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Abstract

In this paper, we introduce the theory of multiplication alteration by two-cocycles for
non-associative structures like non-associative bimonoids with left (right) division.
Also, we explore the connections between Yetter—Drinfeld modules for Hopf quasi-
groups, projections of Hopf quasigroups, skew pairings and quasitriangular structures,
obtaining the non-associative version of the main results proved by Doi and Takeuchi
in the Hopf algebra setting.
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1 Introduction and Preliminaries

Let R be a commutative ring with a unit and denote the tensor product over R by ®.
In [34], we can find one of the first interesting examples of multiplication alteration by
atwo-cocycle for R-algebras. In this case, Sweedler proved that, if U is an associative
unitary R-algebra with a commutative subalgebra A and 0 = ) a; ® b; @ ¢; €
A® A® A is an Amistur two-cocycle, then U admits a new associative and unitary
product defined by u e v = > a; ub; vc; for all u, v € U. Moreover, if U is central
separable, U with the new product is still central separable and is isomorphic to the
Rosenberg—Zelinsky central separable algebra obtained from the two-cocycle o !
(see [33]). Later, Doi discovered in [11] a new construction to modify the algebra
structure of a bialgebra A over a field F using an invertible two-cocycle o in A. In this
case,if 0 : A® A — [ is the two-cocycle, the new product on A is defined by

axb= Za(al ® b1)axbro " (a3 ® b3)

for a, b € A. With the new algebra structure and the original coalgebra structure, A
is a new bialgebra denoted by A, and if A is a Hopf algebra with antipode X4, so is
A? with antipode given by

hao(@) =Y o(ar ®ra(@))ralaz)o ' (ralas) ® as)

for a € A. One of the main remarkable examples of this construction is the Drinfeld
double of a Hopf algebra H. If H* is the dual of H and A = H*“°? @ H, the Drinfeld
double D(H) can be obtained as A where o is defined by 0 ((x ® g) ® (y ® h)) =
x(1g)y(g)ey(h) forx,y € H* and g, h € H. As was pointed by Doi and Takeuchi
in [12], “this will be the shortest description of the multiplication of D(H).”

A particular case of alterations of products by two-cocycles is provided by invertible
skew pairings on bialgebras. If A and H are bialgebrasand 7 : A ® H — F is an
invertible skew pairing, Doi and Takeuchi defined in [12] a new bialgebra A <,
H in the following way: The morphism w : A ® H ® A ® H — [ defined by
w(@a®g) ®Mbh) = eala)eg(h)T(b® g), fora,b € Aand g,h € H,is a
two-cocyclein A ® H and A <, H = (A ® H)®. The construction of A <; H also
generalizes the Drinfeld double because H*“°P and H are skew-paired. Moreover,
A <, H is an example of Majid’s double cross product A < H (see [23,25]) where
the left H-module structure of A, denoted by ¢4, and the right A-module structure of
H, denoted by ¢y, are defined by

path®a) =) t(a1 @ hnart ™' (a3 @ ho),
¢puh®a) =Y t(a1 @ h)hyt (a2 @ h3),
forae Aandh € H.

On the other hand, a relevant class of Hopf algebras are quasitriangular Hopf alge-
bras. This kind of Hopf algebraic objects was introduced by Drinfeld [13] and provides
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solutions of the quantum Yang—Baxter equation: If H is quasitriangular with mor-
phism R : F — H ® H and N is a left H-module with action ¢, the endomorphism
T:N®N — N®Ndefinedby T(n®n') =Y ou(R' ®n) @ oy (R> @ 1') is
a solution of the quantum Yang-Baxter equation. If, moreover, for a Hopf algebra A
there exists an invertible skew pairing 7 : A ® H — F, by Proposition 2.5 of [12],
we have that g : A<, H — H,definedby g(a®h) = > 1(a® RYR?*h fora € A,
h € H, is a Hopf algebra projection. Thus, skew pairings and quasitriangular Hopf
algebras give relevant examples of Hopf algebra projections.

The theory of Hopf algebra projections was established by Radford in [30]. In this
work, we can find the conditions than permit to obtain a Hopf algebra structure on
the tensor product of two Hopf algebras A and H, where the product is the smash
product algebra and the coproduct is the smash coproduct coalgebra. Moreover, the
results proved by Radford also allow to characterize these kinds of objects in terms
of bialgebra projections. By using the bosonization process, Radford’s results were
later generalized to the braided context by Majid [24], who established a one-to-one
correspondence between Hopf algebras in the category of left-left Yetter—Drinfeld
modules and Hopf algebras with a projection. Therefore, if we come back to the
Hopf algebra projection induced by two Hopf algebras A and H, such that H is
quasitriangular, and a skew pairing t : A ® H — [, we obtain by Majid’s bijection
a Hopf algebra in ZyD. As was proved in [1], this Hopf algebra (or braided Hopf
algebra) is A with a modified product and antipode. If A x H denotes the bosonization
of A, A x H and A 0<; H are isomorphic as Hopf algebras.

A relevant generalization of Hopf algebras is the non-associative Hopf algebras
introduced by Pérez-Izquierdo in [29]. A particular and interesting example of non-
associative Hopf algebras is the Hopf quasigroups considered by Klim and Majid in
[21]. These kinds of objects allow to understand the structure of the algebraic 7-sphere
and also the structure of the enveloping algebra of a Malcev algebra. Moreover, non-
associative Hopf algebras are related to other non-associative algebraic structures,
and in the last years, an increasing research in this area has been developed (see [2—
4,27,28,35]).

The main motivation of this paper is to introduce the theory of alteration multi-
plication, in the sense of Doi, for non-associative algebraic structures in monoidal
categories. An outline of the paper is as follows. In Sect. 2, we recall some definitions
and we prove some useful results for the next sections. In the third section, we prove
that for a non-associative bimonoid A with a left (right) division, if there exists an
invertible two-cocycle o, it is possible to define a new non-associative bimonoid A
with a left (right) division. Then, if A is a Hopf quasigroup in the sense of Klim and
Majid, A? is a Hopf quasigroup, and if A is a Hopf algebra, we recover Doi’s con-
struction. In Sect. 4, we introduce the notion of skew pairing and prove that, as in the
associative Hopf algebra setting, if there exists a skew pairing, for two non-associative
bimonoids A and H with a left (right) division, we can define a new non-associative
bialgebra A o<, H with a left (right) division such that A <, H = (A ® H)® for
some two-cocycle w induced by t. This implies a similar result for Hopf quasigroups,
and as in the Hopf world, we prove in Sect. 5 that A 0<; H can be described in terms
of double cross products. Finally, using the theory of Hopf quasigroup projections
developed in [2], we show that for a Hopf quasigroup A and a quasitriangular Hopf
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quasigroup H, if there exists an invertible skew pairing 7, it is possible to obtain
a strong Hopf quasigroup projection, and as a consequence of the results proved in
[2], we obtain that A admits a structure of Hopf quasigroup in the category Zy:/)
introduced in [2].

In this paper, we will work in a monoidal setting. Following [22], recall that a
monoidal category is a category C equipped with a tensor product functor ® : C xC —
C, a unit object K of C and a family of natural isomorphisms

ay NP MON)QP - M® (N ® P),
My MK —- M, Iy:KQM— M,

in C (called associativity, right unit and left unit constraints, respectively) satisfying
the Pentagon Axiom and the Triangle Axiom, i.e.,

am,N,PoQ © amMen,p,0 = (idy @ ay p,p) capy nep,0 © (au N, p Qidg),
(idy @ In)oay kN =ru ®idy,

where idy denotes the identity morphism for each object X in C. A monoidal category
is called strict if the associativity, right unit and left unit constraints are identities.
Taking into account that every non-strict monoidal category is monoidal equivalent to
a strict one (see [19]), we can assume without loss of generality that the category is
strict and, as a consequence, our results remain valid for every non-strict symmetric
monoidal category, which would include, for example, the categories of vector spaces
over a field I, or the one of left modules over a commutative ring R.

In what follows, for simplicity of notation, given objects M, N, P in C and a
morphism f : M — N,wewrite P® f foridp ® f and f ® P for f Q idp.

A strict monoidal category C is braided (see [16,17]) if it has a braiding, i.e., a
natural family of isomorphisms #j; y : M ® N — N ® M such that the equalities

tu.nop = (N @ty p)o(tyn ® P), tygn,p = (up @ N)o(M &ty p),

hold. In this case, it is obvious for all object M of C that tyy x = txk.m = idy.
Moreover, we will say that the category is symmetric if ¢y a7 oty v = idygn for all
M, N inC.

From now on, C denotes a strict symmetric monoidal category with tensor product
®, unit object K and symmetry c. Also, inspired by the work of Bespalov et al. (see,
e.g., [5]), we will assume that every idempotent morphism ¢ : X — X in the category
C admits a factorization g =i o p wherei : Z — X and p : X — Z are called the
injection and the projection associated with ¢ and Z is the image object in C of g. The
family of categories where every idempotent morphism splits includes the categories
with epi—monic factorization, the categories with equalizers and the categories with
coequalizers. For example, the category of complete bornological spaces is symmetric,
closed and not abelian, but it does have coequalizers (see [26]). On the other hand,
the category of complex Hilbert spaces, denoted by Hilb, is an example of not abelian
(and not closed) symmetric monoidal category with coequalizers (see [18]).
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A magmainCisapair A = (A, a) where AisanobjectinCand g : AQA — A
(product) is a morphism in C. A unital magma in C is a triple A = (A, n4, na)
where (A, ;4) is a magma in C and n4 : K — A (unit) is a morphism in C such
that g o (A @ na) = idga = s o (na ® A). A monoid in C is a unital magma
A = (A, na, pna) in C satisfying g o (A Q@ a) = s o (s ® A), i.e., the product
A is associative. Given two unital magmas (monoids) A and B, f : A — Bisa
morphism of unital magmas (monoids) if f ong =npand upo (f ® f) = fopua.

Also, if A, B are unital magmas (monoids) in C, the object A ® B is a unital magma
(monoid) in C where nagp = na ® np and pagp = (La @ up) o (A® cp.a ® B).
If A= (A, na, ita) is a unital magma, so is A°” = (A, na, La oca A).

A comagma in C is a pair D = (D, dp) where D is an object in C and dp :
D — D ® D (coproduct) is a morphism in C. A counital comagma in C is a triple
D = (D, ep, 8p) where (D, 8p) is a comagma in C and ep : D — K (counit) is a
morphism in C such that (ep ® D) o §p = idp = (D ® ep) o 8p. A comonoid in
C is a counital comagma in C satisfying (5p ® D) o ép = (D ® 8p) o ép, i.e., the
coproduct §p is coassociative. If D and E are counital comagmas (comonoids) in C,
f : D — E is a morphism of counital comagmas (comonoids) if ez o f = ep, and
(f®flodp=bgof.

Moreover, if D, E are counital comagmas (comonoids) in C, the object D ® E is
a counital comagma (comonoid) in C where epgr = ép ® ¢ and dpgeg = (D ®
¢p.E® E)o (6p ® 6g). If D = (D, ep, dp) is a counital comagma so is D? =
(D, ép,cp,podp).

Let f : B— Aand g : B — A be morphisms between a comagma B and a
magma A. We define the convolution product by f xg = g o (f ® g) 0 6p. If A
is unital and B counital, we will say that f is convolution invertible if there exists
f~1 B — Asuchthat f% f~! = f~'% f = ep ® na. Note that if B = K we have
that fxg = ao(f®g)and f is convolution invertible if there exists f ' : K — A
such that f * f~1 = 1% f = na.

2 Non-associative Bimonoids

In this section, we introduce the definition of non-associative bimonoid with left (right)
division. We give some properties and establish the relation with left (right) Hopf
quasigroups.

Definition 2.1 A non-associative bimonoid in the category C is a unital magma
(H,ny, ny) and a comonoid (H, ey, §y) such that ey and §y are morphisms of
unital magmas. (Equivalently, ny and ppy are morphisms of counital comagmas.)
Then, the following identities hold:

ey ony = idg, (1)
EHOUH = EH D EH, (2)
SHonu =nu @nH, 3)
SHopung = (U @ UH)OSHRH- “4)
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We say that H has aleft division if moreover there exists amorphism/y : HQH —
H in C (called the left division of H) such that

lgoh=eg ®H =ppo(HQ®Ily)o(dyg @ H), Q)

where h = (H @ ug) o 6y @ H).

A morphism f : H — B between non-associative bimonoids H and B is a
morphism of unital magmas and comonoids.

We say that a non-associative bimonoid H in the category C is cocommutative if
5[1 =CH,H © 3[-[.

Remark 2.2 There is a similar notion of non-associative bimonoid with right division,
replacing [y by a morphismry : H ® H — H that, instead of (5), satisfies:

rgod=HQ®eyg =pugo(ry ® H)o(H ®dp), (6)

whered = (uy @ H) o (H @ 8p).

Note that, if C is the category of vector spaces over a field F, the notion of non-
associative bimonoid with left and a right division is the one introduced by Pérez-
Izquierdo in [29] with the name of unital H -bialgebra.

Moreover, the morphisms 4 and d are the same that the ones called by Iyer et al.
(see [15]) left composite and right composite, respectively.

Now, we give some properties about non-associative bimonoids with left (right)
division.
Proposition 2.3 Let H be a non-associative bimonoid. There exists a left division Iy
if and only if the morphism h is an isomorphism. As a consequence, a left division Iy
is uniquely determined.

Similarly, there exists a right division ry if and only if the morphism d is an
isomorphism. As a consequence, a right division ry is uniquely determined.

Proof Letly : H® H — H be a left division. Define i’ = (H ® ly) o (g ® H).
Then, by (5) and the coassociativity of 8, we obtain that 4’ is the inverse of /.

On the other hand, if 4 is an isomorphism, using the coassociativity of §y, we
obtain that

(g ®H)oh ' oh=86yQH=(HQ® h "oh))o@ByQH)
=Hh HoBy@H)oh
and the equality
Gn®H)oh™ = (H®h™ )o@y ® H) )

holds.
Then, the morphismly = (¢g ® H) o h~!is aleft division for H. Indeed, trivially
lp oh =¢ey ® H and, by (7), we have that

pro(H®Ig) oGy ®H)=ppo(HQ®eyg @ Hy oSy @ H)oh™!
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—(eg®@H)ohoh™ ' =ey @ H.

The proof for the right side is similar, and we leave the details to the reader. Note
that in thiscase d ! = (rg @ H) o (H ® ) andry = (H @ e) od 1. o

Remark 2.4 1In the conditions of the previous proposition, if / is an isomorphism, we
obtain

hlody = H®ny, (8)
ugoh™' =ey ® H. ©)

In a similar way, if d is an isomorphism,

d™' o8y =nu ®H, (10)
ugod ' = HQey. (11)

Also, composing with ey ® H in (8),
lgody =€y @nH. (12)
Composing with H ® ng in (5),
idy * Ay = ey @ Nu (13)
for Ay = Iy o (H ® ng). Similarly, composing with ng ® H in (6) we have
on *idy = ey Ny (14)

forog =rpo(ny ® H).
On the other hand, by (1), (3) and (5)

lgong @ H) = idy. (15)

Also, for right divisions we have

rgo(H®ny) =idy. (16)
Finally, by (2) and (5)
egolpy=¢eg ®ey. a7
Therefore,
Egoiyg = €qg, (18)
and
AHONH =NH. (19)
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3564 J.N. A. Alvarez et al.

Of course, for a right division we have

Egoryg =¢ég ® ey, (20)
E€H ©OH = €H, 2n
QHONH = NH- (22)

The following result was proved in ([29], Proposition 6) for unital H-bialgebras.
In this paper, we give an alternative proof based in Proposition 2.3.

