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Abstract

We derive global lower bounds for the first eigenvalue of a symmetric diffusion Ay :=
A — Vy on Riemannian manifolds with the Bakry—Emery—Ricci curvature bounded
from below.
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1 Introduction

Let (M", g) be an n-dimensional Riemannian manifold and X be a smooth vector
field on M". The diffusion operator

Ax = A + Vy (1.1

is an important generalization of the Laplacian operator A, in particular, the Witten—
Laplacian

Afp:=A—Vyy (1.2)

is a special case of (1.1) by taking X = —V f for some f € C*°(M").
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3848 L. Zhang

As in [1,3,9], the m-dimensional Bakry—Emery—Ricci curvature of the diffusion
operator Ay is defined as

X®X

nm—n

1
Ric’y := Ric — ELXg— (1.3)
for any numberm € (n, 0o), where L x stands for the Lie derivative along the direction
X. In particular, the m-dimensional Bakry—Emery—Ricci curvature of the Witten—
Laplacian operator A y is defined as

d d
Ric;” := Ric+ Hessf — M (1.4)
m—n
where Hessf is the Hessian of f.
For m-dimensional Bakry—Emery—Ricci curvatures, we can allow m to be infinite:

.00 . 1
Ricy := Ric — ELXg, (1.5)
and
Ric‘;«o := Ric + Hessf, (1.6)

which are called the co-dimensional Bakry—Emery—Ricci curvature of the diffusion
operator Ay (of the Witten—Laplacian operator), respectively. We refer the readers to
[5,6,11,12,15,16] for applications of Bakry—Emery—Ricci curvatures.

There are several well-known results on lower bound estimates for the first eigen-
value of Laplacian operator on closed Riemannian manifolds (see Section 5 of [7] for a
summary): Lichnerowicz [10] (see also [14]) showed that the first nonzero eigenvalue
of the Laplacian on a closed manifold must satisfy A; > m K if the Ricci curvature is
bounded from below by (m — 1) K. When the Ricci curvature is nonnegative, Li—Yau
[8] proved that 11 > ﬁ, where 0 < a < 1 is a constant and d is the diameter of
the underlying closed manifold. More generally, they [8] also derived a lower bound
estimate that depends on the lower bound of the Ricci curvature, the upper bound of
the diameter, and the dimension of the manifold alone. In this note, we will prove
that these results are still valid for the first eigenvalue of the diffusion operator Ay
on the closed manifold M” under the condition of the Barky—Emery—Ricci curvature
bounded from below.

Wu [17,18] established upper bounded first nontrivial eigenvalue for the Witten—
Laplacian under the condition that the m-dimensional (co-dimensional) Barky—
Emery—Ricci curvature bounded below, respectively. We will consider global lower
bounds in the case of the diffusion operator (1.1) via the m-dimensional (co-
dimensional) Bakry—Emery—Ricci curvature of (1.1).

The main theorems only consider m-dimensional Bakry—Emery—Ricci curvatures
since the oo-dimensional cases can be obtained by similar proof. On the closed Rie-
mannian manifold (M", g), we derive a series lower bounds for the first eigenvalue
of the diffusion operator Ay.
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Global Lower Bounds on the First Eigenvalue... 3849

Theorem 1.1 Let (M", g) be an n-dimensional closed manifold with Ric'y > —(m —
1)K g for some constant K > 0. Then, the first nonzero eigenvalue of the diffusion
operator Ax on M" must satisfy

A >mK.

Theorem 1.2 Let (M", g) be an n-dimensional closed manifold with Ric'y > 0 and
d be the diameter of M". Then,

e
"= 0o
for some constant 0 < a < 1.

Theorem 1.3 Let (M", g) be an n-dimensional closed manifold with Ric’}' > —(m—
1)K g for some constant K > 0 and d be the diameter of M". Then, there exist positive
constants A1(m) and Az (m) depending only on m so that the first nonzero eigenvalue
of Ay satisfies

A
A > d_21 exp{—Azdx/E}.

We also prove global lower bound estimate on the first eigenvalue for the diffusion
operator Ay on a complete noncompact Riemannian manifold.

