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Abstract
In this paper, we mainly discuss the constructions of some new K -g-frames which
differ from the existing methods. Meanwhile, we use the relation between a positive
operator and the frame operator of a K -g-frame to yield a new K -g-frame. We also
obtain a necessary and sufficient condition to generate a new K -g-frame. In addition,
we correct some recent results which were obtained by Huang and Leng. In the end,
we give an equivalent characterization to construct some new tight K -g-frames by
two given g-Bessel sequences. Our results generalize and improve some remarkable
results.
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1 Introduction

A frame as a generalization of an orthonormal basis, appeared first in the late 1940s
and early 1950s, provides us with a powerful theoretical tool because of its redun-
dancy and flexibility. Now a frame plays an important role in sampling theory [1],
compressed sensing [2] and a number of other fields. We refer the readers to [3–5] for
an introduction to frame theory and its applications. In [6], Sun proposed the notion
of g-frame, which generalized the concept of frame extensively. We know that though
many basic properties of g-frame can be shared with frame, not all the properties
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between them are same. For example, an exact frame is equivalent to a Riesz basis,
but an exact g-frame is not equivalent to a g-Riesz basis. We refer the reader to the
papers [6–11] for more information about g-frames.

Being an extension of frame, the concept of K -frame was introduced by Găvruţa
[12], which allows an atomic decomposition of elements in the range of K . In fact,
a K -frame is a more general version of frame. There are many differences between
a K -frame and a frame. For instance, the sequence { f j } j∈J is a frame for H if and
only if { f j } j∈J is a Bessel sequence for H and the corresponding synthesis operator
is surjective, but the sequence { f j } j∈J is a K -frame for H if and only if { f j } j∈J is a
Bessel sequence forH and the range of K is involved in the range of the corresponding
synthesis operator. For more details on K -frames, see references in [12–18].

Recently, Xiao et al. [19] put forward the notion of K -g-frame, which is more
general than g-frame and K -frame in Hilbert spaces. Naturally, K -g-frame attracts
many scholars’ attention. Now it has been a hot topic to make full use of various
conditions to construct a new K -g-frame (see [20–23]). Hua and others gave several
methods to generate tight K -g-frames and tight g-frames (see [24]). For more details
on K -g-frame, readers can consult [19–24].

In this paper, we first construct a K -g-frame from a given K -g-frame and a g-Bessel
sequence. Next, we adopt a novel way to generate a new K -g-frame from two existing
K -g-frames. We also give a necessary and sufficient condition to yield a K -g-frame.
Finally,we give an equivalent characterization of constructing tight K -g-frames by two
given g-Bessel sequences. We correct the results of Theorem 3.4 and Corollary 3.17
in [21] and Theorem 3.10 in [22]. We also generalize and improve some remarkable
results.

Throughout this paper, we will adopt such notations.H is a separable Hilbert space,
and IH is the identity operator forH.C is the set of all complex numbers. B(H1,H2) is
a collection of all bounded linear operators fromH1 toH2 , whereH1,H2 are Hilbert
spaces, and if H1=H2=H, B(H1,H2) is denoted by B(H). Let K ∈ B(H) and
K �= 0, the range and the kernel of K are denoted by R(K ) and N (K ), respectively.
{V j } j∈J is a sequence of closed subspaces ofH, where J is a finite or countable index
set. �2({V j } j∈J ) is defined by

�2({V j } j∈J ) =
⎧
⎨

⎩
{g j } j∈J : g j ∈ V j , j ∈ J ,

∑

j∈J

‖g j‖2 < +∞
⎫
⎬

⎭

with the inner product

〈{ f j } j∈J , {g j } j∈J 〉 =
∑

j∈J

〈 f j , g j 〉.

It is trivial that �2({V j } j∈J ) is a Hilbert space.
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Definition 1.1 A sequence {� j : � j ∈ B(H,V j )} j∈J is called a g-frame for H with
respect to {V j } j∈J if there exist two positive constants A and B such that

A‖ f ‖2 ≤
∑

j∈J

‖� j f ‖2 ≤ B‖ f ‖2, (∀ f ∈ H). (1.1)

The constants A and B are called the lower and upper g-frame bounds, respectively.
If only the only right inequality of (1.1) holds, {� j } j∈J is called a g-Bessel sequence
forH with respect to {V j } j∈J with bound B.

If {� j } j∈J is a g-Bessel sequence for H with respect to {V j } j∈J , we may define
the bounded linear operator T� by

T� : �2({V j } j∈J ) → H : T�({g j } j∈J ) =
∑

j∈J

�∗
j g j , {g j } j∈J ∈ �2({V j } j∈J .

T� is called the synthesis operator. The adjoint operator T ∗
� is given as follows:

T ∗
� f : H → �2({V j } j∈J ) : T ∗

� f = {� j f } j∈J , f ∈ H.

T ∗
� is called the analysis operator. The operator given by

S� : H → H : S� f =
∑

j∈J

�∗
j� j f , f ∈ H

is called the g-frame operator.

Definition 1.2 Let K ∈ B(H). A sequence { f j } j∈J ⊂ H is called a K -frame forH if
there exist two positive constants A and B such that

A‖K ∗ f ‖2 ≤
∑

j∈J

|〈 f , f j 〉|2 ≤ B‖ f ‖2, (∀ f ∈ H).