Proposition 2.5 Let H be a non-associative bimonoid with left division ly. It holds
that

Sgolpy=(Unp®lg)o(HQcyu® H)o((cu,nody) @u). (23)

As a consequence, if .y = lg o (H ® ng), we have that Ay is anticomultiplicative,
ie.,
(SHOA.H:()LH@)\.H)OCH’HOSH. (24)

If ry is a right division for H, the equality
duorg =@ ®ryg)o(H®cyn®H)o @ ®(cunodn)) (25)

holds. Then, if oy = rg o (ng @ H), we have that

dgoony =(on ®oH)ocH HOdH. (26)

Proof Indeed, if we compose in the first term of (23) with the isomorphism & =
(H®upuy)o (8y ® H), we obtain

Sgolgoh=¢g ®dy
and, on the other hand, composing in the second term,

(g ®lg)o(H®cyn ®H)o((cynody)®8y)oh
=g ®Ilg)o(HRcyn ®H)o ((cH,HodH)

Q((un ® ur) odugu)) o (Su @ H) (by (4))
=(goh)®Ilg)o(HQ®cy g ®@un)o(cy g ®cy .y ®H)

o (((H®68g)ody) @ x) (by naturality of € and coassociativity)
=(HQ®Ip)o(cH,H® H) o dHgH (by naturality of € and properties of the counit)
=H@Ugoh))o(ca.n® H) o (H ®Sx) (by naturality of ¢)
= ey ® 8 (by naturality of C).

Therefore, (23) holds. Finally, equality (24) follows by (23) and (3). Similarly, we
can prove identities (25) and (26). O
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Example 2.6 Aninteresting example of a non-associative bimonoid arises from Sabinin
algebras. Following [29], a vector space V over a field of characteristic zero is called
a Sabinin algebra if it is endowed with multilinear operations

(X1, X2, .oy X3 ¥, 2), m =0,
qD(x]’xz"-"xm;ylvyz’"-7yﬂ)7 m 2 17” 225
satisfying the equalities
(X1, X2, ooy X3 ¥, 2) = — (X1, %2, o, X3 2, Y),
(X1, %2, s X, @, by Xp 1, o Xy Y, ) — (X1, X2, X ba, X1, X Y, 2)

r

+Zz<xa)la'-'7xwk; (xa)kﬂwuxw,;ayb):'-~,xm;y,Z> :Os

k=0 o
.
Ox,y,z{X1, X2, ..., Xp, X3 ¥, 2) +ZZ(xwl,...,xwk; (Xepsrs - Xap3 ¥, 20, X) =0
k=0 @
and
DXty ey X V1o e Yn) = Py -+ o5 Xem)s Yo()s - - > Yo))»
where o runs the set of all bijections of the type w : {1,2,...,r} — {1,2,...,r},
i w,w <w < <, < <o, k=0,1,...,r,7 >0, 0xy;

denotes the cyclic sum by x, y, z; T € Sy, v € S, and §; is the symmetric group.

The universal enveloping algebra of a Sabinin algebra was constructed in [29],
where it was also proved that it can be provided with a cocommutative non-associative
bimonoid structure with left and right division. Moreover, as was pointed out in [29]
and [27], when we take a finite set of independent operations and ® = 0, the notion
of Sabinin algebra includes as examples Lie, Malcev and Bol algebras.

Now, we introduce the notion of left Hopf quasigroup.

Definition 2.7 A left Hopf quasigroup H in C is a non-associative bimonoid such that
there exists a morphism Ay : H — H in C (called the left antipode of H) satisfying:

uHOAH®UH)oBr®H) =en®H = o (HQuH)o(HIAgQ@H)o (b ®H).
27
Note that composing with H ® ng in (27) we obtain

A kidyg =¢eg @ ny. (28)
Obviously, there is a similar definition for the right side, i.e., H is a right Hopf

quasigroup if there is a morphism oy : H — H in C (called the right antipode of H)
such that

o @H)o(HR®op®H)o(H®dp) = H®ey = ngo(Wg®on)o(H®Sy).
(29)
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3566 J.N. A. Alvarez et al.

Then, composing with ny ® H in (29) we obtain
idy *og = ey @npy. (30)

The above definition is a generalization of the notion of Hopf quasigroup (also
called non-associative Hopf algebra with the inverse property, or non-associative IP
Hopf algebra) introduced in [21]. (In this case, C is the category of vector spaces over
a field F.) We recall this definition in a monoidal setting (see [2,3]). Note that a Hopf
quasigroup is associative if an only if it is a Hopf algebra.

Definition 2.8 A Hopf quasigroup H in C is a non-associative bimonoid such that there
exists a morphism Ay : H — H in C (called the antipode of H) satisfying (27) and
(29). If H is a Hopf quasigroup in C, the antipode A g is unique and antimultiplicative,
ie.,

Awopg =puH oAy ® Ag) o CH,H, (€29
([21], Proposition 4.2). A morphism between Hopf quasigroups H and B is amorphism
f : H — B of unital magmas and comonoids. Then (see Lemma 1.4 of [2]), the
equality

rpof=fohy (32)

holds.
Remark 2.9 Note that if H is both left and right Hopf quasigroup, the left and right
antipodes are the same. In effect, denote by A g and oy the left and the right antipodes,

respectively. Then, taking into account (28), the coassociativity of §y and condition
(29),

o = Agxidy)*xop =pupo(ug ®op)o(Ayg ®Iy)ody = Ay.

As a consequence, H is a Hopf quasigroup if and only if H is a left and right Hopf
quasigroup.

Example 2.10 A loop (L, -, //,\) is a quadruple where L is a set, - (multiplication),
/ (right division) and \_(left division ) are binary operations, satisfying the identities

N\ (v-u) =u, (33)
u=w-v) v, (34)
v (V\u) = u, (35)
u= w,/v)-v, (36)

and such that it contains an identity element e;, (i.e., ef, - x = x = x - ez, hold for all
x in L). In what follows, multiplications on L will be expressed by juxtaposition. If
N is anon-empty subset of L, we say that N is a subloop of L if it is closed under the
three binary operations. Then, under these conditions, e;, = ey.

A loop (iso)morphism is a (bijective) map h : Ly — L, such that A(uv) =
h(u)h(v), h(uv) = h(u) /h(v) and h(u\v) = h(u)\Ah(v) forall u,v € Ly.Itis
easy to see that the equality h(er,) = ey, holds for all loop morphism 4.
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Let R be a commutative ring and L a loop. Then, the loop algebra

RL:@RM

uel

is a cocommutative non-associative bimonoid with product and left and right division
defined by linear extensions of those defined in L and

Spr(u) =u®u, err(u) =1pg

on the basis elements (see [29]).

Now, we give the relation between non-associative bimonoids with left division
and left Hopf quasigroups.

Proposition 2.11 The following assertions are equivalent:

(i) H is a non-associative bimonoid with left division ly such that
lg =pugo(y ®H), (37)

where Ay =l o (H @ ngy).
(ii) H is a non-associative bimonoid with left division ly such that

mHOoAg QU)o B @ H)=eg ® H, (38)

where Ay =l o (H @ ngy).
(iii) H is a left Hopf quasigroup.

Proof By (5), (i) implies (ii). Moreover, composing in (38) with (H ® [g) o (§g ® H)
and using coassociativity, we get that (ii) implies (i). Now, assume (i). Then, by (37)
and (5),

ugo g @up)o@@r @ H)=Ilgo(HQug)o by ® H)=¢x Q@ H,
and in a similarway ugo(HQupg)o(HR®Ag ® H)o (§y ® H) = ey ® H. Finally,

if H is a left Hopf quasigroup, the morphism /g = ug o (Ag ® H) is a left division
and satisfies (37). O

The relation between non-associative bimonoids with right division and right Hopf
quasigroups is the following (the proof is similar to the one used for left divisions):

Proposition 2.12 The following assertions are equivalent:

(i) H is a non-associative bimonoid with right division ry such that
rg = pupo(H®on), (39
where oy = rg o (ng ® H).
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(ii) H is a non-associative bimonoid with right division ry such that
mro(ny ®op)o(H®J3y) = H ey, (40)

where o = rg o (ng ® H).
(iii) H is a right Hopf quasigroup.

Example 2.13 Let L be a loop. If for every element u € L, there exists an element
u~! € L (the inverse of u) such that the equalities

u_l(uv) =v= (vu)u_l, 41

hold forevery v € L, we will say that L is a loop with the inverse property (for brevity
an IP loop).
As a consequence, it is easy to show that, if L is an IP loop, for all u € L the
element u~! is unique and
ulu = e = uu™! 42)

hold. Moreover,
o) ' =v (43)

holds for any pair of elements u, v € L.
Now, let R be a commutative ring and let L be and IP loop. Then, by Proposition
4.7 of [21], the non-associative bimonoid

RL:EBRM

uel

defined in Example 2.10 is a cocommutative Hopf quasigroup where the antipode is
defined by Agz (u) = u~".

Note that Moufang loops provided examples of IP loops, and loop algebras of
Moufang loops correspond to Moufang—Hopf algebras. This fact suggests that there is
a correspondence between groups with triality and Hopf algebras with triality (see [4]).

Example 2.14 Let R be a commutative ring with % and % in R. A Malcev algebra
(M, [,]) over R is a free R-module M equipped with a bilinear and anticommutative
operation [,] such that:

[J(a,b,c),a]l = J(a,b,]|a,c)),

where J(a, b, c) = [la, b], c] — [[a, c], b] — [a, [b, c]] denotes the Jacobian in a, b,
¢ (see [28]). Then, every Lie algebra is a Malcev algebra with J = 0. The universal
enveloping algebra U (M) can be provided with a Hopf quasigroup structure as a
particularization of the construction alluded in Example 2.6.

Remark 2.15 Any Hopf quasigroup is a particular instance of a non-associative
bimonoid with left and right division. In this case, it suffices to take

lg :=pupo(iyg ® H),
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rg = pgo(H®Ap).
In any case, the notion of a non-associative bimonoid is wider because the loop

algebra RL associated with a loop L and the universal algebra U (V) of a Sabinin
algebra V falls under its definition (see [27,29]).

3 Product Alterations by Two-Cocycles for Non-associative
Bimonoids

In this section, we prove that two-cocycles provide a deformation way of altering the
product of a non-associative bimonoid to produce other non-associative bimonoids.
These kinds of cocycle deformations were introduced in the Hopf algebra setting by
Doi in [11].

Definition 3.1 Let H be a non-associative bimonoid, and leto : H @ H — K be a
convolution invertible morphism. We say that o is a two-cocycle if the equality

8'(0) 8% (0) = 9*(0) ¥ 8%(0) (44)
holds, where 3' (o) = ey ® 07, 3%(0) =0 o (ug @ H), 33(0) =0 o (H ® upy) and
(o) =0 ®¢ey.

Equivalently, o is a two-cocycle if
co(HQ((o®nun)oduegn)) =00 (((0c @ un)odugn) ® H).  (45)
Note that, if we compose in (45) with ny ® ny ® H, we obtain
(co(mg@H))® (0o ®H)))ody = (0 oy ®nu))® (0 oy @ H)), (46)
and, if we compose with H @ ng ® ny, we get that
(o (HQRnp))® (oo (H®np)))ody = (00(HRNy))® (0 0y ®@np)). (47)
A two-cocycle o is called normal if further
comg®H)=¢ey=00(HRep), (48)

and it is easy to see that if o is normal so is o ~! because

oo @H)=¢epx (0 oy ® H) = (0 0(u ®H)) * (0 oy ® H))
=(ox0 Yoy ® H) = en,

and similarly o lo (H ® ng) = eg. Analogously, if o~! is normal so is o.
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Remark 3.2 1t is not difficult to show that, if o is a two-cocycle, T = (0*1 o(ng ®
ng)) ® o is a normal two-cocycle (see [36]). The inverse of t is tl=(oo0 g ®
ng)) o ~1 and the normal condition for t follows from the identities (z o (ME®H))*
(to(myp®H)) =t0o(np®H)and (to(H®ny))*(to(H®np)) =10 (H ).
(This identities are consequence of (46) and (47), respectively.) As a consequence, in
the following we assume all two-cocycles are normal.

On the other hand, the morphisms 3 (0),i € {1, 2, 3, 4}, are convolution invertible
with inverses Bi(a_l), i €{1,2,3, 4}, respectively. Then, the equalities

(o) x % H =0l x0*0), (49)
3*o Hxd' (o) =0%0)x 030, (50)
P Hxdlo =20 ), (51)

hold. Moreover, (49), (50) and (51) are equivalent to

(c®0c No(HOun@H)o(H®cyy®@cyu®H)o @By @y ®8n)

=(0®0 ") o(H® (cuuody)®H), (52)
(Co(up®H))® @0 "o (HRun))o(H®cnn®cypy® H)
o((H RS Q8y)=(0"'®0c)o(H®Sy ® H) (53)

and

o o (H® (un ®0 ) oduem) =0 o (((uu ® ™) 0duen) ® H), (54)

respectively.

Proposition 3.3 Let H be a non-associative bimonoid. Let o be a two-cocycle. Define
the product jLgo as

pae =0 @uy ®0 o (H®H®Sugn) oduen.

Then, H® = (H,nge = Ny, wHge, Ege = €x, 8o = 8y) Is a non-associative
bimonoid.

Proof Equalities (1) and (3) hold trivially. Using that H is a non-associative bimonoid
and (48), we get that ugo o (ng ® H) = idy = e o (H ® ng). Moreover, by (2),

1

EHOMUHeo =0 %0  =¢Eg QEy.

Finally, by the naturality of ¢, the coassociativity of 6y and the properties of the
counit,

(LHe @ ppo) oSHoH
= (0 @ un)odnen) ® (0 ' x0)® (un ® ™" 0 Sugn))
o(HQ®((cy,n ®cu,H)oOHeH) ® H) o (by ®Sn)
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ZCSH o LHo .

m}

Proposition 3.4 Let H be a non-associative bimonoid with left division ly, put Ay =
lg o (H ® npy), and let 0 be a two-cocycle. Define the morphism f : H — K as
f=00(H®Ap) ody. If equality (28) holds, then f is convolution invertible with
inverse f_l =olo (Ag ® H) o 8. Moreover, the following identities hold:

fonu=f""ony =idx. (55)

If ry is a right division for H, put ogg = rg o (ng ® H). Let o be a two-cocycle.
Define the morphismg : H — K as g = 0~ ' o(oy ® H) o8y. If equality (30) holds,
then g is convolution invertible with inverse g~' = o o (H ® og) o 8. Moreover,

gony =g 'ony =idg. (56)

Proof Indeed,

frf!
=0®0 Yo (H® (chuohn®iy)ocynody)® H)
o (6yg ® H) o 8y (by (3) and naturality of C)
=0 ®0 o (H® (cnuoduoiny)®H)o@Bn®H)ody (by(24))
=" (07" x8%0)) o (H ® An) 0 6u) ® H)
o 8y (by (23), naturality of €, and counit properties )
= (0% (0) % 9*(0™") o (H ® hp) 0 8) ® H) 0 8 (vy (49))
=(0®0c No(H®puugn ® Hyo(HR cyn @ cyn® H)
o ((bH @ (A ®Ay)ocH Hody))0by) ®Ey)ody
(by (3), (23) and naturality of C)
=(0®0 o (H®((uy ® (idy xrn)) o (hyy ® i 1)
0 (g ®H)ody)® H) o (8g ® H) o 8y (by naturality of ¢, and coassociativity )
= (((0 o (H® (hpy xidn)) 0 81)) ® (67" 0 (nu ® H)))
0 8 (by (13), and counit properties) )
=0 o (H ® ng) (by (28), the normal condition for &~ | and counit properties)

= &g (by (48)).

On the other hand,
e f
=@ H*8'(0) oy @ H® ) o Su @ H)

0 H (by coassociativity, naturality of C, and counit properties)

=(0%0) %306 ) oy ® HR Ay) o (85 ® H) 0 85 (by (50))
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=(0c®c Noun @cun®@pun)o(H®cypy ®cyn®H)
o ((Ag @A) ocy,Hody) ®Sy) ody)
QA @A) och,Hodn))) odn (by (3) and (24))

=00 (H®0 ® (idy *An)) o (ki ® (hpg xidn)) 0 1)
®((cH.H o (H®MAH)o0d8m))) o Sp (by coassociativity and naturality of C)

=E&H (by (28) s (13), the normal condition for 0" and O 1, naturality of C, counit properties, and (18)) .