Theorem 1.4 Let (M", g) be an n-dimensional complete noncompact Riemannian
manifold with Ric'y > —(m — 1)K g for some constant K > 0. Then, there is a global
lower bound estimate on the first eigenvalue for the diffusion operator Ax

_(m— D*K?

Al >
h= 4

(1.7)

In the rest of this paper, Theorems 1.1-1.3 are proved in Sect. 2, while Theorem 1.4
is established in Sect. 3.

2 The Closed Case

In this section, we will prove Theorems 1.1-1.3 of lower bound estimates for the
first eigenvalue of the diffusion operator Ay on the closed manifold M", which are
generalizations of [8,10,14].

Theorem 2.1 Let (M", g) be an n-dimensional closed manifold with Ric'y > —(m —
1)K g for some constant K > 0. Then, the first nonzero eigenvalue of the diffusion
operator Ax on M" must satisfy

A > mK. 2.1)
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3850 L. Zhang

Proof This result generalizes the lower bound result by Lichnerowicz [10] (see also
Obata [14]). Let u be a nonconstant eigenfunction satisfying

Axu = \u 2.2)

with A > 0.
Consider the function A = |Vu|? — %uz. A direct computation implies that

1 A . A
zAxA =V <V,~VjuVju — —I/LV,'M) + X! (V,’Vjuviu — —uV,u)
m : m
2 A 2 A
= |Hessu|” + (AVu, Vu) — —|Vu|* — —ulAu
m m

. A
—i—X’Vl-VjuVju — —uVxu
m
= |Hessu|> + (VAu, Vu) + Ric(Vu, Vi)
l. Ao A
+X V,-VjuVju — —|Vul|* — —ulAxu
m m
= |Hessu|* + (VAxu, Vu) + Ric% (Vu, Vu)
(Xu)?

A A

— ZVu)? = ZuAyu, (2.3)
m m

where Hessu is the Hessian of u, and we used the second Bianchi identity in the third

equality.
Since m > n, we have

o (P o)
mn m(m—n)

Au)? 1 u)?
<! n) [(Au) +2AuVyu + (Vxu)?] + %
\V/ 2
< Hessul® — L (ayu? + X
m m-—n
i.e.,
(qu)2 1 )
|Hessu| + > —(Axu)~. 2.4)
—n m

Plugging the fact of Ric’;} > —(m — 1)Kg, (2.2) and (2.4) into (2.3), we get

1 )\2 2 )\.2 2
SAXA = —M+A|Vu|2—(m—1)K|Vu|2—— -

= (m— 1)(- — K>|Vu|2. (2.5)
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If A < mK, then AxA < 0 on M". By the compactness of M" and the strong
maximum principle, A must be identically constant. In particular, the right hand side
of (2.5) must be identically 0, i.e., A = m K since u is nonconstant.

To conclude, the first nonzero eigenvalue of the diffusion operator Ax on M" is no
less than mK. O

When the co-dimensional Bakry—Emery—Ricci curvature of the diffusion operator
Ay is bounded below, we have

Corollary 2.2 Let (M", g) be an n-dimensional closed manifold with Ric§ > —nKg
for some constant K > 0 and |X|2 < « for some constant o« > 0 . Then, the first
nonzero eigenvalue of the diffusion operator Ax on M"™ must satisfy

iz e+ (K + %) . (2.6)

Proof Note that (Xh)? < a|Vh|2. Taking m = n + 1 in the proof of Theorem 2.1,
(2.5) becomes

'A A>k2”2+/\|v 2 — (K + o) Vul? — — VP A
— u —(n o u _— u —
2 X “n+1 n+1 n+1
A
=n(—— — Kk = Z) v
n+1 n

Similarly, A = (n+1)(K+ %) if A < (n+1)(K + ). To conclude, the first nonzero
eigenvalue of the diffusion operator Ay on M" is no less than (n + 1)(K + 7). O

Then, we generalize two lower bound results by Li—Yau [8]. Let A; be the least
nontrivial eigenvalue of the diffusion operator Ax on the closed manifold M" and let
u be the corresponding eigenfunction. By multiplying with a constant, it is possible
to exist a positive constant a € [0, 1) so that

a=infu+1=supu — 1.
M" Mn

Theorem 2.3 Let (M", g) be an n-dimensional closed manifold with Ricy > 0 and
d be the diameter of M". Then,

Al > n—Z 2.7
(1 —a)d?
Proof Set A = Aj and v = u — a. Then, the equation becomes
Axv=A(v+a).
Let B := |Vv|? — cv? with ¢ = A(1 — a) > 0 and x( be a maximum point of B.

