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Abstract
In this paper, we introduce the theory of multiplication alteration by two-cocycles for
non-associative structures like non-associative bimonoids with left (right) division.
Also, we explore the connections between Yetter–Drinfeld modules for Hopf quasi-
groups, projections of Hopf quasigroups, skew pairings and quasitriangular structures,
obtaining the non-associative version of the main results proved by Doi and Takeuchi
in the Hopf algebra setting.
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1 Introduction and Preliminaries

Let R be a commutative ring with a unit and denote the tensor product over R by ⊗.
In [34], we can find one of the first interesting examples of multiplication alteration by
a two-cocycle for R-algebras. In this case, Sweedler proved that, ifU is an associative
unitary R-algebra with a commutative subalgebra A and σ = ∑

ai ⊗ bi ⊗ ci ∈
A ⊗ A ⊗ A is an Amistur two-cocycle, then U admits a new associative and unitary
product defined by u • v = ∑

ai ubi vci for all u, v ∈ U . Moreover, if U is central
separable, U with the new product is still central separable and is isomorphic to the
Rosenberg–Zelinsky central separable algebra obtained from the two-cocycle σ−1

(see [33]). Later, Doi discovered in [11] a new construction to modify the algebra
structure of a bialgebra A over a field F using an invertible two-cocycle σ in A. In this
case, if σ : A ⊗ A → F is the two-cocycle, the new product on A is defined by

a ∗ b =
∑

σ(a1 ⊗ b1)a2b2σ
−1(a3 ⊗ b3)

for a, b ∈ A. With the new algebra structure and the original coalgebra structure, A
is a new bialgebra denoted by Aσ , and if A is a Hopf algebra with antipode λA, so is
Aσ with antipode given by

λAσ (a) =
∑

σ(a1 ⊗ λA(a2))λA(a3)σ
−1(λA(a4) ⊗ a5)

for a ∈ A. One of the main remarkable examples of this construction is the Drinfeld
double of a Hopf algebra H . If H∗ is the dual of H and A = H∗cop ⊗ H , the Drinfeld
double D(H) can be obtained as Aσ where σ is defined by σ((x ⊗ g) ⊗ (y ⊗ h)) =
x(1H )y(g)εH (h) for x, y ∈ H∗ and g, h ∈ H . As was pointed by Doi and Takeuchi
in [12], “this will be the shortest description of the multiplication of D(H).”

A particular case of alterations of products by two-cocycles is provided by invertible
skew pairings on bialgebras. If A and H are bialgebras and τ : A ⊗ H → F is an
invertible skew pairing, Doi and Takeuchi defined in [12] a new bialgebra A ��τ

H in the following way: The morphism ω : A ⊗ H ⊗ A ⊗ H → F defined by
ω((a ⊗ g) ⊗ (b ⊗ h)) = εA(a)εH (h)τ (b ⊗ g), for a, b ∈ A and g, h ∈ H , is a
two-cocycle in A ⊗ H and A ��τ H = (A ⊗ H)ω. The construction of A ��τ H also
generalizes the Drinfeld double because H∗cop and H are skew-paired. Moreover,
A ��τ H is an example of Majid’s double cross product A �� H (see [23,25]) where
the left H -module structure of A, denoted by ϕA, and the right A-module structure of
H , denoted by φH , are defined by

ϕA(h ⊗ a) =
∑

τ(a1 ⊗ h1)a2τ
−1(a3 ⊗ h2),

φH (h ⊗ a) =
∑

τ(a1 ⊗ h1)h2τ
−1(a2 ⊗ h3),

for a ∈ A and h ∈ H .
On the other hand, a relevant class of Hopf algebras are quasitriangular Hopf alge-

bras. This kind of Hopf algebraic objects was introduced byDrinfeld [13] and provides
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solutions of the quantum Yang–Baxter equation: If H is quasitriangular with mor-
phism R : F → H ⊗ H and N is a left H -module with action ϕN , the endomorphism
T : N ⊗ N → N ⊗ N defined by T (n ⊗ n′) = ∑

ϕM (R1 ⊗ n) ⊗ ϕM (R2 ⊗ n′) is
a solution of the quantum Yang–Baxter equation. If, moreover, for a Hopf algebra A
there exists an invertible skew pairing τ : A ⊗ H → F, by Proposition 2.5 of [12],
we have that g : A ��τ H → H , defined by g(a ⊗ h) = ∑

τ(a ⊗ R1)R2h for a ∈ A,
h ∈ H , is a Hopf algebra projection. Thus, skew pairings and quasitriangular Hopf
algebras give relevant examples of Hopf algebra projections.

The theory of Hopf algebra projections was established by Radford in [30]. In this
work, we can find the conditions than permit to obtain a Hopf algebra structure on
the tensor product of two Hopf algebras A and H , where the product is the smash
product algebra and the coproduct is the smash coproduct coalgebra. Moreover, the
results proved by Radford also allow to characterize these kinds of objects in terms
of bialgebra projections. By using the bosonization process, Radford’s results were
later generalized to the braided context by Majid [24], who established a one-to-one
correspondence between Hopf algebras in the category of left–left Yetter–Drinfeld
modules and Hopf algebras with a projection. Therefore, if we come back to the
Hopf algebra projection induced by two Hopf algebras A and H , such that H is
quasitriangular, and a skew pairing τ : A ⊗ H → F, we obtain by Majid’s bijection
a Hopf algebra in H

HYD. As was proved in [1], this Hopf algebra (or braided Hopf
algebra) is Awith a modified product and antipode. If A�H denotes the bosonization
of A, A � H and A ��τ H are isomorphic as Hopf algebras.

A relevant generalization of Hopf algebras is the non-associative Hopf algebras
introduced by Pérez-Izquierdo in [29]. A particular and interesting example of non-
associative Hopf algebras is the Hopf quasigroups considered by Klim and Majid in
[21]. These kinds of objects allow to understand the structure of the algebraic 7-sphere
and also the structure of the enveloping algebra of a Malcev algebra. Moreover, non-
associative Hopf algebras are related to other non-associative algebraic structures,
and in the last years, an increasing research in this area has been developed (see [2–
4,27,28,35]).

The main motivation of this paper is to introduce the theory of alteration multi-
plication, in the sense of Doi, for non-associative algebraic structures in monoidal
categories. An outline of the paper is as follows. In Sect. 2, we recall some definitions
and we prove some useful results for the next sections. In the third section, we prove
that for a non-associative bimonoid A with a left (right) division, if there exists an
invertible two-cocycle σ , it is possible to define a new non-associative bimonoid Aσ

with a left (right) division. Then, if A is a Hopf quasigroup in the sense of Klim and
Majid, Aσ is a Hopf quasigroup, and if A is a Hopf algebra, we recover Doi’s con-
struction. In Sect. 4, we introduce the notion of skew pairing and prove that, as in the
associative Hopf algebra setting, if there exists a skew pairing, for two non-associative
bimonoids A and H with a left (right) division, we can define a new non-associative
bialgebra A ��τ H with a left (right) division such that A ��τ H = (A ⊗ H)ω for
some two-cocycle ω induced by τ . This implies a similar result for Hopf quasigroups,
and as in the Hopf world, we prove in Sect. 5 that A ��τ H can be described in terms
of double cross products. Finally, using the theory of Hopf quasigroup projections
developed in [2], we show that for a Hopf quasigroup A and a quasitriangular Hopf
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quasigroup H , if there exists an invertible skew pairing τ , it is possible to obtain
a strong Hopf quasigroup projection, and as a consequence of the results proved in
[2], we obtain that A admits a structure of Hopf quasigroup in the category H

HYD
introduced in [2].

In this paper, we will work in a monoidal setting. Following [22], recall that a
monoidal category is a category C equipped with a tensor product functor⊗ : C×C →
C, a unit object K of C and a family of natural isomorphisms

aM,N ,P : (M ⊗ N ) ⊗ P → M ⊗ (N ⊗ P),

rM : M ⊗ K → M, lM : K ⊗ M → M,

in C (called associativity, right unit and left unit constraints, respectively) satisfying
the Pentagon Axiom and the Triangle Axiom, i.e.,

aM,N ,P⊗Q ◦ aM⊗N ,P,Q = (idM ⊗ aN ,P,Q) ◦ aM,N⊗P,Q ◦ (aM,N ,P ⊗ idQ),

(idM ⊗ lN ) ◦ aM,K ,N = rM ⊗ idN ,

where idX denotes the identity morphism for each object X in C. A monoidal category
is called strict if the associativity, right unit and left unit constraints are identities.
Taking into account that every non-strict monoidal category is monoidal equivalent to
a strict one (see [19]), we can assume without loss of generality that the category is
strict and, as a consequence, our results remain valid for every non-strict symmetric
monoidal category, which would include, for example, the categories of vector spaces
over a field F, or the one of left modules over a commutative ring R.

In what follows, for simplicity of notation, given objects M , N , P in C and a
morphism f : M → N , we write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

A strict monoidal category C is braided (see [16,17]) if it has a braiding, i.e., a
natural family of isomorphisms tM,N : M ⊗ N → N ⊗ M such that the equalities

tM,N⊗P = (N ⊗ tM,P ) ◦ (tM,N ⊗ P), tM⊗N ,P = (tM,P ⊗ N ) ◦ (M ⊗ tN ,P ),

hold. In this case, it is obvious for all object M of C that tM,K = tK ,M = idM .
Moreover, we will say that the category is symmetric if tN ,M ◦ tM,N = idM⊗N for all
M , N in C.

From now on, C denotes a strict symmetric monoidal category with tensor product
⊗, unit object K and symmetry c. Also, inspired by the work of Bespalov et al. (see,
e.g., [5]), we will assume that every idempotent morphism q : X → X in the category
C admits a factorization q = i ◦ p where i : Z → X and p : X → Z are called the
injection and the projection associated with q and Z is the image object in C of q. The
family of categories where every idempotent morphism splits includes the categories
with epi–monic factorization, the categories with equalizers and the categories with
coequalizers. For example, the category of complete bornological spaces is symmetric,
closed and not abelian, but it does have coequalizers (see [26]). On the other hand,
the category of complex Hilbert spaces, denoted byHilb, is an example of not abelian
(and not closed) symmetric monoidal category with coequalizers (see [18]).

123



Multiplication Alteration by Two-Cocycles: The... 3561

Amagma in C is a pair A = (A, μA)where A is an object in C andμA : A⊗A → A
(product) is a morphism in C. A unital magma in C is a triple A = (A, ηA, μA)

where (A, μA) is a magma in C and ηA : K → A (unit) is a morphism in C such
that μA ◦ (A ⊗ ηA) = idA = μA ◦ (ηA ⊗ A). A monoid in C is a unital magma
A = (A, ηA, μA) in C satisfying μA ◦ (A ⊗ μA) = μA ◦ (μA ⊗ A), i.e., the product
μA is associative. Given two unital magmas (monoids) A and B, f : A → B is a
morphism of unital magmas (monoids) if f ◦ ηA = ηB and μB ◦ ( f ⊗ f ) = f ◦ μA.

Also, if A, B are unital magmas (monoids) in C, the object A⊗ B is a unital magma
(monoid) in C where ηA⊗B = ηA ⊗ ηB and μA⊗B = (μA ⊗ μB) ◦ (A ⊗ cB,A ⊗ B).
If A = (A, ηA, μA) is a unital magma, so is Aop = (A, ηA, μA ◦ cA,A).

A comagma in C is a pair D = (D, δD) where D is an object in C and δD :
D → D ⊗ D (coproduct) is a morphism in C. A counital comagma in C is a triple
D = (D, εD, δD) where (D, δD) is a comagma in C and εD : D → K (counit) is a
morphism in C such that (εD ⊗ D) ◦ δD = idD = (D ⊗ εD) ◦ δD . A comonoid in
C is a counital comagma in C satisfying (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD , i.e., the
coproduct δD is coassociative. If D and E are counital comagmas (comonoids) in C,
f : D → E is a morphism of counital comagmas (comonoids) if εE ◦ f = εD , and
( f ⊗ f ) ◦ δD = δE ◦ f .

Moreover, if D, E are counital comagmas (comonoids) in C, the object D ⊗ E is
a counital comagma (comonoid) in C where εD⊗E = εD ⊗ εE and δD⊗E = (D ⊗
cD,E ⊗ E) ◦ (δD ⊗ δE ). If D = (D, εD, δD) is a counital comagma so is Dcop =
(D, εD, cD,D ◦ δD).

