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Abstract
In this study, we provide some classifications for half-conformally flat gradient f -
almost Ricci solitons, denoted by (M, g, f ), in both Lorentzian and neutral signature.
First, we prove that if ||∇ f || is a non-zero constant, then (M, g, f ) is locally isometric
to a warped product of the form I ×ϕ N , where I ⊂ R and N is of constant sectional
curvature. On the other hand, if ||∇ f || = 0, then it is locally aWalker manifold. Then,
we construct an example of 4-dimensional steady gradient f -almost Ricci solitons in
neutral signature. At the end, we give more physical applications of gradient Ricci
solitons endowed with the standard static spacetime metric.

Keywords Ricci soliton · Gradient Ricci soliton · Gradient h-almost Ricci soliton ·
Half-conformally flat manifold · Walker manifold · Standard static spacetime metric

Mathematics Subject Classification 53C21 · 53C50 · 53C25

1 Introduction

Hamilton introduced the concept of the Ricci flow to prove the Poincare Conjecture
in the late of twentieth century [1]. Poincare Conjecture was one of the very deep
unsolved problems which aims to classify all compact three-dimensional manifolds.
In the 1900s, Poincare asked whether a simply connected closed three manifold is
necessarily the three sphere S3. For this purpose, Hamilton introduced the Ricci flow
as a partial differential equation ∂g(t)

∂t = −2Ric(g(t)), which evolves the metric in a
Riemannian manifold to make it rounder. By choosing harmonic coordinates, it can
be seen that the Ricci flow is a heat-type equation, and the characteristic property of
such equations is the maximum principle, which guarantees that this rounding metric
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happens in some specific case. Hence, as in the expectation of Hamilton, after the
evaluation of the metric, the manifold will become of constant curvature. Moreover,
Hamilton proved that for any smooth metric g0 on a compact Riemannian manifold
Mn , there exists a unique solution g(t) of Ricci flow defined on some interval [0, ε),
for some ε > 0, with the initial condition g(0) = g0 [1]. Even in the non-compact
case, a complete solution of Ricci flow exists when the sectional curvatures of g0 are
bounded [2].

Let (Mn, g(t)) be a solution of the Ricci flow and suppose that ϕt : Mn → Mn is
a time-dependent family of diffeomorphisms satisfying ϕ0 = I d and σ(t) is a time-
dependent scale factor satisfying σ(0) = 1. If g(t) = σ(t)ϕ∗

t g(0) holds, then the
solution (Mn, g(t)) is called a Ricci soliton. Thus, one can regard the Ricci solitons
as the fixed points of the Ricci flow, which change only by a diffeomorphism and a
rescaling. If we take the derivative of the last relation at t = 0, by using the definition
of the Lie derivative, the Ricci flow equation and the initial conditions for ϕt and σ(t),
we obtain

Ric + 1

2
LV g = λg, (1)

where V = dϕt
dt , LV g is the Lie derivative of the metric g in the direction of V and

σ
′
(0) = 2λ, for some real constant λ. As a result, the triple (M, g, V ) is said to be a

Ricci soliton, where V is the potential field and λ is the soliton constant. Also, there
is a terminology according to the sign of λ: a Ricci soliton is steady if λ = 0, and
expanding or shrinking if λ > 0 or λ < 0, respectively. If the potential vector field
X is gradient, that is X = ∇ f , for some smooth function f , then the equation (1)
reduces to the form

Ric + Hess f = λg. (2)

Thus the triple (M, g, f ) satisfying (2) is called a gradient Ricci soliton and f is called
a potential field. Mostly, in a gradient Ricci soliton λ is a real constant. But, we are
also interested in the general case in which λ is a smooth function on M . In that case,
(M, g, f ) is called a gradient almost Ricci soliton. In these regards, Ricci solitons
and gradient Ricci solitons are natural generalizations of Einstein manifolds. In the
literature, there are many other different generalizations of Einstein manifolds and
gradient Ricci solitons, such as quasi Einstein manifolds [3–5], (m, ρ)-quasi Einstein
manifolds [6–8], generalized quasi Einstein manifolds [9–11] and etc.

In this paper, we will deal with another generalization of Ricci solitons, given as
follows:

An h-almost Ricci soliton is a complete Riemannianmanifold (Mn, g)with a vector
field X ∈ χ(M) and two smooth real valued functions λ and h satisfying the equation
[12]

Ric + h

2
LX g = λg. (3)

For the sake of convenience, we denote an h-almost Ricci soliton by (Mn, g, X , h, λ).
If λ is constant, it is called an h-Ricci soliton. When X = ∇ f for some smooth
function f , we call (Mn, g,∇ f , h, λ) a gradient h-almost Ricci soliton with potential
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function f . In this case, the fundamental equation (3) can be rewritten as [13]:

