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Abstract
It is known that if E is a C∞ determining set, then E is a Markov set if and only if it
has Bernstein’s property. This article provides the equivalent of this result for compact
subsets of some algebraic varieties.

Keywords Markov inequality · C∞ functions · Algebraic sets

Mathematics Subject Classification 41A17 · 14P05 · 41A25 · 41A1

1 Introduction

Jackson’s famous estimate of the error of the best polynomial approximation for a
fixed function is one of the main theorems in constructive function theory. According
to a multivariate version of the classical Jackson theorem (see, e.g., [10]), if I is a
compact cube in RN and f : I → R is a Ck+1 function on I , then

nkdist I ( f ,Pn) ≤ Ck

N∑

j=1

sup
x∈I

∣∣∣∣∣
∂k+1 f

∂xk+1
j

(x)

∣∣∣∣∣ ,

where the constantCk depends only on N , I and k. As usual, dist I ( f ,Pn) = inf{‖ f −
p‖I : p ∈ Pn}, Pn is the space of all algebraic polynomials of degree at most n and
‖ · ‖I is the sup norm on I .
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4304 T. Beberok

As an application of Jackson’s theorem, one can prove classical results like thewell-
known Bernstein theorem (see, e.g., [5,6]) which allows to obtain a characterization
of C∞ functions:
A function f defined on I can be extended to a C∞function on R

N if and only if

lim
n→∞ nkdist I ( f ,Pn) = 0 f or all posi tive integer numbers k.

Anatural question arises: For which compact subsets E ofRN the following Bernstein
property holds?
For every function f : E → R if the sequence {distE ( f ,Pn)}n is rapidly decreasing
(i.e. lim

n→∞ nkdistE ( f ,Pn) = 0 for all k > 0), then there exists a C∞ function F :
R

N → R such that F = f on E .
It turns out that these matters were considered by Pleśniak in 1990 (see [8,9] for

previous results). He proved that the Markov inequality

‖DαP‖E ≤ M(deg P)r |α|‖P‖E , α ∈ Z
N+ ,

and Bernstein’s property are equivalent for C∞ determining sets. Our goal is to find
a generalization of this fact for sets which are not C∞ determining.

2 Markov Inequality

Our intention in this section is to study an extension of the Markov inequality to
compact subsets of algebraic set. We will consider nonempty sets of the form

V =
{
(x1, . . . , xN ) ∈ R

N : xdk = Q0(y) + Q1(y)xk + · · · + Qd−1(y)x
d−1
k

}
, (1)

where Qi are polynomials for every 0 ≤ i ≤ d − 1 and the variable y =
(x1, . . . , xk−1, xk+1, . . . , xN ) ∈ R

N−1. One can verify that every polynomial P
from the space P(x1, . . . , xN ) , on V , coincides with some polynomial from P(y) ⊗
Pd−1(xk) (see [3]). Here P(y) ⊗ Pd−1(xk) denotes the subspace of P(x1, . . . , xN )

formed of all polynomials of the form
∑d−1

i=0 Gi (y)xik with Gi ∈ P(y). Hence

P(V ) := {
P|V , P ∈ P(x1, . . . , xN )

} = {
P|V , P ∈ P(y) ⊗ Pd−1(xk)

}
. (2)

Considerations in [2,3] suggest the following definition:
(Markov set and Markov inequality on F) Let F be an infinite-dimensional subspace
of P(x1, . . . , xN )such that P ∈ F implies DαP ∈ F for all α ∈ Z

N+ . A compact set
∅ 	= E ⊂ R

N is said to be a F-Markov set if there exist M,m > 0 such that

‖DαP‖E ≤ M |α|(deg P)m|α|‖P‖E , P ∈ F, α ∈ Z
N+ . (3)

This inequality is called a F-Markov inequality for E .
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Note that, similarly as in the classical case, it is enough to check the property for
|α| = 1.

It is clear that if P ∈ P(y) ⊗ Pd−1(xk), then DαP ∈ P(y) ⊗ Pd−1(xk) for all
α ∈ Z

N+ . Now we give an example to demonstrate that the above definition makes
sense.

Example 1 Let V = {y3 = (1− x2)y} ⊂ R
2. The compact set E = {(x, y) ∈ V : x ∈

[−1, 1]} is a P(x) ⊗ P2(y)-Markov.