Let f : B → A and g : B → A be morphisms between a comagma B and a
magma A. We define the convolution product by f ∗ g = μA ◦ ( f ⊗ g) ◦ δB . If A
is unital and B counital, we will say that f is convolution invertible if there exists
f −1 : B → A such that f ∗ f −1 = f −1 ∗ f = εB ⊗ ηA. Note that if B = K we have
that f ∗g = μA ◦ ( f ⊗g) and f is convolution invertible if there exists f −1 : K → A
such that f ∗ f −1 = f −1 ∗ f = ηA.

2 Non-associative Bimonoids

In this section, we introduce the definition of non-associative bimonoidwith left (right)
division. We give some properties and establish the relation with left (right) Hopf
quasigroups.

Definition 2.1 A non-associative bimonoid in the category C is a unital magma
(H , ηH , μH ) and a comonoid (H , εH , δH ) such that εH and δH are morphisms of
unital magmas. (Equivalently, ηH and μH are morphisms of counital comagmas.)
Then, the following identities hold:

εH ◦ ηH = idK , (1)

εH ◦ μH = εH ⊗ εH , (2)

δH ◦ ηH = ηH ⊗ ηH , (3)

δH ◦ μH = (μH ⊗ μH ) ◦ δH⊗H . (4)
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Wesay that H has a left division ifmoreover there exists amorphism lH : H⊗H →
H in C (called the left division of H ) such that

lH ◦ h = εH ⊗ H = μH ◦ (H ⊗ lH ) ◦ (δH ⊗ H), (5)

where h = (H ⊗ μH ) ◦ (δH ⊗ H).
A morphism f : H → B between non-associative bimonoids H and B is a

morphism of unital magmas and comonoids.
We say that a non-associative bimonoid H in the category C is cocommutative if

δH = cH ,H ◦ δH .

Remark 2.2 There is a similar notion of non-associative bimonoid with right division,
replacing lH by a morphism rH : H ⊗ H → H that, instead of (5), satisfies:

rH ◦ d = H ⊗ εH = μH ◦ (rH ⊗ H) ◦ (H ⊗ δH ), (6)

where d = (μH ⊗ H) ◦ (H ⊗ δH ).

Note that, if C is the category of vector spaces over a field F, the notion of non-
associative bimonoid with left and a right division is the one introduced by Pérez-
Izquierdo in [29] with the name of unital H -bialgebra.

Moreover, the morphisms h and d are the same that the ones called by Iyer et al.
(see [15]) left composite and right composite, respectively.

Now, we give some properties about non-associative bimonoids with left (right)
division.

Proposition 2.3 Let H be a non-associative bimonoid. There exists a left division lH
if and only if the morphism h is an isomorphism. As a consequence, a left division lH
is uniquely determined.

Similarly, there exists a right division rH if and only if the morphism d is an
isomorphism. As a consequence, a right division rH is uniquely determined.

Proof Let lH : H ⊗ H → H be a left division. Define h′ = (H ⊗ lH ) ◦ (δH ⊗ H).
Then, by (5) and the coassociativity of δH , we obtain that h′ is the inverse of h.

On the other hand, if h is an isomorphism, using the coassociativity of δH , we
obtain that

(δH ⊗ H) ◦ h−1 ◦ h = δH ⊗ H = (H ⊗ (h−1 ◦ h)) ◦ (δH ⊗ H)

= (H ⊗ h−1) ◦ (δH ⊗ H) ◦ h

and the equality
(δH ⊗ H) ◦ h−1 = (H ⊗ h−1) ◦ (δH ⊗ H) (7)

holds.
Then, the morphism lH = (εH ⊗ H) ◦ h−1 is a left division for H . Indeed, trivially

lH ◦ h = εH ⊗ H and, by (7), we have that

μH ◦ (H ⊗ lH ) ◦ (δH ⊗ H) = μH ◦ (H ⊗ εH ⊗ H) ◦ (δH ⊗ H) ◦ h−1
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= (εH ⊗ H) ◦ h ◦ h−1 = εH ⊗ H .

The proof for the right side is similar, and we leave the details to the reader. Note
that in this case d−1 = (rH ⊗ H) ◦ (H ⊗ δH ) and rH = (H ⊗ εH ) ◦ d−1. 
�
Remark 2.4 In the conditions of the previous proposition, if h is an isomorphism, we
obtain

h−1 ◦ δH = H ⊗ ηH , (8)

μH ◦ h−1 = εH ⊗ H . (9)

In a similar way, if d is an isomorphism,

d−1 ◦ δH = ηH ⊗ H , (10)

μH ◦ d−1 = H ⊗ εH . (11)

Also, composing with εH ⊗ H in (8),

lH ◦ δH = εH ⊗ ηH . (12)

Composing with H ⊗ ηH in (5),

idH ∗ λH = εH ⊗ ηH (13)

for λH = lH ◦ (H ⊗ ηH ). Similarly, composing with ηH ⊗ H in (6) we have

�H ∗ idH = εH ⊗ ηH (14)

for �H = rH ◦ (ηH ⊗ H).
On the other hand, by (1), (3) and (5)

lH ◦ (ηH ⊗ H) = idH . (15)

Also, for right divisions we have

rH ◦ (H ⊗ ηH ) = idH . (16)

Finally, by (2) and (5)
εH ◦ lH = εH ⊗ εH . (17)

Therefore,
εH ◦ λH = εH , (18)

and
λH ◦ ηH = ηH . (19)
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Of course, for a right division we have

εH ◦ rH = εH ⊗ εH , (20)

εH ◦ �H = εH , (21)

�H ◦ ηH = ηH . (22)

The following result was proved in ([29], Proposition 6) for unital H -bialgebras.
In this paper, we give an alternative proof based in Proposition 2.3.

Proposition 2.5 Let H be a non-associative bimonoid with left division lH . It holds
that

δH ◦ lH = (lH ⊗ lH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ δH ) ⊗ δH ). (23)

As a consequence, if λH = lH ◦ (H ⊗ ηH ), we have that λH is anticomultiplicative,
i.e.,

δH ◦ λH = (λH ⊗ λH ) ◦ cH ,H ◦ δH . (24)

If rH is a right division for H, the equality

δH ◦ rH = (rH ⊗ rH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ (cH ,H ◦ δH )) (25)

holds. Then, if �H = rH ◦ (ηH ⊗ H), we have that

δH ◦ �H = (�H ⊗ �H ) ◦ cH ,H ◦ δH . (26)

Proof Indeed, if we compose in the first term of (23) with the isomorphism h =
(H ⊗ μH ) ◦ (δH ⊗ H), we obtain

δH ◦ lH ◦ h = εH ⊗ δH

and, on the other hand, composing in the second term,

(lH ⊗ lH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ δH ) ⊗ δH ) ◦ h

= (lH ⊗ lH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ δH )

⊗((μH ⊗ μH ) ◦ δH⊗H )) ◦ (δH ⊗ H) (by (4))

= ((lH ◦ h) ⊗ lH ) ◦ (H ⊗ cH ,H ⊗ μH ) ◦ (cH ,H ⊗ cH ,H ⊗ H)

◦ (((H ⊗ δH ) ◦ δH ) ⊗ δH ) (by naturality of c and coassociativity)

= (H ⊗ lH ) ◦ (cH ,H ⊗ μH ) ◦ δH⊗H (by naturality of c and properties of the counit)

= (H ⊗ (lH ◦ h)) ◦ (cH ,H ⊗ H) ◦ (H ⊗ δH ) (by naturality of c)

= εH ⊗ δH (by naturality of c).

Therefore, (23) holds. Finally, equality (24) follows by (23) and (3). Similarly, we
can prove identities (25) and (26). 
�
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Example 2.6 An interesting example of a non-associative bimonoid arises fromSabinin
algebras. Following [29], a vector space V over a field of characteristic zero is called
a Sabinin algebra if it is endowed with multilinear operations

〈x1, x2, . . . , xm; y, z〉, m ≥ 0,

�(x1, x2, . . . , xm; y1, y2, . . . , yn), m ≥ 1, n ≥ 2,

satisfying the equalities

〈x1, x2, . . . , xm; y, z〉 = −〈x1, x2, . . . , xm; z, y〉,
〈x1, x2, . . . , xr , a, b, xr+1, . . . , xm; y, z〉 − 〈x1, x2, . . . , xr , b, a, xr+1, . . . , xm; y, z〉

+
r∑

k=0

∑

ω

〈xω1 , . . . , xωk ; 〈xωk+1 , . . . xωr ; a, b〉, . . . , xm; y, z〉 = 0,

σx,y,z〈x1, x2, . . . , xr , x; y, z〉 +
r∑

k=0

∑

ω

〈xω1 , . . . , xωk ; 〈xωk+1 , . . . xωr ; y, z〉, x〉 = 0

and

�(x1, . . . , xm; y1, . . . , yn) = �(xτ(1), . . . , xτ(m); yυ(1), . . . , yυ(n)),

where ω runs the set of all bijections of the type ω : {1, 2, . . . , r} → {1, 2, . . . , r},
i �→ ωi , ω1 < ω2 < · · · < ωk , ωk+1 < · · · < ωr , k = 0, 1, . . . , r , r ≥ 0, σx,y,z
denotes the cyclic sum by x, y, z; τ ∈ Sm , υ ∈ Sn and Sl is the symmetric group.

The universal enveloping algebra of a Sabinin algebra was constructed in [29],
where it was also proved that it can be provided with a cocommutative non-associative
bimonoid structure with left and right division. Moreover, as was pointed out in [29]
and [27], when we take a finite set of independent operations and � = 0, the notion
of Sabinin algebra includes as examples Lie, Malcev and Bol algebras.

Now, we introduce the notion of left Hopf quasigroup.

Definition 2.7 A left Hopf quasigroup H in C is a non-associative bimonoid such that
there exists a morphism λH : H → H in C (called the left antipode of H ) satisfying:

μH ◦(λH ⊗μH )◦(δH ⊗H) = εH ⊗H = μH ◦(H⊗μH )◦(H⊗λH ⊗H)◦(δH ⊗H).

(27)
Note that composing with H ⊗ ηH in (27) we obtain

λH ∗ idH = εH ⊗ ηH . (28)

Obviously, there is a similar definition for the right side, i.e., H is a right Hopf
quasigroup if there is a morphism �H : H → H in C (called the right antipode of H )
such that

μH ◦(μH ⊗H)◦(H⊗�H ⊗H)◦(H⊗δH ) = H⊗εH = μH ◦(μH ⊗�H )◦(H⊗δH ).

(29)
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Then, composing with ηH ⊗ H in (29) we obtain

idH ∗ �H = εH ⊗ ηH . (30)

The above definition is a generalization of the notion of Hopf quasigroup (also
called non-associative Hopf algebra with the inverse property, or non-associative IP
Hopf algebra) introduced in [21]. (In this case, C is the category of vector spaces over
a field F.) We recall this definition in a monoidal setting (see [2,3]). Note that a Hopf
quasigroup is associative if an only if it is a Hopf algebra.

Definition 2.8 AHopf quasigroup H in C is a non-associative bimonoid such that there
exists a morphism λH : H → H in C (called the antipode of H ) satisfying (27) and
(29). If H is a Hopf quasigroup in C, the antipode λH is unique and antimultiplicative,
i.e.,

λH ◦ μH = μH ◦ (λH ⊗ λH ) ◦ cH ,H , (31)

([21], Proposition 4.2).AmorphismbetweenHopf quasigroups H and B is amorphism
f : H → B of unital magmas and comonoids. Then (see Lemma 1.4 of [2]), the
equality

λB ◦ f = f ◦ λH (32)

holds.

Remark 2.9 Note that if H is both left and right Hopf quasigroup, the left and right
antipodes are the same. In effect, denote by λH and �H the left and the right antipodes,
respectively. Then, taking into account (28), the coassociativity of δH and condition
(29),

�H = (λH ∗ idH ) ∗ �H = μH ◦ (μH ⊗ �H ) ◦ (λH ⊗ δH ) ◦ δH = λH .

As a consequence, H is a Hopf quasigroup if and only if H is a left and right Hopf
quasigroup.

Example 2.10 A loop (L, ·, �, �) is a quadruple where L is a set, · (multiplication),
� (right division) and� (left division ) are binary operations, satisfying the identities

v�(v · u) = u, (33)

u = (u · v)�v, (34)

v · (v�u) = u, (35)

u = (u�v) · v, (36)

and such that it contains an identity element eL (i.e., eL · x = x = x · eL hold for all
x in L). In what follows, multiplications on L will be expressed by juxtaposition. If
N is a non-empty subset of L , we say that N is a subloop of L if it is closed under the
three binary operations. Then, under these conditions, eL = eN .