Finally, (55) follows from (3), (15), the normal condition for o and o !, and (1). The
proof for the right division is similar, and we leave the details to the reader. O

Remark 3.5 Note that equalities (28) and (30) hold for every left Hopf quasigroup.
Also, they hold for loop algebras associated with right or left Bol loops. The so-called

right Bol identity was introduced by G. Bol in [6] and was also mentioned by Bruck
in [7]. Let (L, -, //,\) be a loop. L is called a right Bol loop if the right Bol identity

(x-y)-2)-y=x-((-2)-y) (57)
holds for all x, y, z € L. If the equality (left Bol identity)

y @ x)=©0-(z-y)x (58)
holds for all x, y,z € L, we say that L is a left Bol loop. As was pointed in [32],
Bol loops are more general than Moufang loops because L is Moufang if and only if
it satisfies (57) and (58). Also, Bol loops with the automorphic inverse property are
Bruck loops.

An interesting example of right Bol loops comes from matrix theory. The set of
n X n positive definite symmetric matrices is a right Bol loop with the operation

P-0=yoro.
Moreover, in the literature we can find other examples of right Bol loops obtained
by modifying the operation in a direct product of groups.

The cocommutative non-associative bimonoid R L defined in Example 2.10 satisfies
equality (28) if and only if the loop L satisfies

(a\eL)-a=eL. (59
If L is a right Bol loop, equality (59) always holds. Indeed, first note that
((a-(aN\er))-a)-(aN\er) = (e -a)-(a\eL) =a-(a\eL) =eL.
Then,
a-(((a\er)-a)-(a\eL)) =eL =a-(a\er).
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As a consequence,

((a\er) - a) - (aN\eL) =aNeL =er - (a\eL).
Therefore, (59) holds. In a similar way, it is easy to see (59) for a left Bol loop.

Proposition 3.6 Let H be a non-associative bimonoid with left division Iy, put Ay =
Iy o(H®np) and assume that (28) holds. Let o be a two-cocycle and let f, f_1 be the
morphisms introduced in Proposition (3.4). Define the morphismlys : HQ H — H
as

Igo = ppe o (f@A® f' @ H)o(H® 8y @ H)o (8n ® H).
Then, the equality
dgolge =(lgo @lpge)o (H®@cy g @ H)o((cy,pody) ®6y)  (60)

holds. Moreover,

Ige o (ny ® H) = idy, (61)
and
o o (H@nu) = (f®ig® f ) o @n®H)odny. (62)
Therefore, we have
Iye = piye o ((go o (H @ 1)) @ H), (63)
(f' @) oGy @ H) = e o (A @ £ 08p) ® H). (64)

Finally, if H is cocommutative,
lgo o (H® ng) = Al. (65)
Proof Indeed, equality (60) holds because:

(lgo @lpe)o (HQ®cyp ® H) o ((cy,n0dy) ®dy)

= tnognr o (f @Ay @4y ® [~ o Snen o (H® (f+ [~ ® H)
o (g ® H)ody) ® ) (by coassociativity and naturality of C)

= wnorgon o (f ® (n @ An) ocpm odmw) ® f7)
[e] (H ® (SH) o (SH) ® (SH) (by the invertibility of f, coassociativity and counit properties)

= (He ® tpe) o dpen o (f ®An ® [~ @ H)
o(H®3y ®H)o (b ®H) (by (24))

= (SH [¢] lHo (by (4) for HU).

Identity (61) follows trivially because g is the unit of H° and by (3), (55) and (15).
Also, using that ng is the unit of H?, we obtain (62). Equality (63) follows directly
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from (62), and (64) is a consequence of the coassociativity of §, the invertibility of
f and the counit properties.
Finally, if H is cocommutative,

lge o (H ® np)
=(f®Au® ") o (Bn ® H) o8y (by (e2))
=(f®f'®ig)o(H® (cH. i 0 81)) o 8p (by coassociativity and naturality of C)
= ((f* f7Y) ® Ap) 0 81 (by coassociativity and cocommutativity of H)

= )\.]—] (by the invertibility of f and counit properlies) .

The right division version of Proposition 3.6 is the following:

Proposition 3.7 Let H be a non-associative bimonoid with right division ry. Put
oy = ryg o (ng ® H) and assume that (30) holds. Let o be a two-cocycle and
let g, g~ be the morphisms introduced in Proposition (3.4). Define the morphism
rye : H® H— H as

re =ppo o (H® g '®on ®g)o(H®8y @ H)o (HQ8p).
Then, the equality
Sgorge = (rge @rpye)o (HQcu g ® H) o By Q (ch i o 8H)) (66)

holds. Moreover,

rue o (H ® np) = idy, (67)
and
rae oM ® H) = (¢~ ® on ® 8) o (6 ® H) 0 8. (68)
Therefore, we have
rae = puo o (H ® (ro o (g @ H))), (69)
(re ® ") o (H®8n) = ppo o (H® (87" @ o) 0 8n)). (70)

Finally, if H is cocommutative,
rue o (g @ H) = 0. (71)

The following lemmas give two equalities which will be useful to get the main
result of this section.

Lemma 3.8 Let H be a non-associative bimonoid with left division ly, put Ay =
Iy o (H ® ny) and assume that (28) holds. Let o be a two-cocycle and let f, f~! be
the morphisms introduced in Proposition (3.4). Then, the equalities

oo ((lgoo(H®nH)) Q@ H)o(H®puo)o (0 ® H)
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=(f®c )o@y ® H), (72)
o o (H® (upe o ((lye o (H®np)) ® H))) o (8 ® H)
=00y ® f'QH)o By ®H), (73)

hold.

Proof We begin by showing (72):

oo ((peo(H®nu) @ H)o(H® pye)o Sy @ H)
=0 o (f® ) 08y) ® 1) 08y) ® upe) o By @ H) (by (62))
=00 (H® @ (0 ™H)*3"0)® ((ug @0~ ") 0dugn)) o (f ® An) o 8n)
Sy @ H)ody) ® H® H® H)
o (H®SugH) o (5 ® H) (by coassociativity)
=00 (H® @)+ 0 )@ ((ug @0 ") 08ugn)) o (f ® Ay odn)
QAy®H)ody)®HR®HQH)
o (H®8pgn) o (8 ® H) (by (50))
=0o0(H®o®0 '@H)o(H® (tn @ch.p)o(H®cyu® H)
o (bgorg) ® HR® H)) ® (8
oum) ® ) odugn)) o (f @ An) ody) ® H ® Suen)
o(H®dy ® H) o (g ® H) (by coassociativity and naturality of C)
=0o0(H®o®0 '@H)o(H® (uy @cy.p)o(HQcy gy ®H)
o((cHHoO(AE®A)0odyg) ® H® H)) ® ((5H
oum) ® ) odugn)) o (f @ An) ody) ® H ® Suen)
o(H®8y ® H) o (8 @ H) (by (24))
=0co(H®o '@H) o (f®An)ody) ® ((hy @ 0)
o (H® (Mg xidyg) @ H) o 8y @ H)) ® ((6y
opr) ® ) o Sueu)) o (H ® Sugm) o (5 @ H) (by naturality of ¢)
=0co(H®o '@ H)o(f®An)ody) @Ay
(B oun) ®c ") odugn))
o(H®dyg ® H)o (6yg ® H)
(by (28). counit properties, naturality of C, and (48))
=(0®c No(H®cyu®H)o(ch oGy ®ky)odn)
(B onn) ®c ™) odnen)) o (f ® H)
ody) @ H® H) o (g ® H) (by naturality of ¢)
=@x0 D)o ((f®rn) 08y) ® (kp ® ) 08ugn)) o By ® H) (by (24))
=(f® a_l) o (§g ® H) (by invertibility of 0, (18), counit properties, (2), and naturality of C).
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To get (73), we firstly show the equality
(f®0 No(HRAH®H)o(8y®H) = 6o(HRun)o(HRAr®H)o 8y QH). (74)
Indeed,

(f®o Ho(H®Ay ® H)o (8 @ H)
=(0®5 ) o(H®((Ay ®An)ody) ® H)
o (8g ® H) (by definition of f and coassociativity)
=0 ®0 No(H® (chuochnohy®iy)ody)® H)
o (§g ® H) (by symmetry of C)
=(0®0 ) o(H® (cupodyory)®H) oy ® H) (by (24))
= (@) *3* (0™ o (H ® Agy) 0 85) @ H) (by (49) and (2))
=(0®0 ") o(H®ungn ® H) o (H®cu.n ®cu.u ® H)
o0 (6H ® (cH,HOo (AHg ®@AH)0dH) @ k) o (Su & H) (by (24))
=(0®c Ho(H@cyn®@H)o(H®puy ®py ® H)o By
Q((Ag ®Ap)ody) @) o (§y ® H) (by naturality of ¢)
=(©0®0 No(H®cyn®H)o(H® (idy *in) @ uu ® H)
o (g @Ay ®py) o (8yg ® H) (by coassociativity)
=co(HQupg)o(HRAg ® H)o (g ® H)

(by (13), counit properties, naturality of C and normality for O -1 ) .
Asa consequence,

oo (H® (upo o ((lye o (H®np)) @ H))) o (8 @ H)
=0 o (H®upr)o(HR(f@Au® f oy ®H)ody) ® H)
o8y ® H) (by (2))
=0 ' o(H® (up @0 Ho(H®cyn®H)
o((cHHo(AH ®Ag)odH) ®SH)))
o(HR((f® (6 ® H)o(H ®cH,n)
o((ly ® H)ocy g ody) ® f~' @ H)
o8y ® H) o (6y ® H)) ® H)
o (6 ® ) (by naturality of € and (24))
=0 '®(f®c o (H®ry ® H)o 8y ® H)))
o(HQ(ugo(H® (upgo(HR®o ®H)
o (n ®p)odw) ® 7' ®8p)
o6y ® H))) o 8y ® H)) ® H)))
o (6 ® &g ) (by naturality of C)
=0 'Q@o(H®uy)o(H®ry ® H)o (8 ® H)))
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o (H® (cno(H® (upo(H®0 ® H)
o (g ®Am)odm) ® £ ®8n)
o (8 ® H))) o 8y ® H)) ® H)))
o (g ®8n) (by (74))
= (0 o (HO®un) @@ o(H®un)) o (HOH®cyn®H® H)
o(H®cuu®cuu®H)
o Bn® (cr oy ®ig)ody)®(ao((Ay® f ) odny)
®H))®dn)o (g @ H® ) o 6y @ H)
(by naturality of € and coassociativity)
= (330 %8300 (HOA@H) o(Bp® (0 o(n® f' @ H)
o (B ® H) ® H) o (8 ® 8x) (by (24))
=00y Q' QH)o By ®H)

(by invertibility of 33 (G ) (see Remark 3.2), counit properties and (18)) ,

and the proof is complete. O

Lemma 3.9 Let H be a non-associative bimonoid with right division ry, put oy =
ry o (ng ® H) and assume that (30) holds. Let o be a two-cocycle and let g, g_1 be
the morphisms introduced in Proposition (3.4). Then, the equalities

0 o (H® (rge o (nn ® H))) o (upge ® H) o (H ® 8p1)

=(c®g) o(H®n), (75)
oo ((ye o (H® (rge o (nu ® H)))) @ H) o (H @ 8p)
=0 'o(H®g '®ou)o(H®dn), (76)

hold.

Proof The proof is similar to the one performed in the previous lemma but using
(0®8)o(H®on®H)o(H®d) = 0~ o(un@H)o(H®on®H)o(H®sH) (77)

instead of (74). O

The following theorem is the main result of this section. We will show that, under
suitable conditions, H? is a non-associative bimonoid with (right) left division (7o)
lyo.

Theorem 3.10 The following assertions hold:

(i) Let H be a left Hopf quasigroup with left antipode Ay . Let o be a two-cocycle.
Then, the non-associative bimonoid H® defined in Proposition 3.3 is a left Hopf
quasigroup with left antipode Lo = lgo o (H @ ng), where lgo is the morphism
introduced in Proposition 3.6.
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(ii) Let H be a right Hopf quasigroup with right antipode op. Let o be a two-
cocycle. Then, the non-associative bimonoid H° defined in Proposition 3.3 is a
right Hopf quasigroup with right antipode oo = rgo o (ng ® H), where ryo
is the morphism introduced in Proposition 3.7.

(iii) Let H be a Hopf quasigroup with antipode Ag. Let o be a two-cocycle. Then, the
non-associative bimonoid H° defined in Proposition 3.3 is a Hopf quasigroup
with antipode Ao .

Proof We prove (i). The proof for (ii) is similar using Lemma 3.9 instead of Lemma
3.8. The assertion (iii) follows from Remark 2.9. Note that if H is a Hopf quasigroup
A g 1is a left and right antipode, then

Ago =lgo o (H ®@ny) =rgoo(ng @ H) = opo,

because f = g~ 'and f~! = g.

First, note that by Proposition 3.3, H? is a non-associative bimonoid. Therefore,
to complete the proof we only need to show (5) for /go and pgo, because (63) holds
(see Proposition 3.6), and then, by Proposition 2.11, we obtain that H? is a left Hopf
quasigroup where Ago = [go o (H ® ng) is the left antipode. Indeed, on the one hand
we have

lge o (H® pugo) o (bp ® H)
=0 ®((un®c Hodugn) o (H®cyy®H)o(f
(B orm) ® f) 08y) ® (Su o wpo))
o (g @ H® H) o (5yg ® H) (by definition of (L o )
=0 ®(un®c Hoduegn)) o (H®cyy®H)o(f
(e ooy @A) 08y) @ f71) 0 8p)
Q(upe ® pye) o Spgn)) o (H® 8y @ H) o (5 @ H) (by (24) and (4) for HO)
=((0on® ' ®une)o(H®8y)ody) ® H))
®(un @0~ 0dnen)) o (H @ chu ® jyo)
o(cHH®crua®H)o((f Qi)
08p) ® g ® ) o (g ® H) (by naturality of € and coassociativity)
=(((0o(y®f ' ®puyo)o (H®8p)ody) @ H))
(' * HOH) ody) ®H) ® (g ® 0~ ") 0 8nan))
o(HR®cy g ®upo)o(cp g ®cu.n® H)o((f ®Ap)ody)
ROy ®SH) o (57 ® H) (by invertibility of f and counit properties )
= (((0 o ((Igo o (H® 1)) ® ppo) o 8y @ H)))
S(un ®0 ") 08ngn)) o (H® chu ® jyo)
o (cru®cuy®H)o(f®((On®f ) ody)) odn)
Qg ®8y) o (6 ® H) (by naturality of €, coassociativity of 8 g7 and (62))
=((f®c Ho@Bu®H)® (g ®0 ") 0 8nan))