Ric + h.Hess f = λg (4)

that constitutes the main theme of this work. This kind of manifolds are closely related
to the warped products so we should mention about the warped products [14]: For two
pseudo-Riemannian manifolds (B, gB) and (F, gF ), the warped product B×ϕ F with
respect to warping function ϕ ∈ C∞

>0(B) is defined as the product manifold B × F
endowed with the metric g = gB + ϕ2gF . After some straightforward calculations,
all components of the Ricci tensor of (B ×ϕ F, g) can be found as follows [14]

(1) Ric(X ,Y ) = RicB(X ,Y ) − m
ϕ
Hessϕ(X ,Y ),

(2) Ric(X , V ) = 0,

(3) Ric(V ,W ) = RicF (V ,W ) −
[

	ϕ
ϕ

+ (m − 1) ||gradϕ||2
ϕ2

]
g(V ,W ),

for all horizontal vectors X ,Y and vertical vectors V ,W where Hessϕ = ∇dϕ denote
the Hessian of a smooth function ϕ on (B, gB), m > 1 is the dimension of (F, gF ).
Einstein and quasi Einstein manifolds are closely related to the warped products. For
example, if B×ϕ F is an Einstein warped product, then (B, g, f , α) is quasi Einstein,
with f = −dimF(logϕ) and α = 1

dimF . Moreover, if we have a suitable fiber, the
converse of this statement is also true. Thus, this is a natural way to construct a quasi
Einstein manifolds and warped product metrics.

Additionally, if B ×ϕ F satisfies Ric(X ,Y ) = λg(X ,Y ) for all X ,Y ∈ χ(B), then
the base manifold (B, gB,∇ϕ,−m

ϕ
, λ) is the gradient (−m

ϕ
) almost Ricci soliton.

Conversely, if fiber (F, gF ) is Einstein with RicF = μgF , then the necessary and
sufficient condition for B ×ϕ F to be an Einstein with Ric = λg is that the base
(B, gB) is a gradient (−m

ϕ
)-almost Ricci soliton with potential function ϕ and soliton

function λ satisfying μ = ϕ	ϕ + (m − 1)||∇ϕ||2 + λϕ2.
Motivated by these results, in this study first we analyze the half-conformally flat

(i.e., self-dual or anti-self-dual) four-dimensional gradient f -almost Ricci solitons
(that is, throughout this study the function h is identified by the potential function f ).
Indeed, we restrict ourselves to the particular case in which h equals to the potential
function f . In [15], half-conformally flat gradient Ricci almost solitons are investi-
gated, showing that they are locally conformally flat in a neighborhood of any point
where the gradient of the potential function is non-null. In opposition, if the gradient of
the potential function is null, then the soliton is a Walker manifold. The first case cor-
responds to non-degenerate level hypersurfaces, whereas the second case corresponds
to degenerate level hypersurfaces and gives rise to the isotropic solitons [15]. From
the inspiration of these results, we will extend this problem to the gradient f -almost
Ricci solitons. In the last part, we also give more physical applications of gradient
Ricci solitons by using the standard static spacetime metric. We provide the character-
izations of certain manifolds satisfying Ricci–Hessian class-type equations endowed
with standard static spacetime metric, with respect to their fundamental equations.
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2 Preliminaries

Let (M, g) be a pseudo-Riemannian manifold with Levi–Civita connection ∇. The
curvature operator is defined by R(X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ], for any X ,Y ∈ χ(M).
Then the Ricci tensor Ric and the scalar curvature r are defined by Ric(X ,Y ) =
trace{Z → R(X ,Y )Z} and r = trace{Ric}, respectively, where Q denotes the Ricci
operator defined by g(QX ,Y ) = Ric(X ,Y ). As wementioned before, Hess f denotes
the Hessian tensor defined by Hess f (X ,Y ) = (∇Xd f )(Y ) = XY ( f ) − (∇XY )( f ).

2.1 Some Key Lemmas About Gradient f-Almost Ricci Solitons

First we give the following which will help us to characterize the gradient f -almost
Ricci solitons.

Lemma 1 Let (Mn, g,∇ f , f , λ) be a gradient f -almost Ricci soliton. Then the fol-
lowing identities hold:

(1) r + f 	 f = λn
(2) ∇r = −2(∇ f )	 f + 2 f Ric(∇ f ) + 2hes f (∇ f ) + 2(n − 1)∇λ

(3) f R(X ,Y , Z ,∇ f ) = dλ(X)g(Y , Z) − dλ(Y )g(X , Z) − [d f (X)Hess f (Y , Z) −
d f (Y )Hess f (X , Z)] − [(∇XRic)(Y , Z) − (∇Y Ric)(X , Z)]

for all vector fields X ,Y , Z on M.

Proof Contracting the fundamental equation of (Mn, g,∇ f , f , λ), the first assertion
is directly obtained. If we combine (1) with the Ricci identity, the second assertion
can be verified. Thus, (1)–(2) and the Ricci identity yield the last relation.

