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Abstract
An Italian dominating function on a graph G with vertex set V (G) is a function
f : V (G) → {0, 1, 2} having the property that for every vertex v with f (v) = 0,
at least two neighbors of v are assigned 1 under f or at least one neighbor of v is
assigned 2 under f . The weight of an Italian dominating function f is the sum of
the values assigned to all the vertices under f . The Italian domination number of
G, denoted by γI (G), is the minimum weight of an Italian dominating of G. It is
known that if G is a connected graph of order n ≥ 3, then γI (G) ≤ 3

4n. Further, if G
has minimum degree at least 2, then γI (G) ≤ 2

3n. In this paper, we characterize the
connected graphs achieving equality in these bounds. In addition, we proveNordhaus–
Gaddum inequalities for the Italian domination number.

Keywords Domination · Italian domination · Roman domination · Roman
{2}-domination

AMS subject classification: 05C69

Communicated by Xueliang Li.

B Teresa W. Haynes
haynes@etsu.edu

Michael A. Henning
mahenning@uj.ac.za

Lutz Volkmann
volkm@math2.rwth-aachen.de

1 Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN
37614-0002, USA

2 Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland
Park 2006, South Africa

3 Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-020-00921-y&domain=pdf


4274 T. W. Haynes et al.

1 Introduction

Cockayne et al. [3] first introduced Roman domination as a graphical invariant in
2004, following a series of papers (see [13–16]) on defense strategies of the ancient
Roman Empire. Since its introduction, over 100 papers have been published on Roman
domination and its variants. We refer the reader to [1,7,9,10] for some recent papers
on Roman domination.

In this paper, we consider Italian domination, a variant of Roman domination.
Italian domination was introduced as Roman {2}-domination in [2] and was renamed
and studied further in [5]. See also [8,12]. Let G be a graph with vertex set V (G) and
edge set E(G). Two vertices v and w are neighbors in G if they are adjacent; that is,
if vw ∈ E(G). The open neighborhood of a vertex v in G is the set of neighbors of v,
denoted by NG(v), and its closed neighborhood is NG [v] = NG(v) ∪ {v}.

A function f : V (G) → {0, 1, 2} is a Roman dominating function, abbreviated
RD-function, on G if every vertex u ∈ V (G) for which f (u) = 0 is adjacent to at
least one vertex v for which f (v) = 2. The weight of a RD-function is the value
w( f ) = f (V (G)) = ∑

u∈V (G) f (u). The Roman domination number γR(G) is the
minimum weight of a RD-function on G, and a RD-function with weight γR(G) is
called a γR-function of G.

One may view Roman domination as graph labeling problem in which each vertex
labeled 0 must be adjacent to at least one vertex labeled 2. An Italian dominating func-
tion, abbreviated an ID-function, of G is a function f : V (G) → {0, 1, 2} satisfying
the condition that for every vertex v ∈ V (G)with f (v) = 0,

∑
u∈N (v) f (u) ≥ 2. That

is, either v is adjacent to at least one vertex u with f (u) = 2, or to at least two vertices
x and y with f (x) = f (y) = 1. Viewed as a graph labeling problem, each vertex
labeled 0 must have the labels of the vertices in its closed neighborhood sum to at
least 2. The weight of a ID-function is the value w( f ) = f (V (G)) = ∑

u∈V (G) f (u).
The Italian domination number, denoted by γI (G), is the minimum weight of an ID-
function in G, and an ID-function of G with weight γI (G) is called a γI -function of
G.

Our aim in this paper to continue the study of Italian dominating functions in
graphs. We characterize connected graphs of order at least 3 with maximum possible
Italian domination number. Further we characterize connected graphs with minimum
degree at least two with maximum possible Italian domination number. We establish
Nordhaus–Gaddum-type inequalities on the Italian domination number.

1.1 Terminology and Notation

For notation and graph theory terminology, we in general follow [4,6]. Specifically,
let G = (V , E) be a graph with vertex set V (G) = V of order n(G) = |V | and edge
set E(G) = E of size m(G) = |E |, and let v be a vertex in V . The degree of v in G,
denoted by dG(v), is the cardinality of its open neighborhood NG(v), where recall that
NG(v) = {u ∈ V | uv ∈ E}. The minimum and maximum degrees among the vertices
of G are denoted by δ(G) and �(G), respectively. The open neighborhood of a set
S ⊆ V (G) is the set of all neighbors of vertices in S, denoted by NG(S), whereas the
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Graphs with Large Italian Domination Number 4275

closed neighborhood of S is NG [S] = NG(S) ∪ S. For a set S ⊆ V (G), the subgraph
induced by S in G is denoted by G[S]. Further, the graph obtained from G by deleting
the vertices in S and all edges incident with S is denoted by G − S.

A set S of vertices in a graph G is a dominating set of G if every vertex in V (G)\ S
is adjacent to a vertex in S. The domination number γ (G) is the minimum cardinality
of a dominating set of G.

A vertex of degree one is a leaf, and its neighbor a support vertex. A graph G
is r -regular if δ(G) = �(G) = r , and G is regular if it is r -regular for some r .
We denote a path and cycle on n vertices by Pn and Cn , respectively, and we denote
a complete graph on n vertices by Kn . We denote a complete bipartite graph with
partite sets X and Y , where |X | = p and |Y | = q, by Kp,q . The graph K1,q is called
a star. For p, q ≥ 1, a double star DSp,q is the tree with exactly two vertices that
are not leaves, one of which has p leaf neighbors and the other q leaf neighbors. A
daisy with k ≥ 2 petals is a connected graph that can be constructed from k ≥ 2
disjoint cycles by identifying a set of k vertices, one from each cycle, into one vertex.
If the k cycles have lengths n1, n2, . . . , nk , we denote the daisy by D(n1, n2, . . . , nk).
A linear forest is a forest in which every component is a path. We use the standard
notation [k] = {1, . . . , k}.