@ Springer



Multiplication Alteration by Two-Cocycles: The... 3579

o(HQcH H®ups)o(cHH Qcu,H® H)
o (f®((An® [ 0dn)odn) ®8y @8u) o 5y ® H) (by (12))
=0 ' ®((ur @) odugn)) o (H®cyu® mue)
ol ®cun ® H) o (f ® (b ® (f ' % ) 0 8p))
08) ® g ® ) o (g ® H) (by naturality of € and coassociativity)
=0 ' ®((ur @) odugn)) o (H®cu ® pue)o (cuu ®cyn @ H)
o (((f®AH)0bH) ®SH ®H)
o (§g ® H) (by invertibility of f and counit properties )
=(up®c HNoHQcyy®@H)o @By ® Buonug) @)
o (f ®An) 08m) ® (67 % 0) @ Snen)
o (HQ®dugn) o (6g @ H) (by natrality of ¢, coassociativity of 4 7 and definition of J4 fjo )
=(ur®0 No(H®cun®H) oy ® (y ® wu) o duon) @0 ")
o (f ®An)0dp) ® (07" %0) ®Spen)
o (H®JSugn) o (5g @ H) (by (4) and counit properties)
=(up® 0 o (H®((up ®0 ") odugn))) o (H®cyn ® H® H)
o((f ® Br orn)) 0dy) ® upy @ H® H)
o (HQ®JSugn) o (65 @ H) (by naturality of € and coassociativity)
=(up® @0 H*xd' e ) o(H®cyy ®HH)
o (f®@WHoAn)ody)Quu® HQH)o(H®ISugH)
o (81 ® H) (by (54))
=(un ® @@ H*d* ")) o (H®cun ® H® H)
o (f®WHoAn)ody)Quu® HQ H)o(H®SugH)
o (6g ® H) (by (51))
=(un® (@ "o (g ®0 ) 0dnen) ® H))) o (H®cpyy @ H® H)
o ((f®WHoAH)) o) @ U QO H®H)
o (H®dugn)o (6p ® H) (by (54))
=(ur® 0 o(((uu®c N odnegn) ® H))) o (H®cyn®H® H)
o (((f®(cH,Ho (A @A)
08)) 08p) @y ® H® H) o (H ® Spgn) o (85 ® H) (by (24))
=H® @0 o((uy ®0 ") odnen) ® H)) o (cyy ® H® H)
o (f ® Ay ® (tr o (A ® wp) o 8y ® H))
QHQH)o(HR®H®dpgn)o (HR®Sy Q H)o (6y ® H)
(by naturality of € and coassociativity )
=H®0c Noleyn®H) o(f@(up @0 ) o(H@cyn®H)
0o ((bgoAl) ®Ig)ody) @) o by @ H)
(by (5), counit properties and naturality of C)

=H®0c Holo '®cyn®H) o (f@(H®cy.p)o(H®uy @ H)
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o ((Ag ® AH) 0 dH) ®8H) 0 bH) ® SH)
o (6g ® H) (by naturality of ¢ and (24))
=H®c o' @cun®H) o (f®((hn® (ch oGy *idy)
®H)ody)) 0odn) ® ) o (6n @ H)
(by coassociativity of 8 f7 )
=((f=*f _1) ® H (by (28), naturality of C, normality for & 1 and counit properties )

= ey ® H (by invertibility of f).
Finally, on the other hand,

g o (H®lyo)o(dy ® H)
=(uu®c o (H®cun®H)o (0 ®dn® (s ® o)
o(H®cu.u®H)o((cu,nody)®8H)))
c(H®cpn®HQ@H)o(p Q@ ((Ige ® H)o(H QcH H)
o((cH,mody) ® H)) ®8p) o (6y @ H) (vy (60))
=(uu® @0 o (H®lys)o @B ®H))o (o0& (HScH.n)
0B ®lpe)o(bp @ H) @ H)o (H @ cy,n ® 1)
o (b @lye ® H) o (5 ® 85) (by naturality of € and coassociativity )
=(uu ® (0 "o (H® (uhe o ((Ine o (H Q) @ H)))
0o g ®H)))o (0o @((HQcy n)o 6y ®lyo)o
BCr®H)Q®H)o(HQcyn®5y)o By ®lpge @ H)o (8 @ dx) (by (63))
=(uH® (@ oy ® [T ®H)o @y ®H))o (o
QUH ®chg)o (0 ®lge)o 6y @ H)) @ H)
o (H®chy,g®dy) o (0 ®lgo ® H) o (5g ® 5p) (by (73))
=(unQ®0c)o(HQcyp ® H)o (o ® (H®An)ody)
®f ' ®lno) o (Bn ® H)) @ H) o (81 @ 81)))
c(H®cHuH®H)o 0y ®Ilpge ® H) o (8 ® 81) (by naturality of € and coassociativity)
=(up®oc)o(H®cyun®H)o (o ®(((H®AH)ody) ® (LHe
o (Ar® fHody)®H)®H)o(Bu®m)))
o(HR®cuag @ H)o (g ®lge ® H)o (6 ® 81) (by (64))
=pgo(HQ®upe ®c)o(HOHQcyp® H)o(HQ (cy.u
oA @A) ody) ®HQ H)o (0 @8y @68n)
o(H®cyn®H)oBn®(f' ®lus)o(Bn ® H)) ® H)
o(8g ® &) (by naturality of € and coassociativity)
=ppo(H®pupo ®0)o(HOHQcy n ® H)o(H® (i oAn)
Q®HQ®H)o (0 ®6y ®8y)o (H®cy,u®H)
0By ® (upe o (Ayg ® f ) ody) ® H) ® H)
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o(8H ® 8p) (by (64) and (24))
=pno(H® (6 ®pun)odupn) ® (07" %0)) 0 8ugn o Oon ® H)))
0(0®dg®H)o(HQ®cyn®H)
o (81 ® (nue o (hg ® f~") 0 dy) ® H)) ® H)
o(6y ® 6p) (by naturality of € and coassociativity)
=pupo(H@(oc@uy)o(H®cygpg®@H)o ((6goin) ®3H)))
0(0®dg®H)o(HQ®cy,ng®H)
o (81 ® (nue o (g ® f~1) 08r) ® H) ® H) 0 (i © Si)
(by invertibility of 0", naturality of C and counit properties )
=pugo(H® (o @uy)o(H®cyy @ H)o((cygo(ly ®Ay)odn)
®8p)) o (0 @Sy @ H)o(HQ®cyn ® H)
0By ® (upe o (Ag ® fHody) ® H) ® H) o (8 ® 8pz) (by (24))
=pugo(H@®(unpo(H®0 @ H)o (Axy ® Ap)odn)
®p)) o (0 @Sy @ H)o(HQ@cy n ® H)
0 Bn ® (tpe o (Ay ® 1) 08y) ® H) ® H) o (85 ® 8p1) (by nawrality of €)
=pugo(HQ® (UHo(Ayg ® H)) oy ® (00 (Ag ® H))
®H)o (0 ®éy ®dp)o(H®cy n®H)
0B ® (e o (kg ® f)08y) @ H)) ® H) o (5 ® 8i1) (by coassociativity)
={(co(Ap®H)®H)o(0c ®H ®Jp)o(H&®chy,ug®H)
o (Bn ® (go o (Ag ® f71) 08p) ® H)) ® H)
o (g ® &) (by (5) and counit properties )
=(0®H)o(H® (upo @0)o(H®cH n ® H)o ((ch,Ho(An ® An)
08i)® [~ ® 1) ® H) o (6 ® H ® 811)
o (6 ® H) (by naturality of € and coassociativity )
=(0Q@®H)o(HQ ((upo ®0)o(HQcy,ug®H)o((8yorn)
®f ' ®8n)® H)o By ® H®n) o (8 ® H) (by (24))
=((0co(H® (0 ®uy)odyen)® (0 '*0)® H)o(H®H
@cun®H@H) o (H® By orpy)® !
Qg ®H)o by ® HR®JSy) o (65 ® H) (by naturality of € and coassociativity )
= (") %) @H) o (H®n ® f~' ® 8p)
°c(p ®@HQ®H)o (0 ®H) (by (45))
= ((0*(0) % 0*(0) @ H) o (H® A ® [~ ® 8p)
0o(0p @ H®H)o (B ® H) (by (44))
=0 ®H)o(((c ®un)odngn) ® H® H) o (H @ Ay
®f ' ®8y)o By @ H® H)o 8y ® H) (by (45))
=(0Q@H)o((c®@up)o(H®cyg®H)o By ®(cynorny
@A) o8N ® f ' ®8p) oSy ® H® H)
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o (6u ® H) (by (24))

=(0® (0o ((idy*ipy)®H)))o(H®cy n®3y)o (S
@y ®f ' ®H)o @y ®H®H)o Sy ®H)
(by naturality of € and coassociativity)

=(fxf *1) ® H (by (13), naturality of ¢, normality for 0" and counit properties)

= ey ® H (by invertibility of f),

and the proof is complete. O

4 Two-Cocycles and Skew Pairings

In this section, we will see that, in a similar way that for the Hopf algebra case,
a class of two-cocycles is provided by invertible skew pairings for non-associative
bimonoids. The following definition is inspired by the corresponding one for Hopf
algebras introduced by Doi and Takeuchi in [12] (see also [1] for the monoidal setting).

Definition 4.1 Let A and H be non-associative bimonoids in C. A pairing between A
and H over K is a morphism 7 : A ® H — K such that the equalities

@) To(Ma®H)=(TR®1)0(ARcaAHQH)o (AR A® ),
(@2) 10 (AQuUur)=(T®1)o(A®caAn@H)o (54 ® HQH),
(@3) To (A®ny) = ¢4,
(a4) To(na ® H) = ¢y,

hold.
A skew pairing between A and H is a pairing between AP and H, i.e., a morphism
T:A® H — K satisfying (al), (a3), (a4) and

@) To(A®um) =@V o(A®can®H)o((canods)®HH).
It is easy to see that, by naturality of ¢, equality (a2’) is equivalent to

To(AQuUuE)=(TQ1)0o(AQcanm ® H)o (84 ®cH,m). (78)

Remark 4.2 Note that, if A and H are Hopf quasigroups, a pairing between A and
H°P corresponds with the definition of Hopf pairing introduced in [14].

Proposition 4.3 Let A, H be non-associative bimonoids with left division l4 and ly,
respectively. Let 1 : AQ H — K be a skew pairing. Then, T is convolution invertible.
Moreover, if t—! is the inverse of T, the equalities

t™ oA @ H) = ¢y, (79)
1™ o (A®ny) = ¢4, (80)

and

tTlo(A@um) ="'®@t ) o(A®cay ® H) o (54 ® HR H), (81)
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hold.
Proof Define 1! =70 (Ay ® H), where Ay = [4 o (A @ n4). Then,

TxT !

=(TQT)o(A®can @ H)o (((A®A4)o0d4a) ®n) (bynawrality of ¢)
=710 ((idg *Aa) ® H) (by (al) of Definition 4.1)

=¢eA® (o (Ma® H)) (by (13) for A)

= €4 ® &x (by (a4) of Definition 4.1).

Moreover, if Ay = [y o (H ® ng), the morphism T = 7 o (A4 ® Apy) satisfies

771 % T =64 ® ep. Indeed,

kT

=(T®1)o(AQcan®H)o((cano0(la®Aa)ocasoda)
Q((H ® Ag) o 8g)) (by naturality of ¢)

=(T®T1)0o(A®can ® H)o((caa0840ra)
Q((H ® L) o 8m)) (by (24) for A)

=70 (s ® (idg * Ag)) (by (22') of Definition 4.1)

=710 (A ®ep @ny) (by (13) for H)

= (64 0 Aa) ® eg (by (a3) of Definition 4.1)

=4 ®eg (by (18) for A).

1

As a consequence, T~ ' = 7 o (A4 ® H) is the convolution inverse of t because

r:t*(rfl*?)z(t*tfl)*?zf.

Thus
t=1t'o(AQAp). (82)

It is not difficult to obtain the equalities (79) and (80) because
v o (14 ® H)
=10 ((Ag0na) ® H)) (by definitionof T )

=T10(NaA® H)) (by (19) for A)
=E&H (by (a4) of Definition 4.1),

and

v o (A®nm)
=710 (Ag ®nH)) (by definition of r_l)
=€AO0 )\.A (by (a4) of Definition 4.1)
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= €A (by (18) for A)
Finally, the proof for (81) is the following:

v o (A® pn)
=(T®1)0(A®cay ®H)o((carodsors) ® H® H) (by @) of Definition 4.1)
=(T®1)0(A®can ®H)o((caao(ha®Aa)
oca,A0084) @ HQ® H) (by (24) for A)
=t '®1 T Ho(AQcan @ H)o (54 ® H® H) (by naturality of ¢ and > = id).

m}

Remark 4.4 Note that if A, H are non-associative bimonoids with right division r4
and ry, respectively, and T : A ® H — K is a skew pairing, we can obtain (79),
(80) and (81) using a similar proof and defining T~ as 17! = 7 0 (04 ® H), where
oA =rao(na®A).

Remark 4.5 Note that, in the conditions of Proposition 4.3, we obtain that
T=170(Aa®Ag) (83)

and
Tl =1lo (s ®Ap). (84)

It should be noted that we can easily obtain the previous equalities for bimonoids
with right division.

Proposition 4.6 Let A, H be non-associative bimonoids with left division l4 and ly,
respectively. Let T : A @ H — K be a skew pairing. If \y = lg o (H @ ng) is an
isomorphism, the equality

tTlo(ua®@H) ="' @t Ho(ARcan ®H) 0o (AR A® (cy. 1y o8n)) (85)

holds, where T~V is the morphism defined in Proposition 4.3. Moreover; if A is a Hopf
quasigroup, equality (85) holds for any non-associative bimonoid H with left division.

Proof By composing with the isomorphism A ® A ® Ay in the left side of (85), we
have

v o (ua ®rn)
=To (s ® H) (by (82))
=(T®1)0(AQcaH ®H)o(A® A®Sn) (by (al) of Definition 4.1)
= (' oA ® (T o (A®Au)) o (A
®can @ H)o(A® AR3y) (by(s2))
= '@t Ho(A®can®H) 0o (A®RAR® (cu.1
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o ()\H ® )\H) OCH,H © 5[-[)) (by naturality of C and coassociativity)
= 'er Ho
Qcan @ H)o(AQAQ (¢ o8y ohg)) (by (24) and ¢ = id).

Therefore, (85) holds.

Finally, if we assume that A is a Hopf quasigroup, the antipode A 4 is antimultiplica-
tive. Then, condition (85) is true without the assumption that Ay is an isomorphism
because

o (ua®H)
=t0((Hao(Aa ®Ap)oca )@ H) (by (31))
=@ '@t ™Ho(A®can ® H)o(ca.a ® 8p) (by (al) of Definition 4.1)
=@ '@t Ho(AQcan ®H) o (AR A
®(cr. 1 0 811)) (by naturality of ¢ and > = id).

O

In a similar way, we get the previous result for non-associative bimonoids A and
H with right division.

The following proposition gives the connection between skew pairings and two-
cocycles for non-associative bimonoids with left division. We leave to the reader the
proof of the similar result for non-associative bimonoids with right division.

Proposition 4.7 Let A, H be non-associative bimonoids with left division 14 and
Iy, respectively. Then, A® H = (A ® H,NAgH, LARH> EARH > OAQH) IS a non-
associative bimonoid with left division [aou = (Ia @lg) o (AQcy a® H). If A and
H are left Hopf quasigroups with left antipodes ,a, Ay, respectively, A @ H is a left
Hopf quasigroup with left antipode A agn = *a @ Ay.

Moreover, let 1 : A ® H — K be a skew pairing. The morphism w = €4 Q (1 o
CcH.A) ® ey is a normal two-cocycle with convolution inverse o =g ® (r_l o
cH.A) ® en, where = lis defined as in Proposition 4.3.

Proof Trivially, A ® H is a non-associative bimonoid. The morphism lsgyg = (4 ®
IH) o (A®cH A ® H) is aleft division for A @ H because

lagH 0o (A® H ® agn) o bagn @ AR H)
= (A0 (AQ®na)o(Ba®A)®(Ugo(HQuy)o(n ® H)))
0 (AQ®cy A ® H) (bynaturality of ¢ and > = id)
=(EA®RARey QH)o (A®cy 4 ® H) (by (5) for Aand H)
= cagH @ A ® H (by nawrality of ¢),

and

HagH 0 (A® H Q@lagH) o (bagn @ AR H)
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=((nao(A®Ia) o (A ®A)) ® (ui o (H Q) o 8y ® H)))
0 (A®cH A ® H) (by nawrality of ¢ and €% = id)

=(A®AQRey ®H) o (A®cH,a® H) (by (5) for Aand H)

= cagH @ A ® H (by nawnality of C).

If A, H are left Hopf quasigroups with left antipodes A4, A g, by Proposition 2.11,
we have that

rMoH =lagn 0o (A® H @ nagH) = Aa @ Ap.