Proof We recall first the three classical inequalities Markov’s inequality: For any
polynomial P

‖P ′‖[−1,1] ≤ (deg P)2‖P‖[−1,1]. (4)

Bernstein’s inequality: If Tn is a trigonometric polynomial of degree at most n, then

‖T ′‖ ≤ n‖T ‖, (5)

where ‖ · ‖ denotes the supremum norm. If Pn is an algebraic polynomial of degree
at most n, then Tn(t) = Pn(cos t) is a trigonometric polynomial of degree at most n,
and (5) yields

|P ′(x)| ≤ n√
1 − x2

‖P‖[−1,1], x ∈ (−1, 1), (6)

which is also known as Bernstein inequality. The classical inequality of Schur states
that

‖P‖[−1,1] ≤ (deg P + 1)
∥∥∥P(x)

√
1 − x2

∥∥∥[−1,1] (7)

holds for every polynomial P . This can be generalized to weights (1 − x2)α with
α ≥ 1/2 (see [1], Lemma 2.4, p. 73):

‖P‖[−1,1] ≤ n2α
∥∥∥P(x)(1 − x2)α

∥∥∥[−1,1] P ∈ Pn−1. (8)

Combining the above inequality and Markov’s inequality (4), we obtain

∥∥∥P ′(x)(1 − x2)
∥∥∥[−1,1] ≤ 3(n + 2)2

∥∥∥P(x)(1 − x2)
∥∥∥[−1,1] P ∈ Pn . (9)

Let P ∈ P(x) ⊗ P2(y). Then P(x, y) = G0(x) + G1(x)y + G2(x)y2 for some
Gi ∈ P(x) (i = 0, 1, 2). Now

∥∥∥D(1,0)P(x, y)
∥∥∥
E

≤ ∥∥G ′
0(x)

∥∥
E +

∥∥∥G ′
1(x)y + G ′

2(x)y
2
∥∥∥
E

= ∥∥G ′
0(x)

∥∥[−1,1] +
∥∥∥G ′

1(x)y + G ′
2(x)y

2
∥∥∥
E ′ ,
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4306 T. Beberok

where E ′ = {(x, y) ∈ R
2 : y2 = 1 − x2}. Since (x, y) ∈ E ′ ⇐⇒ (x,−y) ∈ E ′, we

have
∥∥∥D(1,0)P(x, y)

∥∥∥
E

≤ ∥∥G ′
0(x)

∥∥[−1,1] +
∥∥∥G ′

1(x)
√
1 − x2

∥∥∥[−1,1]
+

∥∥∥G ′
2(x)(1 − x2)

∥∥∥[−1,1] .

By (4), (5), and (9), respectively, we get

∥∥∥D(1,0)P(x, y)
∥∥∥
E

≤ (degG0)
2 ‖G0(x)‖[−1,1] + degG1 ‖G1(x)‖[−1,1]

+ 3(2 + degG2)
2
∥∥∥G2(x)(1 − x2)

∥∥∥[−1,1] .

The inequality (7) yields the following

∥∥∥D(1,0)P(x, y)
∥∥∥
E

≤ (degG0)
2 ‖G0(x)‖[−1,1]

+ (degG1 + 1)2
∥∥∥G1(x)

√
1 − x2

∥∥∥[−1,1]
+ 3(2 + degG2)

2
∥∥∥G2(x)(1 − x2)

∥∥∥[−1,1] .

Using again the fact that (x, y) ∈ E ′ ⇐⇒ (x,−y) ∈ E ′, we obtain
∥∥∥D(1,0)P(x, y)

∥∥∥
E

≤ 5(deg P)2
(
‖G0(x)‖[−1,1] +

∥∥∥G1(x)y + G2(x)y
2
∥∥∥
E ′

)
.

Now if −1 ≤ ξ ≤ 1, then (ξ, 0) ∈ E and G0(ξ) = P(ξ, 0). Hence

‖G0(x)‖[−1,1] ≤ ‖P‖E .

This together with the triangle inequality, implies

∥∥∥D(1,0)P(x, y)
∥∥∥
E

≤ 15(deg P)2 ‖P‖E .

Next, we consider the case of D(0,1). It is clear that

∥∥∥D(0,1)P(x, y)
∥∥∥
E

≤ ‖G1(x)‖E + 2 ‖G2(x)y‖E ≤ ‖G1(x)‖E + 2 ‖G2(x)‖E .