Choose a frame {e;}?_, so that v1(xp) = V., v(x0) = [Vv(x0)| if [Vv(xp)| # 0. Note
that
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3852 L. Zhang

%ViB = V;V;vV;v — cvV,v, (2.8)
so at xq
0 =vi(v11 — cv), 2.9)
and the Hessian of v satisfies
|Hessv|2 > v%l = 22, (2.10)

Covariant differentiating (2.8) with respect to e¢; again, then using the Bochner
formula and (2.10), we can get at xp

1AB
S BX

= |Hessv|* + V;V;V,;uV,v — ¢|Vv|> — cvAv
+X'(ViV;uVjv — cuViv)

= |Hessv|2 + (Vv, VAv) + Ric(Vv, V)
—c|Vv]? = cvAxv + X'V V;juV;v

o
v

> ?v? + (Vu, VAxv) + Ric%(Vv, Vv)
Xv)2
(Xv) — cv12 —civ(v +a)
m—n

> ?v? + kv% - cv% —cAiv(v +a)
=A- c)(v% — cvz) —aciv
> alB(xg) — acA. (2.11)

Hence, for all x € M",
IVo@)[? + cv?(x) = B(x) < B(xo) <,
ie.,
[Vo))? < A(1 —a)(1 — v2(x)). (2.12)
Also (2.12) is trivially satisfied if |[Vv(xg)| = 0. Let y be the shortest geodesic
from the minimizing point of v to the maximizing point. The length of y is at most d.

Integrating the gradient estimate (2.12) along this segment with respect to arclength,
we obtain

[Vul|ds ! du
VA1 —a)-d=> A(l—a)/dsZ/—Z - — 7.
\/7 v y V1 =02 —14/1—2?

(2.7) follows immediately. O
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Global Lower Bounds on the First Eigenvalue... 3853

Trivially, Theorem 2.3 holds for Ric}’ > 0:

Corollary 2.4 Let (M", g) be an n-dimensional closed manifold with Ric§ > 0 and
d be the diameter of M". Then,

2

Under the condition of the m-dimensional Bakry—Emery—Ricci curvature of the
Witten—Laplacian operator bounded below, we have

Theorem 2.5 Let (M", g) be an n-dimensional closed manifold with Ric’;-’ > —(m—
1)K g for some constant K > 0 and d be the diameter of M". Then, there exist positive
constants A1(m) and Az (m) depending only on m so that the first nonzero eigenvalue
of Ay satisfies

Ay
A > 7 exp{—Azd\/E}.
Proof Let u be a nonconstant eigenfunction satisfying
Afu = lu.

By the fact that

)L/ ue_f=/ Afue_f=0,
MVl M)l

u must change sign. Hence, we may normalize u to satisfyminu = —1 andmaxu < 1.
Let us consider the function

w = log(a + u)

for some constant @ > 1. The function w satisfies

Aru |Vu|?
Arw = — 3
a+u (a+u)
M P 2.14)
= — wl-. .
a—+u

Calculating directly, we get

1
EAfIVwI2 = |Hessw|> + V;V;V;wV;w — V;V;wV,;wV; f

= |Hessw|2 + (Vw, VAw) + Ric(Vw, Vw) — V;V;wV;wV; f
(Vf, Vw)?