	


The Weyl tensor W and the Cotton tensor C are defined as follows:

W(X ,Y )Z = R(X ,Y )Z + r

(n − 1)(n − 2)
[g(X , Z)Y − g(Y , Z)X ]

+ 1

n − 2
[Ric(Y , Z)X − Ric(X , Z)Y + g(Y , Z)QX − g(X , Z)QY ],

(5)

C(X ,Y , Z) = (∇XRic)(Y , Z) − (∇YRic)(X , Z)

− 1

2(n − 1)
[g(Y , Z)dr(X) − g(X , Z)dr(Y )], (6)

for all vector fields X ,Y , Z on M . Then by using Eqs. (5) and (6) and Lemma 1, we
can immediately obtain the following result that will be given without proof:
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Lemma 2 Let (Mn, g,∇ f , f , λ) be a gradient f -almost Ricci soliton. Then

W(X ,Y , Z ,∇ f ) = 1

(n − 1)(n − 2)
[Ric(X ,∇ f )g(Y , Z) − Ric(Y ,∇ f )g(X , Z)]

− r

(n − 1)(n − 2)
[g(X ,∇ f )g(Y , Z) − g(Y ,∇ f )g(X , Z)]

+ 1

(n − 2)
[g(X ,∇ f )Ric(Y , Z) − g(Y ,∇ f )Ric(X , Z)]

− 1

f
[d f (X)Hess f (Y , Z) − d f (Y )Hess f (X , Z)]

+ 	 f

f (n − 1)
[d f (X)g(Y , Z) − d f (Y )g(X , Z)]

− 1

2 f (n − 1)
[X(||∇ f ||2)g(Y , Z) − Y (||∇ f ||2)g(X , Z)]

− 1

f
C(X ,Y , Z) (7)

for all vector fields X ,Y , Z on M.

2.2 Half-Conformal Flatness of 4-Dimesional Manifolds

Let (V ,< ., . >) be an inner product vector space and let << ., . >> be the induced
inner product on the space of two forms �2(V ). For a given orientation volV , the
Hodge star operator ∗ : �2(V ) → �(V ) given by α ∧ ∗β =<< α, β >> volV
satisfies ∗2 = I d and induces a decomposition �2 = �2+ ⊕ �2−, where �2+ = {α ∈
�2 : ∗α = α} and �2− = {α ∈ �2 : ∗α = −α}. �2+ denotes the space of self-dual
and �2− denotes the space of anti-self-dual two forms. Let W : �2(V ) → �(V ) be
the corresponding endomorphism associated to the Weyl conformal tensor. Then W
can be decomposed under the action of SO(V ,< ., . >) as W = W+ ⊕ W−, where
W+ = W+∗W

2 is the self-dual and W− = W−∗W
2 is the anti-self-dual Weyl conformal

curvature tensor. Half-conformally flat metrics are known as self-dual or anti-self-dual
if W− = 0 or W+ = 0, respectively.

We will use the following characterization of self-dual algebraic curvature tensors
in sequel:

Lemma 3 [15] Let (V ,< ., . >) be an oriented four-dimensional inner product space
of neutral signature. Then the following holds:

(1) Analgebraic curvature tensor R is self-dual if and only if for any positively oriented
orthonormal basis {e1, e2, e3, e4} ,

W (e1, ei , X ,Y ) = σi jkε jεkW (e j , ek, X ,Y ), ∀X ,Y ∈ V (8)

for i, j, k ∈ {2, 3, 4}, where σi jk denotes the signature of the corresponding per-
mutation.
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(2) Analgebraic curvature tensor R is self-dual if and only if for any positively oriented
pseudo-orthonormal basis {T ,U , V ,W } (i.e., the non-zero inner products are
< T , V >=< U ,W >= 1) and for every X ,Y ∈ V ,

W (T , V , X ,Y ) = W (U ,W , X ,Y ), W (T ,W , X ,Y ) = 0, W (U , V , X ,Y ) = 0
(9)

for i, j, k ∈ {2, 3, 4}, where σi jk denotes the signature of the corresponding per-
mutation.

3 Half-Conformally Flat Gradient f -Almost Ricci Solitons

The aim of this section is to analyze four-dimensional half-conformally flat (i.e., self-
dual or anti-self-dual) gradient f -almost Ricci solitons. Since we work at the local
sets, let p ∈ M and orient (M, g) on a neighborhood of p so that it is self-dual.