Then, A ® H is a left Hopf quasigroup because

HagH © (Aa @ Al) ® pagH) © Bagn @ AQ H)
=((uao(ra®ua)o(Ba®A) (U oAy ®up)o By ® H)))
0 (A®cy.p ® H) (bynaturality of ¢ and ¢> = id)
=(EAQAQRep ®H)o(AQcy, a4 ® H) (by (38) for A and H)
= cagH @ A ® H (by naturality of €).

Lett : A® H — K be a skew pairing. Then, w = ¢4 @ (tocp a) @ ep isa
two-cocycle. Indeed, on the one hand we have

3l (w) * 3 (w)
=eAaQ(tocgao(HR(Uao(A®(Tocy a)®A)
0 (A® H ®384)) ® &y (by naturality of C, counit properties and (2))
=eAa®(To(ua®H)o(A®cH,a)o(cHa® ((tTocy a)
®A) o (H ®64))) ® ey (by naturality of C))
=e4Q@((TQ®1)0(AQRcaAHQ®H) o (AR AR®SIH) o (A®cCH.A)
o(cgA®(tocyA)®A)o(A®S4))) Ben
(by (al) of Definition 4.1)
=eAaQ@((1®T)o (AR (cagocyA) @H)o(AQ® H ®ch,a)
c(A®IH®A)o(cHA® ((tTocH ) ®A)
0 (A®d64))) ® &g (by naturality of €)
=eA®((TQ®T)0(AQH ®cH A)0 (AR ® A)o(ch.a
R((tocy.a) @A) o(H®S4)) ® ep (bynawnality of ¢ and > = id),

and, on the other hand,

3% (w) * 0% (w)
=eA®((tocyaA)®(Tocuao(up ®A))o(H®cya®H®A)
o ((3[-] RARH® A)) ®en (by naturality of C, counit properties, and (2))
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=eA®((TQ®(to(AQuUH)o(cHA®H))o (AR ® AR H)
o (cH.A®cH.A)) ® ep (by naturality of C)
=A@ ((TR®(T®T)0(A®caA,H @ H)o((canoba)
QH Q@ H)o(cga®H))o(ARSy AR H)
o (CH.A®CH.A)) ® en (by @) of Definition 4.1)
=eA4Q@((T®T)0 (AQRH®cH A)o(A®IH ®A)o(cha® ((TocH A)
®A) o (HQ84))) ® &g (by naturality of € and ¢ = id).

Finally, w is convolution invertible because

w*w !

=eA® ((t % ‘[71) ocH,A) @ &g (by naturality of € and counit properties)

= cAagH @ EagH (by invertibility of T),

and similarly,

o ' xw

=4 ® ((Tﬁl *T)ocCH, A) ® &n (by naturality of C and counit properties)

= cagH ® €agH (by invertibility of T).

m}

As a consequence of Proposition 4.7 and its right division version, we have the
following corollary.

Corollary 4.8 Let A, H be Hopf quasigroups with antipodes A4, Ly, respectively.
Then, AQ H = (A ® H,NAgH, LA®Hs EA®H > OAxH) IS a Hopf quasigroup with
antipode AagH = Aa Q@ AH.

Moreover, let t : A ® H — K be a skew pairing. The morphism v = ¢4 ® (T o
cH.A) @ ep is atwo-cocycle with convolution inverse o l=e,® (t71o CH.A)QEH,
where T~ is defined as in Proposition 4.3.

Also, we get the following result which is a generalization of the one given in [14],
Proposition 2.2. (There is a slightly difference because the definition of Hopf pairing
in [14] corresponds with our notion of pairing between A and H“°P.)

Corollary 4.9 Let A, H be left Hopf quasigroups with left antipodes , s, Ly, respec-
tively. Let T : A ® H — K be a skew pairing. Then, A < H = (A ®

H, NAva, Hy W As<, Hy €Asa, H» O Asa, H» A<, H) has a structure of left Hopf quasigroup,
where

NAs<, H = NAQH EAsa, H = EAQH: OAsa, H = OAQH
P il = (UA® U)o (ARTRARH®T ' ® H) o (A®Sasn
QAQHQH) 0 (AQ® 4o @ H)o (A®cH, A ® H) (86)
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and
Moa H =T 1 @A @Ay ® 1) 0 (AQ® H ® Sagn) 0 SagH- (87)

Proof The result follows by application of Theorem 3.10 to the left Hopf quasigroup
A ® H and the two-cocycle w = €4 ® (T o ¢y 4) ® en. Using the naturality of ¢, the
counit properties, the coassociativity of the coproducts and (18), it is easy to check
that

MAva, H = RAQH)> Mo H = MAQH)?-
]

For right Hopf quasigroups, we have a similar corollary and, as a consequence, we
obtain the following result:

Corollary 4.10 Let A, H be Hopf quasigroups with antipodes s, Ly, respec-
tively. Let Tt : A ® H — K be a skew pairing. Then A < H = (A ®

H, A, Hy WAsa  Hy EAvay H> O Ava, H> AAsa, H) has a structure of Hopf quasigroup,
where

NAvar H = NAQH> EAsarH = EAQH» OAvarH = OAQH,
Parar i = (UA® UH) 0 (AQTRARH®T ' @ H) o (A®Sagn
QAQH® H) o (A®Sapn ® H)o (A®cya® H) (88)

and
)"ANTH:(T_1®)\'A QA ®T)o (A® H ®SagH) 0 dAacH - (89)

Remark 4.11 When particularizing to the Hopf algebra setting, it is a well-known fact
that the Drinfeld double of a Hopf algebra H (roughly speaking, a product involving H
and the opposite comonoid of its dual Hopf algebra H*) is an example of a deformation
of a Hopf algebra by the two-cocycle associated with a skew pairing. We want to point
out that in our context we cannot describe the Drinfeld double in this way because the
dual of a Hopf quasigroup H is not a Hopf quasigroup but a Hopf coquasigroup.

Example 4.12 Let F be a field such that Char(F)7~ 2 and denote the tensor product
over F as ®. Consider the non-abelian group S3 = {09, 01, 02, 03, 04, 05} Where oy
is the identity, o(o1) = 0(02) = 0(03) = 2 and 0(04) = 0(o5) = 3. Let u be an
additional element such that u? = 1. By Theorem 1 of [10], the set

L=M(S32) ={ou®; a=0,1}

is a Moufang loop where the product is defined by

o;u®. ajuﬁ = (aivof)”u“Jrﬁ,

v= (=D p= (D"~
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Then, L is an IP loop and by Example 2.13, A = FL is a cocommutative Hopf
quasigroup.

On the other hand, let H4 be the four-dimensional Taft Hopf algebra. This Hopf
algebra is the smallest non-commutative, non-cocommutative Hopf algebra. The basis
of Hyis {1, x, y, w = xy}, and the multiplication table is defined by

X y w
X 1 w y
y —w 0 0
w -y 0 0

The costructure of Hy is given by

Sy () =x®x, Sy, (M) =y@x+1®Yy, dy,(w) =wl+xQw,

eny,(x) = 1r, eny(y) = en,(w) =0,
and the antipode Ay, is described by
)\H4(X) =X, AH4(y) =w, )"H4(w) =—-).

By Proposition 4.7, A ® Hy is a non-commutative, non-cocommutative Hopf quasi-
group and the morphism t : A ® Hy — F defined by

1 if z=1
Toiu* ®z) =3 (=D*if z=x
0 ifz=yw

is a skew pairing such that T = !, Then, by Proposition 4.7,

w =€\ ®(‘L'OCH4,A)®8H4

is a two-cocycle with convolution inverse w~! = w. Finally, A s<, Hj is a Hopf

quasigroup isomorphic to (A ® Hy)®.

5 Double Cross Products and Skew Pairings

In this section, we will show that the construction of A s<; H introduced in the
previous section is also a special case of the double cross product defined in [25].

First of all, we need to recall some definitions, following [8,9] and [20], to state a
characterization of double cross products in the quasigroup setting.
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Definition 5.1 Let H be a left Hopf quasigroup. We say that (M, ¢y) is a left H-
quasimodule if M is an objectin C and ¢y : H @ M — M is amorphism in C (called
the action) satisfying

om0 (N © M) = idy, (90)
omo(H®ppy)o(HR®Ag)ody) @ M)
=eg @M =9y oAy ®py)o by M). D

Given two left H-quasimodules (M, @) and (N, ¢n), f : M — N is a morphism
of left H-quasimodules if

ono(H® f) = fooum. (92)

We denote the category of left H-quasimodules by g OC.
If (M, ¢pr) and (N, ) are left H-quasimodules, the tensor product M ® N is a
left H-quasimodule with the diagonal action

omenN = @y @on) o (H@cgy ® N)o (g @ M ® N).

This makes the category of left H-quasimodules into a strict monoidal category
(g 9C, ®, K) (see Remark 3.3 of [9]).

We will say that a unital magma A is a left H-quasimodule magma if it is a left
H-quasimodule with action g4 : H ® A — A and the following equalities

pao(H ®na) = ey @na, (93)
HaOPaRA = @ao (H® pa), 94)

hold, i.e., ¢4 is a morphism of unital magmas.
A comonoid A is a left H-quasimodule comonoid if it is a left H-quasimodule with
action ¢4 and

EpA0pr =Eg Qé€a, 95)
34 0¢a = @aga o By ®84), (96)

hold, i.e., ¢4 is a comonoid morphism.
Replacing (91) by the equality

om0 (H® gm) =¢mo (uy @ M), 7)

we have the definition of left H-module and the ones of left H-module magma and
comonoid [because (91) follows trivially from (97)]. Note that the pair (H, ng) is
not an H-module but it is an H-quasimodule. Morphisms between left H-modules
are defined as for H-quasimodules and we denote the category of left H-modules by
C. Obviously, we have similar definitions for the right side.
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Proposition 5.2 Let A, H be (right) left Hopf quasigroups and lett : A Q H — K
be a skew pairing. Define pp : HQ A — Aand ¢y : H® A — H as

Pa=C QAT No(AQH®84® H)oSagn oCH.A

and

bp=CRH®RT Ho(AQH®cay ® H)
(AQHQ®AR®SIY)odagH OCH, A-

Then,

(i) The pair (A, ¢4) is a left H-module comonoid.
(ii) If the (right) left antipode of H is an isomorphism, the pair (H, ¢y ) is a right
A-module comonoid.
(iii) If H is a Hopf quasigroup, the pair (H, ¢p) is a right A-module comonoid.

Proof We prove the result for left Hopf quasigroups. The proof for right Hopf quasi-
groups is similar and is left to the reader. Trivially, by (3) for H, (a3) of Definition
4.1, (80), and the counit properties we obtain that ¢4 o (ny ® A) = id4. The equality
g4 09pa = ey ® g4 follows by the counit properties, the invertibility of v and the
naturality of c. Moreover,

a0 (un @A)

=(to(A®@ur)®A® (T ' o(AQun)) o (AQH®H
®4 @ HQ® H)odsgngn © (cH A ® H)
o (H ® cpy.a) (by @) of Definition 4.1 and (81))

—(t®D)o(A®can ®H)o((canod) ®H® H) ® A
((r '@t Ho(A®can ® H)o (84 ® H® H)))
c(AQHQRH®AQHQ®H)odagrgu o (cH A ® H)
o (H ® cp,A) (by naturality of ¢ and coassociativity)

= @A O (H ® QOA) (by naturality of C and (4))
Finally,

(pa ® 9a) 0 dHEA
=AQ( '*1)®A) 0 (A®AQcan)o(A®Ss @ H)
o(Ba®H®T ") o(t®agn) 0 SagH ©CH.A
(by naturality of € and coassociativity)

= SA o QYA (by naturality of C, invertibility of T, and counit properlies) .
The proof for (ii) follows a similar pattern but using (al) of Definition 4.1 and (85)

instead of (a2’) and (81). By Proposition 4.6, we obtain (iii) because in the quasigroup
setting condition (85) is true without the assumption of Ay be an isomorphism. O
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The following result is a version of [25], Theorem 7.2.2 for left Hopf quasigroups
(see also [19], Theorem 1X.2.3).

Theorem 5.3 Let A, H be left Hopf quasigroups with left antipodes )4, Ay, respec-
tively. Assume that (A, pa) is a left H-module comonoid and (H, ¢p) is a right
A-module comonoid. Then, the following assertions are equivalent:

(i) The double cross product A < H built on the object A ® H with product

Mava = (A @ UH) 0 (AR pA Py ® H) 0o (A®SHga @ H)

and tensor product unit, counit and coproduct, is a left Hopf quasigroup with left
antipode

Aoal = (@A ® ) 0 dpga o (Ag @ Aa)ocaH-

(ii) The equalities

wao (H ®na) =¢en ®na, (93)
¢pro(Mu @A) =np Qea, 99)
(P @ @A) 0 SHeA = CAH © (94 @ PH) 0 SHA, (100)
pao(HQua)o(Ayg @ 2a ® A)
=pao(A®wpa)o (Aasar oCc A) ® A), (101)
nH o (P @ up) o (Ag ® ((pa ® du) o duza) ® H)
obH®AQH)=ey®ea®H, (102)
mH o (@ @ up)o (HQ ((pa @ dpr) odnga) ® H)
o((HRAg)odg) AR H) =g Qesa ® H, (103)

hold.
Proof (i) = (ii) First of all, we have
idagn = (LA o (A® (pao (H ®n4a))) ® H)o (AR dH) (104)

because

idagH
= Jasati © (A ® H @ nag ) (by unit propertics)
=((uao (AR (pao(H®na))) Q@ H)o (AR SgH)
(by (3) for A, (90) for @ f7, and the properties of 1) 4 ).

Therefore, composing with A ® ey on the left side and with n4 ® H on the right

side of equality (104), we get (98). In a similar way, the identity pag © (MAgH ®
A® H) = idagn leads to (99). As far as (100), it can be obtained by composing with
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na® H ® A ®npg on the right and with ey ® H ® A ® e on the left in the two terms
of the equality

SA0H © MavaH = (LAsaH & MAsar) © (A ® H @ CAH, AQH
®AR® H) o (agH @ SawH).

Indeed:

(P ® 94a) o dHgA
= ((((a09a) ® Pn) 0 dnga) ® ((pa ® (eH © PH))
o8H®A)) © 8agH (by (95) for @4 and @ 7, naturality of C, and counit properties)
=(AQHQRAR®¢ey) o (UamH ® Uampn) © (A® H ® caAoH, AoH
®A® H) o (bagn ®dagH)
oMA® H®A®npy) (by (3) for A and H , naturality of . and the properties of ) 4 and 1)1 )
=EAQHR®ARen)0daoH o At ©(Na ® H® A®np) (by (4) for A <t H)

= CA,H © (gﬁA o ¢H) [¢] 3H®A (by naturality of C, and the properties of 1A, 7, € A and EH).

On the other hand, if A < H is a left Hopf quasigroup with left antipode A xp,
(27) holds. Then, we have

HasaH © A Asal @ MAsaH) © (SagH @ A® H) = cagn ® AQ® H. (105)

Composing with A ® ey on the left and with A ® H ® A ® ny on the right in the
two terms of equality (105), we get

cAQen ®A
=pnao(A®@pa) o (((pa ®PH) 0dHzA © (AH ®14)) ®
o (H®((A®ua)o(da®A)))o(can®A)
0 (AQ ((H®pp)o (b ® A))). (106)

Indeed:

EA®eg ®A
=eA®en QAR (eq 0ny) (by (1) for H)
=(A®en) o tavat © AAsal ® MAsal) © (BagH ® A ® np) (by (105) for A > H)
= a0 (A®@pa) o (A @ ua)o(AQcan ®A)o (4 ® ((H®pa)
o(6g ® A))) (by (2) for H, (95) for 7, the naturality of € and counit properties )
=pnao(A®@a) o (((pa ®PH) 0dHzA o (An @ 1a)) ® A)
o (H® ((A®ua)o (84 ®A)))o(can ®A)
0 (AQ ((HQ®@a)o (g ® A))) (by the naturality of C).
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Having into account that (H ® ¢4) o (g ® A) and (A ® pa) o (64 ® A) are
isomorphisms with inverses (H ® ¢4) o (H @ g Q@ A) o (g ® A) and (A ® p4) o
(A®Xs ®A)o (54 ® A), respectively, we have

nao(A®@pa)o ((Maar o CH A) ® A)
a0 (A®¢pa)o (94 ® ¢r) 0 Suga o (hi ® 1a)) ® A) (by ¢ = id)
=puao(A®pa) o (((pa ®PH) 0oduga o (Ag ®14)) ® A)
o (H® (A®ua)o(8a®A)))o(can @A)
0o (A ((H®@pa)o(By ®A)))o (AR ((HR¢pa)o(HAy ®A)
0o (b ®A))o(cpa®A)o(H® (AR ua)
0 (A®As® A)o (54 ® A)) (by composition with the inverses)
=(caQ®eg @A) o (AQ(((H®¢pa)o(H®Ay ®A)
o (g ®A)))o(cHa®A)o(HQ (A pa)
0 (A®As ®A)o (54 ®A))) (by (106))
=pao0(HQua)o Ay ® Aa ® A) (by naturality of € and counit properties) .