The constants A and B are called the lower and upper K -frame bounds, respectively.

Definition 1.3 ([19]) Let K ∈ B(H). A sequence {� j : � j ∈ B(H,V j )} j∈J is called
a K -g-frame forH with respect to {V j } j∈J if there exist two positive constants A and
B such that

A‖K ∗ f ‖2 ≤
∑

j∈J

‖� j f ‖2 ≤ B‖ f ‖2, (∀ f ∈ H).

The constants A and B are called the lower and upper K -g-frame bounds, respectively.
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Definition 1.4 ([24]) Let K ∈ B(H). A sequence {� j : � j ∈ B(H,V j )} j∈J is called
a tight K -g-frame for H with respect to {V j } j∈J , if there exists a positive constant A
such that

A‖K ∗ f ‖2 =
∑

j∈J

‖� j f ‖2, (∀ f ∈ H).

In order to obtain our main results, we need the following lemmas.

Lemma 1.5 Let H1 and H2 be two Hilbert spaces, and suppose that U : H1 → H2
is a bounded linear operator with closed range R(U ). Then, there exists a unique
bounded operator U+ : H2 → H1 satisfying

NU+ = R(U )⊥, R(U+) = N⊥
U , UU+ f = f , (∀ f ∈ R(U )).

The operator U+ is called the pseudo-inverse operator of U.

Lemma 1.6 ([13]) Suppose that U ∈ B(H1,H2) is an operator with closed range,
then

‖U+‖−1‖ f ‖ ≤ ‖U∗ f ‖ ≤ ‖U‖‖ f ‖, (∀ f ∈ R(U )).

Lemma 1.7 ([19])The sequence {� j } j∈J is a K -g-frame forHwith respect to {V j } j∈J

if and only if the synthesis operator T� is well defined and bounded, and R(K ) ⊂
R(T�).

Lemma 1.8 ([24]) Let {� j } j∈J be a g-Bessel sequence forH with respect to {V j } j∈J .
Then, {� j } j∈J is a tight K -g-frame forH with respect to {V j } j∈J , if and only if there
exists a positive constant A such that S� = AK K ∗, where S� is the g-frame operator
for {� j } j∈J .

Lemma 1.9 Let {� j } j∈J and {� j } j∈J be g-Bessel sequences for H1 with respect to
{V j } j∈J . If U1,U2 ∈ B(H1,H2), then {� jU∗

1 + � jU∗
2 } j∈J is a g-Bessel sequence

forH2 with respect to {V j } j∈J with bound (
√
B1‖U1‖ + √

B2‖U2‖)2.
The proof is easy, we omit it. Later, we will need the following important result

from operator theory:

Theorem 1.10 (Douglas’s theorem [25]) Let U1 ∈ B(H1,H), U2 ∈ B(H2,H). Then,
the following are equivalent:

(1) R(U1) ⊆ R(U2);
(2) U1U∗

1 ≤ α2U2U∗
2 for some α > 0;

(3) there exists a bounded operator X ∈ B(H1,H2) so that U1 = U2X.

Several ways to generate g-frames have been discussed in [9–11]. After the notion
of K -frame was proposed, there are some references to give a number of construction
methods about K -frames (see [14–17]). Motivated by recent progress in constructions
of some new K -g-frames (see [19–23]), we give two different ways to construct new
K -g-frames.
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Remark 1.11 In [21, Theorem 3.4], the following statement has been formulated: let
K ∈ B(H) and {� j } j∈J be a K -g-frame forHwith respect to {V j } j∈J with lower and
upper bounds A and B, respectively; if U ∈ B(H) has closed range and UK = KU ,
then {� jU∗} j∈J is a K -g-frame for R(U ) with respect to {V j } j∈J with lower and
upper bounds A‖U+‖−2 and B‖U‖2, respectively. In Example 1.12, we show that
this statement is not true in the general case.

Example 1.12 SupposeH = C
3, J = {1, 2, 3}. Let {e j } j∈J be an orthonormal basis of

H, and V j = span{e j }. Now define K ∈ B(H), U ∈ B(H) and {� j } j∈J as follows:

K : H → H, K f = 〈 f , e3〉e1 + 〈 f , e1 + e2〉e2, f ∈ H,

U : H → H, U f = 〈 f , e3〉(e1 − e2), f ∈ H,

�1 : H → V1, �1 f = 〈 f , e1〉e1, f ∈ H,

�2 : H → V2, �2 f = 〈 f , e2〉e2, f ∈ H,

�3 : H → V3, �3 f = 〈 f , e2〉e3, f ∈ H.

Now we show that K ∗ f = 〈 f , e1〉e3 + 〈 f , e2〉(e1 + e2), f ∈ H. In fact, for any
f ,m ∈ H, we have

〈K ∗ f , m〉 = 〈 f , Km〉 = 〈 f , 〈m, e3〉e1 + 〈m, e1 + e2〉e2〉
= 〈 f , e1〉〈m, e3〉 + 〈 f , e2〉〈m, e1 + e2〉
= 〈 f , e1〉〈e3, m〉 + 〈 f , e2〉〈e1 + e2, m〉
= 〈〈 f , e1〉e3 + 〈 f , e2〉(e1 + e2), m〉.