The distance dG(u, v) between two vertices u and v in a connected graph G is
the length of a shortest (u, v)-path in G. The maximum distance among all pairs of
vertices of G is the diameter of G, denoted by diam(G). A diametral path of G is a
shortest path whose length is equal to the diameter of G. A subdivision of an edge uv

is obtained by removing the edge uv, adding a new vertex w, and adding the edges
uw and vw. The complement of a graph G is denoted by G.

A rooted tree T distinguishes one vertex r called the root. For each vertex v �= r of
T , the parent of v is the neighbor of v on the unique (r , v)-path, while a child of v is
any other neighbor of v in T . The set of children of v is denoted byC(v). A descendant
of v is a vertex u �= v such that the unique (r , u)-path contains v. A grandchild of v

is a descendant of v at distance 2 from v. We let D(v) denote the set of descendants
of v, and we let D[v] = D(v) ∪ {v}. The maximal subtree at v is the subtree of T
induced by D[v] and is denoted by Tv .

2 Main Result

In this paper, we characterize the graphs with largest possible Italian domination
number. For this purpose, we shall prove the following results, where G and G≥2 are
families of graphs defined in Sect. 4. Proofs of Theorem 1 and 2 are given in Sects. 5
and 6.

Theorem 1 If G is a connected graph of order n ≥ 3, then γI (G) ≤ 3
4n with equality

if and only if G ∈ G.
Theorem 2 If G is a connected graph of order n with δ(G) ≥ 2, then γI (G) ≤ 2

3n
with equality if and only if G ∈ G≥2.

Next, we establish Nordhaus–Gaddum-type result for the Italian domination num-
ber. We shall prove the following result, a proof of which is given in Sect. 7.
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Theorem 3 If G is a graph of order n ≥ 3, then

5 ≤ γI (G) + γI (G) ≤ n + 2,

and these bounds are tight. Further if γI (G) ≤ γI (G), then γI (G) + γI (G) = 5 if
and only if there exists a vertex in G of degree n − 1 with a neighbor of degree 1 in G
or with two adjacent neighbors of degree 2 in G.

We following result shows that the upper bound in Theorem 3 can be improved
slightly if the graph G has no small components. More precisely, we prove the fol-
lowing result, a proof of which is given in Sect. 7.

Theorem 4 If G is a graph of order n ≥ 16 and having no component with fewer than
three vertices, then γI (G) + γI (G) ≤ n − 1.

3 Known Results and Observations

The following theorem summarizes bounds relating domination and Roman
domination-type parameters.

Theorem 5 ([2]) For every graph G, γ (G) ≤ γI (G) ≤ γR(G) ≤ 2γ (G).

If G is a graph of order n, then assigning to every vertex the weight 1 produces an
ID-function of G, implying that γI (G) ≤ n. In addition, in [17] it was proved that
γI (G) = n if and only if �(G) ≤ 1.

The Italian domination number of a path or a cycle is easy to compute (or see [8]).
If C : v1, v2 . . . vnv1 is a cycle of order n ≥ 3, then the function that assigns weight 1
to the vertices of odd subscript and weight 0 to the vertices of even subscript is an
example of a γI -function of the cycle.

Observation 1 ([8]) For n ≥ 1, γI (Pn) = 	 n+1
2 
, while for n ≥ 3, γI (Cn) = � n+1

2 �.
The Italian domination number of a daisy is also easy to compute and follows

readily from Observation 1 noting that there exists a γI -function of the cycle that
assigns to any given selected vertex the weight 1.

Observation 2 If G is a daisy of order n, then γI (G) ≤ � n+1
2 �.

Klostermeyer andMacGillivray [8] proved the followingupper boundson the Italian
domination number in terms its order.

Theorem 6 ([8]) If G is a graph of order n ≥ 3, then

γI (G) ≤

⎧
⎪⎨

⎪⎩

3
4n if G is connected3
2
3n if δ(G) ≥ 2
1
2n if δ(G) ≥ 3.
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(a) (b)

Fig. 1 Graphs in the families G and G≥2

Results of Nordhaus–Gaddum-type study the extreme values of the sum or product
of a parameter on a graph and its complement. In their classical paper [11], Nordhaus
and Gaddum discussed this problem for the chromatic number. We use the following
Nordhaus–Gaddum results on the Roman domination of a graph and its complement.

Theorem 7 ([1]) If G is a graph of order n ≥ 3, then

5 ≤ γR(G) + γR(G) ≤ n + 3.

Furthermore, equality holds in the upper bound only when G or G is C5 or
n
2K2.

Proposition 8 ([17]) If G is a graph of order n, then γI (G) = n if and only if �(G)

≤ 1.

Proposition 9 ([17]) If G is a graph of order n ≥ 2, then γI (G) = 2 if and only if
�(G) = n − 1 or there exist two different vertices u and v such that N (u) ∩ N (v)

= V (G) \ {u, v}.

4 The FamiliesG, T ,G≥2 andGmin
≥2

Let F be an arbitrary connected graph of order nF ≥ 1, and let G be the graph of
order n = 4nF obtained from F by adding to each vertex v of F three new vertices
u, w and x and the edges uv, vw and wx . Thus, uvwx is a path in G, where u is a
leaf neighbor of v, w is a neighbor of v of degree 2 and x is a leaf neighbor of w. We
call the graph F the underlying graph of the graph G. Let G be the family of all such
graphs G. Further, let T be the family of all such graphs G whose underlying graph is
a tree. We note that T is a subfamily of G. When the underlying graph F is a cycle C4
on four vertices, the graph G is illustrated in Fig. 1, where the assignment of weights
is an example of a γI -function of G. We show that every graph in the family G has
Italian domination number three-fourths its order.

Proposition 10 If G ∈ G has order n, then γI (G) = 3
4n.