A loop (iso)morphism is a (bijective) map h : L1 → L2 such that h(uv) =
h(u)h(v), h(u�v) = h(u)�h(v) and h(u�v) = h(u)�h(v) for all u, v ∈ L1. It is
easy to see that the equality h(eL1) = eL2 holds for all loop morphism h.
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Let R be a commutative ring and L a loop. Then, the loop algebra

RL =
⊕

u∈L
Ru

is a cocommutative non-associative bimonoid with product and left and right division
defined by linear extensions of those defined in L and

δRL(u) = u ⊗ u, εRL(u) = 1R

on the basis elements (see [29]).

Now, we give the relation between non-associative bimonoids with left division
and left Hopf quasigroups.

Proposition 2.11 The following assertions are equivalent:

(i) H is a non-associative bimonoid with left division lH such that

lH = μH ◦ (λH ⊗ H), (37)

where λH = lH ◦ (H ⊗ ηH ).
(ii) H is a non-associative bimonoid with left division lH such that

μH ◦ (λH ⊗ μH ) ◦ (δH ⊗ H) = εH ⊗ H , (38)

where λH = lH ◦ (H ⊗ ηH ).
(iii) H is a left Hopf quasigroup.

Proof By (5), (i) implies (ii). Moreover, composing in (38) with (H ⊗ lH )◦ (δH ⊗ H)

and using coassociativity, we get that (ii) implies (i). Now, assume (i). Then, by (37)
and (5),

μH ◦ (λH ⊗ μH ) ◦ (δH ⊗ H) = lH ◦ (H ⊗ μH ) ◦ (δH ⊗ H) = εH ⊗ H ,

and in a similar way μH ◦ (H ⊗μH )◦ (H ⊗λH ⊗ H)◦ (δH ⊗ H) = εH ⊗ H . Finally,
if H is a left Hopf quasigroup, the morphism lH = μH ◦ (λH ⊗ H) is a left division
and satisfies (37). 
�

The relation between non-associative bimonoids with right division and right Hopf
quasigroups is the following (the proof is similar to the one used for left divisions):

Proposition 2.12 The following assertions are equivalent:

(i) H is a non-associative bimonoid with right division rH such that

rH = μH ◦ (H ⊗ �H ), (39)

where �H = rH ◦ (ηH ⊗ H).
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(ii) H is a non-associative bimonoid with right division rH such that

μH ◦ (μH ⊗ �H ) ◦ (H ⊗ δH ) = H ⊗ εH , (40)

where �H = rH ◦ (ηH ⊗ H).
(iii) H is a right Hopf quasigroup.

Example 2.13 Let L be a loop. If for every element u ∈ L , there exists an element
u−1 ∈ L (the inverse of u) such that the equalities

u−1(uv) = v = (vu)u−1, (41)

hold for every v ∈ L , we will say that L is a loop with the inverse property (for brevity
an IP loop).

As a consequence, it is easy to show that, if L is an IP loop, for all u ∈ L the
element u−1 is unique and

u−1u = eL = uu−1 (42)

hold. Moreover,
(uv)−1 = v−1u−1, (43)

holds for any pair of elements u, v ∈ L .
Now, let R be a commutative ring and let L be and IP loop. Then, by Proposition

4.7 of [21], the non-associative bimonoid

RL =
⊕

u∈L
Ru

defined in Example 2.10 is a cocommutative Hopf quasigroup where the antipode is
defined by λRL(u) = u−1.

Note that Moufang loops provided examples of IP loops, and loop algebras of
Moufang loops correspond to Moufang–Hopf algebras. This fact suggests that there is
a correspondence between groupswith triality andHopf algebraswith triality (see [4]).

Example 2.14 Let R be a commutative ring with 1
2 and 1

3 in R. A Malcev algebra
(M, [, ]) over R is a free R-module M equipped with a bilinear and anticommutative
operation [,] such that:

[J (a, b, c), a] = J (a, b, [a, c]),

where J (a, b, c) = [[a, b], c] − [[a, c], b] − [a, [b, c]] denotes the Jacobian in a, b,
c (see [28]). Then, every Lie algebra is a Malcev algebra with J = 0. The universal
enveloping algebra U (M) can be provided with a Hopf quasigroup structure as a
particularization of the construction alluded in Example 2.6.

Remark 2.15 Any Hopf quasigroup is a particular instance of a non-associative
bimonoid with left and right division. In this case, it suffices to take

lH := μH ◦ (λH ⊗ H),
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rH := μH ◦ (H ⊗ λH ).

In any case, the notion of a non-associative bimonoid is wider because the loop
algebra RL associated with a loop L and the universal algebra U (V ) of a Sabinin
algebra V falls under its definition (see [27,29]).

3 Product Alterations by Two-Cocycles for Non-associative
Bimonoids

In this section, we prove that two-cocycles provide a deformation way of altering the
product of a non-associative bimonoid to produce other non-associative bimonoids.
These kinds of cocycle deformations were introduced in the Hopf algebra setting by
Doi in [11].

Definition 3.1 Let H be a non-associative bimonoid, and let σ : H ⊗ H → K be a
convolution invertible morphism. We say that σ is a two-cocycle if the equality

∂1(σ ) ∗ ∂3(σ ) = ∂4(σ ) ∗ ∂2(σ ) (44)

holds, where ∂1(σ ) = εH ⊗ σ , ∂2(σ ) = σ ◦ (μH ⊗ H), ∂3(σ ) = σ ◦ (H ⊗ μH ) and
∂4(σ ) = σ ⊗ εH .

Equivalently, σ is a two-cocycle if

σ ◦ (H ⊗ ((σ ⊗ μH ) ◦ δH⊗H )) = σ ◦ (((σ ⊗ μH ) ◦ δH⊗H ) ⊗ H). (45)

Note that, if we compose in (45) with ηH ⊗ ηH ⊗ H , we obtain

((σ ◦ (ηH ⊗H))⊗ (σ ◦ (ηH ⊗H)))◦δH = (σ ◦ (ηH ⊗ηH ))⊗ (σ ◦ (ηH ⊗H)), (46)

and, if we compose with H ⊗ ηH ⊗ ηH , we get that

((σ ◦ (H ⊗ηH ))⊗ (σ ◦ (H ⊗ηH )))◦δH = (σ ◦ (H ⊗ηH ))⊗ (σ ◦ (ηH ⊗ηH )). (47)

A two-cocycle σ is called normal if further

σ ◦ (ηH ⊗ H) = εH = σ ◦ (H ⊗ εH ), (48)

and it is easy to see that if σ is normal so is σ−1 because

σ−1 ◦ (ηH ⊗ H) = εH ∗ (σ−1 ◦ (ηH ⊗ H)) = (σ ◦ (ηH ⊗ H)) ∗ (σ−1 ◦ (ηH ⊗ H))

= (σ ∗ σ−1) ◦ (ηH ⊗ H) = εH ,

and similarly σ−1 ◦ (H ⊗ ηH ) = εH . Analogously, if σ−1 is normal so is σ .
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Remark 3.2 It is not difficult to show that, if σ is a two-cocycle, τ = (σ−1 ◦ (ηH ⊗
ηH )) ⊗ σ is a normal two-cocycle (see [36]). The inverse of τ is τ−1 = (σ ◦ (ηH ⊗
ηH ))⊗σ−1 and the normal condition for τ follows from the identities (τ ◦(ηH ⊗H))∗
(τ ◦ (ηH ⊗H)) = τ ◦ (ηH ⊗H) and (τ ◦ (H ⊗ηH ))∗ (τ ◦ (H ⊗ηH )) = τ ◦ (H ⊗ηH ).
(This identities are consequence of (46) and (47), respectively.) As a consequence, in
the following we assume all two-cocycles are normal.

On the other hand, the morphisms ∂ i (σ ), i ∈ {1, 2, 3, 4}, are convolution invertible
with inverses ∂ i (σ−1), i ∈ {1, 2, 3, 4}, respectively. Then, the equalities

∂3(σ ) ∗ ∂2(σ−1) = ∂1(σ−1) ∗ ∂4(σ ), (49)

∂4(σ−1) ∗ ∂1(σ ) = ∂2(σ ) ∗ ∂3(σ−1), (50)

∂3(σ−1) ∗ ∂1(σ−1) = ∂2(σ−1) ∗ ∂4(σ−1), (51)

hold. Moreover, (49), (50) and (51) are equivalent to

(σ ⊗ σ−1) ◦ (H ⊗ μH ⊗ H) ◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ δH ⊗ δH )

= (σ ⊗ σ−1) ◦ (H ⊗ (cH ,H ◦ δH ) ⊗ H), (52)

((σ ◦ (μH ⊗ H)) ⊗ (σ−1 ◦ (H ⊗ μH ))) ◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ δH ⊗ δH ) = (σ−1 ⊗ σ) ◦ (H ⊗ δH ⊗ H) (53)

and

σ−1 ◦ (H ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )) = σ−1 ◦ (((μH ⊗ σ−1) ◦ δH⊗H ) ⊗ H), (54)

respectively.

Proposition 3.3 Let H be a non-associative bimonoid. Let σ be a two-cocycle. Define
the product μHσ as

μHσ = (σ ⊗ μH ⊗ σ−1) ◦ (H ⊗ H ⊗ δH⊗H ) ◦ δH⊗H .

Then, Hσ = (H , ηHσ = ηH , μHσ , εHσ = εH , δHσ = δH ) is a non-associative
bimonoid.

Proof Equalities (1) and (3) hold trivially. Using that H is a non-associative bimonoid
and (48), we get that μHσ ◦ (ηH ⊗ H) = idH = μHσ ◦ (H ⊗ ηH ). Moreover, by (2),

εH ◦ μHσ = σ ∗ σ−1 = εH ⊗ εH .

Finally, by the naturality of c, the coassociativity of δH and the properties of the
counit,

(μHσ ⊗ μHσ ) ◦ δH⊗H

= (((σ ⊗ μH ) ◦ δH⊗H ) ⊗ (σ−1 ∗ σ) ⊗ ((μH ⊗ σ−1) ◦ δH⊗H ))

◦ (H ⊗ ((cH ,H ⊗ cH ,H ) ◦ δH⊗H ) ⊗ H) ◦ (δH ⊗ δH )
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= δH ◦ μHσ .


�
Proposition 3.4 Let H be a non-associative bimonoid with left division lH , put λH =
lH ◦ (H ⊗ ηH ), and let σ be a two-cocycle. Define the morphism f : H → K as
f = σ ◦ (H ⊗ λH ) ◦ δH . If equality (28) holds, then f is convolution invertible with
inverse f −1 = σ−1 ◦ (λH ⊗ H) ◦ δH . Moreover, the following identities hold:

f ◦ ηH = f −1 ◦ ηH = idK . (55)

If rH is a right division for H, put �H = rH ◦ (ηH ⊗ H). Let σ be a two-cocycle.
Define the morphism g : H → K as g = σ−1 ◦ (�H ⊗ H)◦ δH . If equality (30) holds,
then g is convolution invertible with inverse g−1 = σ ◦ (H ⊗ �H ) ◦ δH . Moreover,

g ◦ ηH = g−1 ◦ ηH = idK . (56)

Proof Indeed,

f ∗ f −1

= (σ ⊗ σ−1) ◦ (H ⊗ (cH ,H ◦ (λH ⊗ λH ) ◦ cH ,H ◦ δH ) ⊗ H)

◦ (δH ⊗ H) ◦ δH (by (3) and naturality of c)

= (σ ⊗ σ−1) ◦ (H ⊗ (cH ,H ◦ δH ◦ λH ) ⊗ H) ◦ (δH ⊗ H) ◦ δH (by (24))

= (∂1(σ−1) ∗ ∂4(σ )) ◦ (((H ⊗ λH ) ◦ δH ) ⊗ H)

◦ δH (by (23), naturality of c, and counit properties)

= (∂3(σ ) ∗ ∂2(σ−1)) ◦ (((H ⊗ λH ) ◦ δH ) ⊗ H) ◦ δH (by (49))

= (σ ⊗ σ−1) ◦ (H ⊗ μH⊗H ⊗ H) ◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H)

◦ (((δH ⊗ ((λH ⊗ λH ) ◦ cH ,H ◦ δH )) ◦ δH ) ⊗ δH ) ◦ δH

(by (3), (23) and naturality of c)

= (σ ⊗ σ−1) ◦ (H ⊗ ((μH ⊗ (idH ∗ λH )) ◦ (λH ⊗ cH ,H )

◦ (δH ⊗ H) ◦ δH ) ⊗ H) ◦ (δH ⊗ H) ◦ δH (by naturality of c, and coassociativity)

= (((σ ◦ (H ⊗ (λH ∗ idH )) ◦ δH )) ⊗ (σ−1 ◦ (ηH ⊗ H)))

◦ δH (by (13), and counit properties))

= σ ◦ (H ⊗ ηH ) ( by (28), the normal condition for σ−1
and counit properties)

= εH (by (48)).