Then, using (7) and (8), we have

∥∥∥D(0,1)P(x, y)
∥∥∥
E

≤ (degG1 + 1)
∥∥∥G1(x)

√
1 − x2

∥∥∥[−1,1]
+ 2(1 + degG2)

2
∥∥∥G2(x)(1 − x2)

∥∥∥[−1,1] .
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Now a similar proof to that of the previous case gives the following

∥∥∥D(0,1)P(x, y)
∥∥∥
E

≤ 6(deg P)2 ‖P‖E .

That is what we wished to prove. ��
Next example shows that F-Markov inequality depends not only on the set but also

on the family F.

Example 2 Consider set V = {y3 = 1−x2} ⊂ R
2. The compact set E = {(x, y) ∈ V :

x ∈ [− 1
2 ,− 1

4 ]∪[ 14 , 1
2 ]} is aP(y)⊗P1(x)-Markov, but it is notP(x)⊗P2(y)-Markov.

Proof The fact that E = {(x, y) ∈ V : x ∈ [− 1
2 ,− 1

4 ] ∪ [ 14 , 1
2 ]} is a P(y) ⊗ P1(x)-

Markov follows from [2,4]. Sowe need only show that E is notP(x)⊗P2(y)-Markov.
Seeking a contradiction, we consider the sequence of polynomials

Pn(x, y) = y −
n∑

k=0

�(k − 1/3)

�(−1/3)k! x
2k .

It is well known that

3
√
1 − x2 =

∞∑

k=0

�(k − 1/3)

�(−1/3)k! x
2k for |x | < 1.

Hence

‖Pn(x, y)‖E =
∥∥∥∥∥

∞∑

k=n+1

�(k − 1/3)

�(−1/3)k! x
2k

∥∥∥∥∥
[− 1

2 ,− 1
4 ]∪[ 14 , 12 ]

=
∥∥∥∥∥
x2+2n�

( 1
3 (2 + 3n)

)
F

(
1, 2

3 + n, 2 + n, x2
)

�
(− 1

3

)
�(2 + n)

∥∥∥∥∥[− 1
2 ,− 1

4 ]∪[ 14 , 12 ]
,

where F is the hypergeometric function defined for |z| < 1 by the power series

F(a, b; c; z) =
∞∑

ι=0

(a)ι(b)ι
(c)ι

zι

ι! .

Here (q)ι is the (rising) Pochhammer symbol. If x ∈ [0, 1], then the function
F

(
1, 2

3 + n, 2 + n, x2
)
is the increasing function of x , since its Taylor coefficients

are all positive. Therefore, by F(a, b; c; 1) = �(c)�(c−a−b)
�(c−a)�(c−b) and z�(z) = �(z + 1),

we have

F

(
1,

2

3
+ n, 2 + n, x2

)
≤ F

(
1,

2

3
+ n, 2 + n, 1

)
= �(2 + n)�

( 1
3

)

�
( 4
3

)
�(n + 1)
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4308 T. Beberok

= 3(1 + n).

If we recall that limn→∞ �(n+α)
�(n)nα = 1, then

lim
n→∞

3�
( 2
3 + n

)
(1 + n)

4�
(− 1

3

)
�(2 + n)

= 0.

We thus may conclude that there exists a constantC > 0 (independent of n) for which

‖Pn(x, y)‖E ≤ C4−n .

Consequently for r > 0,

lim
n→∞ nr‖Pn(x, y)‖E = 0.

This gives a contradiction, and the result is established. ��
Remark 1 Note that (x, y) ∈ E ⇐⇒ (−x, y) ∈ E . On the other hand, if (x, y) ∈ E ,
then (x,−y) /∈ E . This is one of the reasons why the set E is aP(y)⊗P1(x)-Markov,
but it is not P(x) ⊗ P2(y)-Markov.

Example 1 illustrates the more general idea.

Example 3 Combining methods used in [2] with method from Example 1, one can
provide other examples of P(y) ⊗ P2(xk)-Markov sets by considering algebraic sets
of the form

V = {(x1, . . . , xN ) ∈ R
N : x3k = Q(y)xk},

where Q j ∈ P(y) and y = (x1, . . . , xk−1, xk+1, . . . , xN ) ∈ R
N−1.