Thus, for each f ∈ H, we obtain

‖K ∗ f ‖2 = ‖〈 f , e1〉e3 + 〈 f , e2〉(e1 + e2)‖2 = |〈 f , e1〉|2 + 2|〈 f , e2〉|2

=
3∑

j=1

‖� j f ‖2 ≤ 3‖ f ‖2.

This implies that {� j } j∈J is a K -g-frame for H with respect to {V j } j∈J . It is clear
that U ∈ B(H) has closed range. For all f ∈ H, we get

UK f = U (〈 f , e3〉e1 + 〈 f , e1 + e2〉e2) = 〈 f , e3〉Ue1 + 〈 f , e1 + e2〉Ue2 = 0

= 〈 f , e3〉(e2 − e2) = 〈 f , e3〉(Ke1 − Ke2) = K (〈 f , e3〉(e1 − e2)) = KU f .

Then, UK = KU .
The adjoint operator of U is U∗, U∗ f = 〈 f , e1 − e2〉e3, f ∈ H. Indeed, for all

f ,m ∈ H, we have

〈U∗ f , m〉 = 〈 f , Um〉 = 〈 f , 〈m, e3〉(e1 − e2)〉 = 〈 f , e1 − e2〉〈m, e3〉
= 〈 f , e1 − e2〉〈e3, m〉 = 〈〈 f , e1 − e2〉e3, m〉.
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Choosing f = e2 − e1 ∈ R(U ) = span{e1 − e2}, we get ‖K ∗ f ‖2 = 3 and

3∑

j=1

‖� jU
∗ f ‖2 =

3∑

j=1

‖� j (〈 f , e1 − e2〉e3)‖2 =
3∑

j=1

‖〈 f , e1 − e2〉(� j e3)‖2 = 0.

Hence, {� jU∗} j∈J is not a K -g-frame for R(U )with respect to {V j } j∈J . Furthermore,
{� jU∗} j∈J is not a K -g-frame for H with respect to {V j } j∈J and

span{e1 + e2, e3} = R(K ∗) � R(U ) = span{e1 − e2}.

Remark 1.13 In [22, Theorem 3.10], the following statement has been formulated: let
{� j } j∈J be an atomic system for K , and let S� be the frame operator of {� j } j∈J ;
let U be a positive operator, then {� j + � jU } j∈J is an atomic system for K . In
Example 1.14, we show that this statement is not true in the general case.

Example 1.14 SupposeH = C
3, J = {1, 2, 3}. Assume that {e j } j∈J is an orthonormal

basis of H, and V1 = V2 = span{e1},V3 = span{e3}. Now define K ∈ B(H),
U ∈ B(H) and {� j } j∈J as follows:

K : H → H, K f = 〈 f , e1〉e2, f ∈ H,

U : H → H, U f = 〈 f , e1〉e1 + 〈 f , 2e2 − e3〉e2 + 〈 f , e3 − e2〉e3, f ∈ H,

�1 : H → V1, �1 f = 〈 f , e1〉e1, f ∈ H,

�2 : H → V2, �2 f = 〈 f , e1〉e1, f ∈ H,

�3 : H → V3, �3 f = 〈 f , e2〉e3, f ∈ H.

Now we show that K ∗ f = 〈 f , e2〉e1, f ∈ H. In fact, for all f ,m ∈ H, we get

〈K ∗ f , m〉 = 〈 f , Km〉 = 〈 f , 〈m, e1〉e2〉 = 〈 f , e2〉〈m, e1〉
= 〈 f , e2〉〈e1, m〉 = 〈〈 f , e2〉e1, m〉.

Hence, for every f ∈ H, we have

‖K ∗ f ‖2 = ‖〈 f , e2〉e1‖2 = |〈 f , e2〉|2

≤
3∑

j=1

‖� j f ‖2 = 2|〈 f , e1〉|2 + |〈 f , e2〉|2 ≤ 2‖ f ‖2.

Thus, {� j } j∈J is a K -g-frame forH with respect to {V j } j∈J .
By a simple calculation, we can obtain that U is a self-adjoint operator. Then, for

each f ∈ H, we conclude

〈U f , f 〉 = 〈〈 f , e1〉e1 + 〈 f , 2e2 − e3〉e2 + 〈 f , e3 − e2〉e3, f 〉
= 〈 f , e1〉〈 f , e1〉 + 2〈 f , e2〉〈 f , e2〉 − 〈 f , e3〉〈 f , e2〉

+〈 f , e3〉〈 f , e3〉 − 〈 f , e2〉〈 f , e3〉
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= |〈 f , e1〉|2 + 2|〈 f , e2〉|2 − 2Re{〈 f , e2〉〈 f , e3〉} + |〈 f , e3〉|2
= |〈 f , e1〉|2 + |〈 f , e2〉|2 + |〈 f , e2〉 − 〈 f , e3〉|2 ≥ 0.

Therefore, U is a positive operator.
It is clear that {� j +� jU } j∈J is a g-Bessel sequence forHwith respect to {V j } j∈J .

