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Abstract
We obtain a modified version of the Spanne–Peetre inequality in the context ofMorrey
spaces with mixed norm. The geometric structure of the mixed Morrey spaces under
consideration, dictates the new definition of Morrey–Lipschitz space. The Spanne–
Peetre inequality that we find ensures that if a function belongs to a suitable Morrey
space with mixed norm, then the modified integral operator which characterizes the
Spanne–Peetre inequality, belongs to a suitable Morrey–Lipschitz space.
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1 Introduction

The study of the integral operators is a fundamental aspect of harmonic analysis in
view of its applications to the theory of applied partial differential equations (see,
for instance, [15,30,35]). The basic aspects of the theory have been performed on the
Lebesgue spaces and are deeply treated in [32].

Besides the well-known L p-theory, in the last decades, a lot of studies have been
made on Lebesgue spaces with variable exponents, mixed norm Lebesgue spaces and
Morrey-type spaces that, roughly speaking, represent a refinement of the classical
L p-spaces.

Nowadays, it is usual to discuss on Morrey-type spaces because, in addition to the
definition presented byMorrey in [22], were investigated other function spaces whose
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structure is very close to the one of Morrey spaces. For example, Mizuhara in [21]
introduced the generalized Morrey spaces, and later this definition was modified in
several ways in order to obtain other functional Morrey classes that are substantially
different from the other ones. Although it is impossible to be exhaustive, we mention
the generalized (local) Morrey spaces [5,11], modified local generalized Morrey-type
spaces ([12] and the references therein), Morrey spaces related to nonnegative poten-
tials that arise from the study of Schrödinger-type equations ([2,8,9] and the references
therein), vanishing Morrey spaces [33], and mixed Morrey spaces [23,24,26,27].

Many authors study strong and weak boundedness problems for some classical
and also non-standard integral operators on Morrey-type spaces. For instance, a lot
of studies deal with boundedness properties of maximal function, fractional maximal
function, Riesz potential, Calderón–Zygmund singular integral operators and commu-
tators between integral operators and locally integrable functions [28]. On the other
hand, there is an increasing interest in the study of integral operatorswith rough kernels
(see, for instance, [6,7,10] and the references therein). This new direction, weaken-
ing some key assumptions that arise in the classical theory, constitutes a challenging
aspect of some recent studies in Harmonic Analysis.

The study contained in this note is placed in the fruitful framework of Morrey-type
spaces, and precisely, we will work on mixed Morrey spaces (for the definition, we
refer the reader to the next section), in which we derive the modified Spanne–Peetre
inequality.

We emphasize that in the last decades several studies have been performed in the
context of function spaceswithmixed norm.Barza et al. [3] prove embeddings between
all the classical, multidimensional and mixed norm Lorentz spaces. Karapetyants and
Samko [17] present a new general approach to the definition of a class of mixed norm
spaces of analytic functions, and in [18–20], the authors study Bergman-type spaces
on the unit disk with mixed norm.

The paper is organized as follows. After this Introduction, in Sect. 2, we collect
some basic definitions and we recall some results. Section 3 is devoted to the main
result, i.e., the proof of the modified Spanne–Peetre inequality.

Throughout this paper, we adopt the following notation: R
n denotes the n-

dimensional Euclidean space, and for a set E ⊆ R
n , we denote its Lebesgue

measure by |E |, χE denotes the characteristic function of E , B = B(x0, R) =
{x ∈ R

n : |x − x0| < R} denotes an open ball centered at x0, and with radius R,
λB = {x ∈ R

n : |x − x0| < λR} for any λ > 0, Bc = R
n \ B, we write A � B

to mean that there exists a constant C > 0 such that A ≤ C B and p′ denotes the
conjugate exponent of p, that is 1

p + 1
p′ = 1 and, formally, if p = ∞ then p′ = 1 and

vice versa.

2 Mathematical Background

Let f be a real-valued measurable function on R
n , n ≥ 1, and let 0 < α < n. The

fractional integral or Riesz potential of f of order α is defined as follows:
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Iα f (x) =
∫
Rn

f (y)

|x − y|n−α
dy, x ∈ R

n

provided the integral above exists.
The mapping defined by

Iα : f �→ Iα f ,

that is, the convolution operator with kernel |x |α−n , is called the fractional integral
operator of order α.