Therefore, (101) holds. Now, we show (102): Composing with ¢4 ® H on the left
and with n4 ® H ® A ® H on the right in the two terms of equality (105), we get

eH ®eA®H
=i o (¢n @ H) o (A @ (9a ® dn) 0 dHea) ® H) o 6y ® A® H)
(by (1), (2), (3), (19) for A, (93) (95) for A, (90) for ¢H, naturality of C and counit properlies).

Finally, by (27) for A >« H, we have

UaaH © (A Q H @ pharar) o (A H @A ® AR H)
0(braoH AR H) =cagn ® AQ H. (107)

Then, composing with €4 ® H on the left and with ngy ® H ® A ® H on the right
in the two terms of equality (107),

EH®ea Q@ H
=ppo (@ @up)o(HRpaodpy @ H) o (H @dgga ® H)
o (HR®Ag)ody) ®AR®H)

(by (l), (2), (3) (19) for A, (93), (95), (98) for YA, (90) for ¢H> naturality of C and counit properties).

Therefore, (103) holds.
(ii) = (i) We only prove the equalities involving the left antipode. The proof for
the other conditions is analogous to the ones given in [25], Theorem 7.2.2.

HavaH © (Aol @ tasaH) © (Sagn ® A® H)
=((uao (AR @a) ® up) o (((pa ® dH) 0 dHpA) @ A
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®(¢PH o (P ® A))) 0 dHgaza) ® H)
o ((Ag ®2ra)ocan)® [tan) o (Sagn ® A® H)
(by the comonoid morphism condition for ¢ g, coassociativity, and naturality of C)
=((nao (AR pa) o ((Aawn oc.4) ® A)) @ (g o (P
o(H®pa)o(ln ®2a ® A)) ® H))
c(HR((A®cHa®A)o(cya®can) ®AQH)o((cy,nody)
®(caA,A084)®34A Q@ H)o (A H @ AwH)
o (bagH ® AQ H)
(by (24) for Ay and A 4, coassociativity, naturality of €, and condition of A-module for H')
={(pac(H®ua)o(lg ®ra ®A) ® (g o (Pu
o(HQpua)o(Ayg ®1s ® A)) ® H))
oc(HR®(A®cya®A)o(cua®can)®AQ®H)o((cy,uodn)
®(ca,a0684) ®84® H)o(caH ® UasaH)
o (Sagn ® A® H) (vy (101)))
= (AQ puu)o ((9pa @ PH)odHgA) @ H) o (A ® (1A
o(Aa @ ua) o (84 ®A)) ® un)
o (caAH® ((9a ®PH) 0 0HeA) @ H) o (A®SH ® AR® H)
(by (24) for Ay and A 4, (4) for A, and naturality of C)
= (AQ pun)o (((pa ® Pn) 0 dHza) @ pH) o Ay ® ((pa ® du)
o8HeA) @ H) o (A @6y @ AR H)
(by (27) for A and naturality of C)
= (AQ pun)o ((pao (H®¢a) ® (dr o (H ®¢a)) ® i)
o BngHeA @ ¢y @ H) o (A ® SHea ® H)
o0 (64 ®3g ® A ® H) (by the condition of comonoid morphism for ¢4 and naturality of C)
=(AQuy)oc(A® Py @ uy)o(cH AR pa @ Py Q@ H)
o ((Ag ® (pao((Ay *xidy) ® A))
0BgRA))RHRARHRAR H)o (Spga @
RAQ H)o (64 ®dpgga ® H)
(by (24) for A 7 . the condition of H -module for A, coassociativity of 8 f, and naturality of C)
=AU o (P @ U)o (A QYA ® Py ® H)o (H ®duga
®H)o (bH ®AQ®H)))o(cHA®AQH)
o(ea®H ®34 ® H) (by (28), the condition of H -module for A and counit properties )
=(AQen ®ea@H)o(cHA®AQH) o (A ® H®54Q H) (by (102))
= caeH @ A ® H (by counit properties and naturality of C).

On the other hand,

Mas<H O (A@ H @ tpsa) 0 (AQ H @ Aot ® AR H) 0 (Sagn @ AR H)
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= fasaH 0 (A® H Q (a0 (A®@a) o ((9a ® Pr) 0 dHea) ® A))
Q(ur o (P @ H)o (H@ pua ® H))) o (A® H @ SHpaza ® H)
c(AQH®((Ag ®Aa)ocan) ®A®H)

o (Bagn ® A® H)
(by the condition of comonoid morphism for
@ H , coassociativity, the condition of A-module for H , and naturality of ¢)

= At 0 (A® H ® (a0 (A®¢a) o (Aavar 0 CH 4) ® A))
®(up o (pn @ H)o (H® pna ® H)
CAHRIMRAR®H)) o (AQHR®H®((A®cH,A
®A) o (cH.A®ca ) @AR®H)

0o (A® H® (cHgodn)®(canods) ®a®H)
C(AQH®cAnH QAR H) o (bagn AR H)
(by (24) for the antipodes A 4, A 7, and naturality of ¢)

= paH 0 (AQ H ® ((pa o (HQ pa)o (A @ 2a ® A))
Q((1h o (py @ H)o (H @ ua @ H)
o(AH QA ®ARH)))o(AQRHHQ((A®cH, A
®A) o (cH.A®ca ) @AR®H)

0o (A®Q H®(cH.Hodn)®(can0ds) ®a®H)
c(A®RH®cAH®A®H)o (Bagn ® AR H)
(by (101))

=UaH o (ARHRAQ up)o (AR H® ((pa ®dpn)o(H®cya®A)
o ((6g oAn) ® ((ha ® 1a)odapa
0(AMAa®A)))®H) o (AQH®cAHQ®AQH)o (Saegn @ AR® H)
(by (24) for A4 and A f7, and naturality of €)

=Ua®nu)o(A® ((pa @ PH) 0 dHga o (H @ ¢a)) Q (LH
0 (g ® H))) o (A® H® (SHga o (Ay ® (na
o(Aa®A)))o(can®A)QH)o(bagn ® AR H)
(by the definition of (4 Apqf7, and (4) for H)

=Ua®pH)o (A® (pao (H Q¢pa)) Q (¢pr o (H Q¢a))
Qup)o(ARSHgHA @ ¢y ® H)
c(A®H®upa ® H)o (A H® H®upua®H)
0(A®H® (Ag ®ra)ocan) ®ARH)

o (bagH ® A ® H) (by the condition of comonoid morphism for ¢ 4 )

=(na® (o (Ppu @ punH)o (H Qs @ ¢y @ H)o(H Q3Hga
®H) o ((H®Ap)odn)®A® H))

0 (AR (pao(ugr ®A))@HRVAQRH)o (AQH @Ay ®cna®@AR®H)
0 (AQH®(cH.nodn)®(aopna)@H)o(AQH

QH® M QAQH)o(AQHQ@cay ®AR®H)

o (Bagn ® A® H)

(by (24) for A 7, the condition of left H -module for A, coassociativity of the coproducts, and naturality of ¢)
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=((nao(AQpa)o (A®uH ®A) ®en Qea® H)
(A®HR®HQ@cn A®AQH)o(AQ H® (cn.n
o (HR®Ap)ody)®Baopuao(rla®A)@H) o (AQHQcan®A
®H) o (Sagn ® A® H) (by (103))
= ((nao(A® (pao ((up o (H®Ap)) ® (rao(ha ® A)))
o (H®caH®A))) o (Bagn @A) ® H)
(by naturality of ¢ and counit properties)
= ((uao (AR pa)o(A® (idy *Ap) @ ua)o(AQ HR®Aa ® A)
o(AQcan®A)o (4@ H®A)®H)
(by naturality of ¢)
=((uao(AQuA) o (AQRLA®A)o (B4 QA) ®H)
0(A®eyg ® A® H) (by (13) and (90) for p4)
= eaon ® A® H (by (27) for A).

m}

As in the previous results, we can obtain a similar theorem for right Hopf quasi-
groups. In this case, the corresponding equalities to (101), (102) and (103) are

dro(ug ®A)o (H Q@ on ®04)

=puH o (pg ® H) o (H ® (0asH ©CH,A)), (108)
Hao(pa®pa)o (AR ((pa ® ¢n) odnga) ® 04)
c(AQ H®3d4) =AQen Qéa, (109)
pao(pna®pa)o(A® ((pa ® ¢u) 0 dHpa) ® A)
0o (A® H®((0a®A)0da) =AR®ey R ea, (110)

where py and p4 denote the right antipodes.
As a consequence of Theorem 5.3 and its right version, we have:

Corollary 5.4 Let A, H be Hopf quasigroups with antipodes A4, Ly, respectively.

Assume that (A, ¢4) is a left H-module comonoid and (H, ¢p) a right A-module
comonoid. Then, the following assertions are equivalent:

(i) The double cross product A <1 H built on the object A ® H with product
HasaH = (LA @ uH) 0 (A ® ¢a @ Py @ H) o (AQ®JSHga ® H)
and tensor product unit, counit and coproduct, is a Hopf quasigroup with antipode
AMoaH = (@A @ ) 0 Spga o (Ag @ Aa)ocaH.

(ii) The equalities (98), (99), (100), (101), (102), (103), (108), (109), and (110) hold
for A and A 4.
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Now, we show that the construction of A 0<i; H introduced in the previous section
is an example of a double cross product. We will prove the left version and leave to
the patient reader to get the right one.

Proposition 5.5 Let A, H be left Hopf quasigroups with left antipodes A s, Ay Such
that A g is an isomorphism, and let Tt : A @ H — K be a skew pairing. Then, the
left Hopf quasigroup A <. H introduced in Corollary 4.9 is the double cross product
induced by the actions ¢4, ¢y defined in Proposition 5.2.

Proof First, note that

(PA®PH) 0dnpa=(TO®ARHT ) o(A® H®8agn) 08agn och a. (111)

Indeed:

(A ® d1) oA
=A@ H) ot ®5A®n®T ) o (A® H ®Sagn)
o8 AQH ©CH A (by naturality of C, and coassociativity)
= ®AQHQ®T ) o(A® H ®84smH) 0 SAH © CH.A

(by invertibility of T, naturality of C, and counit properlies) .

As a consequence, it is not difficult to see that pt gpq, # = (L As<q - On the other hand,
A, H = AAsaH bECaUSE

AAsH

=TT No(ARH®(A®can ®H)
o ((ca,a084) @ (cagHodH))) 0o (A®can ®H)
o ((ca,a084) ® (ca,H 08H))
(by (24) for A A and A g, naturality of C, S =id, (83) and (84))

= ' @1 @1 ®7T)0(AQ H® caan,aeh) © (CApH, ApH ® A
®H)o (A® H ®8agH) © CA®H. A®H © SAQH
(by naturality of ¢, and =id )

=T ' @I Ay ®1) 0 Bagn @ A® H) o Sagn
(by naturality of C, and =id )

= AAs<, H (by coasociativity) .

]

Finally, by the previous results, we have the following corollary for quasigroups
without conditions over the antipode of H.

Corollary 5.6 Let A, H be Hopf quasigroups and let T : A ® H — K be a skew
pairing. Then, the Hopf quasigroup A <, H introduced in Corollary 4.10 is the
double cross product induced by the actions ¢4 and ¢y, defined in Proposition 5.2.
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6 Quasitriangular Hopf Quasigroups, Skew Pairings, Biproducts and
Projections

In this section, we will explore the connections between Yetter—Drinfeld modules for
Hopf quasigroups, projections of Hopf quasigroups, skew pairings and quasitriangular
structures, obtaining the non-associative version of the main results proved in [1].

There is no difference between the notion of left H-comodule for a Hopf algebra
and for a Hopf quasigroup since it only depends on the comonoid structure of H.
Then, we will denote a left H-comodule by (M, pps) where M is an object in C and
oM M — H ® M is a morphism in C (called the coaction) satisfying the comodule
conditions:

(g @ M) o py = idum, (112)
(H® pm)opu =0y @M)opy. (113)

Given two left H-comodules (M, py) and (N, pn), f : M — N is a morphism
of left H-comodules if py o f = (H ® f) o py. We denote the category of left
H-comodules by 7C.

For two left H-comodules (M, py) and (N, py), the tensor product M @ N is a
left H-comodule with the codiagonal coaction

pmMeN = (up @M QN) o (H®cy g ® N)o (om ® pn).

This tensor product endows to the category of left H-comodules with a structure
of strict monoidal category (H C,®,K).

Moreover, we will say that a unital magma A is a left H-comodule magma if it is
a left H-comodule with coaction p4 and the following equalities hold:

paonNA=ngdna, (114)
paops=(H®pa)opaza- (115)

Finally, a comonoid A is a left H-comodule comonoid if it is a left H-comodule
with coaction p4 and

(H®ep)opa =nH QEa, (116)
(H®34) 0 pa = paga 084, (117)

hold.
Now, following [2], we recall the notion of Yetter—Drinfeld quasimodule for a Hopf
quasigroup H.

Definition 6.1 Let H be a Hopf quasigroup. We say that M = (M, ¢, py) is a

left-left Yetter—Drinfeld quasimodule over H if (M, ¢y,) is a left H-quasimodule and
(M, pp) is a left H-comodule which satisfies the following equalities:
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(bl) (ug @ M) o (H @ cp,r) o ((omoom) @ H)o(HQcy m)o By M)
= (ug @ oyp) o (HQcyg @ M) o (5uy ® pm).

(b2) (upg @ M) o (H ®cy,p)o (oy @ up)
=g @M)o(up @cy,p)o(HQcyp ®H)o(py @ HR® H).

b3) (p@M)o(Hug ®M)o(HR® H®cu,p)o (HQ®pu ®H)
=W ®M)o (ug ®cpu,p)o(H® py ® H).

If M and N are two left-left Yetter—Drinfeld quasimodulesover H and f : M — N
is a morphism between them, we will say that f is a morphism of left-left Yetter—
Drinfeld quasimodules if it is a morphism of H-quasimodules and H-comodules.

We shall denote by g QYD the category of left—left Yetter—Drinfeld quasimodules
over H and by ZyD its subcategory of left—left Yetter—Drinfeld modules (the category
formed by the objects that are also left H-modules and with the obvious morphisms).
Note that if H is a Hopf algebra, conditions (b2) and (b3) trivialize and in this case
ZyD is the classical category of left—left Yetter—Drinfeld modules over H.

Let (M, om, pu) and (N, ¢n, pn) be two objects in £ QYD. Then, M ® N, with
the diagonal structure gy and the codiagonal costructure pygn, iS an object in
Z QYD. Therefore, (Z QYD, ®, K) is astrict monoidal category. If moreover A g is an
isomorphism, (Z YD, ®, K) is a strict braided monoidal category where the braiding
t and its inverse are defined by

tuNn = (N @ M) o (HQcy,n)o (oy ® N) (118)

and
'y = cvam o (on o en.n) ® M) o (N @ Ay' ® M) o (N ® py),

respectively (see Proposition 1.8 of [2]). As a consequence, we can consider Hopf
quasigroups in ZyD. The definition is the following:

Definition 6.2 Let H be a Hopf quasigroup such that its antipode is an isomorphism.
Let (D, up, mp) be a unital magma in C such that (D, ep, Ap) is a comonoid in C,
andletsp : D — D be a morphism in C. We say that the triple (D, ¢p, op) is a Hopf
quasigroup in ZyD if:

(cl) The triple (D, ¢p, pp) is a left-left Yetter—Drinfeld H-module.