Proof LetG be an arbitrary graph in the family G, and letG have order n. Let F be the
underlying graph of G of order nF , and so n = 4nF . Adopting our earlier notation, let
v be an arbitrary vertex of F , and let u, w and x be the three new vertices and uv, vw
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4278 T. W. Haynes et al.

and wx the three new edges added to F when constructing G. Let f be a γI -function
of G. We show that f (u)+ f (v)+ f (w)+ f (x) ≥ 3. If f (v) = 0, then f (u) ≥ 1 and
f (w)+ f (x) ≥ 2. If f (v) = 1, then f (u) ≥ 1 and f (w)+ f (x) ≥ 1. If f (v) = 2, then
f (u) = 0 and f (w)+ f (x) ≥ 1. In all three cases, f (u)+ f (v)+ f (w)+ f (x) ≥ 3, as
claimed. Since this is true for every vertex v of F , we note that γI (G) = w( f ) ≥ 3nF .
The function f ∗ that assigns the value 2 to every vertex of F , the value 1 to every
vertex in V (G) \ V (F) that has no neighbor in F , and the value 0 to all other vertices
of G is an ID-function of G of weight 3nF , implying that γI (G) ≤ w( f ∗) = 3nF .
Consequently, γI (G) = 3nF = 3

4n. ��
We next construct a class G≥2 of graphs with minimum degree two as follows.

Let H be an arbitrary connected graph of order nH ≥ 1, and let G be the graph of
order n = 3nH obtained from H by adding to each vertex v of H two new vertices
u and w and the edges uv, vw and uw. Thus, G[{u, v, w}] = K3, where both u and
w have degree 2 in G. We call the graph H the underlying graph of the graph G.
Further, we call a triangle of G that contains exactly one vertex of H a core triangle
of G. For example, the above triangle G[{u, v, w}] is a core triangle. Let G≥2 be the
family of all such graphs G. Further, let Gmin≥2 be the family of all such graphs G whose
underlying graph is a tree. We note that Gmin≥2 is a (proper) subfamily of G≥2. When the
underlying graph H is a cycleC4 on four vertices, the graph G is illustrated in Fig. 1b,
where the assignment of weights is an example of a γI -function of G. We establish
next properties of the graphs in the family G≥2.

Proposition 11 If G ∈ G≥2 has order n, and x and y are arbitrary vertices of G, then
the following holds.

(a) γI (G) = 2
3n.

(b) There exists a γI -function fi of G such that fi (x) = i for i ∈ {0, 1, 2}.
(c) There exists a γI -function f of G such that f (x) = f (y) = 1.

Proof (a) Let H be the underlying graph of G ∈ G≥2 of order nH , and so n = 3nH .
Adopting our earlier notation, let v be an arbitrary vertex of H , and let u and w

be the two new vertices and uv, vw and uw the three new edges added to H when
constructing G. Let f be a γI -function of G. We show that f (u)+ f (v)+ f (w) ≥ 2.
If f (v) = 0, then f (u)+ f (w) ≥ 2. If f (v) = 1, then f (u)+ f (w) ≥ 1. If f (v) = 2,
then f (u) + f (w) ≥ 0. In all three cases, f (u) + f (v) + f (w) ≥ 2, as claimed.
Since this is true for every vertex v of H , we note that γI (G) = w( f ) ≥ 2nH .
The function f ∗ that assigns the value 2 to every vertex of H and the value 0 to
all vertices of V (G) \ V (H) is an ID-function of G of weight 2nH , implying that
γI (G) ≤ w( f ∗) = 2nH . Consequently, γI (G) = 2nH = 2

3n.
(b) Let x be an arbitrary vertex of G and let Gx be the core triangle in G ∈ G≥2 that

contains x . Let f ∗ be the γI -function ofG defined in Part (a). For i ∈ {0, 1, 2}, let fi be
the γI -function of G defined as follows: let fi (v) = f ∗(v) for all v ∈ V (G) \V (Gx ).
If i = 0, let fi assign the weight 0 to x and the weight 1 to the remaining two vertices
of Gx . If i = 1, let fi assign the weight 1 to x and to exactly one other vertex of Gx ,
and the weight 0 to the remaining vertex of Gx . If i = 2, let fi assign the weight 2 to
x and the weight 0 to the remaining two vertices of Gx . The resulting function fi is a
γI -function of G such that fi (x) = i for i ∈ {0, 1, 2}.
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(c) Let f ∗ be the γI -function of G defined in Part (a). Let x and y be arbitrary
vertices of G. Let Gx and Gy be the core triangles in G ∈ G≥2 that contains x and
y, respectively. If Gx = Gy , let f be the γI -function of G defined as follows: let
f (v) = f ∗(v) for all v ∈ V (G) \ V (Gx ), let f (x) = f (y) = 1 and let f assign
the weight 0 to the remaining vertex of Gx . If Gx �= Gy , let f be the γI -function of
G defined as follows: let f (v) = f ∗(v) for all v ∈ V (G) \ (V (Gx ) ∪ V (Gy), let f
assign the weight 1 to x and one other vertex of Gx , the weight 1 to y and one other
vertex ofGy , and the weight 0 to the remaining two vertices ofGx ∪Gy . The resulting
function f is a γI -function of G such that f (x) = f (y) = 1. ��

5 Proof of Theorem 1

In this section, we present a proof of Theorem 1. We remark that although Theorem 6
gives that γI (G) ≤ 3

4n for connected graphs G of order n ≥ 3, the extremal graphs
are not characterized in [8]. Toward that end, we present a different proof of the 3

4 -
bound here that leads to the characterizations of trees and connected graphs achieving
equality in the bound. Since deleting an edge cannot decrease the Italian domination
number, it suffices to first prove the bound for trees.

Theorem 12 If T is a tree of order n ≥ 3, then γI (T ) ≤ 3
4n with equality if and only

if T ∈ T .