= [Hessw|* + (Vw, VA yw) + Ric’} (Vw, Vw) +
N m-—n
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A
= |Hessw| +<Vw V(—u — |Vw| )>+Ric’}1(Vw, Vw)
+u

Vf,V
+< f.Vw)?
m-—n

> |Hessw|? +— |Vw| — (Vw, V|Vw|?) = (m — DK|Vw|?
V£, Vw

+( b )2

m-—n

9

(2.15)
where Hessw is the Hessian of w, and we used the Bochner formula in the second

equality and (2.14) in the fourth.
Note that

=)

=<———)(A )2+ Aw(Vw, Vf) + (

1

1) 2
—— ) (Vw, V)
m

n m—n
Vw, V f)?
< |Hesswl — ~((Aw)? — 28w(Va, V) + (Va, V f)2) 4 L2 VI
m m—n
Arw)>  (Vw, Vf)?
= |Hessu)|2— (Asw) + (Vw.Vf)
m—n
s 1 [ hu \2 (Vw, Vf)?
= |Hessw| ——< — |Vw| ) 4+ —
m\a-+u m-—n
2), Vw, V f)?
< |Hessw| - — <|V | — —M|Vw|2> + M,
a—+u m-—n
where we used (2.14) in the third equality. Therefore, we have
Vw, V 2A
|1hzessw|2+M <|v 4 ——“|Vw|2>. (2.16)
m-—n m a—+u
Applying (2.16)—(2.15), we obtain
2u 5 ai 2
—Afle| > — (|Vw* = == |Vw|? ) + ——|Vu|
a—+u a—+u
—(Vw, V|Vw|?) = (m — DK |Vw|*. 2.17)

If x; € M" is a point where |Vw|? achieves its maximum, the maximum implies
that at such point

2\u ai
ma+u) a+u

1
0> —|Vw|4—< +(m — 1)K> IVwl|?, (2.18)
m
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Global Lower Bounds on the First Eigenvalue... 3855

ie.,
IVwl?(x) < [Vwl*(x1)
2 A
< u(xy) __ma m(m — DK
a+ulxy) a+ulxy)
2
< ———+mm-1DK (2.19)
a—1
forall x € M".Integrating |Vw| = |V log(a +u)| along a minimal geodesic y joining
the points at which # = —1 and ¥ = max u, we have

a a -+ maxu
log| — ) <log| ————
a—1 a—1
§/|V10g(a+u)|
12
1
2A 2
Sd(—l +m@m — I)K) (2.20)
a—
forall a > 1. Setting r = “a;l, we have

2 1 1\?
24> a>t|—=(log=) —mm - DK (2.21)
a d? t

for all 0 < ¢t < 1. Maximizing the right hand side as a function of ¢ by setting

t =exp(—1 — V1 +m(m — 1)Kd>),

we obtain the estimate

A > d%(l +V1+mm — DKd2) exp(—1 — /1 +m(m — 1)Kd?)
> % exp{—ArdVK} (2.22)

as claimed. O

As we obtained Theorem 2.5, we can derive the following result by similar argu-
ments.

Corollary 2.6 Let (M", g) be an n-dimensional closed manifold with Ric?o > —nKg

for some constant K > 0, | X |2 < « for some constant ¢ > 0 and d be the diameter
of M". Then, there exist positive constants Az(n) and A4(n) depending only on m so
that the first nonzero eigenvalue of A y satisfies

A
A > d—;exp{—A4d\/K +al.
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Proof Note that (Xh)? < «|Vh|>. Taking m = n + 1 in the proof of Theorem 2.1,
(2.17) becomes

“Ar|Vw|® > —— | [Vuw|" — ——|Vu|
2 n—+1 a+u

air

[Vw|?> = (Vw, VIVw|?) — K + a)|Vw|?. (2.23)
a—+u

+

Furthermore, we can obtain

A= diza + V1T DK + @) exp(—1 — Y1+ (1 + DK + a)d)
> % expl—AsdvVK +a) (2.24)

as claimed. O

3 The Complete Noncompact Case

In this section, we prove a global lower bound for the first eigenvalue of diffusion
operator Ay by using the technique of gradient estimate as Wu [17,18] did. First of
all, we present a smooth cutoff function originated by Calabi [2] (see also [4,13]).
Choose a smooth function & : [0, +00) — [0, 1] sothat 0 < &(s) < 1,&(s) = 1
fors < 1and &£(s) = 0 for s > 2. Moreover, for some constants C; > 0 and C, > 0,

E'(s)

—C| <
&§(s)

<0

and
§"(s) = —Cs.
Let (M", g) be a Riemannian manifold with Ric > —(n — 1) K g for some constant

K := K2p) > 0in B(x,2p) and r(x) := d(x, x) be the distance function from a
fixed point x € M". For any p > 0, we define the cutoff function by

o= ("),
0

We can assume without loss of generality that the function ¢ is smooth in B(x, 2p)
by the arguments of Calabi [2] (see also [4]).
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Global Lower Bounds on the First Eigenvalue... 3857

Ttisclearthat 0 < ¢ < 1on M", ¢ =1 on B(x, p) and ¢ = 0 outside B(x, 2p).
Moreover, we have

Vo> (&)?