The caseα = 1plays an important role because it dealswith some subrepresentation
formulas that allow the study of the behavior of Lq norms of Iα f when f ∈ L p [34].
Moreover, when n > 1, by combining the subrepresentation formulas above with
norm estimates for Iα f , it is possible to bound Lq(B) norms of f − fB ( fB stands
for the integral average of f over the sphere B) by L p(B) norms of |∇ f | for suitable
values of p and q. The inequalities obtained are called Poincaré-Sobolev estimates.
On the other hand, the theory for general α, with 0 < α < n, was extensively studied
by a lot of authors and attracts a lot of researchers nowadays.

The next well-known theorem states that Iα is a bounded operator from L p(Rn) to
Lq(Rn). As usual, we use the notation ‖ f ‖p for the L p(Rn) norm of f , 1 ≤ p ≤ ∞.

Theorem 1 (Hardy–Littlewood, Sobolev, [34]) Let

0 < α < n, 1 ≤ p <
n

α
and

1

q
= 1

p
− α

n
.

Then, for every f ∈ L p(Rn), Iα exists a.e. and is measurable in R
n. Moreover,

1. if 1 < p < n
α

, then

‖Iα f ‖q ≤ c‖ f ‖p

for a constant c that depends only on α, n and p.
2. if p = 1, then

sup
λ>0

λ
∣∣{x ∈ R

n : |Iα f (x)| > λ}∣∣ 1
q ≤ c‖ f ‖1,

(
q = n

n − α

)
,

for a constant c that depends only on α and n.

Hardy and Littlewood considered the case n = 1 [13,14] and Sobolev the case
n > 1 [29]. When p > 1, Thorin obtained estimates [31], and the case p = 1 was
studied by Zygmund [36].

It is possible to obtain some estimates in the case p = n
α
. Precisely, in [34] are

shown some variants of Theorem 1 for the case p = n
α
either by restricting Iα to

the subspace of compactly supported f ∈ Lnα(Rn) or modifying the definition of Iα
for general f ∈ Lnα(Rn). These results have been extensively studied and are often
called Trudinger estimates or Moser–Trudinger-type estimates.
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4200 A. Scapellato

However, the norm inequality

‖Iα f ‖q ≤ c‖ f ‖p, ∀ f ∈ L p(Rn) (1)

for some constant c independent of f , holds only for 1 < p < n
α
and 1

q = 1
p − α

n .

We refer the reader to [34] for some comments and examples that explain why the
restriction on p and q mentioned above are necessary for the validity of (1).

In the previous discussion, we have collected some basic results related to the
L p-theory.

Morrey spaces have been introduced by Morrey in 1938 in his work on systems
of second-order elliptic partial differential equations [22]. Morrey spaces constitute
a very useful family of spaces in the study of the regularity of solutions to various
partial differential equations.

Definition 1 ([22]) Let � ⊂ R
n be a bounded domain with diameter 0 < diam� <

∞. For 1 ≤ p < ∞ and λ ≥ 0, the Morrey space L p,λ(�) is the subspace of L p(�)

defined as

L p,λ(�) = {
u ∈ L p(�) : ‖u‖L p,λ(�) < ∞}

,

where

‖u‖L p,λ(�) =
⎛
⎜⎝ sup

x∈�
0<ρ≤diam�

ρ−λ

∫
�∩B(x,r)

|u(y)|p dy

⎞
⎟⎠

1
p

. (2)

Using standard arguments, it is easy to see that the quantity defined by (2) defines
a norm on L p,λ and that the resulting normed space is complete, that is, it is a Banach
space.

With obvious modification, Definition 2 works also if � = R
n .

In [1], the author extends Theorem 1 to Morrey spaces.

Theorem 2 (Adams inequality) Let 0 < α < n, 0 ≤ λ < 1, 1 < p < n
α
(1 − λ). If

1
q = 1

p − α
n(1−λ)

, then there exists a constant C > 0 such that

‖Iα f ‖Lq,λ(Rn) � ‖ f ‖L p,λ(Rn).

Now we introduce the definition of mixed Morrey space. (We refer the reader to
[26,27] for further details.)

Definition 2 Let � ⊂ R
n be a bounded domain with diameter 0 < diam� < ∞,

1 < p, q < +∞, 0 < λ < n, 0 < μ < 1 and fix T > 0. We define the set
Lq,μ(0, T , L p,λ(�)) as the class of functions u : � × (0, T ) → R such that
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‖u‖Lq,μ(0,T ,L p,λ(�))

:=

⎛
⎜⎜⎝ sup

t0∈(0,T )

ρ>0

1

ρμ

∫

(0,T )∩(t0−ρ,t0+ρ)

⎛
⎜⎝sup

x∈�
ρ>0

1

ρλ

∫

�∩B(x,ρ)

|u(y, t)|p dy

⎞
⎟⎠

q
p

dt

⎞
⎟⎟⎠

1
q

,

is finite.