Proof If T ∈ T has order n, then by Proposition 10, γI (T ) = 3
4n. To prove the

necessity, we proceed by induction on the order n of a tree T . Since n ≥ 3, diam(T ) ≥
2. If diam(T ) = 2, then T is a star K1,n−1 for n ≥ 3 and γI (T ) = 2 < 3

4n. If
diam(T ) = 3, then T is a double star DSr ,s for 1 ≤ r ≤ s. Hence, n = r + s + 2 ≥ 4.
If r = 1, then γI (T ) = 3 ≤ 3

4n with equality if and only if s = 1 and thus n = 4 and
T = P4 ∈ T . If r ≥ 2, then n ≥ 6 and γI (T ) = 4 < 3

4n. Hence, we may assume that
diam(T ) ≥ 4, for otherwise the desired result follows. Thus, n ≥ 5. Given a subtree T ′
with n′ vertices, where 3 ≤ n′ < n, the induction hypothesis yields a γI -function f ′
of T ′ with weight γI (T ′) = w( f ′) ≤ 3

4n
′. Let P : v1v2 . . . vk (k ≥ 5) be a diametral

path of T such that dT (v2) is as large as possible. We now root the tree T at the vertex
vk . We proceed further with the following two claims. ��
Claim 1 If dT (v2) ≥ 3, then γI (T ) < 3

4n.

Proof Suppose that dT (v2) ≥ 3. Let T ′ be obtained from T by deleting v2 and its leaf
neighbors. Since diam(T ) ≥ 4, we have n′ ≥ 3. Applying the inductive hypothesis
to T ′, we have w( f ′) ≤ 3

4n
′. Define f on V (T ) by f (x) = f ′(x) for x ∈ V (T ′),

f (v2) = 2 and f (x) = 0 for each leaf neighbor x of v2. The resulting function f is
an ID-function on T of weight w( f ) = w( f ′) + 2 ≤ 3

4n
′ + 2 ≤ 3

4 (n − 3) + 2 < 3
4n.��

Claim 2 If dT (v2) = dT (v3) = 2, then γI (T ) < 3
4n.

Proof Suppose that dT (v2) = dT (v3) = 2. Let T ′ be obtained from T by deleting
v1, v2 and v3. Since diam(T ) ≥ 4, we have n′ ≥ 2. If n′ = 2, then T is the path
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4280 T. W. Haynes et al.

P5, and so γI (T ) = γI (P5) = 3 < 3
4n. Hence, we may assume that n′ ≥ 3, for

otherwise the desired result follows. Applying the inductive hypothesis to T ′, we have
w( f ′) ≤ 3

4n
′. Define f on V (T ) by f (x) = f ′(x) for x ∈ V (T ′), f (v2) = 2 and

f (v1) = f (v3) = 0. The resulting function f is an ID-function on T of weight
w( f ) = w( f ′) + 2 ≤ 3

4n
′ + 2 ≤ 3

4 (n − 3) + 2 < 3
4n. ��

By Claim 1 and Claim 2, we may assume that dT (v2) = 2 and dT (v3) ≥ 3, for
otherwise the desired result follows. By the choice of v2, every child of v3 is either a
leaf or a vertex similar to v2, that is, a support vertex of degree 2 with exactly one leaf
neighbor.

Claim 3 If the parent of v3 is a support vertex of degree 2 in T , then γI (T ) < 3
4n.

Proof Suppose that the parent, v4, of v3 is a support vertex of degree 2 in T . Thus, T is
obtained from a star by subdividing t edges, where t ≥ 2. If v3 has no leaf neighbors,
then the function f that assigns the weight 1 to v3 and to every vertex at distance 2
from v3 and the weight 0 to the remaining vertices of T is a ID-function of T of
weight t + 1, implying that

γI (T ) ≤ w( f ) = t + 1 <
3

4
(2t + 1) = 3

4
n.

If v3 has at least one leaf neighbor, then the function f that assigns the weight 2 to
v3, the weight 1 to every vertex at distance 2 from v3 and the weight 0 to the remaining
vertices of T is a ID-function of T of weight t + 2, implying that

γI (T ) ≤ w( f ) = t + 2 <
3

4
(2t + 2) ≤ 3

4
n.

This completes the proof of Claim 3. ��
By Claim 3, we may assume that the parent, v4, of v3 is not a support vertex of

degree 2 in T . Let T ′ be obtained from T by deleting v3 and all its descendants. Thus,
T ′ = T − V (Tv3) and n′ ≥ 3. Applying the inductive hypothesis to T ′, we have
w( f ′) ≤ 3

4n
′. As in the proof of Claim 3, we observe that Tv3 is obtained from a star

by subdividing t ≥ 1 edges.
If v3 has no leaf neighbors, then let f be the ID-function of T defined as follows:

let f (x) = f ′(x) for all x ∈ V (T ′), and let f assign the weight 1 to v3 and to every
grandchild of v3 and the weight 0 to every child of v3. The resulting ID-function of T
has weight w( f ) = w( f ′) + t + 1, implying that

γI (T ) ≤ w( f ) = w( f ′) + t + 1 ≤ 3

4
n′ + t + 1 = 3

4
(n − 2t − 1) + t + 1 <

3

4
n.

Hence, we may assume that v3 has r ≥ 1 leaf neighbors. In this case, let f be the
ID-function of T defined as follows: let f (x) = f ′(x) for all x ∈ V (T ′), and let f
assign the weight 2 to v3, the weight 1 to every grandchild of v3 and the weight 0 to
every child of v3. The resulting ID-function of T has weight w( f ) = w( f ′) + t + 2,
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Graphs with Large Italian Domination Number 4281

implying that

γI (T ) ≤ w( f ) = w( f ′)+t+2 ≤ 3

4
n′+t+2 = 3

4
(n−2t−1−r)+t+2 ≤ 3

4
n. (1)

This establishes the desired upper bound. Suppose that γI (T ) = 3
4n. Thus, we

must have equality throughout the Inequality Chain (1). In particular, this implies
that γI (T ) = w( f ) and w( f ′) = 3

4n
′. Further, t = 1 and r = 1, and so Tv3 is the

path v1v2v3u2 where u2 is the child of v3 different from v2. Applying the inductive
hypothesis to T ′, we have T ′ ∈ T . We note that n′ is a multiple of 4.

