that f (u) is a smooth and strictly monotone function and the
sign of v is unchanging, then Riemann problem (1.1) and (1.2) exists a unique entropy
solution of (2.10), which contains a vacuum state for the case u− < u+ and a delta
shock solution for the case u− > u+.
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Fig. 2 The Riemann solution of (1.1) and (1.2) when u− < u+ < 0 and f (u−) < 0 < f (u+) for t > 0,
the left is the (v, u) phase plane, and the right is the corresponding Riemann solution in the (x, t) plane

(a) (b)

Fig. 3 The delta shock wave solution to the Riemann problem (1.1) and (1.2), in which the propagation
speed of the delta shock wave is positive on the left and negative on the right at the initial time t=0

Remark 2.1 It is clear to see that the dissipation term in system (1.1) takes the effect to
curve the characteristics such that the discontinuity of the delta shock is also curved.
The state variable u supported on the characteristics and the delta shock wave curve
varies exponentially at the same rate α with respect to the time t . What is more,
the strength w(t) on the delta shock accumulates exponentially with the rate α with
respect to the time t . These are different from the homogenous case [25] and the
nonhomogeneous case [15].

Remark 2.2 It is worthwhile to note from (2.5), (2.6), (2.10)–(2.13) that, when α → 0,
the solutions of the Riemann problem (1.1) and (1.2) converge to the corresponding
ones for the homogenous generalized pressureless Euler equations with the same
Riemann initial data [25].

3 Two Typical Examples

In this section, we present two typical examples to give the application of our results
and proofs. In the following, we will focus on the delta shock waves for these two
nonhomogeneous systems. These resultswill pave theway for the study of delta shocks
for more general nonhomogeneous conservation laws.
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Example 3.1 Consider the Riemann problem for the pressureless Euler equations with
dissipation

{
ρt + (ρu)x = 0,
(ρu)t + (ρu2)x = −αρu,

(3.1)

with initial data

(ρ, u)(x, 0) = (ρ±, u±), ±x > 0, (3.2)

with u− > u+, where ρ and u denote the density and velocity, respectively, and ρ±, u±
are given constants satisfying ρ± > 0. In this case, f (u) = u, f ′(u) = 1 > 0. The
Cauchy problem for this model was first studied in [8].

When u− > u+, we look for the delta shock solution of the Riemann problem
(3.1) and (3.2) of the form (2.10). Then we can obtain the following generalized
Rankine–Hugoniot condition

⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt = σ(t) = uδ(t),

dw(t)
dt = [ρ]σ(t) − [ρu],

d(w(t)uδ(t))
dt + αw(t)uδ(t) = [ρu]σ(t) − [ρu2],

(3.3)

and

uδ(t) = ũδe
−αt , w(t) = w0(1 − e−αt ), (3.4)

where ũδ and w0 are constants to be determined. So (3.3) is equivalent to

{
αw0e−αt = [ρ]σ(t) − [ρu],
αw0e−αt ũδ = [ρu]σ(t)eαt − [ρu2]eαt .

(3.5)

Eliminating w0 in (3.5), we have

(ρ+ − ρ−)(ũδ)
2 − 2(ρ+u+ − ρ−u−)ũδ + (ρ+u2+ − ρ−u2−) = 0. (3.6)

Let G(ũδ) be the left side of (3.6), then under the entropy condition (2.13), i.e.,
u+ < ũδ < u−, we have

G(u+)G(u−) = −ρ−ρ+(u− − u+)4 < 0, (3.7)

and

G ′(u) = 2ρ+(u − u+) + 2ρ−(u− − u) > 0. (3.8)

Thus, Eq. (3.6) has a unique solution ũδ ∈ (u+, u−). Of course, we can directly
calculate from (3.6) to obtain that
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ũδ =
√

ρ−u− + √
ρ+u+√

ρ− + √
ρ+

, (3.9)

Then, we can obtain

x(t) = 1

α

√
ρ−u− + √

ρ+u+√
ρ− + √

ρ+
(1 − e−αt ), w(t) = 1

α

√
ρ−ρ+(u− − u+)(1 − e−αt ).

(3.10)

Therefore, the unique delta shock solution of (3.1) and (3.2) is expressed as follows:

(ρ, u)(x, t) =
⎧⎨
⎩

(ρ−, u−e−αt ), x < x(t),
(w(t)δ(x − x(t)), ũδe−αt ), x = x(t),
(ρ+, u+e−αt ), x > x(t),

(3.11)

where x(t), ũδ and w(t) are expressed as (3.9) and (3.10), respectively.

Example 3.2 Consider the Riemann problem

⎧⎪⎨
⎪⎩

vt +
(

vU√
1+U2

)
x

= 0,

(vU )t +
(

vU2√
1+U2

)
x

= −αvU ,

(3.12)

with initial data

(v,U )(x, 0) = (v±,U±), ±x > 0, (3.13)

with U− > U+, v− · v+ > 0.