On the other hand,

f −1 ∗ f

= (∂4(σ−1) ∗ ∂1(σ )) ◦ (λH ⊗ H ⊗ λH ) ◦ (δH ⊗ H)

◦ δH (by coassociativity, naturality of c, and counit properties)

= (∂2(σ ) ∗ ∂3(σ−1)) ◦ (λH ⊗ H ⊗ λH ) ◦ (δH ⊗ H) ◦ δH (by (50))
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= (σ ⊗ σ−1) ◦ (μH ⊗ cH ,H ⊗ μH ) ◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H)

◦ (((((λH ⊗ λH ) ◦ cH ,H ◦ δH ) ⊗ δH ) ◦ δH )

⊗(((λH ⊗ λH ) ◦ cH ,H ◦ δH ))) ◦ δH (by (3) and (24))

= σ−1 ◦ (H ⊗ σ ⊗ (idH ∗ λH )) ◦ (((λH ⊗ (λH ∗ idH )) ◦ δH )

⊗((cH ,H ◦ (H ⊗ λH ) ◦ δH ))) ◦ δH (by coassociativity and naturality of c)

= εH (by (28), (13), the normal condition for σ and σ−1
, naturality of c, counit properties, and (18)).

Finally, (55) follows from (3), (15), the normal condition for σ and σ−1, and (1). The
proof for the right division is similar, and we leave the details to the reader. 
�
Remark 3.5 Note that equalities (28) and (30) hold for every left Hopf quasigroup.
Also, they hold for loop algebras associated with right or left Bol loops. The so-called
right Bol identity was introduced by G. Bol in [6] and was also mentioned by Bruck
in [7]. Let (L, ·, �, �) be a loop. L is called a right Bol loop if the right Bol identity

((x · y) · z) · y = x · ((y · z) · y) (57)

holds for all x, y, z ∈ L . If the equality (left Bol identity)

y · (z · (y · x)) = (y · (z · y)) · x (58)

holds for all x, y, z ∈ L , we say that L is a left Bol loop. As was pointed in [32],
Bol loops are more general than Moufang loops because L is Moufang if and only if
it satisfies (57) and (58). Also, Bol loops with the automorphic inverse property are
Bruck loops.

An interesting example of right Bol loops comes from matrix theory. The set of
n × n positive definite symmetric matrices is a right Bol loop with the operation

P · Q =
√
QP2Q.

Moreover, in the literature we can find other examples of right Bol loops obtained
by modifying the operation in a direct product of groups.

The cocommutative non-associative bimonoid RL defined inExample 2.10 satisfies
equality (28) if and only if the loop L satisfies

(a�eL) · a = eL . (59)

If L is a right Bol loop, equality (59) always holds. Indeed, first note that

((a · (a�eL)) · a) · (a�eL) = (eL · a) · (a�eL) = a · (a�eL) = eL .

Then,

a · (((a�eL) · a) · (a�eL)) = eL = a · (a�eL).
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As a consequence,

((a�eL) · a) · (a�eL) = a�eL = eL · (a�eL).

Therefore, (59) holds. In a similar way, it is easy to see (59) for a left Bol loop.

Proposition 3.6 Let H be a non-associative bimonoid with left division lH , put λH =
lH ◦(H⊗ηH ) and assume that (28) holds. Let σ be a two-cocycle and let f , f −1 be the
morphisms introduced in Proposition (3.4). Define the morphism lHσ : H ⊗ H → H
as

lHσ = μHσ ◦ ( f ⊗ λH ⊗ f −1 ⊗ H) ◦ (H ⊗ δH ⊗ H) ◦ (δH ⊗ H).

Then, the equality

δH ◦ lHσ = (lHσ ⊗ lHσ ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ δH ) ⊗ δH ) (60)

holds. Moreover,
lHσ ◦ (ηH ⊗ H) = idH , (61)

and
lHσ ◦ (H ⊗ ηH ) = ( f ⊗ λH ⊗ f −1) ◦ (δH ⊗ H) ◦ δH . (62)

Therefore, we have

lHσ = μHσ ◦ ((lHσ ◦ (H ⊗ ηH )) ⊗ H), (63)

( f −1 ⊗ lHσ ) ◦ (δH ⊗ H) = μHσ ◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H). (64)

Finally, if H is cocommutative,

lHσ ◦ (H ⊗ ηH ) = λH . (65)

Proof Indeed, equality (60) holds because:

(lHσ ⊗ lHσ ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ δH ) ⊗ δH )

= μHσ ⊗Hσ ◦ ((( f ⊗ λH ⊗ λH ⊗ f −1) ◦ δH⊗H ◦ (H ⊗ ( f ∗ f −1) ⊗ H)

◦ (δH ⊗ H) ◦ δH ) ⊗ δH ) (by coassociativity and naturality of c)

= μHσ ⊗Hσ ◦ ((( f ⊗ ((λH ⊗ λH ) ◦ cH ,H ◦ δH ) ⊗ f −1)

◦ (H ⊗ δH ) ◦ δH ) ⊗ δH ) (by the invertibility of f , coassociativity and counit properties)

= (μHσ ⊗ μHσ ) ◦ δH⊗H ◦ ( f ⊗ λH ⊗ f −1 ⊗ H)

◦ (H ⊗ δH ⊗ H) ◦ (δH ⊗ H) (by (24))

= δH ◦ lHσ (by (4) for Hσ ).

Identity (61) follows trivially because ηH is the unit of Hσ and by (3), (55) and (15).
Also, using that ηH is the unit of Hσ , we obtain (62). Equality (63) follows directly
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from (62), and (64) is a consequence of the coassociativity of δH , the invertibility of
f and the counit properties.
Finally, if H is cocommutative,

lHσ ◦ (H ⊗ ηH )

= ( f ⊗ λH ⊗ f −1) ◦ (δH ⊗ H) ◦ δH (by (62))

= ( f ⊗ f −1 ⊗ λH ) ◦ (H ⊗ (cH ,H ◦ δH )) ◦ δH (by coassociativity and naturality of c)

= (( f ∗ f −1) ⊗ λH ) ◦ δH (by coassociativity and cocommutativity of H)

= λH (by the invertibility of f and counit properties).


�
The right division version of Proposition 3.6 is the following:

Proposition 3.7 Let H be a non-associative bimonoid with right division rH . Put
�H = rH ◦ (ηH ⊗ H) and assume that (30) holds. Let σ be a two-cocycle and
let g, g−1 be the morphisms introduced in Proposition (3.4). Define the morphism
rHσ : H ⊗ H → H as

rHσ = μHσ ◦ (H ⊗ g−1 ⊗ �H ⊗ g) ◦ (H ⊗ δH ⊗ H) ◦ (H ⊗ δH ).

Then, the equality

δH ◦ rHσ = (rHσ ⊗ rHσ ) ◦ (H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ (cH ,H ◦ δH )) (66)

holds. Moreover,
rHσ ◦ (H ⊗ ηH ) = idH , (67)

and
rHσ ◦ (ηH ⊗ H) = (g−1 ⊗ �H ⊗ g) ◦ (δH ⊗ H) ◦ δH . (68)

Therefore, we have

rHσ = μHσ ◦ (H ⊗ (rHσ ◦ (ηH ⊗ H))), (69)

(rHσ ⊗ g−1) ◦ (H ⊗ δH ) = μHσ ◦ (H ⊗ ((g−1 ⊗ �H ) ◦ δH )). (70)

Finally, if H is cocommutative,

rHσ ◦ (ηH ⊗ H) = �H . (71)

The following lemmas give two equalities which will be useful to get the main
result of this section.

Lemma 3.8 Let H be a non-associative bimonoid with left division lH , put λH =
lH ◦ (H ⊗ ηH ) and assume that (28) holds. Let σ be a two-cocycle and let f , f −1 be
the morphisms introduced in Proposition (3.4). Then, the equalities

σ ◦ ((lHσ ◦ (H ⊗ ηH )) ⊗ H) ◦ (H ⊗ μHσ ) ◦ (δH ⊗ H)
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= ( f ⊗ σ−1) ◦ (δH ⊗ H), (72)

σ−1 ◦ (H ⊗ (μHσ ◦ ((lHσ ◦ (H ⊗ ηH )) ⊗ H))) ◦ (δH ⊗ H)

= σ ◦ (λH ⊗ f −1 ⊗ H) ◦ (δH ⊗ H), (73)

hold.

Proof We begin by showing (72):

σ ◦ ((lHσ ◦ (H ⊗ ηH )) ⊗ H) ◦ (H ⊗ μHσ ) ◦ (δH ⊗ H)

= σ ◦ ((((( f ⊗ λH ) ◦ δH ) ⊗ f −1) ◦ δH ) ⊗ μHσ ) ◦ (δH ⊗ H) (by (62))

= σ ◦ (H ⊗ (∂4(σ−1) ∗ ∂1(σ )) ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )) ◦ ((( f ⊗ λH ) ◦ δH )

⊗((λH ⊗ H) ◦ δH ) ⊗ H ⊗ H ⊗ H)

◦ (H ⊗ δH⊗H ) ◦ (δH ⊗ H) (by coassociativity)

= σ ◦ (H ⊗ (∂2(σ ) ∗ ∂3(σ−1)) ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )) ◦ ((( f ⊗ λH ) ◦ δH )

⊗((λH ⊗ H) ◦ δH ) ⊗ H ⊗ H ⊗ H)

◦ (H ⊗ δH⊗H ) ◦ (δH ⊗ H) (by (50))

= σ ◦ (H ⊗ σ ⊗ σ−1 ⊗ H) ◦ (H ⊗ ((μH ⊗ cH ,H ) ◦ (H ⊗ cH ,H ⊗ H)

◦ ((δH ◦ λH ) ⊗ H ⊗ H)) ⊗ (((δH

◦μH ) ⊗ σ−1) ◦ δH⊗H )) ◦ ((( f ⊗ λH ) ◦ δH ) ⊗ H ⊗ δH⊗H )

◦(H ⊗ δH ⊗ H) ◦ (δH ⊗ H) (by coassociativity and naturality of c)

= σ ◦ (H ⊗ σ ⊗ σ−1 ⊗ H) ◦ (H ⊗ ((μH ⊗ cH ,H ) ◦ (H ⊗ cH ,H ⊗ H)

◦ ((cH ,H ◦ (λH ⊗ λH ) ◦ δH ) ⊗ H ⊗ H)) ⊗ (((δH

◦μH ) ⊗ σ−1) ◦ δH⊗H )) ◦ ((( f ⊗ λH ) ◦ δH ) ⊗ H ⊗ δH⊗H )

◦(H ⊗ δH ⊗ H) ◦ (δH ⊗ H) (by (24))

= σ ◦ (H ⊗ σ−1 ⊗ H) ◦ ((( f ⊗ λH ) ◦ δH ) ⊗ ((λH ⊗ σ)

◦ (H ⊗ (λH ∗ idH ) ⊗ H) ◦ (δH ⊗ H)) ⊗ (((δH

◦μH ) ⊗ σ−1) ◦ δH⊗H )) ◦ (H ⊗ δH⊗H ) ◦ (δH ⊗ H) (by naturality of c)

= σ ◦ (H ⊗ σ−1 ⊗ H) ◦ ((( f ⊗ λH ) ◦ δH ) ⊗ λH

⊗(((δH ◦ μH ) ⊗ σ−1) ◦ δH⊗H ))

◦(H ⊗ δH ⊗ H) ◦ (δH ⊗ H)

(by (28), counit properties, naturality of c, and (48))

= (σ ⊗ σ−1) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ (λH ⊗ λH ) ◦ δH )

⊗(((δH ◦ μH ) ⊗ σ−1) ◦ δH⊗H )) ◦ ((( f ⊗ H)