Suppose that n′ = 4, and so n = 8 and T ′ is a path P4. If v4 is a leaf of T ′,
then by our choice of the diametral path P , the subtree T ′ is the path v4v5v6v7. The
function that assigns the weight 2 to v3, the weight 1 to v1, v5 and v7, and the weight 0
to the remaining vertices of T is a ID-function of T of weight 5 < 3

4n = γI (T ), a
contradiction. Hence, v4 is a vertex of degree 2 in T ′, implying that T ∈ T , as desired.
Hence, we may assume that n′ ≥ 8.

Let F ′ be the underlying tree of T ′ ∈ T . By our earlier assumptions, γI (T ′) =
w( f ′) = 3

4n
′. By Proposition 10, wemay choose f ′ so that f ′(x) = 2 for every vertex

x ∈ V (F ′), f ′(x) = 0 for every vertex in V (T ′) \ V (F ′) that has a neighbor in F ′,
and f ′(x) = 1 for the remaining vertices of T ′ that are not in F ′ and have no neighbor
in F ′. Let x1x2x3x4 be the copy of P4 in the construction of T ′ that contains v4, where
x2 ∈ V (F ′). Thus, x1 is a leaf neighbor of x2, the vertex x3 is a neighbor of x2 of
degree 2 in T ′ and x4 is a leaf neighbor of x3 in T ′. Since n′ ≥ 8, the vertex x2 has at
least one neighbor, say y2, in F ′. Let X = {x1, x2, x3, x4} and letW = {v1, v2, v3, u2}.

We show that x2 = v4. Suppose, to the contrary, that v4 ∈ {x1, x3, x4}, and so
v4 /∈ V (F ′). Let f ∗ be the ID-function of T defined as follows: let f ∗(x) = f ′(x) for
all x ∈ V (T ′) \ X . If v4 = x1, let f ∗ assign the weight 2 to v3 and x3, the weight 1
to v1, and the weight 0 to remaining vertices in X ∪ W . If v4 = x3, let f ∗ assign the
weight 2 to v3, the weight 1 to v1, x1 and x4, and the weight 0 to remaining vertices in
X ∪W . If v4 = x4, let f ∗ assign the weight 2 to v3 and x2, the weight 1 to v1, and the
weight 0 to remaining vertices in X ∪ W . In all three cases, we note that the resulting
ID-function f ∗ of T has weight

w( f ∗) = (w( f ′) − 3) + 5 = 3

4
n′ + 2 = 3

4
(n − 4) + 2 <

3

4
n = γI (T ),

a contradiction. Hence, x2 = v4, implying that T ∈ T . ��
We are now in a position to present a proof of Theorem 1. Recall its statement.

Theorem 1. If G is a connected graph of order n ≥ 3, then γI (G) ≤ 3
4n with equality

if and only if G ∈ G.

Proof If G ∈ G has order n, then by Proposition 10, γI (G) = 3
4n. To prove the neces-

sity, letG be a connected graph of order n ≥ 3 and let T be an arbitrary spanning tree of
G. Since deleting edges cannot decrease the Italian domination number, Theorem 12
implies that γI (G) ≤ γI (T ) ≤ 3

4n. It remains for us to show that if γI (G) = 3
4n, then

G ∈ G. Suppose that γI (G) = 3
4n, implying that γI (T ) = 3

4n. By Theorem 12, the
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spanning tree T ∈ T . Let F be the underlying tree of T . We note that n = 4k for
some integer k ≥ 1. Let T1, . . . , Tk be the subtrees of T used to build the tree T , as
described in Sect. 4, where each Ti is isomorphic to a path P4. Let Vi = V (Ti ) for
i ∈ [k]. If G[Vi ] is not a path for some i ∈ [k], then it is easy to see that there exists an
ID-function of T of weight less than 3

4n, a contradiction. Hence, G[Vi ] = Ti ∼= P4 for
all i ∈ [k]. If an edge uv ofG joins vertices of Vi and Vj for i �= j such that u /∈ V (F)

or v /∈ V (F), then an ID-function of weight less than 3
4n can be found analogously as

in the last paragraph of the proof of Theorem 12, a contradiction. Hence, if uv is an
edge of G that joins vertices of Vi and Vj for i �= j , then both u and v belong to F ,
implying that G ∈ G. ��

6 Proof of Theorem 2

We remark that although Theorem 6 gives that γI (G) ≤ 2
3n for connected graphs G

of order n and minimum degree at least 2, the extremal graphs are not characterized
in [8]. Toward that end, we present a different proof of the 2

3 -bound here that leads to
the characterizations of the connected graphs achieving equality in the bound. For this
purpose, we present a proof of Theorem 2. We refer to a graph G as an edge-minimal
graph ifG is edge minimal with respect to satisfying the conditions that δ(G) ≥ 2 and
G is connected. Since deleting edges cannot decrease the Italian domination number,
it suffices to first prove the following result for edge-minimal graphs. In what follows,
we define a vertex of a graph G with minimum degree at least two as small if it has
degree 2 in G, and large if it has degree more than 2 in G.

Theorem 13 If G is an edge-minimal graph of order n, then γI (G) ≤ 2
3n with equality

if and only if G ∈ Gmin≥2 .