6 % -

|G
o= 1o

3.

in B(x, 2p).

If Ric% > —(m — 1)K g for some constant K := K(2p) > 0 in B(x,2p), the
generalized Laplacian comparison theorem (see Corollary 3.3 of [9]) implies that
Axr < (m =1 +VEK).

To deal with A¢, we divide the arguments into two cases:

e Case 1: r(x) < p. In this case, ¢ = 1 around x. Therefore, A¢ = 0.
e Case 2: p <r(x) < 2p. By direct computations, we have

”
Ax¢p = %Axr-‘r ¢ |Vr |

> ——(m—l)(——i-\/_)
P (x)
> —ﬂ(m—l) (—+«/f)—c—§. (3.2)
i o P
Therefore, we obtain
Agg > _m=Daid +2p«/?)+cz 53

P
in B(x,2p). Then, we prove the following essential inequality.
Lemma 3.1 Let (M", g) be an n-dimensional complete noncompact Riemannian man-

ifold. If u is a positive function defined on the geodesic ball B(x, p) € M" satisfying
Axu = lu for some constant A and h = log u, then we have

1 m [V|Vh|?|? 1 ) ) )
—Ax|Vh|* > . Vh|* — ) Ric"™(Vh, Vh
S AxIVa _4( AT + (VA )"+ Ric( )
A m—2
- V|Vh|?, Vh). 3.4
[(m_l)lwlﬁm_l}u 2. Vh) (G.4)
Proof Note that Vi = £, we have

Axu  |Vul*

Axh = — = —|Vh|. (3.5)
u

u
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Moreover,

~Ax|Vh|* = |Hessh|* + Vi V;V;hVh + X'V;V;hV;h

|Hessh|* + (VAh, Vh) + Ric(Vh, Vh) + X'V;V;hVh
2, (Xh)?
= |Hessh|” + (VAxh, Vh) + Ric'y(Vh, Vh) +

= |Hessh|> — (V|Vh/|?,

( h)2
Vh) 4+ Ric'¢ (Vh, Vh) + ,  (3.6)
—n
where Hessh is the Hessian of 4, and we used the Bochner formula in the second
equality and (3.5) in the last

As in the proof of Theorem 2.3, we choose a frame {e;}!_, so that |VA|
hi. Then, we have

=V h =
n
|V |Vh| |2—4|Hessh(wl,-)|2=4h%2h = 4|Vh|?. Zhh,
i=1
ie.,
|V|Vh|?? .
=4y " 3.7
- Z 3.7

Similar as the estimate (2.5) in [17], we get

Xh)?
|Hessh|2 (

(a+b)2 4+

where we used Cauchy S mequality in the first line, (3.5) in the second, the fact of
b2

1+22h

2, (Xh)?
(Ah hi)” + —

2
= h{ +2Zh%.+—(|w|2—x+hn 4 x4+ X
— I n—1

2, +2ih%. L VAP =2+ )’
J

m—1

m-—n

v

m IVIVR?> (IVR]? —0)?
“4(m—1) |Vh|2

m—1
+|Vh|2 — X (V|Vh|*, Vh)

Va2

m—1

(3.8)

m—n —

(3 4) follows by applylng (3.8)-(3. 6)
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Global Lower Bounds on the First Eigenvalue... 3859

Now we are ready to derive the global lower estimates for the first eigenvalue of
Ay in the noncompact case.