3.1 Non-isotropic Case

First, we consider non-isotropic half-conformally flat gradient f -almostRicci solitons.
That is, ||∇ f || �= 0 so the level sets of f are non-degenerate hypersurfaces. Here, we
also assume that ∇ f is of constant length. Since Cotton tensor is a constant multiple
of divergence of Weyl tensor, by virtue of (7) and (8), we can express the self-duality
condition as follows:

3[Q(ei )g(e1,∇ f ) − Q(e1)g(ei ,∇ f )] + Ric(e1, ∇ f )ei − Ric(ei ,∇ f )e1

+ r [g(ei , ∇ f )e1 − g(e1, ∇ f )ei ] − 6

f
[g(∇ f , e1)∇ei ∇ f − g(∇ f , ei )∇e1∇ f ]

+ 2
	 f

f
[g(∇ f , e1)ei − g(∇ f , ei )e1] − 1

f
[e1(||∇ f ||2)ei − ei (||∇ f ||2)e1]

= σi jkε j εk

[
3[Q(ek)g(e j , ∇ f ) − Q(e j )g(ek , ∇ f )] + Ric(e j , ∇ f )ek − Ric(ek , ∇ f )e j

+ r [g(ek , ∇ f )e j − g(e j , ∇ f )ek ] − 6

f
[g(∇ f , e j )∇ek∇ f − g(∇ f , ek)∇e j ∇ f ]

+ 2
	 f

f
[g(∇ f , e j )ek − g(∇ f , ek)e j ] − 1

f
[e j (||∇ f ||2)ek − ek(||∇ f ||2)e j ]

]
(10)

for i, j, k ∈ {2, 3, 4}, where εi =< ei , ei >. Since ||∇ f || �= 0, we can normalize
∇ f to be a unit and complete it to an orthonormal frame {Ei : i = 1, 2, 3, 4}, where
E1 = ∇ f

||∇ f || . Then, normalizing (10) with respect to this orthonormal frame, we obtain

3Ric(Ei , Z)g(E1,∇ f ) + Ric(E1,∇ f )g(Ei , Z) − Ric(Ei ,∇ f )g(E1, Z)

− rg(E1,∇ f )g(Ei , Z) − 6

f
g(∇ f , E1)g(∇Ei∇ f , Z)

+ 2
	 f

f
g(∇ f , E1)g(Ei , Z) − 1

f
[E1(||∇ f ||2)g(Ei , Z) − Ei (||∇ f ||2)g(E1, Z)]
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= σi jkε jεk

[
Ric(E j ,∇ f )g(Ek, Z) − Ric(Ek,∇ f )g(E j , Z)

− 1

f
[E j (||∇ f ||2)g(Ek, Z) − Ek(||∇ f ||2)g(E j , Z)]

]
. (11)

Now, first putting Z = E1 in (11) and using the fact that ||∇ f || is non-zero constant,
we get

Ric(Ei , E1) = 0, ∀ i ∈ {2, 3, 4} (12)

which means that ∇ f is an eigenvector of the Ricci operator.
Next, putting Z = E j in (11), we get

Ric(Ei , E j ) = 0, ∀ i �= j . (13)

That is, the Ricci operator can be diagonalizable on the basis {E1, E2, E3, E4}.
Finally, setting Z = Ei in (11), we obtain

ε1Ric(E1, E1) − r + 3εiRic(Ei , Ei ) − 6

f
Hess f (Ei , Ei ) − 2

	 f

f
− 1

f
E1(||∇ f ||) = 0.

(14)

In view of (14), the fundamental equation of gradient f -almost Ricci soliton yields

Hess f (Ei , Ei ) = − 1

f
Ric(Ei , Ei ) + λ

f
, ∀ i ∈ {2, 3, 4}. (15)

As a consequence of the last two equations, we obtain

Hess f (Ei , Ei ) = γ g(Ei , Ei ) (16)

where γ = f
3 f 2+6

[Ric(E1, E1) + 3λ − r − 2	 f
f ]. On the other hand, when i �= j ,

Ric(Ei E j ) = 2
f Hess f (Ei , E j ) = 0. Thus, the level hypersurface of f is totally

umbilical. Moreover, for i ∈ {2, 3, 4}, Hess f (Ei , E1) = g(hes f (E1), Ei ) = 0 and
so hes f (E1) = 0. Thus, the 1-dimensional distribution Span{E1} is totally geodesic.
Then, by using the reference [16], we conclude that (M, g) can be locally decomposed
as a twisted product I ×ϕ F . Also, as the Ricci operator is diagonalizable, the twisted
product reduces to a warped product (see [17]). That is, (M, g) is a 4-dimensional
self-dual warped product manifold. Thus, it becomes also anti-self-dual. Therefore, it
is necessarily locally conformally flat and as a consequence of this result, the fiber F
becomes an Einstein manifold. Hence we can state the following theorem:

Theorem 1 Let (M, g, f ) be a four-dimensional half-conformally flat gradient f -
almost Ricci soliton of neutral signature. Then, if ||∇ f || =constant �= 0, then (M, g)
is locally isometric to a warped product of the form I ×ϕ N, where I ⊂ R and N is
an Einstein manifold. Furthermore, (M, g) is locally conformally flat.
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3.2 Isotropic Case