Proof If G ∈ Gmin≥2 has order n, then by Proposition 11, γI (G) = 2
3n. To prove the

necessity, we proceed by induction on the order n of an edge-minimal graph G of
order n. If n = 3, then G = C3 ∈ Gmin≥2 . If n = 4, then G = C4 and γI (G) = 2 < 2

3n.
If n = 5, then either G = C5 or G = K2,3 or G is the daisy D(3, 3). In all three cases,
γI (G) ≤ 3 < 2

3n. This establishes the base cases. Let n ≥ 6 and suppose that if G ′ is
an edge-minimal graph of order n′ where n′ < n, then γI (G ′) ≤ 2

3n
′ with equality if

and only if G ′ ∈ Gmin≥2 . Let G be an edge-minimal graph of order n.

If G is a cycle or a daisy, then by Observations 1 and 2, γI (G) = � n+1
2 � < 2

3n
noting that here n ≥ 6. Hence, we may assume that G is neither a cycle nor a daisy,
for otherwise the desired result follows. Thus, G contains at least two large vertices.
Let L be set of all large vertices of G, i.e., L = {v ∈ V (G) | dG(v) ≥ 3}. Let |L| = �.
By assumption, � ≥ 2. We proceed further with the following series of claims. ��
Claim 4 If the set L is not an independent set, then γI (G) ≤ 2

3n with equality only if
G ∈ Gmin≥2 .

Proof Suppose that e = v1v2 is an edge of G, where v1, v2 ∈ L. By the edge mini-
mality of G, the edge e is a bridge of G. Let G1 = (V1, E1) and G2 = (V2, E2) be
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the two components of G − e where vi ∈ Vi for i ∈ [2]. For i ∈ [2], let |Vi | = ni ,
and so n = n1 + n2. We note that γI (G) ≤ γI (G1) + γI (G2). For i ∈ [2], the graph
Gi is an edge-minimal graph. Applying the inductive hypothesis to Gi , γI (Gi ) ≤ 2

3ni
with equality if and only if Gi ∈ Gmin≥2 . In particular, γI (G) ≤ 2

3n1 + 2
3n2 = 2

3n. This

establishes the desired upper bound on γI (G).
Suppose, next, that γI (G) = 2

3n. Thus,
2
3n = γI (G) ≤ 2

3n1 + 2
3n2 = 2

3n. Hence,
we must have equality throughout this inequality chain. Thus, γI (Gi ) = 2

3ni for
i ∈ [2], and so Gi ∈ Gmin≥2 . Let Ti be the underlying tree of Gi for i ∈ [2]. If G1 = C3

and G2 = C3, then G ∈ Gmin≥2 , as desired. Hence, we may assume that n1 ≥ 6. If v1
does not belong to the underlying tree T1, then removing the edge joining v1 to its
neighbor in T1 contradicts the edge minimality of G. Hence, v1 ∈ V (T1). If G2 = C3,
then G ∈ Gmin≥2 . If G2 �= C3, then n2 ≥ 6, implying by the edge minimality of G that
v2 ∈ V (T2), and therefore that G ∈ Gmin≥2 . ��

By Claim 4, we may assume that the set L of large vertices is independent, for
otherwise the desired result follows. By our earlier assumptions, � ≥ 2. For k ≥ 3, we
define a k-handle of a graph G as a (k + 1)-cycle with exactly one vertex of degree
at least 3 in G. Further, we define a handle of G to be a k-handle for some k ≥ 3. For
k ≥ 1, we define a k-linkage in G as a path on k + 2 vertices that starts and ends at
distinct large vertices and with k internal vertices of degree 2 in G.

Claim 5 If the graph G contains a k-linkage for some k ≥ 3 or a k-handle for some
k ≥ 5, then γI (G) < 2

3n.

Proof Suppose that G contains a k-linkage L : xv1v2 . . . vk y for some k ≥ 3 that joins
large vertices x and y. By definition, the k internal vertices of L all have degree 2
in G. Let G∗ be the graph of order n′ = n − 3 ≥ 4 obtained from G by deleting
the set of vertices {v1, v2, v3}. If k ≥ 4, let w = v4, while if k = 3, let w = y. If
k ≥ 4, let G ′ = G∗ + xw. If k = 3 and G∗ is connected, let G ′ = G∗. If k = 3
and G∗ is disconnected, let G ′ = G∗ + xw. In all cases, the resulting graph G ′ is
an edge-minimal graph. Applying the inductive hypothesis to G ′, γI (G ′) ≤ 2

3n
′ with

equality if and only if G ′ ∈ Gmin≥2 . Let f ′ be a γI -function of G ′.
Let f be the ID-function of G defined as follows: let f (v) = f ′(v) for all v ∈

V (G ′). If f ′(x) ≥ 1 and f ′(w) ≥ 1, let f (v2) = 1 and f (v1) = f (v3) = 0. If
f ′(x) = f ′(w) = 0, let f (v2) = 2 and f (v1) = f (v3) = 0. If f ′(x) = 0 and
f ′(w) = 1 or f ′(x) = 1 and f ′(w) = 0, let f (v1) = f (v3) = 1 and f (v2) = 0.
If f ′(x) = 0 and f ′(w) = 2, let f (v1) = 2 and f (v2) = f (v3) = 0. If f ′(x) = 2
and f ′(w) = 0, let f (v3) = 2 and f (v1) = f (v2) = 0. In all cases, the resulting
ID-function f of G has weight

w( f ) ≤ w( f ′) + 2 ≤ 2

3
n′ + 2 = 2

3
n. (2)

Suppose that w( f ) = 2
3n. Thus, we must have equality throughout the Inequality

Chain (2). In particular, w( f ′) = 2
3n

′, implying thatG ′ ∈ Gmin≥2 . By Proposition 11, the
γI -function f ′ of G ′ can be chosen so that f (x) = f (w) = 1. In this case, f (v2) = 1
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and f (v1) = f (v3) = 0, implying that γI (G) ≤ w( f ) = w( f ′) + 1 = 2
3n − 1.