(c2) The triple (D, up, mp) is a unital magma in g))D, i.e., (D, up, mp) is a unital
magma in C, (D, ¢p) is a left H-module magma and (D, pp) is a left H-
comodule magma.

(c3) The triple (D, ep, Ap) is a comonoid in ZJ)D, i.e., (D, ep, Ap) is acomonoid
in C, (D, ¢p) is a left H-module comonoid and (D, pp) is a left H-comodule
comonoid.

(c4) The following identities hold:

(C4-1) eépoup = idK,
(c4-2) epomp =ep R ep,
(c4-3) Apoep =ep Qep,
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(c4-4) Apomp =(mp®mp)o(DQtpp D)o (Ap ® Ap),

where p p is the braiding of #YD for M = N = D.
(c5) The following identities hold:
(c5-1) mpo(sp@mp)o(Ap®D)=ep®D =mpo(DR®mp)o(DRsp®
D)o (Ap ® D).
(c5-2) mpo(mp®D)o(D®sp®D)o(D®Ap)=D®ep=pupo(mp®
sp)o (D ® Ap).
Note that under these conditions, sp is a morphism in ZyD (see Lemmas 1.11,
1.12 of [2]).

By Theorem 1.14 of [2], we know that if (D, ¢p, op) is a Hopf quasigroup in
HYD, then

DxH=(DQ®H,NpxH, “"DxH>EDxH>ODxH>ADxH)

is a Hopf quasigroup in C, with the biproduct structure induced by the smash product
coproduct, i.e.,

NDxH =Np @ NH, Mpxn = (Up ® y)o (DR VE @ H),
EpwH =Eep ®en, Spun =D RTH®H)o(p @),
ADxH = ‘I‘g o(Ag ® Ap) oF{)’,

where the morphisms 'l : DQ H -~ H® D, Vi : H® D — D ® H are defined
by

' = (up®D)o(H®cpu)o(op®H), WH
=(pp® H)o(H®cpy,p)o(dny ® D).

Let H and B be Hopf quasigroups and let f : H — Band g : B — H be
morphisms of Hopf quasigroups such that g o f = idy. By Proposition 2.1 of [2], we
know that qfl =idp*x(foApgog): B — Bisanidempotent morphism. Moreover,
if By is the image ofqg and pfl : B — By, ifl : By — B a factorization ofqg,

l'B (B®g)083
. B T BQH
B ®nu

By

is an equalizer diagram. As a consequence, the triple (By, up,,mp,) is a unital
magma where u g, and mp, are the factorizations, through the equalizer i f,, of the
morphisms np and up o (i f, Qi 11_31), respectively. Therefore, the equalities

upy = ppons, mpy =ppoupolif®if), (119)

hold.
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Definition 6.3 Let H be a Hopf quasigroup. A Hopf quasigroup projection over H is
a triple (B, f, g) where B is a Hopf quasigroup, f : H — Band g : B — H are
morphisms of Hopf quasigroups such that g o f = idy, and the equality

qhous® (B®qh) =qh oup (120)

holds.

Let (B, f, g) and (B', f', g’) two Hopf quasigroup projections. We will say that a
Hopf quasigroup morphism 4 : B — B’ is amorphism of Hopf quasigroup projections
if it satisfies that ho f = f/, g’ oh = g. The category of Hopf quasigroup projections
over H will be denoted by Proj(H).

If (B, f, g) is a Hopf quasigroup projection over H,

upo(B® f) B
Py
B®H B

B®ep

By

is a coequalizer diagram. Moreover, the triple (By, e, Ay, ) is a comonoid, where
ep, and Ap, are the factorizations, through the coequalizer pg, of the morphisms
ep and ( pf, ® pf,) o §p, respectively. Moreover, the equalities

epy, =epoib, Ap, =5 ®pB)ospoil (121)
hold (see Proposition 2.3 of [2]).

Definition 6.4 Let H be a Hopf quasigroup. We say that a Hopf quasigroup projection
(B, f, g) over H is strong if it satisfies

Pompo(BRup)olify® f®if)

=pBougo(uz®B)o (il feib), (122)
Phonso(B®up)o(f®ip ®if)
=phouso(us®B)o(f@ip @i, (123)
pPhousoB@up)o(f@f@if)
=phouso(ug®B)o(f® f®if). (124)

Note that, by the factorization of qfl, we have that (122), (123), and (124) are
equivalent to

qBoupo(B@up)oih® freil)

=gl oupo(up®B) ol ® foib), (125)
qfiouso(B@up)o(f@if ®if)
=gl oupo(up®B)o(f®i5 @il (126)
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oo (BOup)o(f® f®if)
=qfouso(up®B)o(f® f®if). (127)

We will denote by SProj(H) the category of strong Hopf quasigroup projections
over H. The morphisms of SProj(H) are the morphisms of Proj(H).

Let H be a Hopf quasigroup with invertible antipode. By Proposition 2.7 of [2],

if D is a Hopf quasigroup in ZJJD, thetriple (D x H, f =np @ H, g =e¢p ® H)
DxH

is a strong Hopf quasigroup projection over H. In this case g; "~ = D @ ng ® ¢q.
As a consequence, we can choose pIL_)IXH =D ®ey and igXH = D ® ny and then

(DxH)y =D.

On the other hand, by Corollary 2.10 and Proposition 2.5 of [2], we can assure that,
if (B, f, g) is a strong Hopf quasigroup projection over H, the triple (By, ¢y, 0By )
is a Hopf quasigroup in ZyD, where the magma—comonoid structure is defined by
(119) and (121),

9By =phonso(f®if), psy =(g®pp)odpoif, (128)

and
spy = poo((fog)xip)oib. (129)
Moreover, w = upg o (iz ® f) : By x H — B is an isomorphism of Hopf
quasigroups in C with inverse w—! = ( pf, ® g) o 6p (see Propositions 2.8 and 2.9

of [2]). Therefore, there exists an equivalence between the categories SProj(H) and
the category of Hopf quasigroups in gyD (see Theorem 2.11 of [2]).

In the final part of the paper, we will prove that we can construct examples of strong
projections by working with quasitriangular structures and skew pairings. First, we
will introduce the notion of quasitriangular Hopf quasigroup.

Definition 6.5 Let H be a Hopf quasigroup. We will say that H is quasitriangular if
there exists a morphism R : K — H ® H such that:

dl) Gy®H)oR=(HRHQ@ug)o(H®@cyn®H)o(RRR),
(d2) (H®Spg)oR=(up @cy.H)o(H®cy u @ H)o(R®R),
(d3) unen o ((cH,HodH) ® R) = tHeH © (R ® dy),

(d4) ey @®H)oR=(H®¢ey)o R =ny.

In the Hopf algebra setting, the morphism R is convolution invertible with inverse
Rl=Gy®H)oRand R = .y ® Ay) o R. In our non-associative context, we
have thatif S = Ag @ H)oRand T = (Ay ® Ay) o R, the following identities hold:

R+S=S%R=nneu (130)
S¥T =TS = nugH. (131)

Indeed:

RxS
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=(ugo(H®AH)) @ uy)o (H ®cy & H) o (R ® R) (by naturality of ¢)
= ((idy * Ag) ® H) o R (by (d1) of Definition 6.5)

= ((eny ® nu) ® H) o R (vy (13))

= NHgH (by (d4) of Definition 6.5).

Similarly, we prove S * R = nygn using (28) instead of (13). On the other hand,

SxT
=((uH oAy @An)) & (up o (HQAp)))
o(H®cHu,u®H) o (R R) (by naturality of ¢)
=((Agopgocy ) ®(upo(HQAg)))
o(H®cHu®H)o(R®R) (by (31))
=((Agopun) @ (ugo(HQ®Ag)ocH H))
o (H®cH.H® H)o(R® R) (by natrality of ¢)
= (Ag ® (idg * Lg)) o R (by (d2) of Definition 6.5)
= ® (eq @ nu)) o R (by (13))
= NHgH (by (d4) of Definition 6.5 and (19)).

The proof for T * S = nggp is similar using (28) instead of (13).

Note that, by the lack of associativity, we cannot assure that S be the unique mor-
phism satisfying (130) and (131).

Finally, the identity

MHQ@H® (pocur)o(HRHQ(curmo(HQup)) ® H)
c(H®cHH®cHn®H)o(R®R®R)
=(UH QUH O uUH)o(HO®cyp®@cpg@®H)o(ROR®R) (132)

holds because

(g @H @ (upgocyp)o(H®HQ (cyno(H®uy)) ®H)

o(HR®cnHQ®cyu®H)o(R®R®R)

=HQ(((ugocH,n) @ (MHoch ) o (H®cy y @ H)))
o(((ug ®cu,g)o (H®chy,un ® H)
o (R® R)) ® R) (by naturality of €)

=HQ(((ugocy,n) @ (MHoch ) o (H®cyy @ H)))
o (((H®3dy)o R)® R) (by (d2) of Definition 6.5)

= (H ® (LHeH © cHot,HeH © 81 ® R))) o R (byc? = id)

=(HQ® (LHoH © (R ®JH))) o R (by naturality of ¢)

=(HQ (uwHgH o ((cH,H ©8H) ® R))) o R (by (d3) of Definition 6.5)

=(HQuugn) o (uy @ (cH,HoCcH,H) ®R)
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o(H®cu.ug ® H) o (R® R) (by (d2) of Definition 6.5)

= QU Quu)o(H®cyn®cuuy®H)o(R®R® R) (by nawnality of ¢).

Proposition 6.6 Let A, H be Hopf quasigroups and let T

:A® H — K be a skew
pairing. Assume that H is quasitriangular with morphism R. Let A ><; H be the Hopf

quasigroup defined in Corollary 4.10. Define the morphism g : A v<; H — H by
§=TQ®ua)o(A®R® H).

Then, g is a morphism of unital magmas if and only if the following equalities hold:

upo(g®H)=go(AQ ug),

(133)
pHo(H®g =pao(uag @H)o(HR (1 ® H)o (A® R)) ® H). (134)

Proof Assumethat g = (1 ® ug) o (A ® R ® H) is a magma morphism. Then,

8O MAsa, H=MHO(Eg®E)

(135)
holds. Moreover,

go(A®uy)
=80 UA,HO(AQRHQ@ns ® H)

(by naturality of C, (3), (a3) of Definition 4.1, (79), and unit and counit prcperties)
=upgo(g®g o(A® HQns® H) (by (135))

= WH © (g (Y H) (by (a3) of Definition 4.1, (d4) of Definition 6.5, and unit properlies) .

Therefore, (133) holds. On the other hand, the proof for (134) is the following:
wro(H® g)

=pugo((gonas® H)) ® g) (by (a3) of Definition 4.1 and unit properties)

=go A, HO(MA® H®A® H) (by (135))

= (T ®(go(A®un))) o ((Bagn ® T ") 0 8agn 0 cr,a) @ H) (by unit properties)
= (T ®(uno(g®H)) o ((Bagn ®T ") 0bagn ocn.a)® H) (by 133)
=((t o (A® (tr o cH,1)) ® (br o (kp ® H))) o (A® (H ® R

®H)ody)®T ' ® H) o (8awH 0 cr.A) ® H) (by (78))
=@ @un) o (A® (Lpgn o (R®y) ®T )

0dAgH © cH,A) @ H) (by naturality of ¢)

= (@ un) o (A® (uen o ((ca.n 081) ® (RoT™ 1))
0bAgH © cH, A) @ H) (by (d3) of Definition 6.5)

=upo((tT T UH) o (AQcH HScH H® H)o((caaoda)
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®(cH,Ho8r) ® (Rot ") 0dagn 0 cra) ® H)

(by (a2) of Definition 4.1)
=puno((t®(uuocym)®@T*t ")) o(AQR®H

®A® H)odagn ocH,A) @ H) (by naturality of ¢)
=(TQugo((npocyn) ®H))o(AQRQHQH)

o (cH,A ® H) (by naturality of ¢, invertibility of T and counit properties)
=ppo(ug @H)o(HQ (1 ® H)o (AR® R)) ® H) (by nawrality of ¢).

Conversely, assume that (133) and (134) hold. Firstly, note that g o nge, v =
ng follows by (a4) of Definition 4.1, (d4) of Definition 6.5, and the unit properties.
Secondly,

8 © WA, H
=puno((go(ua®@H)o (AR ((t®AQ®H)odagn)
®t ") 0 g ocr.4)) ® H)
(by (133))
=(t®1)o(A®cAE®H) o (AR A®JH)) ® (un o (un ® H)))
cART®A®RRIH®T ' ® H)
0 (A® ((bagH ® AR H)obsgH ocH,A) @ H)
(by (al) of Definition 4.1)
=pgo(t®T® (upo(uy ® H))® H)o (A
RTRcAn@cyHOHRHQH)
C(ARARcANRRVARRIRR®HRH) o (AR Qy
®T ' ® H) o (A® (Bagn ocH.A) @ H)
(by (d1) of Definition 6.5)
=pno((uHo(T®H)o(A®R))® (t®1)0 (A
Qca,H @ H)o((can084) ®chu n)) ® n)
C(AR(H®R®H)o8y)))®T ' ® H) o (A® (Sagn o ch.A) @ H)
(by naturality of C, 2 =id, and (134))
=puno((uro(T®H)o(A®R)®(t®H)o (A
(g ocH,H) @uE))o(HR®R®H)
SN ®T ' ® H) o (A® (Sagh o cr.a) ® H)
(by (a2) of Definition 4.1)
=pgo((po((T®H)o(A®R)®(t® H)o (A
(e o (R® SN @' ® H)
0 (A® (Bagu o cr.A) ® H) (bynatrality of ¢ and ¢* = id)
=puno((uro(T®H)o(A®R)®(t®H)o (A
@((ren o (cuHody) ® N ®T ' @ H)
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0 (A® (bagH o cH,A) ® H) (by (d3) of Definition 6.5)
=pHo(uHo(T@®H)o(A®R)Q (1 QT Q un)
0 (AQ®can ®cHu®H)o((canods) ®(ch H
8H)® RN ® T @ H) o (A® (Bagn ©cr.a)® H)
(by (@2') of Definition 4.1)
=pugo((pro((t®H)o(A®R)) ® ((t ® (un o cH H))
C(ARR®H)) @ (txt )@ H)
o(A ® (bagH o cH,A) ® H) (by naturality of C)
=uno((go(A@uH)®H)o(AQH® ((t®H)o (A®R))® H)
(by invertibility of T and counit properties)
=pno((uro(g® ((t® H)o(AR®R))))) ® H) (by (133))
=pH o (8 ®g) (by (134)),

and then g is morphism of unital magmas. O

Remark 6.7 In the previous Proposition, note that, if H is a Hopf algebra, equalities
(133) and (134) always hold.

Theorem 6.8 Let A, H be Hopf quasigroups and let T : A ® H — K be a skew
pairing. Assume that H is quasitriangular with morphism R. Let A v<; H be the Hopf
quasigroup defined in Corollary 4.10 and let g : A <y H — H be the morphism
introduced in Proposition 6.6. Define the morphism f : H — A v, H by [ =
na ® H. Then, if (133) and (134) hold, the triple (A v<,; H, f, g) is a strong Hopf
quasigroup projection over H.

Proof By Proposition 6.6, we know that g is a morphism of unital magmas. Also, by
(2), (d4) of Definition 6.5 and (a3) of Definition 4.1, we obtain that e 0 § = €4, H.
Moreover,

dHog
= (T ®(LHeH © 6y ®H))) o (A® R® H) (by (4))
=(T®T®UuHeH) o (AR®cAH®HQcyn ®HQH)
0((can084) @ (HQcy g ®H)o(R®R)) ®dy)
(by (d2) of Definition 6.5, and (a2') of Definition 4.1)

=(g®go 8A><11H (by naturality of ¢ andC2 =id).