3 C∞ Functions

First we introduce the subspace of the space C∞(RN ) related to an algebraic set
defined by (1). We define

C∞
V (RN ) :=

{
f ∈ C(RN ) : ∀r>0 lim

n→∞ nrdist I ( f ,Pn(y) ⊗ Pd−1(xk)) = 0

for every compact cube I in R
N
}

. (10)

Since every cube I is a Markov set, then by Pleśniak’s theorem (see [9]) C∞
V (RN ) ⊂

C∞(RN ). It should be noted that Pleśniak’s result, together with the Jackson theorem,
implies
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C∞(RN ) =
{
f ∈ C(RN ) : ∀r>0 lim

n→∞ nrdist I ( f ,Pn(x1, . . . , xN )) = 0

for every compact cube I in R
N
}

.

We say that f is a C∞
V function on a compact subset E of V if, there exists a function

f̃ ∈ C∞
V (RN ) with f̃|E = f . We denote by C∞

V (E) the space of such functions.
Let τJ be the topology on C∞

V (E) determined by the seminorms δ−1( f ) := ‖ f ‖E ,
δ0( f ) := distE ( f ,P0(y) ⊗ Pd−1(xk)) and

δν( f ) := sup
l≥1

lνdistE ( f ,Pl(y) ⊗ Pd−1(xk))

for ν = 1, 2, . . . (This idea comes from Zerener’s work [11].) The fact that δν’s are
seminorms on C∞

V (E) follows from the definition of the set C∞
V (RN ). It should be

noted that this topology need not be complete.
The natural topology τ0 on the set C∞(RN ) is determined by the seminorms | · |νK ,

where for each compact set K in RN and each ν = 0, 1, . . .,

| f |νK := max|α|≤ν
‖Dα f ‖K .

Therefore, we consider the topology τQ on C∞
V (E) determined by the seminorms

qK ,ν( f ) := inf
{
| f̃ |νK : f ∈ C∞

V (RN ), f̃|E = f
}

.

Then τQ coincides with the quotient topology of the space C∞
V (RN )/I (E), where

C∞
V (RN ) is considered with the natural topology τ0 and I (E) := { f ∈ C∞

V (RN ) :
f|E = 0}. Notice that the space (C∞

V (RN ), τ0) is a closed subspace of the com-
plete space (C∞(RN ), τ0). Therefore, the space (C∞

V (RN ), τ0) is also complete. In
view of the fact that I (E) is a closed subspace of (C∞

V (RN ), τ0), the quotient space
C∞
V (RN )/I (E) is complete. Hence (C∞

V (E), τQ) is a Fréchet space. To prove the
main result, we will need the following lemma (see, e.g., [7], 1.4.2).

Lemma 1 There are positive constants Cα depending only on α ∈ Z
N+ such that

for each compact set K in R
N and each ε > 0, one can find a C∞ function h on

R
N satisfying 0 ≤ h ≤ 1 on R

N , h = 1 in a neighborhood of K , h(x) = 0 if
dist(x, K ) > ε, and for all x ∈ R

N and α ∈ Z
N+ , |Dαh(x)| ≤ Cαε−|α|.

4 Main Result

Before starting the main result, we prove the following lemma.

Lemma 2 Let E be a P(y) ⊗ Pd−1(xk)-Markov set. Also define

π(E) =
{
(x1, . . . , xk−1, xk+1, . . . , xN ) ∈ R

N−1 : (x1, . . . , xN ) ∈ E, xk ∈ R

}
.
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4310 T. Beberok

If E is a P(y)⊗Pd−1(xk)-Markov set (with M and m), then π(E) is a Markov set (as
a subset ofRN−1), and for every polynomial P = ∑d−1

i=0 Gi (y)xik , there exist constant
C > 0 (depending only on E and d) such that

‖Gi‖π(E) ≤ C

i ! (deg P)m(d−1)‖P‖E ,

for every i = 0, 1, . . . , d − 1. Conversely, if π(E) is a Markov set (with A and η) and
for every polynomial P = ∑d−1

i=0 Gi (y)xik , there exist B, λ > 0 (depending only on
E and d) such that

‖Gi‖π(E) ≤ B(deg P)λ‖P‖E , i = 0, 1, . . . , d − 1, (11)

then E is a P(y) ⊗ Pd−1(xk)-Markov set.

Proof Let E be aP(y)⊗Pd−1(xk)-Markov set. The proof starts from the observation
that

∂d−1P

∂xd−1
k

= (d − 1)!Gd−1.

Therefore the P(y) ⊗ Pd−1(xk)-Markov property of the set E gives

‖Gd−1‖π(E) ≤ Md−1

(d − 1)! (deg P)m(d−1)‖P‖E .

If i = d − 2, then

(d − 2)!Gd−2 = ∂d−2P

∂xd−2
k

− (d − 1)Gd−1xk .