Hence, if G contains a k-linkage for some k ≥ 3, then γI (G) < 2
3n. If G contains

a k-handle xv1v2 . . . vk x for some k ≥ 5 and we let w = v4 and let G ′ be the graph
obtained from G by deleting the set of vertices {v1, v2, v3} and adding the edge xw,
then identical arguments as in the previous case when G contains a k-linkage show
that γI (G) < 2

3n. ��
ByClaim 5,wemay assume that the graphG contains no k-linkagewhere k ≥ 3 and

no k-handle where k ≥ 5, for otherwise the desired result follows. We now consider
the graph F = G − L. By our earlier assumptions, F is a linear forest and every
component of F is a path of order 1, 2, 3 or 4. Further, every component of F is joined
by exactly two edges to vertices of L in G. Let S be a set of all small vertices (of
degree 2) in G, and let |S| = s. We note that F = G[S]. Let si be the number of
components in F of order i for i ∈ [4]. Thus, n = � + s = � + s1 + 2s2 + 3s3 + 4s4.
Let f be the ID-function of G defined as follows. Let f assign the weight 1 to every
vertex of L, the weight 1 to every vertex of S that has no neighbor in L, the weight 1
to exactly one vertex from every component of F of order 2, and the weight 0 to the
remaining vertices of G. Thus, γI (G) < 2

3n holds if the following is true:

w( f ) < 2
3n

⇔ � + s2 + s3 + 2s4 < 2
3 (� + s1 + 2s2 + 3s3 + 4s4)

⇔ � < 2s1 + s2 + 3s3 + 2s4.

Counting the edges [L,S] between L and S, we note that 3� ≤ |[L,S]| = 2(s1
+ s2 + s3 + s4), and so

� ≤ 2

3
(s1 + s2 + s3 + s4) < 2s1 + s2 + 3s3 + 2s4.

Therefore, γI (G) < 2
3n holds. This completes the proof of Theorem 13. ��

We are now in a position to present a proof of Theorem 2. Recall its statement.
Theorem 2. If G is a connected graph of order n with δ(G) ≥ 2, then γI (G) ≤ 2

3n
with equality if and only if G ∈ G≥2.

Proof If G ∈ G≥2 has order n, then by Proposition 11(a), γI (G) = 2
3n. To prove the

necessity, let G be a connected graph of order n with δ(G) ≥ 2. Let G ′ be an arbitrary
spanning graph of G obtained by deleting edges, if necessary, until the resulting graph
is an edge-minimal graph (with respect to satisfying the conditions minimum degree
at least 2 and the graph being connected). By Theorem 13, γI (G ′) ≤ 2

3n with equality
if and only if G ′ ∈ Gmin≥2 . Since deleting edges cannot decrease the Italian domination

number, we note that γI (G) ≤ γI (G ′) ≤ 2
3n. This establishes the desired upper bound.

Suppose that γI (G) = 2
3n, implying that γI (G ′) = 2

3n and G ′ ∈ Gmin≥2 . If G = G ′,
then the desired result follows. Hence, we may assume that G ′ is a proper subgraph
of G, implying that n = 3k for some k ≥ 2. Thus, G ′ has k core triangles, and so kK3
is a spanning subgraph of G ′. Let T be the underlying tree of G ′.
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Suppose that two core triangles of G ′ are joined by two or more edges. Let H be
the subgraph of G induced by the vertices of these two triangles. We note that H
contains a vertex of degree 4 or 5 or H contains a 6-cycle as a subgraph. In both cases,
γI (H) ≤ 3, implying that γI (G) ≤ γI (H)+(k−2)γI (K3) ≤ 3+2(k−2) < 2k = 2

3n,
a contradiction. Hence, two (distinct) core triangles of G ′ are joined by at most one
edge in G.

Let e = xy be an arbitrary edge in G that was deleted when constructing G ′. We
show that both x and y belong to the underlying tree T ofG ′. Suppose, to the contrary,
that x /∈ V (T ′). Let Gx and Gy be the core triangles in G ′ that contain x and y,
respectively. By our earlier observations, the edge e is the only edge joining Gx and
Gy . Let x ′ be the vertex of Gx that belongs to T , and let w be a neighbor of x ′ in T .
Further, let Gw be the core triangle in G ′ that contains w. Let F be the subgraph of G
induced by the vertices of these three core triangles, Gw, Gx and Gy . We note that F
contains a path P9 as a subgraph, implying that γI (G) ≤ γI (F) + (k − 3)γI (K3) ≤
5+2(k−3) < 2k = 2

3n, a contradiction. Hence, both x and y belong to the underlying
tree T of G ′. Since e = xy be an arbitrary edge in G, this implies that every edge of
E(G) \ E(G ′) joins two vertices of T and, therefore, G ∈ G≥2. ��

7 Nordhaus–Gaddum-Type Bounds

In this section, we establish Nordhaus–Gaddum-type results for the Italian domination
number. Recall the statement of Theorem 3.
Theorem 3. If G is a graph of order n ≥ 3, then

5 ≤ γI (G) + γI (G) ≤ n + 2,

and these bounds are tight. Further if γI (G) ≤ γI (G), then γI (G) + γI (G) = 5 if
and only if there exists a vertex in G of degree n − 1 with a neighbor of degree 1 in G
or with two adjacent neighbors of degree 2 in G.

Proof If G is the cycle C5 of order 5, then G is also the cycle C5 of order 5, and we
observe that γI (G) + γI (G) = 3 + 3 = 6 = n + 1. If G = n

2K2, then Propositions 8
and 9 imply γI (G)+ γI (G) = n + 2. Using these observations, the fact that γI (G) ≤
γR(G) andTheorem7,weobtain the desired upper bound. IfG is a graphof ordern ≥ 3
with�(G) ≤ 1, thenwe deduce fromPropositions 8 and 9 that γI (G)+γI (G) = n+2.
Therefore, the upper bound in Theorem 3 is sharp.