◦δH ) ⊗ H ⊗ H) ◦ (δH ⊗ H) (by naturality of c)

= (σ ∗ σ−1) ◦ ((( f ⊗ λH ) ◦ δH ) ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )) ◦ (δH ⊗ H) (by (24))

= ( f ⊗ σ−1) ◦ (δH ⊗ H) (by invertibility of σ , (18), counit properties, (2), and naturality of c).
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To get (73), we firstly show the equality

( f ⊗σ−1)◦(H⊗λH⊗H)◦(δH⊗H) = σ◦(H⊗μH )◦(H⊗λH⊗H)◦(δH⊗H). (74)

Indeed,

( f ⊗ σ−1) ◦ (H ⊗ λH ⊗ H) ◦ (δH ⊗ H)

= (σ ⊗ σ−1) ◦ (H ⊗ ((λH ⊗ λH ) ◦ δH ) ⊗ H)

◦ (δH ⊗ H) (by definition of f and coassociativity)

= (σ ⊗ σ−1) ◦ (H ⊗ (cH ,H ◦ cH ,H ◦ (λH ⊗ λH ) ◦ δH ) ⊗ H)

◦ (δH ⊗ H) (by symmetry of c)

= (σ ⊗ σ−1) ◦ (H ⊗ (cH ,H ◦ δH ◦ λH ) ⊗ H) ◦ (δH ⊗ H) (by (24))

= (∂3(σ ) ∗ ∂2(σ−1)) ◦ (((H ⊗ λH ) ◦ δH ) ⊗ H) (by (49) and (52))

= (σ ⊗ σ−1) ◦ (H ⊗ μH⊗H ⊗ H) ◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (cH ,H ◦ (λH ⊗ λH ) ◦ δH ) ⊗ δH ) ◦ (δH ⊗ H) (by (24))

= (σ ⊗ σ−1) ◦ (H ⊗ cH ,H ⊗ H) ◦ (H ⊗ μH ⊗ μH ⊗ H) ◦ (δH

⊗((λH ⊗ λH ) ◦ δH ) ⊗ δH ) ◦ (δH ⊗ H) (by naturality of c)

= (σ ⊗ σ−1) ◦ (H ⊗ cH ,H ⊗ H) ◦ (H ⊗ (idH ∗ λH ) ⊗ μH ⊗ H)

◦ (δH ⊗ λH ⊗ δH ) ◦ (δH ⊗ H) (by coassociativity)

= σ ◦ (H ⊗ μH ) ◦ (H ⊗ λH ⊗ H) ◦ (δH ⊗ H)

(by (13), counit properties, naturality of c and normality for σ−1).

As a consequence,

σ−1 ◦ (H ⊗ (μHσ ◦ ((lHσ ◦ (H ⊗ ηH )) ⊗ H))) ◦ (δH ⊗ H)

= σ−1 ◦ (H ⊗ μHσ ) ◦ (H ⊗ (( f ⊗ λH ⊗ f −1) ◦ (δH ⊗ H) ◦ δH ) ⊗ H)

◦(δH ⊗ H) (by (62))

= σ−1 ◦ (H ⊗ ((μH ⊗ σ−1) ◦ (H ⊗ cH ,H ⊗ H)

◦ ((cH ,H ◦ (λH ⊗ λH ) ◦ δH ) ⊗ δH )))

◦ (H ⊗ (( f ⊗ ((σ ⊗ H) ◦ (H ⊗ cH ,H )

◦(((λH ⊗ H) ◦ cH ,H ◦ δH ) ⊗ f −1 ⊗ H)

◦ (δH ⊗ H))) ◦ (δH ⊗ H)) ⊗ H)

◦ (δH ⊗ δH ) (by naturality of c and (24))

= (σ−1 ⊗ (( f ⊗ σ−1) ◦ (H ⊗ λH ⊗ H) ◦ (δH ⊗ H)))

◦ (H ⊗ (cH ,H ◦ (H ⊗ (μH ◦ (H ⊗ σ ⊗ H)

◦ (((λH ⊗ λH ) ◦ δH ) ⊗ f −1 ⊗ δH )

◦(δH ⊗ H))) ◦ (δH ⊗ H)) ⊗ H)))

◦ (δH ⊗ δH ) (by naturality of c)

= (σ−1 ⊗ (σ ◦ (H ⊗ μH ) ◦ (H ⊗ λH ⊗ H) ◦ (δH ⊗ H)))
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◦ (H ⊗ (cH ,H ◦ (H ⊗ (μH ◦ (H ⊗ σ ⊗ H)

◦ (((λH ⊗ λH ) ◦ δH ) ⊗ f −1 ⊗ δH )

◦ (δH ⊗ H))) ◦ (δH ⊗ H)) ⊗ H)))

◦ (δH ⊗ δH ) (by (74))

= ((σ−1 ◦ (H ⊗ μH )) ⊗ (σ ◦ (H ⊗ μH ))) ◦ (H ⊗ H ⊗ cH ,H ⊗ H ⊗ H)

◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (cH ,H ◦ (λH ⊗ λH ) ◦ δH ) ⊗ (σ ◦ (((λH ⊗ f −1) ◦ δH )

⊗H)) ⊗ δH ) ◦ (δH ⊗ H ⊗ δH ) ◦ (δH ⊗ H)

(by naturality of c and coassociativity)

= (∂3(σ
−1) ∗ ∂3(σ )) ◦ (H ⊗ λH ⊗ H) ◦ (δH ⊗ (σ ◦ (λH ⊗ f −1 ⊗ H)

◦ (δH ⊗ H)) ⊗ H) ◦ (δH ⊗ δH ) (by (24))

= σ ◦ (λH ⊗ f −1 ⊗ H) ◦ (δH ⊗ H)

(by invertibility of ∂3(σ ) (see Remark 3.2), counit properties and (18)),

and the proof is complete. 
�
Lemma 3.9 Let H be a non-associative bimonoid with right division rH , put �H =
rH ◦ (ηH ⊗ H) and assume that (30) holds. Let σ be a two-cocycle and let g, g−1 be
the morphisms introduced in Proposition (3.4). Then, the equalities

σ−1 ◦ (H ⊗ (rHσ ◦ (ηH ⊗ H))) ◦ (μHσ ⊗ H) ◦ (H ⊗ δH )

= (σ ⊗ g) ◦ (H ⊗ δH ), (75)

σ ◦ ((μHσ ◦ (H ⊗ (rHσ ◦ (ηH ⊗ H)))) ⊗ H) ◦ (H ⊗ δH )

= σ−1 ◦ (H ⊗ g−1 ⊗ �H ) ◦ (H ⊗ δH ), (76)

hold.

Proof The proof is similar to the one performed in the previous lemma but using

(σ⊗g)◦(H⊗�H⊗H)◦(H⊗δH ) = σ−1◦(μH⊗H)◦(H⊗�H⊗H)◦(H⊗δH ) (77)

instead of (74). 
�
The following theorem is the main result of this section. We will show that, under

suitable conditions, Hσ is a non-associative bimonoid with (right) left division (rHσ )
lHσ .

Theorem 3.10 The following assertions hold:

(i) Let H be a left Hopf quasigroup with left antipode λH . Let σ be a two-cocycle.
Then, the non-associative bimonoid Hσ defined in Proposition 3.3 is a left Hopf
quasigroup with left antipode λHσ = lHσ ◦(H⊗ηH ), where lHσ is the morphism
introduced in Proposition 3.6.
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(ii) Let H be a right Hopf quasigroup with right antipode �H . Let σ be a two-
cocycle. Then, the non-associative bimonoid Hσ defined in Proposition 3.3 is a
right Hopf quasigroup with right antipode �Hσ = rHσ ◦ (ηH ⊗ H), where rHσ

is the morphism introduced in Proposition 3.7.
(iii) Let H be a Hopf quasigroup with antipode λH . Let σ be a two-cocycle. Then, the

non-associative bimonoid Hσ defined in Proposition 3.3 is a Hopf quasigroup
with antipode λHσ .

Proof We prove (i). The proof for (ii) is similar using Lemma 3.9 instead of Lemma
3.8. The assertion (iii) follows from Remark 2.9. Note that if H is a Hopf quasigroup
λH is a left and right antipode, then

λHσ = lHσ ◦ (H ⊗ ηH ) = rHσ ◦ (ηH ⊗ H) = �Hσ ,

because f = g−1 and f −1 = g.
First, note that by Proposition 3.3, Hσ is a non-associative bimonoid. Therefore,

to complete the proof we only need to show (5) for lHσ and μHσ , because (63) holds
(see Proposition 3.6), and then, by Proposition 2.11, we obtain that Hσ is a left Hopf
quasigroup where λHσ = lHσ ◦ (H ⊗ηH ) is the left antipode. Indeed, on the one hand
we have

lHσ ◦ (H ⊗ μHσ ) ◦ (δH ⊗ H)

= (σ ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )) ◦ (H ⊗ cH ,H ⊗ H) ◦ ( f

⊗(((δH ◦ λH ) ⊗ f −1) ◦ δH ) ⊗ (δH ◦ μHσ ))

◦ (δH ⊗ H ⊗ H) ◦ (δH ⊗ H) (by definition of μHσ )

= (σ ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )) ◦ (H ⊗ cH ,H ⊗ H) ◦ ( f

⊗(((cH ,H ◦ (λH ⊗ λH ) ◦ δH ) ⊗ f −1) ◦ δH )

⊗((μHσ ⊗ μHσ ) ◦ δH⊗H )) ◦ (H ⊗ δH ⊗ H) ◦ (δH ⊗ H) (by (24) and (4) for Hσ )

= ((σ ◦ (λH ⊗ f −1 ⊗ μHσ ) ◦ (((H ⊗ δH ) ◦ δH ) ⊗ H))

⊗((μH ⊗ σ−1) ◦ δH⊗H )) ◦ (H ⊗ cH ,H ⊗ μHσ )

◦ (cH ,H ⊗ cH ,H ⊗ H) ◦ ((( f ⊗ λH )

◦δH ) ⊗ δH ⊗ δH ) ◦ (δH ⊗ H) (by naturality of c and coassociativity)

= (((σ ◦ (λH ⊗ f −1 ⊗ μHσ ) ◦ (((H ⊗ δH ) ◦ δH ) ⊗ H))

◦ (((( f −1 ∗ f ) ⊗ H) ◦ δH ) ⊗ H)) ⊗ ((μH ⊗ σ−1) ◦ δH⊗H ))

◦ (H ⊗ cH ,H ⊗ μHσ ) ◦ (cH ,H ⊗ cH ,H ⊗ H) ◦ ((( f ⊗ λH ) ◦ δH )

⊗δH ⊗ δH ) ◦ (δH ⊗ H) (by invertibility of f and counit properties)

= (((σ ◦ ((lHσ ◦ (H ⊗ ηH )) ⊗ μHσ ) ◦ (δH ⊗ H)))

⊗((μH ⊗ σ−1) ◦ δH⊗H )) ◦ (H ⊗ cH ,H ⊗ μHσ )

◦ (cH ,H ⊗ cH ,H ⊗ H) ◦ ((( f ⊗ ((λH ⊗ f −1) ◦ δH )) ◦ δH )

⊗δH ⊗ δH ) ◦ (δH ⊗ H) (by naturality of c, coassociativity of δH and (62))

= ((( f ⊗ σ−1) ◦ (δH ⊗ H)) ⊗ ((μH ⊗ σ−1) ◦ δH⊗H ))
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◦ (H ⊗ cH ,H ⊗ μHσ ) ◦ (cH ,H ⊗ cH ,H ⊗ H)

◦ ((( f ⊗ ((λH ⊗ f −1) ◦ δH )) ◦ δH ) ⊗ δH ⊗ δH ) ◦ (δH ⊗ H) (by (72))

= (σ−1 ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )) ◦ (H ⊗ cH ,H ⊗ μHσ )

◦(cH ,H ⊗ cH ,H ⊗ H) ◦ ((( f ⊗ ((λH ⊗ ( f −1 ∗ f )) ◦ δH ))

◦δH ) ⊗ δH ⊗ δH ) ◦ (δH ⊗ H) (by naturality of c and coassociativity)

= (σ−1 ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )) ◦ (H ⊗ cH ,H ⊗ μHσ ) ◦ (cH ,H ⊗ cH ,H ⊗ H)

◦ ((( f ⊗ λH ) ◦ δH ) ⊗ δH ⊗ δH )