By a direct computation, we get

(�1 + �1U ) f = 2〈 f , e1〉e1; (�2 + �2U ) f = 2〈 f , e1〉e1;
(�3 + �3U ) f = 〈 f , 3e2 − e3〉e3.

Choosing f = e2 + 3e3 ∈ H, we get ‖K ∗ f ‖2 = |〈 f , e2〉|2 = 1 and

3∑

j=1

‖(� j + � jU ) f ‖2 = 8|〈 f , e1〉|2 + |〈 f , 3e2 − e3〉|2 = 0.

This proves that {� j + � jU } j∈J is not a K -g-frame for H with respect to {V j } j∈J .
Let S� be the frame operator of {� j } j∈J , then for any f ∈ H, we have

S� f =
3∑

j=1

�∗
j� j f = 2〈 f , e1〉e1 + 〈 f , e2〉e2.

Now we will show that US� �= S�U ; indeed, for all f ∈ H, we obtain

US� f = 2〈 f , e1〉e1 + 〈 f , e2〉(2e2 − e3); S�U f = 2〈 f , e1〉e1 + 〈 f , 2e2 − e3〉e2.

2 Main Results

Theorem 2.1 Let K1 ∈ B(H1) and K2 ∈ B(H2). Suppose that {� j } j∈J is a K1-
g-frame and {� j } j∈J is a g-Bessel sequence for H1 with respect to {V j } j∈J with
the synthesis operators T� and T� , respectively. Assume U1,U2 ∈ B(H1,H2) and
U1T�T ∗

�U
∗
2 +U2T�T ∗

�U
∗
1 +U2T�T ∗

�U
∗
2 ≥ 0. If U1 has closed range, U1K1 = K2U1

and R(K ∗
2 ) ⊂ R(U1), then {� jU∗

1 + � jU∗
2 } j∈J is a K2-g-frame forH2 with respect

to {V j } j∈J .

Proof Let {� j } j∈J be a K1-g-frame forH1 with respect to {V j } j∈J with frame bounds
A1 and B1. Let {� j } j∈J be a g-Bessel sequence for H1 with respect to {V j } j∈J with
g-Bessel bound B2. By Lemma 1.9, we conclude that {� jU∗

1 +� jU∗
2 } j∈J is a g-Bessel

sequence for H2 with respect to {V j } j∈J with bound (
√
B1‖U1‖ + √

B2‖U2‖)2.
For each g ∈ H2, we obtain

∑

j∈J

2Re{〈� jU
∗
1 g, � jU

∗
2 g〉} = 2Re

〈
∑

j∈J

�∗
j� jU

∗
1 g, U

∗
2 g

〉
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= 2Re〈T�T
∗
�U

∗
1 g, U

∗
2 g〉

= 〈(U1T�T
∗
�U

∗
2 +U2T�T

∗
�U

∗
1 )g, g〉.

SinceU1 ∈ B(H1,H2) has closed range, andU1K1 = K2U1, it is clear that K ∗
1U

∗
1 =

U∗
1 K

∗
2 . According to Lemma 1.6, for any g ∈ H2, we get

∑

j∈J

‖(� jU
∗
1 + � jU

∗
2 )g‖2

=
∑

j∈J

‖� jU
∗
1 g‖2 +

∑

j∈J

2Re{〈� jU
∗
1 g, � jU

∗
2 g〉} +

∑

j∈J

‖� jU
∗
2 g‖2

=
∑

j∈J

‖� jU
∗
1 g‖2 + 〈(U1T�T

∗
�U

∗
2 +U2T�T

∗
�U

∗
1 )g, g〉

+〈T�T
∗
�U

∗
2 g, U

∗
2 g〉

=
∑

j∈J

‖� jU
∗
1 g‖2 + 〈(U1T�T

∗
�U

∗
2 +U2T�T

∗
�U

∗
1 +U2T�T

∗
�U

∗
2 )g, g〉

≥
∑

j∈J

‖� jU
∗
1 g‖2 ≥ A1‖K ∗

1U
∗
1 g‖2 = A1‖U∗

1 K
∗
2 g‖2

≥ A1‖U+
1 ‖−2‖K ∗

2 g‖2.

Thus, for every g ∈ H2, we obtain

A1‖U+
1 ‖−2‖K ∗

2 g‖2 ≤
∑

j∈J

‖(� jU
∗
1 + � jU

∗
2 )g‖2 ≤ (

√
B1‖U1‖ + √

B2‖U2‖)2‖g‖2.

So {� jU∗
1 + � jU∗

2 } j∈J is a K2-g-frame for H2 with respect to {V j } j∈J . ��

Corollary 2.2 Let K1 ∈ B(H1) and K2 ∈ B(H2). Suppose that {� j } j∈J is a K1-g-
frame for H1 with respect to {V j } j∈J . If U ∈ B(H1,H2) has closed range, UK1 =
K2U and R(K ∗

2 ) ⊂ R(U ), then {� jU∗} j∈J is a K2-g-frame for H2 with respect to
{V j } j∈J .

Corollary 2.3 Let K ,U ∈ B(H). Suppose that {� j } j∈J is a K -g-frame for H with
respect to {V j } j∈J . If U is a positive operator and US� = S�U, where S� is the
frame operator of {� j } j∈J , then {� j + � jU } j∈J is a K -g-frame for H with respect
to {V j } j∈J .