Hence, there exists constant C > 0 (depending only on the set E) such that

‖Gd−2‖π(E) ≤ (C + 1)Md−1

(d − 2)! (deg P)m(d−1)‖P‖E .

Continuing this process, one can show that there exists a constant C1 > 0 (depending
only on the set E and d) such that

‖Gi‖π(E) ≤ C1

i ! (deg P)m(d−1)‖P‖E .

To prove the converse direction, assume that π(E) is a Markov set and (11) holds.
Then, for every polynomial P = ∑d−1

i=0 Gi (y)xik , we have

∥∥∥∥
∂P

∂x j

∥∥∥∥
E

≤
d−1∑

i=0

∥∥∥∥∥
∂Gi

∂x j
xik + Gi

∂xik
∂x j

∥∥∥∥∥
E

.
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Since E is compact, there exists K > 0, depending only on the set E , such that

∥∥∥∥∥
∂Gi

∂x j
xik + Gi

∂xik
∂x j

∥∥∥∥∥
E

≤ K

(∥∥∥∥
∂Gi

∂x j

∥∥∥∥
π(E)

+ ‖Gi‖π(E)

)
,

for every j = 1, 2, . . . , N and i = 0, 1, . . . , d − 1. Therefore,

∥∥∥∥
∂P

∂x j

∥∥∥∥
E

≤ K

(
d−1∑

i=0

∥∥∥∥
∂Gi

∂x j

∥∥∥∥
π(E)

+ ‖Gi‖π(E)

)
.

Then, using the fact that π(E) is a Markov set, there exists constants A > 0 and η > 0
such that

∥∥∥∥
∂P

∂x j

∥∥∥∥
E

≤ K

(
d−1∑

i=0

A(degGi )
η‖Gi‖π(E) + ‖Gi‖π(E)

)
.

Finally, we use (11) to see that

∥∥∥∥
∂P

∂x j

∥∥∥∥
E

≤ Kd
(
AB(deg P)η+λ + B(deg P)λ

) ‖P‖E .

That concludes the proof. ��
We say that the set E ⊂ V is C∞

V determining if for each f ∈ C∞
V (RN ), f|E = 0

implies Dα f|E = 0, for all α ∈ Z
N+ . Now we are ready to state our main result.

Theorem 1 If E is a C∞
V determining compact subset of V , then the following state-

ments are equivalent:

(i) (P(y) ⊗ Pd−1(xk)-Markov Inequality) There exist positive constants M and r
such that for each polynomial P ∈ P(y) ⊗ Pd−1(xk) and each α ∈ Z

N+ ,

‖DαP‖E ≤ M(deg P)r |α|‖P‖E .

(ii) There exist positive constants M and r such that for every
P ∈ P(y) ⊗ Pd−1(xk) of degree at most n, n = 1, 2, . . .,

|P(x)| ≤ M‖P‖E if x ∈ En := {x ∈ R
N : dist(x, E) ≤ 1/nr }.

(iii) (Bernstein’s Theorem) For every function f : E → R, if the sequence
{distE ( f ,Pl(y) ⊗ Pd−1(xk))} is rapidly decreasing, then there is a C∞

V (RN )

function f̃ on R
N such that f̃|E = f .

(iv) The space (C∞
V (E), τJ ) is complete and C∞

V (E) = C∞(E).
(v) The topologies τJ and τQ for C∞

V (E) coincide.
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4312 T. Beberok

Proof The proof of equivalence of (i) and (ii) is almost the same as in [9], and we omit
the details.

Next we show that ((i) and (ii)) ⇔ (iii). Suppose that we have function f : E → R

such that for each s > 0,

lim
l→∞ ls‖ f − Pl‖E = 0.

Here Pl = ∑d−1
i=0 Gl,i (y)xik is a metric projection of f onto Pl(y) ⊗ Pd−1(xk) (l =

0, 1, . . .). Set, as in Lemma 2,

π(E) = {y = (x1, . . . , xk−1, xk+1, . . . , xN ) ∈ R
N−1 : (x1, . . . , xN ) ∈ E

for some xk ∈ R}.