In this case, the level hypersurfaces of the potential function are now degenerate. That
is, in contrast to the non-isotropic case, we have ||∇ f || = 0. But, as ∇ f �= 0, we can
complete it to a local pseudo-orthonormal frame B = {∇ f ,U , V ,W }, i.e., the only
non-zero components of the metric g are

g(∇ f , V ) = g(U ,W ) = 1. (17)

Since ||∇ f || = g(∇ f ,∇ f ) = 0, taking covariant derivative, we get for all X ∈ T M ,
Hess f (∇ f , X) = g(hes f (∇ f ), X) = 0, which yields hes f (∇ f ) = 0. Combining
this with the fundamental equation of gradient f -almost Ricci soliton, we have

Q(∇ f ) = λ∇ f (18)

where Q is the Ricci operator. Thus, ∇ f is an eigenvector of the Ricci operator
corresponding to the eigenvalue λ.

Now, since (M, g, f ) is half-conformally flat, without lose of generality we can
assume that it is self-dual. Then by Eqs. (3) and (9), for the pseudo-orthonormal frame
B = {∇ f ,U , V ,W }, we have
W (∇ f , V , X ,Y ) = W (U ,W , X ,Y ), W (∇ f ,W , X ,Y ) = 0, W (U , V , X ,Y ) = 0,

(19)
for all X ,Y . Setting Y = ∇ f in the first equation of (19) and using Eqs. (7) and (18),
we get

W (∇ f , V , X ,∇ f ) =
(r − 4λ

6
+ 	 f

3 f

)
g(∇ f , X). (20)

Putting Y = ∇ f in the second equation of (19) and using Eqs. (7) and (18), we
get W (U ,W , X ,∇ f ) = 0. Combining the last relation with (20), we have either
r = 4λ − 2	 f

f or for all X , g(∇ f , X) = 0. But the last one gives rise to ∇ f = 0,

which is a contradiction. Thus, we get r = 4λ − 2	 f
f .

Similarly, putting Y = ∇ f in the third equation of (19) and using Eqs. (7), (18)
and the fundamental equation of the gradient f -almost Ricci soliton, we get

Ric(U , X) = λg(U , X), ∀ X ∈ T M (21)

which shows that U is an eigenvector of the Ricci operator corresponding to the
eigenvalue λ.

Finally, putting X = V in the second equation of (19) and using Eqs. (7) and (18),
we get

λ

6
g(Y ,W ) − r

6
g(Y ,W ) − 1

2
Ric(V ,W )g(Y ,∇ f ) − 1

f
Hess f (Y ,W )

+ 1

f
g(Y ,∇ f )Hess f (V ,W ) + 	 f

3 f
g(Y ,W ) + Ric(Y ,W ) = 0, ∀ Y ∈ T M .

(22)
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Now, putting Y = W and Y = ∇ f in (22) and using the fundamental equation,
respectively, we obtain

Ric(W ,W ) = Ric(∇ f ,W ) = 0. (23)

As a consequence of these obtained results, the Ricci operator can be written as in the
following form:

Q =

⎛
⎜⎜⎝

λ 0 α β

0 λ β 0
0 0 λ 0
0 0 0 λ

⎞
⎟⎟⎠

for some non-zero functions α and β on M . Now, we set D = {∇ f ,U }, which is 2-
dimensional null-distribution. SinceB = {∇ f ,U , V ,W } is pseudo-orthonormal basis
in which the only non-zero components of the metric g(∇ f , V ) = g(U ,W ) = 1, we
have

g(∇X∇ f ,∇ f ) = g(∇XU ,U ) = 0. (24)

Also, by using the fundamental equation of gradient f -almost Ricci soliton and (21),
we have hes f (U ) = 0. Thus, we obtain

g(∇X∇ f ,U ) = g(∇XU ,∇ f ) = 0. (25)

Therefore,∇D ⊂ D, i.e., the distributionD is invariant under the Levi–Civita connec-
tion ∇. Thus, D is a null-parallel distribution and so (M, g, f , λ) is locally a Walker
manifold. Hence, we can state that:

Theorem 2 Let (M, g, f ) be a four-dimensional half-conformally flat gradient f -
almost Ricci soliton of neutral signature. Then if ||∇ f || = 0, then (M, g) is locally a
Walker manifold, where r = 4λ − 2	 f

f .

Remark 1 From [18], if dimM = 4 and dimD = 2, themetric g of theWalkermanifold
(M, g, D) has the neutral signature (−,−,+,+) and in suitable coordinates it has
the form

g(x, y, z, t) =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 a(x, y, z, t) c(x, y, z, t)
0 1 c(x, y, z, t) b(x, y, z, t)

⎞
⎟⎟⎠

for some function a(x, y, z, t), b(x, y, z, t) and c(x, y, z, t), where D =< ∂
∂x , ∂

∂ y >.