Proof Assume that {� j } j∈J is a K -g-frame for H with respect to {V j } j∈J . Since

T�T
∗
�U

∗ +UT�T
∗
� +UT�T

∗
�U

∗ = S�U +US� +US�U ,

from Theorem 2.1, we need only to prove that S�U +US� +US�U ≥ 0. According
to Proposition 4.33 in [26], we obtain that there exists a unique positive operator C
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such that U = C2. In addition, since US� = S�U , we have CS� = S�C . It follows
that

〈(S�U +US� +US�U ) f , f 〉 = 2〈C2S� f , f 〉 + 〈UT�T
∗
�U f , f 〉

= 2〈CS�C f , f 〉 + 〈UT�T
∗
�U f , f 〉

= 2‖T ∗
�C f ‖2 + ‖T ∗

�U f ‖2
≥ 0

for all f ∈ H. So from Theorem 2.1, Corollary 2.3 holds. ��
Remark 2.4 By taking U1 = U and U2 = 0, we obtain Corollary 2.2. Let H1 =
H2 = H and K1 = K2 = K in Corollary 2.2, we can correct Theorem 3.4 in
[21]. In counterexample 1.12, R(K ∗) ⊂ R(U ) may not be true. Hence, the condition
R(K ∗) ⊂ R(U ) is necessary. From Corollary 2.2, we may obtain Corollary 5.32 in
[3], Proposition 2.24 in [9] and Theorem 3.3 in [16], and we also correct Proposition
12 in [17]. In counterexample 1.14, the conditionUS� = S�U is not true. Hence, this
condition is necessary in Corollary 2.3. From Corollary 2.3, we may obtain Theorem
3.11 in [16]. From Theorem 2.1, we improve Theorem 3.2 in [5], Theorem 2.4 in [10],
Corollary 4.4 in [11], Theorem 2.12 in [14] and Theorem 3.5 in [22].

Theorem 2.5 Let K1 ∈ B(H1)beanoperatorwith closed range, suppose that {� j } j∈J

and {� j } j∈J are K1-g-frames for H1 with respect to {V j } j∈J . Assume K2 ∈ B(H2),
U1,U2 ∈ B(H1,H2) and U1T�T ∗

�U
∗
2 +U2T�T ∗

�U
∗
1 ≥ 0. Then, {� jU∗

1 +� jU∗
2 } j∈J

is a K2-g-frame for H2 with respect to {V j } j∈J , if one of the following conditions
holds:

(1) P = U1 +U2, R(P∗) ⊂ R(K1), R(K2) ⊂ R(P).
(2) Q = U1 −U2, R(Q∗) ⊂ R(K1), R(K2) ⊂ R(Q).

Proof Let {� j } j∈J be a K1-g-frame forH1 with respect to {V j } j∈J with frame bounds
A1 and B1. Let {� j } j∈J be a K1-g-frame for H1 with respect to {V j } j∈J with frame
bounds A2 and B2. From Lemma 1.9, we obtain that {� jU∗

1 +� jU∗
2 } j∈J is a g-Bessel

sequence for H2 with respect to {V j } j∈J with bound (
√
B1‖U1‖ + √

B2‖U2‖)2.
According to the proof of Theorem 2.1, for all g ∈ H2, we get

∑

j∈J

‖(� jU
∗
1 + � jU

∗
2 )g‖2

=
∑

j∈J

‖� jU
∗
1 g‖2 +

∑

j∈J

2Re{〈� jU
∗
1 g, � jU

∗
2 g〉} +

∑

j∈J

‖� jU
∗
2 g‖2

≥ A1‖K ∗
1U

∗
1 g‖2 + 〈(U1T�T

∗
�U

∗
2 +U2T�T

∗
�U

∗
1 )g, g〉 + A2‖K ∗

1U
∗
2 g‖2

≥ A1‖K ∗
1U

∗
1 g‖2 + A2‖K ∗

1U
∗
2 g‖2.

Without loss of generality, assume that statement (1) holds; let λ = min{A1, A2},
by the parallelogram law and Lemma 1.6, for every g ∈ H2, we obtain

A1‖K ∗
1U

∗
1 g‖2 + A2‖K ∗

1U
∗
2 g‖2 ≥ λ(‖K ∗

1U
∗
1 g‖2 + ‖K ∗

1U
∗
2 g‖2)
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= λ

2
(‖K ∗

1 (U1 +U2)
∗g‖2 + ‖K ∗

1 (U1 −U2)
∗g‖2)

≥ λ

2
‖K ∗

1 (U1 +U2)
∗g‖2 = λ

2
‖K ∗

1 P
∗g‖2

≥ λ

2
‖K+

1 ‖−2‖P∗g‖2.

From R(K2) ⊆ R(P), we conclude that there exists α > 0 such that K2K ∗
2 ≤ α2PP∗

by Theorem 1.10. It follows that α−2‖K ∗
2 g‖2 ≤ ‖P∗g‖2 for all g ∈ H2. Thus, for

each g ∈ H2, we get

λ

2
α−2‖K+

1 ‖−2‖K ∗
2 g‖2

≤
∑

j∈J

‖(� jU
∗
1 + � jU

∗
2 )g‖2 ≤ (

√
B1‖U1‖ + √

B2‖U2‖)2‖g‖2.