Theorem 3.2 Let (M", g) be an n-dimensional complete noncompact Riemannian
manifold with Ric%{ > —(m — 1)K g for some constant K > 0. Then, there is a global
lower bound estimate on the first eigenvalue for the diffusion operator Ax

(m — D*K?
Mz (3.9)

Proof Define H = ¢|Vh|?. Then, in B(X, 2p), we have

Lpayh = M VIR L -k
2 “4m—1) VA2 p—
A -2
4 [(m “owvie t Z - 1} (VIVAP, Vh) + ¢V, VIVA])
YHAx¢
. [VH|> — |Vh[*|V¢|* L — gy HKH
RN VhP? + T (H = ¢2)" = (m— 1)
’ "2 H, VA
_¢Lm—nwmf+m_ﬂ< , Vh)
+H A m=2] ol v
ST A
2 —
+(Ve, VH) — VoI~ (m I)Cl(ltp\/?)—i-CzH, 410,
0

where we used Lemma 3.1 in the first inequality and (3.3) in the second.
Suppose that x; € B(x,2p) C M" is a maximum of G. Applying the maximum
principle to (3.10), we get

m|Vg|” L H— 6% —(m—DKH
= Tdm e T
* + =21 v, v
(m—1|Vh? " m—1 (V9. Vh)
VP, = DG+ oVE) 6
¢ ?
. m+ C} H? —2¢x + (¢p1)?
= 4m — 1)p2 m— 1
Con— DKH - HECL gy =€
(m—1)p (m—1)p
_ 2
_(m 1)C1(1+Z;/?)+CI+C2H’ 3.11)
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3860 L. Zhang

where we used (3.1) and Cauchy’s inequality. Note that

2 2
(@M |A9Cy o> Ci ’
m—1 (m—1p ~ 4(m—1)p?
and
22
(m—1p - 2m-=1) 2(m — 1)p?

Hence, (3.11) reduces to

0~ H? 202 m+ C}
“2m—=1) m—1 4(m—1)p?
C? (m —2)2C?
—|(m—-1K +
4m — Dp?2  2(m — 1)p?
-1 K)+C?+C
+(m )Ci( +,02\/_)+ T+ 2i|H' (3.12)
0
Therefore, we get
2
c? —2)2¢? —DCi(1 K)+C?+C
o — DE + L m=22C - DA+ pVE) +CT+Co
4(m —1p*  2(m —1)p? p?
2 2¢A m+C}
. >0 3.13
+m—1 |:m—1+4(m—1),02 - (3-13)
Taking p — oo in (3.13), it becomes
(m —1)°K* + L 0 (3.14)
m—12 =" '
ie.,
(m — 1)*K?
A> - (3.15)
4
This completes the proof. O

We have similar result via co-dimensional Bakry—Emery—Ricci curvature of the
diffusion operator Ay.
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Global Lower Bounds on the First Eigenvalue... 3861

Corollary 3.3 Let (M", g) be an n-dimensional complete noncompact Riemannian
manifold with Ric%o > —nK g for some constant K > 0 and |X|2 < «a. Then, there is
a global lower bound estimate on the first eigenvalue for the diffusion operator Ax

2 2
K
A > _M' (3.16)
4
Proof Taking m = n + 1 in Lemma 3.1, we can obtain
A |Vh|? > ntl |[VIVAP? + 1(|Vh|2 )%+ RicP(Vh, Vh)
= . - - ic ,
2% = dn VhZ ' n X
(Xh)? A 4+ -1 (V|Vh|?, Vh) (3.17)
n|Vh|? n ’ ’ '
Since Ric§ > —nKg and |X|? < a, it is clear that
Rict™ > —(nK +a)g. (3.18)

Then, the generalized Laplacian comparison theorem (see Corollary 3.3 of [9]) implies
that Axr <n(X+ /K +9).
Using the same method as in the proof of (3.3), we can get

nCi(l1+p,/K+%)+C
Ax¢p > — 2 (3.19)

Furthermore, (3.13) becomes

C2 (I’l _ 1)2c2 (i’lCl(l +p,/K + %)+C12+C2
nK +o+— + L+ 5

4np? 2np? 0
2 | 291 1+C?
+Z. £+u >0 (3.20)
n n 4np?
Taking p — oo in (3.20), we get
5 4A
(nK +a)”"+ — =0, (3.21)
n
ie.,
2 K 2
A > _"l("l—+0[) (3.22)
4
as desired. O
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