The same definition holds if � = R
n .

In [26], the authors obtained the Adams inequality in the context of Morrey spaces
with mixed norm, considering for a fixed T > 0 and 0 < α < n, the following
fractional integral operator of order α

Iα f (x, t) =
∫

Rn

f (y, t)

|x − y|n−α
dy, a.e. in Rn, for t ∈ (0, T ).

Theorem 3 Let 0 < α < n, 1 < p < n
α

, 0 < λ < n − α p, 1
q = 1

p − α
n−λ

,

1 < q ′ < +∞, 0 < μ′ < 1 and f ∈ Lq ′,μ′
(0, T , L p,λ(Rn)). Then,

‖Iα f ‖Lq′,μ′
(0,T ,Lq,λ(Rn))

≤ C ‖ f ‖Lq′,μ′
(0,T ,L p,λ(Rn))

.

The results contained in [26,27] are extensions of the classical boundedness results
of some standard integral operators.

The classicalAdams inequality holds for a precise range of values of p. If p ≥ n
α
(1−

λ), Spanne and Peetre [25] obtained a modified version of the Adams inequality—the
Spanne–Peetre inequality—in which appears a new version of the classical Riesz
potential in place of Iα and plays an important role the Lipschitz space that we define
below.

Precisely, let 0 < α < n. We define the modified integral operator Ĩα as

Ĩα f (x, t) =
∫
Rn

(
1

|x − y|n−α
− 1

|y|n−α
χ{|y|≥1}(y)

)
f (y, t) dy, t ∈ (0, T ).

In order to obtain a norm inequality for Ĩα—that is, a Spanne–Peetre inequality—,
as announced before, we need of suitable additional function spaces. We start with the
classical definitions of Lipschitz and BMO spaces.

Definition 3 (Lipschitz and BMO spaces) Let 0 ≤ ε < 1. We set

Lipε(R
n) = {u ∈ L1

loc(R
n) : ‖u‖Lipε(R

n) < ∞},

where

‖u‖Lipε(R
n) = sup

B⊆Rn
inf
c∈C

1

|B|1+ ε
n

∫
B

| f (x) − c| dx,
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4202 A. Scapellato

being B a ball in Rn . Furthermore, we set B M O(Rn) = Lip0(R
n).

B M O stands for bounded mean oscillation. This class was defined by John and
Nirenberg [16] in 1961.

Following [4] and taking into account the anisotropic structure of the mixedMorrey
spaces, we can construct a more suitable version of the spaces mentioned in Definition
3.

Definition 4 (Morrey–Lipschitz and Morrey-BMO spaces) Let 0 ≤ ε < 1, 1 < q <

∞, 0 < μ < 1 and fix T > 0. We define the set Lq,μ(0, T ,Lipε(R
n)) as the class of

functions u : � × (0, T ) → R such that

‖u‖Lq,μ(0,T ,Lipε(R
n)) =

⎛
⎜⎜⎝ sup

t0∈(0,T )

ρ>0

1

ρμ

∫
(0,T )∩(t0−ρ,t0+ρ)

‖ f (·, t)‖q
Lipε(R

n) dt

⎞
⎟⎟⎠

1
q

.

Furthermore, we set Lq,μ(0, T , B M O(Rn)) = Lq,μ(0, T ,Lip0(R
n)).

3 Main Result

Theorem 4 (Modified Spanne–Peetre inequality) Let 0 < α < n, 0 < λ,μ < 1,
n
α
(1 − λ) ≤ p < n

α
, 1

q = 1
p − α

n , f ∈ Lq,μ(0, T , L p,λ(Rn)). Then the following
inequality holds:

‖ Ĩα f ‖Lq,μ(0,T ,Lipε(R
n)) � ‖ f ‖Lq,μ(0,T ,L p,λ(Rn))

where 0 < ε = α − n
p (1 − λ) < 1. In particular, if p = n

α
(1 − λ), we have

‖ Ĩα f ‖Lq,μ(0,T ,B M O(Rn)) � ‖ f ‖Lq,μ(0,T ,L p,λ(Rn)).

Proof For every x0 ∈ R
n and r > 0, let B = B(x0, r) the sphere with center x0 and

radius r . The following decomposition of f holds:

f (x, t) = f (x, t)χ2B(x) + f (x, t)χ(2B)c (x)

≡ f0(x, t) + f∞(x, t), ∀x ∈ R
n, t ∈ (0, T ).