This proves that {� jU∗
1 + � jU∗

2 } j∈J is a K2-g-frame for H2 with respect to
{V j } j∈J . ��
Remark 2.6 From Theorem 2.5, we can get Proposition 2.24 in [9], Proposition 3.6
in [15], Theorem 3.5 in [20] and Proposition 3.2 in [23]. It is natural to consider
whether the conditions R(P∗) ⊂ R(K1) and R(Q∗) ⊂ R(K1) are not necessary in
Theorem 2.5. Now we give an example to illustrate that the conditions are essential.

Example 2.7 Let H1 = C
3 and J = {1, 2, 3}. Assume that {e j } j∈J is an orthonormal

basis for H1 and V j = span{e j }. Let {g j }4j=1 be an orthonormal basis for H2 = C
4.

Now define K1 ∈ B(H1), K2 ∈ B(H2), U1,U2 ∈ B(H1,H2) and {� j } j∈J as
follows:

K1 : H1 → H1, K1 f = 〈 f , e1〉e1 + 〈 f , e3〉e2, f ∈ H1,

K2 : H2 → H2, K2g = 〈g, g2〉g1, g ∈ H2,

U1 : H1 → H2, U1 f = 〈 f , e2〉g3 + 〈 f , e3〉g1, f ∈ H1,

U2 : H1 → H2, U2 f = 〈 f , e2〉g3, f ∈ H1,

�1 : H1 → V1, �1 f = 〈 f , e2〉e1, f ∈ H1,

�2 : H1 → V2, �2 f = 〈 f , e1〉e2, f ∈ H1,

�3 : H1 → V3, �3 f = 〈 f , e2〉e3, f ∈ H1.

Let � j = � j , j = 1, 2, 3. Now we prove that K ∗
1 f = 〈 f , e1〉e1 + 〈 f , e2〉e3, f ∈

H1. Indeed, for all f ,m ∈ H1, we have

〈K ∗
1 f , m〉 = 〈 f , K1m〉 = 〈 f , 〈m, e1〉e1 + 〈m, e3〉e2〉

= 〈 f , e1〉〈m, e1〉 + 〈 f , e2〉〈m, e3〉
= 〈 f , e1〉〈e1, m〉 + 〈 f , e2〉〈e3, m〉
= 〈〈 f , e1〉e1 + 〈 f , e2〉e3, m〉.
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Hence, for any f ∈ H1, we get

‖K ∗
1 f ‖2 = ‖〈 f , e1〉e1 + 〈 f , e2〉e3‖2 = |〈 f , e1〉|2 + |〈 f , e2〉|2

≤
3∑

j=1

‖� j f ‖2 =
3∑

j=1

‖� j f ‖2 = |〈 f , e1〉|2 + 2|〈 f , e2〉|2 ≤ 2‖ f ‖2.

It follows that {� j } j∈J and {� j } j∈J are K1-g-frame for H1 with respect to {V j } j∈J .
Let T� and T� be the corresponding synthesis operators of {� j } j∈J and {� j } j∈J ,
respectively. Since � j = � j , j = 1, 2, 3, for every f ∈ H1, we obtain

T�T
∗
� f = T�T

∗
� f = T�T

∗
� f =

3∑

j=1

�∗
j� j f = 〈 f , e1〉e1 + 2〈 f , e2〉e2.

Now we show that U∗
1 g = 〈g, g3〉e2 + 〈g, g1〉e3, g ∈ H2 and U∗

2 g =
〈g, g3〉e2, g ∈ H2. In fact, for all f ∈ H1 and g ∈ H2, we obtain

〈U∗
1 g, f 〉 = 〈g, U1 f 〉 = 〈g, 〈 f , e2〉g3 + 〈 f , e3〉g1〉

= 〈g, g3〉〈 f , e2〉 + 〈g, g1〉〈 f , e3〉
= 〈g, g3〉〈e2, f 〉 + 〈g, g1〉〈e3, f 〉 = 〈〈g, g3〉e2 + 〈g, g1〉e3, f 〉,

and

〈U∗
2 g, f 〉 = 〈g, U2 f 〉 = 〈g, 〈 f , e2〉g3〉 = 〈g, g3〉〈 f , e2〉

= 〈g, g3〉〈e2, f 〉 = 〈〈g, g3〉e2, f 〉.

By a direct calculation, we can conclude

〈(U1T�T
∗
�U

∗
2 +U2T�T

∗
�U

∗
1 )g, g〉 = 4|〈g, g3〉|2 ≥ 0

for all g ∈ H2. This implies that U1T�T ∗
�U

∗
2 +U2T�T ∗

�U
∗
1 ≥ 0.

Now we prove that {� jU∗
1 +� jU∗

2 } j∈J is a g-Bessel sequence forH2 with respect
to {V j } j∈J . Indeed, for each g ∈ H2, we get

3∑

j=1

‖(� jU
∗
1 + � jU

∗
2 )g‖2 = ‖2〈g, g3〉e1‖2 + ‖2〈g, g3〉e3‖2 = 8|〈g, g3〉|2 ≤ 8‖g‖2.