Some geometric properties of four-dimensional Walker metrics satisfying c = 0
and c =constant were investigated in [19,20], respectively. Here we are interested in
the particular case by choosing a = c = 0 in the metric g(x, y, z, t) and we construct
the following:
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Example 1 Let {t, x, y, z} be the local coordinates with respect to the local frame fields
{∂t , ∂x , ∂y, ∂z} and we consider the metric given by

(gb) = ds2 = 2dtdy + 2dxdz + bdz2 (26)

for some smooth function b. Then by long and straightforward calculations, the non-
zero components of the Riemannian curvature tensor Ricci tensor are as follows:

R(∂y, ∂t )∂y = 1

2
byy∂y, R(∂y, ∂t )∂t = 1

2
bbyy∂y − 1

2
byy∂t (27)

Ric(∂x , ∂t ) = 1

2
bxy, Ric(∂y, ∂t ) =1

2
byy,

Ric(∂z, ∂t ) = 1

2
byz, Ric(∂t , ∂t ) = − bzx + 1

2
bbyy (28)

To construct a gradient f -almost Ricci soliton structure on (M, g f ), by using (4), (26)
and (28), we need to find the potential function f and soliton function λ satisfying
following system of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x fx = 0, ∂y fx = 0, f ∂z fx = λ, ∂t fx − 1
2bx fy = 0,

∂y fy = 0, ∂z fy = 0,

1
2byy + f [∂t fy − 1

2by fy] = λ,

∂z fz = 0, 1
2byz + f [∂t fz − 1

2bz fy] = 0,

−bxz + 1
2bbyy + f [∂t ft + 1

2 (bz fx − bt fy − bbyy fy + bx fz + by ft )] = λb,
(29)

where all indices denote the partial derivatives with respect to corresponding coordi-
nates.

First, without lose of generality, we assume that f depends only on y. Then, by the
system (29), we obtain λ = 0, f = αy+β; for any α, β ∈ R, and b is a differentiable
function of only y satisfying the resulting system of (29). Hence (M, gb,∇ f , 0) is
the steady gradient f -almost Ricci soliton, where f and b are defined as above.

Secondly, to construct another explicit example we may consider f as a separable
function of x and z. In this case, we assume that f (x, z) = xz and by the system (29),
we obtain λ = xz and b = xy2z + c, for any c ∈ R, which yields the non-steady
gradient f -almost Ricci soliton (M, gb,∇ f , λ).

4 More Physical Results: Standard Static Spacetimes

First, to fix the notation, we may give a formal definition of standard static spacetime:
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Definition 1 Let (F, ḡ) be an n-dimensional Riemannian manifold and h : F →
(0,∞) be a smooth function. Then (n+1)-dimensional product manifold M = I × F
furnished with the metric tensor g̃ = −h2dt2 ⊕ ḡ is called a standard static spacetime
(briefly SSS-time) and it is denoted by M = Ih ×F , where dt2 is the Euclidean metric
tensor on I .

Here throughout this section, each object denoted by “tilde” is assumed to be from
the SSS-time and each object denoted by “bar” is assumed to be from the fiber F .
This is just the warped product F × f I with time coordinate written first. Thus,
by contrast with a Robertson-Walker spacetime, space remains the same but time is
warped [14]. These type of metrics play an important role in the search of solutions
of the Einstein field equations so they have been previously studied by many authors.
Two of the most famous examples of standard static spacetimes are the Minkowski
spacetime and the Einstein’s static universe [21]. Another well-known examples are
the universal covering space of anti-de Sitter spacetime and the Exterior Schwarzschild
spacetime (for more details [22]).

In the late of 1980s,Besse [23] posed an important question about the constructionof
Einsteinmanifolds that havewarped product structures.More recently, somenecessary
and sufficient conditions are obtained to construct Einstein warped product manifold.

If it is more clearly stated, (M × N , g) endowed with the metric g = gM ⊕ e
−2 f
m gN is

Einstein if and only if the fiber manifold is Einstein and the m-Bakery–Emery Ricci
tensor of the base manifold is proportional to its metric, i.e., it is quasi Einstein [24].
Thus, it would be a very interesting idea to extend these studies to the generalizations
of Ricci solitons having the standard static spacetime metric structure. This will be
the point of view of this section.

The next lemma includes some geometrical objects such as the Levi–Civita con-
nection and the Ricci tensor of the standard static spacetime metric:

Lemma 4 [14] Under the above notations, on the h-associated SSS-time, for any
vector fields X ,Y ∈ χ(I ) and U , V ∈ χ(F), one has:

(i) the only non-vanishing components of the Levi–Civita connection of ∇̃ of M are
given by:

(1) ∇̃XY = ∇XY − g̃(X ,Y )
h ∇h,

(2) ∇̃XV = ∇̃V X = ( Vh
h )X, (3) ∇̃UV = ∇̄UV ,

(ii) the only non-vanishing components of the Ricci tensor of R̃ic of M are given by:

(1) R̃ic(X ,Y ) = −h	hg(X ,Y ),

(2) R̃ic(U , V ) = S̄(U , V ) − Hessh(U ,V )
h ;

where Hessh and 	h denote the Hessian and Laplacian of h on F, respectively.