Therefore, g is acomonoid morphism. On the other hand, trivially fong = naca,
and fase, o (f ® f) = foup follows easily by naturality of ¢, (3), (a4) of Definition
4.1, (79), and unit and counit properties. By (1), it is clear that 4., 7 © f = ey and
the identity §geq, 7 © f = (f ® f) o 8y can be proved using (3) and the naturality of
c. As a consequence, f is a morphism of unital magmas and comonoids. By (a4) of
Definition 4.1 and (d4) of Definition 6.5, an easy computation shows that go f = idy.
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Our next goal is to obtain a simple expression for the idempotent morphism
A H . .
qy =idpsq,H*(folygog) i Ay H— Ava; H.

Indeed, the equality

g = (A®T®An) 0 (54 @ R®ep) (136)

holds because

A< H
dy

= (AQ (up o (H ® (A 08)))) 0 dagH

(by naturality of ¢, (3), (a4) of Definition 4.1, (79), and unit and counit properties )
=(AQ(UHo (HR®T® (UH ocH HOo (AH @ AH)))

o (H®AQ®R® H)))odagm (by (31))
=(AQ(uno(HQOuu)o(HOrAn ®H)o by ®H)ocu u

o (TQ@Ag ® H))) o (64 ® R® H) (by naturality of )
=(A®RT®Ap)o(6a ® R®ep) (by (27)).

Then, using (136), we can prove that (A <, H, f, g) is a Hopf quasigroup pro-
jection over H. Indeed:

4" o a0 (A® H @ g™ ™)
=(A®T®H)o(Baous)®(H®An)oR) o (AR ((T®A)
c(A®can®T NoBa®H®A®H)
08A®H © CH,A) ® €H)
(by (2), (18), (d4) of Definition 6.5, (a3) of Definition 4.1, and counit properlies)
A< H
=d4y O WA, H

(by (2), and counit properties) .

Note that, by (3), the naturality of ¢, (79), (a4) of Definition 4.1, and unit and counit
properties, we have the equality

Has, HO(AQH®na® H) = up, (137)

and, by unit and counit properties, and (2), the identity

A<z

g ot o (ARH®A® (uoem) =qin™ o e (138)
holds.
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To finish the proof, it is sufficient to show that the projection is strong, i.e., (125),
(126) and (127) hold. Let us first prove (125):

a7 o pava 0 (A® H® pave i) o (i @ @iy
= (A®Tt®im) o ((Baona)®(Rot ) o(A® ((r ® H)
0o (A®can) o(Ba®H)®A®H)odagn))
0o (A®cha) o (™ @ (t®H)o(A®can)
0 (BA®H)®T ") 0odagn o (cH.A ®En)
o (H ® i) (by (2), (138) and unit and counit properties)
=(A®T®A) o (Baous)®(Ro(T@T)0(AQcan
®H) o ((caa0084) ® H® H))))
0 (A® (((canod)@H®T ) odagnocy ) @H
™o (i ® (Bagh o cr.a) ® en)
o (H®i QM’H ))) (by naturality of €, coassociativity, and ¢> = id)
=(AQT®Ag)o((daoua) ®(RoTo (AR ug))) o (A® (((ca,a0da)
QH® 1t Nodagmocna) @ HRT )
o (i7" @ ((Bagm o cr.a) ®em) o (H®in™))) (by @) of Definition 4.1)
=(A®(T®An) o (A®R)) o (Baopua)®(r '@t
0o (A®can ®H)o (s ®H®H)) o (A® (T ®84)
0 (A®caH)0(BA® ) ®HQH)o(AQJdugH)
o(cra®HN) o iy @ ((cwa @enm)
o (H® lAIX]T ))) (by naturality of €, coassociativity, and ¢> = id)
=(A®((t @A) o (A®R) o ((Baopua) @t ")
0 (A® (T ®84) 0 (A®can) ® H)
0 (64 ® (U ® uy)odugn)) o (cH,.A® H)))
o (i @ ((cma ®em) o (H®ig™ ™)) (by 51))
=(A® (T @A) 0 (A®R) 0o (Baopua)®T ")
(AR ((t®d54) 0 (A®ca,n)) ® H)
0 (BAa®@poug))o(caa®H))) o (iy
®(cH,a ®em) o (H® iy ™)) (by 4))
= (A (T ®Ar) o (A®R)) o ((840/1a) ® (ep 0 11r1))
c(A® (T ®A®H) odagn) ®T )
08agH o Cr.A) ® H) o (A® up) o (i~
®i 1) (by (2), and counit properties)

= g0 M o fpoa 1t © (aset ® AR H) o (i @ £ @i by (137)).

A< H

® H))
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Secondly, we will prove (126):

a7 o fpee it 0 (Hasen ® AQ H) o (f @ it @it

=(A®T®im)o((Baona)®R) o (AR ((t®A)o(A®can)
0 (BA®H)®T ") oSagn ocm,A))
o (t®A®um) o (Bagn @ T 1) 08agm ocra) ® H))
®A)o (H®iy " @ (A@en) oiy ™)
(by (2). and unit and counit properties )
=(A®T @) o((Baona)®R) o (AR ((t®A) o (A®can)
cBA®H)®T Ho(A®can ® H)
0(6a®@©Bropun))o(chHa®H)))o(T®AR®H)
o (Bagn ® T ) odagn 0cH.A)) ®c.a)
o (HRit™ M @ (A®en)oify™™)) (by nawraiity of ¢)
=(A®T®i)o((Baona)®R) o (AR (t®A) o (A®can)
cBA®H)®T No(A®can ® H)
084 ® (i ® ) 0 8nen)) o (cu.a ® H)) o (T ®A® H)
o ((Bagr ® T ") 08aH 0 cH.4)) ® CH.A)
o (HRif™ " @ (A®en) oity™™)) by 1))
=(A®T®An) o ((Baops)®(Rot o (A® un)))
c(A®((To(ARuUR)®ARARH® H)
0 (A®caga,HeoH @ H Q@ H) o (64 ® A)0d4) ®SHgn) © (CH,A
®H)) o (1@ A®H)o (5agn ®@T ")
oSaen o cr.A)) @cua)o (H®iny ™"
QUA® ) oify™ ™)) (by nawratity of ¢)
=(A®T®Aiy)o((Baona)®(Rot o (A® 1)) o (A
RUI(T®T)o (A®caH @ H)o((ca,a064)
QHRH)QARARH®H)o (AR caga.HeH ® HQ H)
0 (((6a ®A)0d4) ®SugH) o (cH A @ H)))
o (t®A®H) o (Bagn ® T~ ") 08agn 0cr,4)) ®cr a)
o (H®ig™ " ®(A®@en) oig™™)
(by (a2) of Definition 4.1)
=(T®T) 0 (AQ®can ®H)o(A® AR Sy)) ® (A
RTRAp)o(ba®R)) o (AR ((A®ca,H)
o ((A®pa)o(can®A)o(A®84) ® H)o (A
®ck,a)®T® (1 o (A® un))
0(bAQRH®(cano0bA)QcAHRH®H)o (AR H Q54
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QcHHQH)o(AQHQcH A®SH)
(ARS8 ® T ) odagr ocma)®cra)o(HRiy " @ (A®en)
oszq’ )) (by naturality of C, coassociativity, and ¢~ = id)
=T ®(ART®An)o(Ba®R)) o (A®can)
o (((ua ® pna)odaga) ® H)
(A®cyA®T® (T "o (A®un))) o (A H® (canoda)@can
QHQR®H)o(AQH®34aQcyu®H)
C(ARH®cyAa®38y) o (A®Sy @t ") 0dagn ocr.a) ®cu.a)
o (H® zA'x" ® (A®eg) o IAMT )) (by (al) of Definition 4.1)

—(TQ(ART®Am)oBA®R))) o (AR can)o(((5a0s)® H)
c(A®cHAa®T® (T o (A®uN))) o (A®H ® (canoda)®can
QHQH)o(AQH ®384Qcyu®H)
c(AQH®cyA®81) o (ARS8 ®T ") 0dagy ocu.a)
@cua)oH®iny " @ (Aen)oin™M)

(by (4))

—(TQ(ART®Am) o BA®R)) o (AR can)o(((5a0a)® H)
c(A®cna®TR(t '@t Ho(A®can ® H)o (84 ® H® H)))
o(A® H® (can084)®can®HRH)
C(AQRHQR5AQcuH®H)o(AQH®cH A QH)

o (A®8p @1t ") 08agm ocr,a) ®ch.a)
c(Hi™" " @ (A®en) oin™)) by (31)

—(A®T®im)o(BaA®R) o (t®A) o (A®can) o ((540ma)
®HN® (' @1 Ho(A®can ® H)

0 (A® AR (cy,HobH)))) odagacn © (AQCH A)

o(CHA®A)o(HRAQR(ART®T )

0 ((canod) @ H®A® H)odagmocy.a)o(Hiy™

RUAR®eg)oi HN’ }) (by naturality of C, coassociativity, and ¢> = id)
=(AQT®A)0o(BA®R) o (T ®A) o (AR ca.H)

o ((Baopa)®H)® (" o(a® H))

oSagaeH 0 (A®cH.a)o(Cna®A)o(HRAR(AQT®T )

0((cana084) @H QAR H)o8agH ©CH.A))

cH®i " ®(A®em) oig™)) by (53)

—(A®T®im)oBA®R) o (T®A)o(A®can)o (s ® H))
@t Do (A®can ® H) o (((1ta ® pa)

00404) @) 0 (AR cH aA)o(cHa®A)oo(HR A
®AR®T®T ) o((canodn) ®HR®AQ H)

H
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oSamn och.a)) o (H®in ™ @ (A®en) oif™™)) (by nawnaiity of ¢)
=(ART®Ap)o(Ba®R) o ((T®A)o (A®ca,n)o (84
®H)®T HNo(A®can ® H) o ((5a
opa) ®0p)o(A®ch A)o(cHA®A)o(HRA
®(ART®T ) o((canods) ®H®A® H)
08agr o cr.A) 0 (H® it @ (A®em) oify™™)) (boy (4))
= a3 0 fara i 0 (A®A® (N 0£1)) 0 (AR H @ e rt) o (f @iy~

LA H

iy

A H

=g o a0 (A® H ® fasa, i) o (f @it H @i ) (by (139)).

) (by (2) (1) naturality of C, and unit and counit propenies)

Finally, we prove (127):
a8 o st 0 (A® H @ ppo i) 0 (f @ f @i

=(A®TOAE)o(BA®R) o ((T®A)o(AQcan)o (4@ H))
@t odagn oc a0 (H® (((r® A)
o (A®cam)o@Ba®H)®T N odaguocu,a))o(H®H® (A
®eg)oi QNT HY) (by (2), and unit and counit properties)

=(((t®1)0(AQ®@camn ®H)o((cancda) ®H R H))
®(ART®Ap) o (Ba® (RoT 1))
C(AQH®cAan®A®H) o ((A®can)o (84 ® H))
®H®Tt odagnocn ) ®H®A® H)
o (H® (Bagr och.a)o(HOH®(A®en)oin™)
(by naturality of C, coassociativity, and A =id )

= (to(A®u)®(ART®Ay)o (34 ® (Rot™h))))
c(A®RHQ®caAn ®AR®H) o ((A®ca,n)o (54 ® H))
QH®t Nodagnocna) ®HRAR H)
o (H® Bagnocia)o(HOH® (A®ep) oiyg ™)
(by (a2) of Definition 4.1)

= (to(A®uy)®(AR®T®Ay)o(Ba® (Ro((z7!
@t HNo(A®can ® H)o (84 ® H® H))))))
0 (AQ caga.Hon @ H® H) o (((54 ® A) 084)
®%ugH) o (cH A Q@ H)o(H®cH 4)
oH®H® (A®ey)oin™)
(by naturality of €, coassociativity, and A =id )

=(to(A®@u) ®(ART®An)o(Ba® (Ro(t7' o (A® 1m))))))
o (A® caganon ® H® H) o (54 ® A)

LA H )
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084) @ SngH) o (cHA® H)o (H®ch, A)
o HR®H® (A®er)oipy ) (by (1)
=(A®T®A)o@Ba®(Rot ) o(t®A) o (A®can)
0(lARH)RAR®H)o(AR®can ® H)
0 (A ® (L @ uy)odugn)) o(cra® H)o (H Qcp,a)
o(H®H® (A®en)oin™)) (by naturality of )
=(A®T®Ag)o(BA® (RoT ) o (T ®A)o(A®can)
0ARH)QRARH)o(AQca gy ® H)
0(6A®(Broun))o(cpa®H)o(HQcy a)
o HR®H®(A®ey)oif™™) by (4))
= ®(AR®T®Ain) 0 (Ba® (Roey oun))) o ((Bagn @1 ")
odagH 0o CcH A) Q@ H) o (uy ® if,MTH)

(by naturality of C, (2), and counit properties)
A< H A< H
=qy o/,LA,X]rHO(MANIH(X)A@H)O(]C@]C@ZH )

(by (2), (137), (138) and unit and counit properlies).
]

Corollary 6.9 Let A, H be Hopf quasigroups andlett : AQ H — K be a skew pairing.
Assume that H is quasitriangular with morphism R. Then, if (133) and (134) hold,
there exist an action ¢ 4 and a coaction p4 such that (A, ¢4, pa) is a Hopf quasigroup
in ZyD. Moreover, A x H and A ><; H are isomorphic Hopf quasigroups in C.

Proof By the proof of the previous theorem, we know that (A 0<i; H, f = na®H, g =
(t®um)o (A® R® H)) is a strong projection over H and (136) holds. Put

PQMIH =AQ®eH, if,MTH =(A®T®Ay)o (64 ®R).

A< H A< H A< H Av<cH A< H .
Then, g, "7 =iy * opy ' and py " oiy T = ida because

A< H A< H

pH o lH
=(A®T®¢en)o (34 ®R) (by (18))
=(A®71)o (84 ®npg) (by (d4) of Definition 6.5)

= idA (by (a3) of Definition 4.1, and counit properties) .

Therefore, we can choose A = (A ><; H) gy,

jAvac H (Av<; H® g) 00asa, H
A H Asa; H . Ay H® H
Avar H®npy
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is an equalizer diagram and

MAsa  H © (A< H® f) et
Av<a, HQ H A, H —H— + 4
A< H® epy

is a coequalizer diagram. Moreover, by the general theory developed in [2] [see (128)],
we know that (A, ¢4, 04) is a Hopf quasigroup in ZyD, where @4 is the action defined
in Proposition 5.2, and

pAa=(T®can)o(ARcaH Quy)o(Ba®@(RoT)@Ap)o (64 ®R).

By (119) and (121), the new magma—comonoid structure of A is

upa =na, map=ps0(A®¢pa)o (ifIMIH ®A), ex=¢ca, Ap=30a,

and the antipode s 4 [see (129)] admits the following expression s4 = (T @ @4) 0 (AQ
R®Ap)o0b4.

Finally, the isomorphism of Hopf quasigroups w = WAeq, i © (ifIN’H ® f) :
AxH— As; Hisw=(A®ug)o (" @ H). o

Example 6.10 Let Hy be the four-dimensional Taft Hopf algebra and consider the Hopf
quasigroup A ><; Hy constructed in Example 4.12. By [31], we know that H4 has a
one-parameter family of quasitriangular structures R, defined by

1
Ra=5(1®1+1®x+x®1—x®x)+%(y@y—y®w+w®y+w®w).

Therefore, we are in the conditions of the previous corollary and, as a consequence,
A admits a structure of Hopf quasigroup in the category Zin. Moreover, A <,
Hy = A % Hy.

Note that in this case the action on A trivializes because A is cocommutative. As a
consequence, this example does not lead to new solutions of the Yang—Baxter equation
because the associated braiding with A in Zj YD is the usual twist in the category of

vector spaces.
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