The adjoint operator of K2 is K ∗
2 , K

∗
2 g = 〈g, g1〉g2, g ∈ H2. In fact, for any

g, h ∈ H2, we obtain

〈K ∗
2 g, h〉 = 〈g, K2h〉 = 〈g, 〈h, g2〉g1〉 = 〈g, g1〉〈h, g2〉

= 〈g, g1〉〈g2, h〉 = 〈〈g, g1〉g2, h〉.
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We can choose g = g1 ∈ H2, then we obtain ‖K ∗
2 g‖2 = |〈g, g1〉|2 = 1 and

3∑

j=1

‖(� jU
∗
1 + � jU

∗
2 )g‖2 = 8|〈g, g3〉|2 = 0.

Therefore, {� jU∗
1 + � jU∗

2 } j∈J is not a K2-g-frame for H2 with respect to {V j } j∈J .
It is obvious that K1 ∈ B(H1) has closed range. Let P = U1 +U2 and Q = U1 −U2,
we have P f = 2〈 f , e2〉g3 + 〈 f , e3〉g1, f ∈ H1 and Q f = 〈 f , e3〉g1, f ∈ H1.
Hence, we get

span{g1} = R(K2) ⊂ R(P) = span{g1, 2g3},
span{g1} = R(K2) ⊂ R(Q) = span{g1},

but

span{2e2, e3} = R(P∗) � R(K1) = span{e1, e2},
span{e3} = R(Q∗) � R(K1) = span{e1, e2}.

In the following, we offer an equivalent characterization of generating K -g-frames.

Remark 2.8 In [21, Corollary 3.17], it was stated that K ∈ B(H) is an operator with
closed range and {� j } j∈J is a K -g-frame for H with respect to {V j } j∈J ; suppose
that U ∈ B(H) has closed range and UK = KU , then the following conditions are
equivalent: (1) U is surjective; (2) {� jU∗} j∈J is a K -g-frame for H with respect to
{V j } j∈J . We announce a counterexample in Example 2.9.

Example 2.9 Assume H = C
3, J = {1, 2, 3}. Let {e j } j∈J be an orthonormal basis of

H, and V j = span{e j }. Now define K ∈ B(H), U ∈ B(H) and {� j } j∈J as follows:

K : H → H, K f = 〈 f , e1〉e2 + 〈 f , e2〉e1, f ∈ H,

U : H → H, U f =
2∑

j=1

〈 f , e j 〉e j f ∈ H,

�1 : H → V1, �1 f = 〈 f , e2〉e1, f ∈ H,

�2 : H → V2, �2 f = 〈 f , e1〉e2, f ∈ H,

�3 : H → V3, �3 f = 〈 f , e3〉e3, f ∈ H.

It is clear that K ∈ B(H) has closed range. The adjoint operator of K is K ∗,
K ∗ f = 〈 f , e1〉e2 + 〈 f , e2〉e1, f ∈ H. In fact, for all f ,m ∈ H, we have

〈K ∗ f , m〉 = 〈 f , Km〉 = 〈 f , 〈m, e1〉e2 + 〈m, e2〉e1〉
= 〈 f , e2〉〈m, e1〉 + 〈 f , e1〉〈m, e2〉
= 〈 f , e2〉〈e1, m〉 + 〈 f , e1〉〈e2, m〉 = 〈〈 f , e1〉e2 + 〈 f , e2〉e1, m〉.
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For every f ∈ H, we get

‖K ∗ f ‖2 = ‖〈 f , e1〉e2 + 〈 f , e2〉e1‖2 = |〈 f , e1〉|2 + |〈 f , e2〉|2

≤
3∑

j=1

‖� j f ‖2 =
3∑

j=1

|〈 f , e j 〉|2 = ‖ f ‖2.

Thus, {� j } j∈J is a K -g-frame forH with respect to {V j } j∈J .
It is obvious that U ∈ B(H) has closed range. By a direct calculation, for each

f ∈ H, we obtain

UK f = U (〈 f , e1〉e2 + 〈 f , e2〉e1) = 〈 f , e1〉Ue2 + 〈 f , e2〉Ue1
= 〈 f , e1〉e2 + 〈 f , e2〉e1

= 〈 f , e1〉Ke1 + 〈 f , e2〉Ke2 = K
2∑

j=1

〈 f , e j 〉e j = KU f ,

then UK = KU .
By a simple computation, we get U∗ f = ∑2

j=1〈 f , e j 〉e j , f ∈ H, then for all
f ∈ H, we have

‖K ∗ f ‖2 = ‖〈 f , e1〉e2 + 〈 f , e2〉e1‖2 = |〈 f , e1〉|2 + |〈 f , e2〉|2

=
3∑

j=1

‖� jU
∗ f ‖2 =

2∑

j=1

|〈 f , e j 〉|2 ≤ ‖ f ‖2.

Hence, {� jU∗} j∈J is a K -g-frame for H with respect to {V j } j∈J and it is clear that
U is not surjective.