Moreover, the scalar curvature of Ih × F is given by r̃ = r̄ − 2	h
h .

It is known that a smooth manifold (Mn, g) (n > 2) is said to be generalized quasi
Einstein manifold [9] if there exist three smooth functions f , α and λ such that

Ric + Hess f − αd f ⊗ d f = λg, (30)
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which is simply denoted by (Mn, g,∇ f , λ). Ifα = 1
m , for positive integer 0 < m < ∞

then M is called anm-generalized quasi Einstein manifold. If in addition, λ ∈ R, then

M reduces to an m-quasi Einstein manifold. Moreover, defining a function ϕ = e
− f
m ,

we get m
ϕ
Hessϕ = −Hess f + 1

m d f ⊗ d f . By using this relation in the fundamental
equation, we obtain

Ric − m

ϕ
Hessϕ = λg. (31)

Thus, all m-generalized quasi Einstein manifold is a gradient (−m
ϕ

)-almost Ricci soli-
ton. After this transformation, we can prove the following:

Theorem 3 Let (M = Ih × F, g̃, f , λ) be an m-generalized quasi Einstein standard
static spacetime. Then, the potential function f depends only on the fiber (F, ḡ)which
satisfies the Ricci–Hessian class-type equation

R̄ic + Hessψ − dψ ⊗ dψ = λḡ + m

ϕ
Hessϕ. (32)

Proof Since (M = Ih × F, g̃, f , λ) is an m-generalized quasi Einstein SSS-time, by
(31) its Ricci tensor satisfies

R̃ic − m

ϕ
˜Hessϕ = λg̃. (33)

In view of Eq. (33), Lemma 4-(ii) and the definition of the SSS-time metric, for all
X ∈ χ(I ) and V ∈ χ(F) we have ( ˜Hessϕ)(X , V ) = 0. Then, again by using Lemma
4-(i) we get the following separation for the tangential and the normal parts of the
vectors

˜Hess(ϕ)(X , V ) =g̃(∇̃X tan(gradg̃ϕ), V ) + g̃(∇̃Xnor(gradg̃ϕ), V )

=hdh(V )g(X , tan(gradg̃ϕ)) = 0. (34)

From the last row, since h > 0, we have either dh(V ) = 0, for any V ∈ χ(F) or
g(X , tan(gradg̃ϕ)) = 0.But thefirst case impliesh is a constant,whichmakes the SSS-
time trivial. Thus, we have g(X , tan(gradg̃ϕ)) = 0, for all X . Therefore, the function ϕ

and so the potential function f depends only on fiber. That is, nor(gradg̃ϕ) = gradḡϕ.
Since g = −(dt)2, we may choose X = Y = ∂t . Then, by (33), we obtain

R̃ic(∂t , ∂t ) − m

ϕ
˜Hessϕ(∂t , ∂t ) = λg̃(∂t , ∂t ), (35)

from which following relation holds:

	h + m

ϕ
(gradḡϕ)(h) = −hλ. (36)
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Similarly, for all V ,W ∈ χ(F), we get

R̃ic(V ,W ) − m

ϕ
˜Hessϕ(V ,W ) = λg̃(V ,W ). (37)

Again, by the definition of the metric g̃ and Lemma 4-(ii), (37) yields

R̄ic(V ,W ) − 1

h
Hessh(V ,W ) − m

ϕ
Hessϕ(V ,W ) = λḡ(V ,W ). (38)

Note that the following relation holds for any smooth function h;

∇2(lnh) = 1

h
∇2h − 1

h2
dh ⊗ dh. (39)

If we take ψ = −lnh, then by virtue of (39), (38) yields the equation (32). Hence the
proof is completed. 	


Then, we shall actually prove a slightly stronger theorem, which is the converse
case of the above theorem. This also allows us to obtain sufficient conditions about in
which conditions we can get standard static metric structure:

Theorem 4 Let (Fn, ḡ, f ,− 2	h+h	ϕ
h ) be a non-steady m-generalized quasi Einstein

manifold. Then the standard static spacetime (Ih×F, g̃,∇ϕ,− 2	h+h	ϕ
h ) is a gradient

almost Ricci soliton, where ϕ = f
2 and h = e−ϕ .