◦ (δH ⊗ H) (by invertibility of f and counit properties)

= (μH ⊗ σ−1) ◦ (H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ (δH ◦ μH ) ⊗ σ−1)

◦ ((( f ⊗ λH ) ◦ δH ) ⊗ (σ−1 ∗ σ) ⊗ δH⊗H )

◦ (H ⊗ δH⊗H ) ◦ (δH ⊗ H) (by naturality of c, coassociativity of δH and definition of μHσ )

= (μH ⊗ σ−1) ◦ (H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ ((μH ⊗ μH ) ◦ δH⊗H ) ⊗ σ−1)

◦ ((( f ⊗ λH ) ◦ δH ) ⊗ (σ−1 ∗ σ) ⊗ δH⊗H )

◦ (H ⊗ δH⊗H ) ◦ (δH ⊗ H) (by (4) and counit properties)

= (μH ⊗ (σ−1 ◦ (H ⊗ ((μH ⊗ σ−1) ◦ δH⊗H )))) ◦ (H ⊗ cH ,H ⊗ H ⊗ H)

◦((( f ⊗ (δH ◦ λH )) ◦ δH ) ⊗ μH ⊗ H ⊗ H)

◦ (H ⊗ δH⊗H ) ◦ (δH ⊗ H) (by naturality of c and coassociativity)

= (μH ⊗ (∂3(σ−1) ∗ ∂1(σ−1))) ◦ (H ⊗ cH ,H ⊗ H ⊗ H)

◦ ((( f ⊗ (δH ◦ λH )) ◦ δH ) ⊗ μH ⊗ H ⊗ H) ◦ (H ⊗ δH⊗H )

◦ (δH ⊗ H) (by (54))

= (μH ⊗ (∂2(σ−1) ∗ ∂4(σ−1))) ◦ (H ⊗ cH ,H ⊗ H ⊗ H)

◦ ((( f ⊗ (δH ◦ λH )) ◦ δH ) ⊗ μH ⊗ H ⊗ H) ◦ (H ⊗ δH⊗H )

◦ (δH ⊗ H) (by (51))

= (μH ⊗ (σ−1 ◦ (((μH ⊗ σ−1) ◦ δH⊗H ) ⊗ H))) ◦ (H ⊗ cH ,H ⊗ H ⊗ H)

◦ ((( f ⊗ (δH ◦ λH )) ◦ δH ) ⊗ μH ⊗ H ⊗ H)

◦ (H ⊗ δH⊗H ) ◦ (δH ⊗ H) (by (54))

= (μH ⊗ (σ−1 ◦ (((μH ⊗ σ−1) ◦ δH⊗H ) ⊗ H))) ◦ (H ⊗ cH ,H ⊗ H ⊗ H)

◦ ((( f ⊗ (cH ,H ◦ (λH ⊗ λH )

◦δH )) ◦ δH ) ⊗ μH ⊗ H ⊗ H) ◦ (H ⊗ δH⊗H ) ◦ (δH ⊗ H) (by (24))

= (H ⊗ (σ−1 ◦ ((μH ⊗ σ−1) ◦ δH⊗H ) ⊗ H)) ◦ (cH ,H ⊗ H ⊗ H)

◦ ( f ⊗ λH ⊗ (μH ◦ (λH ⊗ μH ) ◦ (δH ⊗ H))

⊗H ⊗ H) ◦ (H ⊗ H ⊗ δH⊗H ) ◦ (H ⊗ δH ⊗ H) ◦ (δH ⊗ H)

(by naturality of c and coassociativity)

= (H ⊗ σ−1) ◦ (cH ,H ⊗ H) ◦ ( f ⊗ ((μH ⊗ σ−1) ◦ (H ⊗ cH ,H ⊗ H)

◦ ((δH ◦ λH ) ⊗ δH ) ◦ δH ) ⊗ δH ) ◦ (δH ⊗ H)

(by (5), counit properties and naturality of c)

= (H ⊗ σ−1) ◦ (σ−1 ⊗ cH ,H ⊗ H) ◦ ( f ⊗ ((H ⊗ cH ,H ) ◦ (H ⊗ μH ⊗ H)
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◦ (((λH ⊗ λH ) ◦ δH ) ⊗ δH ) ◦ δH ) ⊗ δH )

◦ (δH ⊗ H) (by naturality of c and (24))

= (H ⊗ σ−1) ◦ (σ−1 ⊗ cH ,H ⊗ H) ◦ ( f ⊗ ((λH ⊗ (cH ,H ◦ ((λH ∗ idH )

⊗H) ◦ δH )) ◦ δH ) ⊗ δH ) ◦ (δH ⊗ H)

(by coassociativity of δH )

= ( f ∗ f −1) ⊗ H (by (28), naturality of c, normality for σ−1
and counit properties)

= εH ⊗ H (by invertibility of f ).

Finally, on the other hand,

μHσ ◦ (H ⊗ lHσ ) ◦ (δH ⊗ H)

= (μH ⊗ σ−1) ◦ (H ⊗ cH ,H ⊗ H) ◦ (σ ⊗ δH ⊗ ((lHσ ⊗ lHσ )

◦(H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ δH ) ⊗ δH )))

◦ (H ⊗ cH ,H ⊗ H ⊗ H) ◦ (δH ⊗ ((lHσ ⊗ H) ◦ (H ⊗ cH ,H )

◦ ((cH ,H ◦ δH ) ⊗ H)) ⊗ δH ) ◦ (δH ⊗ H) (by (60))

= (μH ⊗ (σ−1 ◦ (H ⊗ lHσ ) ◦ (δH ⊗ H))) ◦ (σ ⊗ ((H ⊗ cH ,H )

◦ (δH ⊗ lHσ ) ◦ (δH ⊗ H)) ⊗ H) ◦ (H ⊗ cH ,H ⊗ δH )

◦ (δH ⊗ lHσ ⊗ H) ◦ (δH ⊗ δH ) (by naturality of c and coassociativity)

= (μH ⊗ (σ−1 ◦ (H ⊗ (μHσ ◦ ((lHσ ◦ (H ⊗ ηH )) ⊗ H)))

◦ (δH ⊗ H))) ◦ (σ ⊗ ((H ⊗ cH ,H ) ◦ (δH ⊗ lHσ ) ◦
(δH ⊗ H)) ⊗ H) ◦ (H ⊗ cH ,H ⊗ δH ) ◦ (δH ⊗ lHσ ⊗ H) ◦ (δH ⊗ δH ) (by (63))

= (μH ⊗ (σ ◦ (λH ⊗ f −1 ⊗ H) ◦ (δH ⊗ H))) ◦ (σ

⊗((H ⊗ cH ,H ) ◦ (δH ⊗ lHσ ) ◦ (δH ⊗ H)) ⊗ H)

◦ (H ⊗ cH ,H ⊗ δH ) ◦ (δH ⊗ lHσ ⊗ H) ◦ (δH ⊗ δH ) (by (73))

= (μH ⊗ σ) ◦ (H ⊗ cH ,H ⊗ H) ◦ (σ ⊗ ((((H ⊗ λH ) ◦ δH )

⊗(( f −1 ⊗ lHσ ) ◦ (δH ⊗ H)) ⊗ H) ◦ (δH ⊗ δH )))

◦ (H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ lHσ ⊗ H) ◦ (δH ⊗ δH ) (by naturality of c and coassociativity)

= (μH ⊗ σ) ◦ (H ⊗ cH ,H ⊗ H) ◦ (σ ⊗ ((((H ⊗ λH ) ◦ δH ) ⊗ (μHσ

◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H)) ⊗ H) ◦ (δH ⊗ δH )))

◦ (H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ lHσ ⊗ H) ◦ (δH ⊗ δH ) (by (64))

= μH ◦ (H ⊗ μHσ ⊗ σ) ◦ (H ⊗ H ⊗ cH ,H ⊗ H) ◦ (H ⊗ (cH ,H

◦ (λH ⊗ λH ) ◦ δH ) ⊗ H ⊗ H) ◦ (σ ⊗ δH ⊗ δH )

◦ (H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ (( f −1 ⊗ lHσ ) ◦ (δH ⊗ H)) ⊗ H)

◦(δH ⊗ δH ) (by naturality of c and coassociativity)

= μH ◦ (H ⊗ μHσ ⊗ σ) ◦ (H ⊗ H ⊗ cH ,H ⊗ H) ◦ (H ⊗ (δH ◦ λH )

⊗H ⊗ H) ◦ (σ ⊗ δH ⊗ δH ) ◦ (H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (μHσ ◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H)) ⊗ H)
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◦(δH ⊗ δH ) (by (64) and (24))

= μH ◦ (H ⊗ ((((σ ⊗ μH ) ◦ δH⊗H ) ⊗ (σ−1 ∗ σ)) ◦ δH⊗H ◦ (λH ⊗ H)))

◦ (σ ⊗ δH ⊗ H) ◦ (H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (μHσ ◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H)) ⊗ H)

◦(δH ⊗ δH ) (by naturality of c and coassociativity)

= μH ◦ (H ⊗ ((σ ⊗ μH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((δH ◦ λH ) ⊗ δH )))

◦ (σ ⊗ δH ⊗ H) ◦ (H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (μHσ ◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H)) ⊗ H) ◦ (δH ⊗ δH )

(by invertibility of σ , naturality of c and counit properties)

= μH ◦ (H ⊗ ((σ ⊗ μH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ (λH ⊗ λH ) ◦ δH )

⊗δH ))) ◦ (σ ⊗ δH ⊗ H) ◦ (H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (μHσ ◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H)) ⊗ H) ◦ (δH ⊗ δH ) (by (24))

= μH ◦ (H ⊗ (μH ◦ (H ⊗ σ ⊗ H) ◦ (((λH ⊗ λH ) ◦ δH )

⊗δH ))) ◦ (σ ⊗ δH ⊗ H) ◦ (H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (μHσ ◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H)) ⊗ H) ◦ (δH ⊗ δH ) (by naturality of c)

= μH ◦ (H ⊗ (μH ◦ (λH ⊗ H)) ◦ (δH ⊗ (σ ◦ (λH ⊗ H))

⊗H) ◦ (σ ⊗ δH ⊗ δH ) ◦ (H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (μHσ ◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H)) ⊗ H) ◦ (δH ⊗ δH ) (by coassociativity)

= ((σ ◦ (λH ⊗ H)) ⊗ H) ◦ (σ ⊗ H ⊗ δH ) ◦ (H ⊗ cH ,H ⊗ H)

◦ (δH ⊗ (μHσ ◦ (((λH ⊗ f −1) ◦ δH ) ⊗ H)) ⊗ H)

◦ (δH ⊗ δH ) (by (5) and counit properties)

= (σ ⊗ H) ◦ (H ⊗ ((μHσ ⊗ σ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((cH ,H ◦ (λH ⊗ λH )

◦δH ) ⊗ f −1 ⊗ δH )) ⊗ H) ◦ (δH ⊗ H ⊗ δH )

◦ (δH ⊗ H) (by naturality of c and coassociativity)

= (σ ⊗ H) ◦ (H ⊗ ((μHσ ⊗ σ) ◦ (H ⊗ cH ,H ⊗ H) ◦ ((δH ◦ λH )

⊗ f −1 ⊗ δH )) ⊗ H) ◦ (δH ⊗ H ⊗ δH ) ◦ (δH ⊗ H) (by (24))

= ((σ ◦ (H ⊗ ((σ ⊗ μH ) ◦ δH⊗H ))) ⊗ (σ−1 ∗ σ) ⊗ H) ◦ (H ⊗ H

⊗cH ,H ⊗ H ⊗ H) ◦ (H ⊗ (δH ◦ λH ) ⊗ f −1

⊗δH ⊗ H) ◦ (δH ⊗ H ⊗ δH ) ◦ (δH ⊗ H) (by naturality of c and coassociativity)

= ((∂1(σ ) ∗ ∂3(σ )) ⊗ H) ◦ (H ⊗ λH ⊗ f −1 ⊗ δH )

◦ (δH ⊗ H ⊗ H) ◦ (δH ⊗ H) (by (45))

= ((∂4(σ ) ∗ ∂2(σ )) ⊗ H) ◦ (H ⊗ λH ⊗ f −1 ⊗ δH )

◦ (δH ⊗ H ⊗ H) ◦ (δH ⊗ H) (by (44))

= (σ ⊗ H) ◦ (((σ ⊗ μH ) ◦ δH⊗H ) ⊗ H ⊗ H) ◦ (H ⊗ λH

⊗ f −1 ⊗ δH ) ◦ (δH ⊗ H ⊗ H) ◦ (δH ⊗ H) (by (45))

= (σ ⊗ H) ◦ (((σ ⊗ μH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ (δH ⊗ (cH ,H ◦ (λH

⊗λH ) ◦ δH ))) ⊗ f −1 ⊗ δH ) ◦ (δH ⊗ H ⊗ H)
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◦ (δH ⊗ H) (by (24))

= (σ ⊗ (σ ◦ ((idH ∗ λH ) ⊗ H))) ◦ (H ⊗ cH ,H ⊗ δH ) ◦ (δH

⊗λH ⊗ f −1 ⊗ H) ◦ (δH ⊗ H ⊗ H) ◦ (δH ⊗ H)

(by naturality of c and coassociativity)

= ( f ∗ f −1) ⊗ H (by (13), naturality of c, normality for σ and counit properties)

= εH ⊗ H (by invertibility of f ),

and the proof is complete. 
�

4 Two-Cocycles and Skew Pairings

In this section, we will see that, in a similar way that for the Hopf algebra case,
a class of two-cocycles is provided by invertible skew pairings for non-associative
bimonoids. The following definition is inspired by the corresponding one for Hopf
algebras introduced byDoi and Takeuchi in [12] (see also [1] for themonoidal setting).