Moreover, we set

c0 = −
∫

|y|≥1

f0(y, t)

|y|n−α
dy, c1 = Ĩα( f∞)(x0, t), c = c0 + c1.
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For any x ∈ R
n and t ∈ (0, T ), we have the following pointwise inequality:

| Ĩα f (x, t) − c| ≤ |Iα f0(x, t)|
+

∫
Rn

∣∣∣∣ 1

|x − y|n−α
− 1

|x0 − y|n−α

∣∣∣∣ | f∞(y, t)| dy ≡ I + I I .

First we estimate I . For any t ∈ (0, T ), we have:

∫
B

I dx =
∫

B
|Iα f0(x, t)| dx

≤
(∫

B
|Iα f0(x, t)|q dx

) 1
q

(∫
B
1 dx

) 1
q′

�
(∫

2B
| f (x, t)|p dx

) 1
p
(∫

B
1 dx

) 1
q′

=
(∫

2B
| f (x, t)|p dx

) 1
p |B| 1

q′

� ‖ f (·, t)‖L p,λ(Rn)|B| 1
q′ |B| λ

p

= ‖ f (·, t)‖L p,λ(Rn)|B|1+ ε
n .

Next we estimate I I . Let x ∈ B. Then, for any t ∈ (0, T ), we have:

I I �
∞∑
j=1

∫
2 j r≤|x0−y|<2 j+1

|x − x0|
|x0 − y|n−α+1 | f (y, t)| dy

�
∞∑
j=1

r

(2 j r)n−α+1

∫
2 j+1B

| f (y, t)| dy

�
∞∑
j=1

r

(2 j r)n−α+1

(∫
2 j+1B

| f (y, t)|p dy

) 1
p
(∫

2 j+1B
1 dy

) 1
p′

�
∞∑
j=1

r

(2 j r)n−α+1

(
1

|2 j+1B|λ
∫
2 j+1B

| f (y, t)|p dy

) 1
p · |2 j+1B| λ

p · |2 j+1B| 1
p′

�
∞∑
j=0

r

(2 j r)n−α+1 ‖ f (·, t)‖L p,λ(Rn)|2 j+1B| λ
p + 1

p′ ·

·
(

1

|2 j+1B|
∫
2 j+1B

1 dy

) λ
p ·

(
1

|2 j+1B|
∫
2 j+1B

1 dy

) 1
p′

� ‖ f (·, t)‖L p,λ(Rn)|B| α
n −1+ λ

p +1− 1
p

∞∑
j=1

2
− jn

(
1− α

n + 1
n − λ

p −1+ 1
p

)

� |B| ε
n ‖ f (·, t)‖L p,λ(Rn),
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4204 A. Scapellato

since −α
n + 1

n − λ
p + 1

p > 0. Thus we have

‖ Ĩα f ‖Lipε(R
n) � sup

B⊆Rn

1

|B|1+ ε
n

∫
B

| Ĩα − c| dx

� sup
B⊆Rn

1

|B|1+ ε
n

(∫
B

I dx +
∫

B
I I dx

)

� ‖ f (·, t)‖L p,λ(Rn).

From this inequality, it follows that

‖ Ĩα f (·, t)‖q
Lipε(R

n)
� ‖ f (·, t)‖q

L p,λ(Rn)
.

Now, integrating both sides on (0, T ) ∩ (t0 − ρ, t0 + ρ) and multiplying by 1
ρμ , we

obtain

1

ρμ

∫
(0,T )∩(t0−ρ,t0+ρ)

‖ Ĩα f (·, t)‖q
Lipε(R

n) dt

� 1

ρμ

∫
(0,T )∩(t0−ρ,t0+ρ)

‖ f (·, t)‖q
L p,λ(Rn)

dt .

Then, taking the supremum for t0 ∈ (0, T ) and ρ > 0 and elevating both sides to 1
q ,

we have

⎛
⎜⎜⎝ sup

t0∈(0,T )

ρ>0

1

ρμ

∫
(0,T )∩(t0−ρ,t0+ρ)

‖ Ĩα f (·, t)‖q
Lipε(R

n)
dt

⎞
⎟⎟⎠

1
q

�

�

⎛
⎜⎜⎝ sup

t0∈(0,T )

ρ>0

1

ρμ

∫
(0,T )∩(t0−ρ,t0+ρ)

‖ f (·, t)‖q
L p,λ(Rn)

dt

⎞
⎟⎟⎠

1
q

.

Then the theorem is proved. ��
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