System (3.13) can be obtained by performing the transformation U = u/v, i.e.,
u = vU from the nonlinear geometric optics system with a source term

⎧⎨
⎩
ut +

(
u2√
u2+v2

)
x

= −αu,

vt +
(

uv√
u2+v2

)
x

= 0.
(3.14)

If α = 0, then system (3.14) was systematically studied in [27,28].
For system (3.12),

λ = f (U ) = U√
1 +U 2

, f ′(U ) = 1

(
√
1 +U 2)3

> 0. (3.15)

Let (x(t), w(t),Uδ(t)) denote the delta shock solution of the Riemann problem (3.12)
and (3.13) of the form (2.10). Then the following generalized Rankine–Hugoniot
condition holds
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⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt = σ(t) = f (Uδ(t)),

dw(t)
dt = [v]σ(t) −

[
vU√
1+U2

]
,

d(w(t)Uδ(t))
dt + αw(t)Uδ(t) = [vU ]σ(t) −

[
vU2√
1+U2

]
,

(3.16)

and

Uδ(t) = Ũδe
−αt , w(t) = w0(1 − e−αt ), (3.17)

where Ũδ and w0 are constants to be determined. So (3.16) is equivalent to

⎧⎪⎨
⎪⎩

αw0e−αt = [v]σ(t) −
[

vU√
1+U2

]
,

αw0e−αt Ũδ = [vU ]σ(t)eαt −
[

vU2√
1+U2

]
eαt .

(3.18)

Eliminating w0 in (3.18), we have

([v]Ũδ − [vU ]eαt )
Ũδe−αt√

1 + (Ũδe−αt )2
−

[
vU√
1 +U 2

]
Ũδ +

[
vU 2

√
1 +U 2

]
eαt = 0.

(3.19)

Let G(Ũδ) be the left side of (3.19), then under the entropy condition (2.13), i.e.,
U+ < Ũδ < U−, we have

G(U+)G(U−) = −v−v+(U− −U+)2

(
U−e−αt√

1 + (U−e−αt )2
− U+e−αt√

1 + (U+e−αt )2

)2

< 0,

(3.20)

and

G ′(u) = v+

(
Ue−αt√

1 + (Ue−αt )2
− U+e−αt√

1 + (U+e−αt )2

)

+ v−

(
U−e−αt√

1 + (U−e−αt )2
− Ue−αt√

1 + (Ue−αt )2

)

+ (v+(U −U+) + v−(U− −U ))
e−αt

(
√
1 + (Ue−αt )2)3

, (3.21)

which is positive for v−, v+ > 0 and negative for v−, v+ < 0 when U ∈ (U+,U−).
Thus, Eq. (3.19) has a unique solution Ũδ ∈ (U+,U−). Owing to (3.16)–(3.18), we
can solve x(t) and w(t) uniquely.
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Therefore, the unique delta shock solution of (3.12) and (3.13) can be expressed as
follows:

(v,U )(x, t) =
⎧⎨
⎩

(v−,U−e−αt ), x < x(t),
(w(t)δ(x − x(t)), Ũδe−αt ), x = x(t),
(v+,U+e−αt ), x > x(t),

(3.22)

where x(t) = ∫ t
0 σ(t)dt = ∫ t

0 f (Ũδe−αt )dt and w(t) are uniquely determined by
(3.17).

Formula (3.22) indicates that there is a weighted Dirac delta function only in the
state variable v for system (3.12). By performing the transformation u = vU , returning
to system (3.14), we conjecture that weighted Dirac delta functions may appear simul-
taneously in the state variables u and v for system (3.14), which are consistent with
the results obtained by Yang and Zhang in [27,28] for a class of nonstrictly hyperbolic
homogeneous conservation laws.

4 Conclusions and Discussions

In this work, we have constructed the Riemann solutions for the generalized pressure-
less Euler equations with a dissipation term in the fully explicit form. In particular,
the delta shock wave solution has been discovered in some certain situations. We find
that the dissipation term takes the effect to curve the characteristics such that the delta
shock wave discontinuity is also curved. Compared with previous results on the gen-
eralized pressureless Euler equations, there are two new and interesting phenomena.
On one hand, different from the homogeneous case in [26], the Riemann solutions of
(1.1) and (1.2) are not self-similar any more. One the other hand, different from the
nonhomogeneous case with friction in [29] where the state variable u changes linearly
with respect to t , here the state variable u changes exponentially with respect to t
under the influence of dissipation. Moreover, it is worthwhile to note that the Riemann
solutions of (1.1) and (1.2) converge to the corresponding ones of the generalized
pressureless Euler equations as α → 0, namely the dissipation term vanishes.

It is shown that the Riemann solutions of the nonhomogeneous generalized pres-
sureless Euler equations with a dissipation term share the same configurations with
the homogeneous situation. In fact, for Example 3.1, it can be seen that the above-
constructed Riemann solutions of (3.1) and (3.2) can be directly obtained from the
ones of the Riemann problem for the homogeneous situation by the change of vari-
ables t → 1− 1

α
e−αt and u → ueαt . However, these solutions are drastically different

from each other in that the characteristics are curves for the nonhomogeneous situa-
tion with dissipation, while the characteristics are straight lines for the homogeneous
situation. Furthermore, the regions of constant flow are transformed into the regions
of exponentially decelerated flow under the influence of dissipation.

It is worthwhile to point out that, compared with the method adopted in [15,16,
18,29] to take the state variable transformation to reformulate the nonhomogeneous
conservation laws with friction into the homogeneous conservation laws, here we
adopt the method to directly deal with the nonhomogeneous conservation laws with
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dissipation, which can be applied to conservation laws with much more general kind
of source terms, such as discontinuous source terms. The (generalized) pressureless
Euler equations with discontinuous source terms will be our next research focus.
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