Definition 4.1 Let A and H be non-associative bimonoids in C. A pairing between A
and H over K is a morphism τ : A ⊗ H → K such that the equalities

(a1) τ ◦ (μA ⊗ H) = (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ (A ⊗ A ⊗ δH ),

(a2) τ ◦ (A ⊗ μH ) = (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ (δA ⊗ H ⊗ H),

(a3) τ ◦ (A ⊗ ηH ) = εA,

(a4) τ ◦ (ηA ⊗ H) = εH ,

hold.
A skew pairing between A and H is a pairing between Acop and H , i.e., a morphism

τ : A ⊗ H → K satisfying (a1), (a3), (a4) and

(a2
′
) τ ◦ (A ⊗ μH ) = (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ δA) ⊗ H ⊗ H).

It is easy to see that, by naturality of c, equality (a2′) is equivalent to

τ ◦ (A ⊗ μH ) = (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ (δA ⊗ cH ,H ). (78)

Remark 4.2 Note that, if A and H are Hopf quasigroups, a pairing between A and
Hcop corresponds with the definition of Hopf pairing introduced in [14].

Proposition 4.3 Let A, H be non-associative bimonoids with left division lA and lH ,
respectively. Let τ : A⊗ H → K be a skew pairing. Then, τ is convolution invertible.
Moreover, if τ−1 is the inverse of τ , the equalities

τ−1 ◦ (ηA ⊗ H) = εH , (79)

τ−1 ◦ (A ⊗ ηH ) = εA, (80)

and

τ−1 ◦ (A ⊗ μH ) = (τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (δA ⊗ H ⊗ H), (81)
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hold.

Proof Define τ−1 = τ ◦ (λA ⊗ H), where λA = lA ◦ (A ⊗ ηA). Then,

τ ∗ τ−1

= (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ (((A ⊗ λA) ◦ δA) ⊗ δH ) (by naturality of c)

= τ ◦ ((idA ∗ λA) ⊗ H) (by (a1) of Definition 4.1)

= εA ⊗ (τ ◦ (ηA ⊗ H)) (by (13) for A)

= εA ⊗ εH (by (a4) of Definition 4.1).

Moreover, if λH = lH ◦ (H ⊗ ηH ), the morphism τ = τ ◦ (λA ⊗ λH ) satisfies
τ−1 ∗ τ = εA ⊗ εH . Indeed,

τ−1 ∗ τ

= (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ (λA ⊗ λA) ◦ cA,A ◦ δA)

⊗((H ⊗ λH ) ◦ δH )) (by naturality of c)

= (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ δA ◦ λA)

⊗((H ⊗ λH ) ◦ δH )) (by (24) for A)

= τ ◦ (λA ⊗ (idH ∗ λH )) (by (a2′) of Definition 4.1)

= τ ◦ (λA ⊗ εH ⊗ ηH ) (by (13) for H)

= (εA ◦ λA) ⊗ εH (by (a3) of Definition 4.1)

= εA ⊗ εH (by (18) for A).

As a consequence, τ−1 = τ ◦ (λA ⊗ H) is the convolution inverse of τ because

τ = τ ∗ (τ−1 ∗ τ) = (τ ∗ τ−1) ∗ τ = τ .

Thus
τ = τ−1 ◦ (A ⊗ λH ). (82)

It is not difficult to obtain the equalities (79) and (80) because

τ−1 ◦ (ηA ⊗ H)

= τ ◦ ((λA ◦ ηA) ⊗ H)) (by definition of τ−1)

= τ ◦ (ηA ⊗ H)) (by (19) for A)

= εH (by (a4) of Definition 4.1),

and

τ−1 ◦ (A ⊗ ηH )

= τ ◦ (λA ⊗ ηH )) (by definition of τ−1)

= εA ◦ λA (by (a4) of Definition 4.1)
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= εA (by (18) for A).

Finally, the proof for (81) is the following:

τ−1 ◦ (A ⊗ μH )

= (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ δA ◦ λA) ⊗ H ⊗ H) (by (a2
′
) of Definition 4.1)

= (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ (λA ⊗ λA)

◦cA,A ◦ δA) ⊗ H ⊗ H) (by (24) for A)

= (τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (δA ⊗ H ⊗ H) (by naturality of c and c2 = id).


�
Remark 4.4 Note that if A, H are non-associative bimonoids with right division rA
and rH , respectively, and τ : A ⊗ H → K is a skew pairing, we can obtain (79),
(80) and (81) using a similar proof and defining τ−1 as τ−1 = τ ◦ (�A ⊗ H), where
�A = rA ◦ (ηA ⊗ A).

Remark 4.5 Note that, in the conditions of Proposition 4.3, we obtain that

τ = τ ◦ (λA ⊗ λH ) (83)

and
τ−1 = τ−1 ◦ (λA ⊗ λH ). (84)

It should be noted that we can easily obtain the previous equalities for bimonoids
with right division.

Proposition 4.6 Let A, H be non-associative bimonoids with left division lA and lH ,
respectively. Let τ : A ⊗ H → K be a skew pairing. If λH = lH ◦ (H ⊗ ηH ) is an
isomorphism, the equality

τ−1 ◦ (μA ⊗ H) = (τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (A ⊗ A ⊗ (cH ,H ◦ δH )) (85)

holds, where τ−1 is the morphism defined in Proposition 4.3. Moreover, if A is a Hopf
quasigroup, equality (85) holds for any non-associative bimonoid H with left division.

Proof By composing with the isomorphism A ⊗ A ⊗ λH in the left side of (85), we
have

τ−1 ◦ (μA ⊗ λH )

= τ ◦ (μA ⊗ H) (by (82))

= (τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ (A ⊗ A ⊗ δH ) (by (a1) of Definition 4.1)

= ((τ−1 ◦ (A ⊗ λH )) ⊗ (τ−1 ◦ (A ⊗ λH ))) ◦ (A

⊗cA,H ⊗ H) ◦ (A ⊗ A ⊗ δH ) (by (82))

= (τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (A ⊗ A ⊗ (cH ,H
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◦ (λH ⊗ λH ) ◦ cH ,H ◦ δH )) (by naturality of c and coassociativity)

= (τ−1 ⊗ τ−1) ◦ (A

⊗cA,H ⊗ H) ◦ (A ⊗ A ⊗ (cH ,H ◦ δH ◦ λH )) (by (24) and c2 = id).

Therefore, (85) holds.
Finally, if we assume that A is a Hopf quasigroup, the antipode λA is antimultiplica-

tive. Then, condition (85) is true without the assumption that λH is an isomorphism
because

τ−1 ◦ (μA ⊗ H)

= τ ◦ ((μA ◦ (λA ⊗ λA) ◦ cA,A) ⊗ H) (by (31))

= (τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (cA,A ⊗ δH ) (by (a1) of Definition 4.1)

= (τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (A ⊗ A

⊗(cH ,H ◦ δH )) (by naturality of c and c2 = id).


�
In a similar way, we get the previous result for non-associative bimonoids A and

H with right division.
The following proposition gives the connection between skew pairings and two-

cocycles for non-associative bimonoids with left division. We leave to the reader the
proof of the similar result for non-associative bimonoids with right division.

Proposition 4.7 Let A, H be non-associative bimonoids with left division lA and
lH , respectively. Then, A ⊗ H = (A ⊗ H , ηA⊗H , μA⊗H , εA⊗H , δA⊗H ) is a non-
associative bimonoid with left division lA⊗H = (lA ⊗ lH ) ◦ (A⊗ cH ,A ⊗ H). If A and
H are left Hopf quasigroups with left antipodes λA, λH , respectively, A ⊗ H is a left
Hopf quasigroup with left antipode λA⊗H = λA ⊗ λH .

Moreover, let τ : A ⊗ H → K be a skew pairing. The morphism ω = εA ⊗ (τ ◦
cH ,A) ⊗ εH is a normal two-cocycle with convolution inverse ω−1 = εA ⊗ (τ−1 ◦
cH ,A) ⊗ εH , where τ−1 is defined as in Proposition 4.3.

Proof Trivially, A ⊗ H is a non-associative bimonoid. The morphism lA⊗H = (lA ⊗
lH ) ◦ (A ⊗ cH ,A ⊗ H) is a left division for A ⊗ H because

lA⊗H ◦ (A ⊗ H ⊗ μA⊗H ) ◦ (δA⊗H ⊗ A ⊗ H)

= ((lA ◦ (A ⊗ μA) ◦ (δA ⊗ A)) ⊗ (lH ◦ (H ⊗ μH ) ◦ (δH ⊗ H)))

◦ (A ⊗ cH ,A ⊗ H) (by naturality of c and c2 = id)

= (εA ⊗ A ⊗ εH ⊗ H) ◦ (A ⊗ cH ,A ⊗ H) (by (5) for A and H)

= εA⊗H ⊗ A ⊗ H (by naturality of c),

and

μA⊗H ◦ (A ⊗ H ⊗ lA⊗H ) ◦ (δA⊗H ⊗ A ⊗ H)
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= ((μA ◦ (A ⊗ lA) ◦ (δA ⊗ A)) ⊗ (μH ◦ (H ⊗ lH ) ◦ (δH ⊗ H)))

◦ (A ⊗ cH ,A ⊗ H) (by naturality of c and c2 = id)

= (εA ⊗ A ⊗ εH ⊗ H) ◦ (A ⊗ cH ,A ⊗ H) (by (5) for A and H)

= εA⊗H ⊗ A ⊗ H (by naturality of c).

If A, H are left Hopf quasigroups with left antipodes λA, λH , by Proposition 2.11,
we have that

λA⊗H = lA⊗H ◦ (A ⊗ H ⊗ ηA⊗H ) = λA ⊗ λH .

Then, A ⊗ H is a left Hopf quasigroup because

μA⊗H ◦ ((λA ⊗ λH ) ⊗ μA⊗H ) ◦ (δA⊗H ⊗ A ⊗ H)

= ((μA ◦ (λA ⊗ μA) ◦ (δA ⊗ A)) ⊗ (μH ◦ (λH ⊗ μH ) ◦ (δH ⊗ H)))

◦ (A ⊗ cH ,A ⊗ H) (by naturality of c and c2 = id)

= (εA ⊗ A ⊗ εH ⊗ H) ◦ (A ⊗ cH ,A ⊗ H) (by (38) for A and H)

= εA⊗H ⊗ A ⊗ H (by naturality of c).