Theorem 2.10 Let K1 ∈ B(H1) and {� j } j∈J be a K1-g-frame forH1 with respect to
{V j } j∈J . Suppose that K2 ∈ B(H2) is an operator with dense range, U ∈ B(H1,H2)

is an operator with closed range and UK1 = K2U, then {� jU∗} j∈J is a K2-g-frame
forH2 with respect to {V j } j∈J if and only if U is surjective.

Proof Suppose that U is surjective, it is obvious that R(K ∗
2 ) ⊂ R(U ). According to

Corollary 2.2, {� jU∗} j∈J is a K2-g-frame for H2 with respect to {V j } j∈J .
On the other hand, let T� be the synthesis operator of the K1-g-frame {� j } j∈J and

L be the synthesis operator of the K2-g-frame {� jU∗} j∈J , then for any {g j } j∈J ∈
�2({V j } j∈J ), we obtain

L{g j } j∈J =
∑

j∈J

(� jU
∗)∗g j = U

∑

j∈J

�∗
j g j = UT�{g j } j∈J .

Hence, we get L = UT�.
Since {� jU∗} j∈J is a K2-g-frame forH2 with respect to {V j } j∈J ,wehave R(K2) ⊂

R(L) by Lemma 1.7. Hence R(K2) ⊂ R(UT�) ⊂ R(U ). Then, we obtain R(K2) ⊂
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R(U ). Since K2 ∈ B(H2) is an operator with dense range and U ∈ B(H1,H2) is an
operator with closed range, then U is surjective. ��
Remark 2.11 By takingH1 = H2 = H and K1 = K2 = K , we may correct Corollary
3.17 in [21]. In counterexample 2.9, we obtain that statement (2) does not imply
statement (1).

In the end, we give a necessary and sufficient condition to yield a series of tight
K -g-frames by two existing g-Bessel sequences.

Theorem 2.12 Suppose that {� j } j∈J and {� j } j∈J are g-Bessel sequences for H1
with respect to {V j } j∈J with synthesis operators T�, T� and frame operators S�, S� ,
respectively. Let K ∈ B(H2) and U1,U2 ∈ B(H1,H2). Then, {� jU∗

1 + � jU∗
2 } j∈J

is a tight K -g-frame for H2 with respect to {V j } j∈J if and only if there exists A > 0
such that

AK K ∗ = U1S�U
∗
1 +U2S�U

∗
2 +U1T�T

∗
�U

∗
2 +U2T�T

∗
�U

∗
1 .

Proof According toLemma1.9,we get that {� jU∗
1 +� jU∗

2 } j∈J is a g-Bessel sequence
forH2 with respect to {V j } j∈J . Let L be the synthesis operator of {� jU∗

1 +� jU∗
2 } j∈J ,

then for each {g j } j∈J ∈ �2({V j } j∈J ), we obtain

L{g j } j∈J =
∑

j∈J

(� jU
∗
1 + � jU

∗
2 )∗g j = U1

∑

j∈J

�∗
j g j +U2

∑

j∈J

�∗
j g j

= (U1T� +U2T�){g j } j∈J .

Thus L = U1T�+U2T� . Suppose that S is the frame operator of {� jU∗
1 +� jU∗

2 } j∈J ,
then

S = LL∗ = (U1T� +U2T�)(U1T� +U2T�)∗

= U1T�T
∗
�U

∗
1 +U2T�T

∗
�U

∗
2 +U1T�T

∗
�U

∗
2 +U2T�T

∗
�U

∗
1

= U1S�U
∗
1 +U2S�U

∗
2 +U1T�T

∗
�U

∗
2 +U2T�T

∗
�U

∗
1 .

By Lemma 1.8, {� jU∗
1 + � jU∗

2 } j∈J is a tight K -g-frame for H2 with respect to
{V j } j∈J if and only if there exists A > 0 such that

AK K ∗ = U1S�U
∗
1 +U2S�U

∗
2 +U1T�T

∗
�U

∗
2 +U2T�T

∗
�U

∗
1 .

This completes the proof. ��
From Lemma 1.8 and Theorem 2.12, we have the following corollary.

Corollary 2.13 Let K1 ∈ B(H1), {� j } j∈J and {� j } j∈J be tight K1-g-frames for H1
with respect to {V j } j∈J with frame bounds A1 and A2. Let K2 ∈ B(H2) and U1,U2 ∈
B(H1,H2). Assume that T� and T� are synthesis operators of {� j } j∈J and {� j } j∈J ,
respectively. Then, {� jU∗

1 + � jU∗
2 } j∈J is a tight K2-g-frame for H2 with respect to

{V j } j∈J if and only if there exists A > 0 such that

AK2K
∗
2 = A1U1K1K

∗
1U

∗
1 + A2U2K1K

∗
1U

∗
2 +U1T�T

∗
�U

∗
2 +U2T�T

∗
�U

∗
1 .
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Remark 2.14 We can obtain Theorem 2.1 in [18] and Theorem 10 in [24] from Theo-
rem2.12. FromCorollary 2.13,wemayobtainTheorem2.2,Theorem2.3,Theorem2.4
and Theorem 2.5 in [18]; meanwhile, we can also get Theorem 14, Theorem 16, The-
orem 18 and Theorem 20 in [24]. We improve Theorem 2.7 in [10] and Theorem 4.7
in [11] by Corollary 2.13.
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