Weassume that r is an integer so large that both (i) and (ii) are valid for E . Let εl = 1/lr

and for l = 1, 2, . . . take a function hl ∈ C∞(RN−1) of Lemma 1 corresponding to
εl and π(E). We will show that

f̃ (x1, . . . , xN ) :=
d−1∑

i=0

G0,i (y)x
i
k +

∞∑

l=1

d−1∑

i=0

hl(y)(Gl,i (y) − Gl−1,i (y))x
i
k

determines a function from C∞
V (RN ) such that f̃|E = f . In order to prove that f̃ ∈

C∞
V (RN ), it suffices to check that

G0,i (y) +
∞∑

l=1

hl(y)(Gl,i (y) − Gl−1,i (y)) ∈ C∞(RN−1),

for every i = 0, 1, . . . , d − 1. Thus, if γ ∈ Z
N−1+ , then, by (i) and (ii),

sup
RN−1

|Dγ (hl(Gl,i − Gl−1,i ))| ≤
∑

β≤γ

(
γ

β

)
sup

π(E)l

|Dβhl D
γ−β(Gl,i − Gl−1,i )|

≤ M
∑

β≤γ

(
γ

β

)
Cβl

r |β|‖Dγ−β(Gl,i − Gl−1,i )‖π(E)

≤ M1l
r |γ |‖Gl,i − Gl−1,i‖π(E)

whereπ(E)l := {y ∈ R
N−1 : dist(y, π(E)) ≤ εl}. FromLemma 2, there is a constant

C > 0 so that

sup
RN−1

|Dγ (hl(Gl,i − Gl−1,i ))| ≤ C(deg Pl)
r(|γ |+d−1)‖Pl − Pl−1‖E .
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Now if l ≥ max{2, d}, then

sup
RN−1

|Dγ (hl(Gl,i − Gl−1,i ))| ≤ 2Cl−2δ2r(|γ |+d−1)+2( f ),

with a constant C independent of l. Taking into account that δ2r(|γ |+d−1)+2( f ) is
independent of l and the series

∑∞
l=1 l

−2 is convergent, one sees that

∞∑

l=1

Dγ
(
hl(Gl,i − Gl−1,i )

)

converges uniformly for every i = 0, 1, . . . , d − 1.
Next we shall show that (iii) ⇒ (iv) ⇒ (v). If Bernstein’s theorem holds, then it

is clear that C∞
V (E) = C∞(E). From this and the fact that the map C(E) � f →

distE ( f ,Pl(y) ⊗ Pd−1(xk)) ∈ R is continuous, we have (iv). Now suppose that
(C∞

V (E), τJ ) is complete. Let I be a cube which contains E in its interior. Applying
the Jackson theorem on the cube, for every ν, there exists a constant Cν > 0 so that

δν( f ) ≤ CνqI ,ν+1( f )

for all f in C∞
V (RN ). Hence by Banach’s isomorphism theorem (for Fréchet spaces),

we have (v).
The final step of the proof is to show that (v) implies (i) . If topologies τJ and τQ

coincide, there are a positive constant M and an integer μ ≥ −1 such that qE,1( f ) ≤
Mδμ( f ) for every f ∈ C∞

V (E). Since π(E) is C∞ determining and δ0( f ) ≤ ‖ f ‖,
we conclude that μ ≥ 1. Hence if f ∈ Pλ(y) ⊗ Pd−1(xk), then

∥∥∥∥
∂ f

∂x j

∥∥∥∥
E

≤ M sup
1≤l≤λ

lμdistE ( f ,Pl(y) ⊗ Pd−1(xk)) ≤ Mλμ‖ f ‖E

for j = 1, 2, . . . , N . This implies that E is a P(y) ⊗ Pd−1(xk)-Markov set. (It is
essential here that E is C∞

V determining.) ��
Remark 2 Let E be compact subset of V . If E satisfies (i), above, then E is C∞

V
determining set.

To see this, take a compact cube I in R
N containing E in its interior. We let

f ∈ C∞
V (RN ) such that f = 0 on E . It follows from the definition of C∞

V (RN ) that

εl := dist I ( f ,Pl(y) ⊗ Pd−1(xk)) = ‖ f − Pl‖I = ‖ f −
d−1∑

i=0

Gl,i (y)x
i
k‖I

is rapidly decreasing. Hence by Markov’s inequality, we have

Dα f =
d−1∑

i=0

Dα{G0,i (y)x
i
k} +

∞∑

l=1

d−1∑

i=0

Dα{(Gl,i (y) − Gl−1,i (y))x
i
k} on I ,
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for all α ∈ Z
N+ . Finally, by (i), we obtain that Dα f (x) = liml→∞ DαPl(x) = 0 for

every x ∈ E .
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