Proof We assume that (Fn, ḡ, f , λ) be a non-steady m-generalized quasi Einstein
metric. Thus, we have

R̄ic + Hess f − 1

m
d f ⊗ d f = λḡ; λ ∈ C∞(F). (40)

Define ϕ = f
2 , h = e

−ϕ
α and let m = 4α. Then, we get

α

h
∇2h = 1

α
dϕ ⊗ dϕ − ∇2ϕ. (41)

Then, in view of (41), (40) can be written as follows (when α = 1);

R̄ic + ∇2ϕ = λḡ + 1

h
∇2h. (42)

By virtue of (42) and Lemma 4, for all V ,W ∈ χ(F) the relation

R̃ic(V ,W ) + ∇2ϕ(V ,W ) = λg̃(V ,W ) (43)

holds. Since for all X ∈ χ(I ) and V ∈ χ(F), g̃(X , V ) = 0 and R̃ic(X , V ) = 0, the
relation

R̃ic(X , V ) + ∇2ϕ(X , V ) = λg̃(X , V ) (44)
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trivially holds. Also, from Lemma 4 and Theorem 3, for all X ,Y ∈ χ(M), i.e.,
X = Y = ∂t ,

(∇2ϕ)(∂t , ∂t ) = g̃(∇̃∂t∇ϕ, ∂t ) = −h∇ϕ(h). (45)

As 	h = div(∇h), from assumptions, we have 	h + ∇ϕ(h) = −h	ϕ. Thus, if we
choose the soliton constant λ = − 2	h+h	ϕ

h , the relation

R̃ic(∂t , ∂t ) + ∇2ϕ(∂t , ∂t ) = λg̃(∂t , ∂t ) (46)

also holds. Therefore, in each case (Ih × F, g̃,∇ϕ,− 2	h+h	ϕ
h ) satisfies the funda-

mental equation of a gradient almost Ricci soliton, which completes the proof. 	

On the other hand, if we assume that (Ih × Fn, g̃, f , λ) is an m-generalized quasi

Einstein SSS-time, by virtue of (41), we have

R̃ic + ∇2ϕ = λg̃ + α

h
∇2h. (47)

Additionally, we assume that (Fn, ḡ, f , λ) satisfies the relation

− 2λdϕ + d[(2 − n − α)λ + ||∇ϕ||2 − 	ϕ − α

h
∇ϕ(h)] = 0. (48)

Contracting (47), the scalar curvature is obtained as follows:

r̃ = nλ + α

h
	h − 	ϕ (49)

and so its differential is

dr̃ = ndλ + α

h
d(	h) − α

h2
dh	h − d(	ϕ). (50)

Notice that for all smooth function ϕ and (0, 2)-tensor T , the following general facts
are well known:

div(ϕT ) = ϕdivT + T (∇ϕ, ·). (51)

div(∇2ϕ) = Ric(∇ϕ, ·) + (	ϕ) and
1

2
d(||∇ϕ||2) = ∇2ϕ(∇ϕ, ·). (52)

Taking divergence of (47) and using Eqs. (48), (51), (52) and the contracted second
Bianchi Identity, we get d[λh2 + h	h + (α − 1)||∇h||2 − h∇ϕ(h)] = 0 and so for
some constant c0, we have

λh2 + h	h + (α − 1)||∇h||2 − h∇ϕ(h) = c0. (53)

Now, we consider the elliptic operator of second order given by

ε(·) = 	(·) − ∇ϕ(·) + α − 1

h
∇h(·). (54)
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Then by virtue of (53), (54) yields

	(h) − ∇ϕ(h) + α − 1

h
||∇h||2 = c0 − λh2

h
. (55)

If we assume that h is bounded function which has maximum and minimum values at
some points p and q on Fn , respectively, then we have

∇h(p) = 0 = ∇h(q) and 	h(p) ≤ 0 ≤ 	h(q). (56)

If we take λ ≤ 0 such that λ(p) ≤ λ(q), then by (53) and (56), we get

c0 − λ(p)h2(p) = c0 − λ(q)h2(q). (57)

Now, if λ(q) �= 0, then by (57), we have h2(p) ≤ h2(q) which implies for all
p, q ∈ F , h(p) = h(q). Therefore, h is constant and so is λ. If λ(p) = 0, then
by (53), c0 = 0. In this case, from (53) and (54) we obtain ε(h) ≥ 0. It is known
that the Strong Maximum Principle tells us that for a solution of an elliptic equation,
extrema can be attained in the interior if and only if the function is a constant. Hence
we conclude that h is constant and so λ = 0. As h is constant, the potential function
f of (M = Ih × Fn, g̃, f , λ) is also constant. Thus, M is trivial.
Hence together with this result, we have obtained an answer to the question posed

by Besse in [23], for m-generalized quasi Einstein manifolds with λ ≤ 0, which also
extends the results obtained for the warped product manifolds in [25] to the standard
static spacetimes. Therefore, we can state the following:

Corollary 1 Let (M = Ih × Fn, g̃, f , λ) be an m-generalized quasi Einstein standard
static spacetime satisfying (48) with bounded warping function h and λ ≤ 0 such that
λ(p) ≤ λ(q), where p and q are maximum and minimum points of h, respectively.
Then, (M = Ih × Fn, g̃, f , λ) is trivial Lorentzian product manifold.
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