For the lower bound assume, without loss of generality, that γI (G) ≤ γI (G). If
γI (G) ≥ 3, then γI (G) + γI (G) ≥ 6. Thus, let now γI (G) = 2. Then �(G) = n − 1
or there exist two different vertices u and v such that N (u) ∩ N (v) = V (G) \ {u, v}
by Proposition 9. Therefore, G has a component of order 1 or a component of order 2.
Since n ≥ 3, this implies γI (G) ≥ 3, and so γI (G) + γI (G) ≥ 5.

Next, we characterize the graphs G of order n ≥ 3 with γI (G) + γI (G) = 5.
Assume, without loss of generality, that γI (G) ≤ γI (G). Suppose that there exists
a vertex w in G of degree n − 1. By Proposition 9, we note that γI (G) = 2. If the
vertex w has a neighbor x of degree 1 in G, then let f be the ID-function of G that

123



4286 T. W. Haynes et al.

assigns the weight 1 tow, the weight 2 to x , and the weight 0 to the remaining vertices
of G. If the vertex w has two adjacent neighbors u and v of degree 2 in G, then let
f be the ID-function of G that assigns the weight 1 to each of u, v and w, and the
weight 0 to the remaining vertices of G. In both cases, γI (G) ≤ w( f ) = 3, implying
that γI (G) + γI (G) ≤ 5. As shown earlier, γI (G) + γI (G) ≥ 5. Consequently,
γI (G) + γI (G) = 5.

Conversely, suppose that γI (G) + γI (G) = 5. Since γI (G) ≤ γI (G), it follows
that γI (G) = 2 and γI (G) = 3. Suppose that �(G) < n − 1. By Proposition 9,
there exist two different vertices y and z such that N (y) ∩ N (z) = V (G) \ {y, z}. By
supposition, y and z are not adjacent. If n = 3, then the common neighbor of y and z
has degree n − 1, a contradiction. Hence, n ≥ 4. Since the vertices y and z belong to
a component of order 2 in G, we note that γI (G) = 2+ γI (G − {y, z}) ≥ 2+ 2 = 4,
a contradiction. Hence, �(G) = n − 1. Let w be a vertex of degree n − 1 in G. Let
f be a γI -function of G. Let H = G − w and note that H has order n − 1. Since w

is isolated in G, we note that f (w) = 1, implying that γI (H) = 2. If �(H) = n − 2,
then there is a vertex x of degree n − 2 in H . Such a vertex x is a neighbor of w

of degree 1 in G. If �(H) < n − 2, then by Proposition 9, there exist two different
vertices u and v such that NH (u) ∩ NH (v) = V (H) \ {u, v}. Such vertices u and v

are adjacent neighbors of degree 2 in G that have w as their common neighbor. ��
We prove next Theorem 4. Recall its statement.

Theorem 4. If G is a graph of order n ≥ 16 and having no component with fewer
than three vertices, then γI (G) + γI (G) ≤ n − 1.

Proof Let G be a graph of order n ≥ 16 and having no component with fewer than
three vertices. First, assume that δ(G) = 1, and let x be a vertex of degree 1 and y
be its neighbor in G. The function f that assigns the weight 2 to x , the weight 1 to
y, and the weight 0 to the remaining vertices of G is an ID-function of G, implying
that γI (G) ≤ w( f ) = 3. By Theorem 6, each component of G has Italian domination
number at most three-fourths its order, and so γI (G) ≤ 3

4n. Hence, γI (G)+ γI (G) ≤
3
4n + 3 ≤ n − 1 since n ≥ 16.

Thus, we may assume that δ(G) ≥ 2 and δ(G) ≥ 2, for otherwise the desired result
holds. By Theorem 6, γI (G) ≤ 2

3n. If G is disconnected or diam(G) ≥ 3, then two
vertices at distance 3 or more apart in G form a dominating set in G. In this case,
the function f that assigns the weight 2 to these two vertices and the weight 0 to the
remaining vertices of G is an ID-function of G, implying that γI (G) ≤ w( f ) = 4.
Hence, γI (G) + γI (G) ≤ 2

3n + 4 < n − 1 since n ≥ 16. Thus, we may assume
that diam(G) = diam(G) = 2, for otherwise, the result holds. Let v be a vertex of
minimum degree δ(G) in G. Since diam(G) = 2, every vertex in V (G) \ N [v] has at
least one neighbor in N (v).

If δ(G) = 2, then the function f that assigns theweight 2 to the vertexv, theweight 1
to the two neighbors of v in G, and the weight 0 to the remaining vertices of G is an
ID-function of G, implying that γI (G) ≤ w( f ) = 4 and again, γI (G) + γI (G) ≤
2
3n + 4 ≤ n − 1. Similarly, the result holds if δ(G) = 2.

Thus, we may assume that δ(G) ≥ 3 and δ(G) ≥ 3. By Theorem 6, γI (G) ≤ 1
2n

and γI (G) ≤ 1
2n. If some vertex u ∈ V (G) \ N [v] has exactly one neighbor, say x , in
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N (v), then the function f that assigns the weight 2 to both u and v, the weight 1 to x ,
and the weight 0 to the remaining vertices of G is an ID-function of G, implying that
γI (G) ≤ w( f ) = 5. Hence, γI (G) + γI (G) ≤ 1

2n + 5 < n − 1 since n ≥ 16. The
analogous result holds if such a vertex exists in G.

Thus, we may assume that every vertex in V (G) \ N [v] has at least two neighbors
in N (v). The function f that assigns the weight 1 to every vertex in NG(v) and
the weight 0 to the remaining vertices of G is an ID-function of G, implying that
γI (G) ≤ w( f ) = δ(G). Similarly, γI (G) ≤ δ(G). Hence, γI (G) + γI (G) ≤ δ(G)

+ δ(G) = δ(G) + n − �(G) − 1 ≤ n − 1. ��
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