Let τ : A ⊗ H → K be a skew pairing. Then, ω = εA ⊗ (τ ◦ cH ,A) ⊗ εH is a
two-cocycle. Indeed, on the one hand we have

∂1(ω) ∗ ∂3(ω)

= εA ⊗ (τ ◦ cH ,A ◦ (H ⊗ (μA ◦ (A ⊗ (τ ◦ cH ,A) ⊗ A)

◦ (A ⊗ H ⊗ δA)) ⊗ εH (by naturality of c, counit properties and (2))

= εA ⊗ (τ ◦ (μA ⊗ H) ◦ (A ⊗ cH ,A) ◦ (cH ,A ⊗ ((τ ◦ cH ,A)

⊗A) ◦ (H ⊗ δA))) ⊗ εH (by naturality of c))

= εA ⊗ ((τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ (A ⊗ A ⊗ δH ) ◦ (A ⊗ cH ,A)

◦ (cH ,A ⊗ ((τ ◦ cH ,A) ⊗ A) ◦ (A ⊗ δA))) ⊗ εH

(by (a1) of Definition 4.1)

= εA ⊗ ((τ ⊗ τ) ◦ (A ⊗ (cA,H ◦ cH ,A) ⊗ H) ◦ (A ⊗ H ⊗ cH ,A)

◦ (A ⊗ δH ⊗ A) ◦ (cH ,A ⊗ ((τ ◦ cH ,A) ⊗ A)

◦ (A ⊗ δA))) ⊗ εH (by naturality of c)

= εA ⊗ ((τ ⊗ τ) ◦ (A ⊗ H ⊗ cH ,A) ◦ (A ⊗ δH ⊗ A) ◦ (cH ,A

⊗((τ ◦ cH ,A) ⊗ A) ◦ (H ⊗ δA))) ⊗ εH (by naturality of c and c2 = id),

and, on the other hand,

∂4(ω) ∗ ∂2(ω)

= εA ⊗ (((τ ◦ cH ,A) ⊗ (τ ◦ cH ,A ◦ (μH ⊗ A))) ◦ (H ⊗ cH ,A ⊗ H ⊗ A)

◦ (δH ⊗ A ⊗ H ⊗ A)) ⊗ εH (by naturality of c, counit properties, and (2))
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= εA ⊗ ((τ ⊗ (τ ◦ (A ⊗ μH ) ◦ (cH ,A ⊗ H))) ◦ (A ⊗ δH ⊗ A ⊗ H)

◦ (cH ,A ⊗ cH ,A)) ⊗ εH (by naturality of c)

= εA ⊗ ((τ ⊗ ((τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ δA)

⊗H ⊗ H) ◦ (cH ,A ⊗ H))) ◦ (A ⊗ δH ⊗ A ⊗ H)

◦ (cH ,A ⊗ cH ,A)) ⊗ εH (by (a2′) of Definition 4.1)

= εA ⊗ ((τ ⊗ τ) ◦ (A ⊗ H ⊗ cH ,A) ◦ (A ⊗ δH ⊗ A) ◦ (cH ,A ⊗ ((τ ◦ cH ,A)

⊗ A) ◦ (H ⊗ δA))) ⊗ εH (by naturality of c and c2 = id).

Finally, ω is convolution invertible because

ω ∗ ω−1

= εA ⊗ ((τ ∗ τ−1) ◦ cH ,A) ⊗ εH (by naturality of c and counit properties)

= εA⊗H ⊗ εA⊗H (by invertibility of τ),

and similarly,

ω−1 ∗ ω

= εA ⊗ ((τ−1 ∗ τ) ◦ cH ,A) ⊗ εH (by naturality of c and counit properties)

= εA⊗H ⊗ εA⊗H (by invertibility of τ).


�
As a consequence of Proposition 4.7 and its right division version, we have the

following corollary.

Corollary 4.8 Let A, H be Hopf quasigroups with antipodes λA, λH , respectively.
Then, A ⊗ H = (A ⊗ H , ηA⊗H , μA⊗H , εA⊗H , δA⊗H ) is a Hopf quasigroup with
antipode λA⊗H = λA ⊗ λH .

Moreover, let τ : A ⊗ H → K be a skew pairing. The morphism ω = εA ⊗ (τ ◦
cH ,A)⊗εH is a two-cocycle with convolution inverse ω−1 = εA ⊗ (τ−1 ◦cH ,A)⊗εH ,
where τ−1 is defined as in Proposition 4.3.

Also, we get the following result which is a generalization of the one given in [14],
Proposition 2.2. (There is a slightly difference because the definition of Hopf pairing
in [14] corresponds with our notion of pairing between A and Hcop.)

Corollary 4.9 Let A, H be left Hopf quasigroups with left antipodes λA, λH , respec-
tively. Let τ : A ⊗ H → K be a skew pairing. Then, A ��τ H = (A ⊗
H , ηA��τ H , μA��τ H , εA��τ H , δA��τ H , λA��τ H ) has a structure of left Hopf quasigroup,
where

ηA��τ H = ηA⊗H , εA��τ H = εA⊗H , δA��τ H = δA⊗H ,

μA��τ H = (μA ⊗ μH ) ◦ (A ⊗ τ ⊗ A ⊗ H ⊗ τ−1 ⊗ H) ◦ (A ⊗ δA⊗H

⊗A ⊗ H ⊗ H) ◦ (A ⊗ δA⊗H ⊗ H) ◦ (A ⊗ cH ,A ⊗ H) (86)
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and
λA��τ H = (τ−1 ⊗ λA ⊗ λH ⊗ τ) ◦ (A ⊗ H ⊗ δA⊗H ) ◦ δA⊗H . (87)

Proof The result follows by application of Theorem 3.10 to the left Hopf quasigroup
A⊗ H and the two-cocycle ω = εA ⊗ (τ ◦ cH ,A) ⊗ εH . Using the naturality of c, the
counit properties, the coassociativity of the coproducts and (18), it is easy to check
that

μA��τ H = μ(A⊗H)ω , λA��τ H = λ(A⊗H)ω .


�
For right Hopf quasigroups, we have a similar corollary and, as a consequence, we

obtain the following result:

Corollary 4.10 Let A, H be Hopf quasigroups with antipodes λA, λH , respec-
tively. Let τ : A ⊗ H → K be a skew pairing. Then A ��τ H = (A ⊗
H , ηA��τ H , μA��τ H , εA��τ H , δA��τ H , λA��τ H ) has a structure of Hopf quasigroup,
where

ηA��τ H = ηA⊗H , εA��τ H = εA⊗H , δA��τ H = δA⊗H ,

μA��τ H = (μA ⊗ μH ) ◦ (A ⊗ τ ⊗ A ⊗ H ⊗ τ−1 ⊗ H) ◦ (A ⊗ δA⊗H

⊗A ⊗ H ⊗ H) ◦ (A ⊗ δA⊗H ⊗ H) ◦ (A ⊗ cH ,A ⊗ H) (88)

and
λA��τ H = (τ−1 ⊗ λA ⊗ λH ⊗ τ) ◦ (A ⊗ H ⊗ δA⊗H ) ◦ δA⊗H . (89)

Remark 4.11 When particularizing to the Hopf algebra setting, it is a well-known fact
that the Drinfeld double of a Hopf algebra H (roughly speaking, a product involving H
and the opposite comonoid of its dual Hopf algebra H∗) is an example of a deformation
of a Hopf algebra by the two-cocycle associated with a skew pairing. We want to point
out that in our context we cannot describe the Drinfeld double in this way because the
dual of a Hopf quasigroup H is not a Hopf quasigroup but a Hopf coquasigroup.

Example 4.12 Let F be a field such that Char(F) �= 2 and denote the tensor product
over F as ⊗. Consider the non-abelian group S3 = {σ0, σ1, σ2, σ3, σ4, σ5} where σ0
is the identity, o(σ1) = o(σ2) = o(σ3) = 2 and o(σ4) = o(σ5) = 3. Let u be an
additional element such that u2 = 1. By Theorem 1 of [10], the set

L = M(S3, 2) = {σi uα ; α = 0, 1}

is a Moufang loop where the product is defined by

σi u
α. σ j u

β = (σ ν
i σ

μ
j )νuα+β,

ν = (−1)β, μ = (−1)α+β.

123



Multiplication Alteration by Two-Cocycles: The... 3589

Then, L is an IP loop and by Example 2.13, A = FL is a cocommutative Hopf
quasigroup.

On the other hand, let H4 be the four-dimensional Taft Hopf algebra. This Hopf
algebra is the smallest non-commutative, non-cocommutative Hopf algebra. The basis
of H4 is {1, x, y, w = xy}, and the multiplication table is defined by

x y w

x 1 w y
y −w 0 0
w −y 0 0

The costructure of H4 is given by

δH4(x) = x ⊗ x, δH4(y) = y ⊗ x + 1 ⊗ y, δH4(w) = w ⊗ 1 + x ⊗ w,

εH4(x) = 1F, εH4(y) = εH4(w) = 0,

and the antipode λH4 is described by

λH4(x) = x, λH4(y) = w, λH4(w) = −y.

By Proposition 4.7, A⊗H4 is a non-commutative, non-cocommutative Hopf quasi-
group and the morphism τ : A ⊗ H4 → F defined by

τ(σi u
α ⊗ z) =

⎧
⎨

⎩

1 if z = 1
(−1)α if z = x

0 if z = y, w

is a skew pairing such that τ = τ−1. Then, by Proposition 4.7,

ω = εA ⊗ (τ ◦ cH4,A) ⊗ εH4

is a two-cocycle with convolution inverse ω−1 = ω. Finally, A ��τ H4 is a Hopf
quasigroup isomorphic to (A ⊗ H4)

ω.

5 Double Cross Products and Skew Pairings

In this section, we will show that the construction of A ��τ H introduced in the
previous section is also a special case of the double cross product defined in [25].
First of all, we need to recall some definitions, following [8,9] and [20], to state a
characterization of double cross products in the quasigroup setting.
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Definition 5.1 Let H be a left Hopf quasigroup. We say that (M, ϕM ) is a left H -
quasimodule if M is an object in C and ϕM : H ⊗ M → M is a morphism in C (called
the action) satisfying

ϕM ◦ (ηH ⊗ M) = idM , (90)

ϕM ◦ (H ⊗ ϕM ) ◦ (((H ⊗ λH ) ◦ δH ) ⊗ M)

= εH ⊗ M = ϕM ◦ (λH ⊗ ϕM ) ◦ (δH ⊗ M). (91)

Given two left H -quasimodules (M, ϕM ) and (N , ϕN ), f : M → N is a morphism
of left H -quasimodules if

ϕN ◦ (H ⊗ f ) = f ◦ ϕM . (92)

We denote the category of left H -quasimodules by HQC.
If (M, ϕM ) and (N , ϕN ) are left H -quasimodules, the tensor product M ⊗ N is a

left H -quasimodule with the diagonal action

ϕM⊗N = (ϕM ⊗ ϕN ) ◦ (H ⊗ cH ,M ⊗ N ) ◦ (δH ⊗ M ⊗ N ).

This makes the category of left H -quasimodules into a strict monoidal category
(HQC,⊗, K ) (see Remark 3.3 of [9]).

We will say that a unital magma A is a left H -quasimodule magma if it is a left
H -quasimodule with action ϕA : H ⊗ A → A and the following equalities

ϕA ◦ (H ⊗ ηA) = εH ⊗ ηA, (93)

μA ◦ ϕA⊗A = ϕA ◦ (H ⊗ μA), (94)

hold, i.e., ϕA is a morphism of unital magmas.
A comonoid A is a left H -quasimodule comonoid if it is a left H -quasimodule with

action ϕA and

εA ◦ ϕA = εH ⊗ εA, (95)

δA ◦ ϕA = ϕA⊗A ◦ (δH ⊗ δA), (96)

hold, i.e., ϕA is a comonoid morphism.
Replacing (91) by the equality

ϕM ◦ (H ⊗ ϕM ) = ϕM ◦ (μH ⊗ M), (97)

we have the definition of left H -module and the ones of left H -module magma and
comonoid [because (91) follows trivially from (97)]. Note that the pair (H , μH ) is
not an H -module but it is an H -quasimodule. Morphisms between left H -modules
are defined as for H -quasimodules and we denote the category of left H -modules by
HC. Obviously, we have similar definitions for the right side.
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Proposition 5.2 Let A, H be (right) left Hopf quasigroups and let τ : A ⊗ H → K
be a skew pairing. Define ϕA : H ⊗ A → A and φH : H ⊗ A → H as

ϕA = (τ ⊗ A ⊗ τ−1) ◦ (A ⊗ H ⊗ δA ⊗ H) ◦ δA⊗H ◦ cH ,A

and

φH = (τ ⊗ H ⊗ τ−1) ◦ (A ⊗ H ⊗ cA,H ⊗ H)

◦(A ⊗ H ⊗ A ⊗ δH ) ◦ δA⊗H ◦ cH ,A.

Then,

(i) The pair (A, ϕA) is a left H-module comonoid.
(ii) If the (right) left antipode of H is an isomorphism, the pair (H , φH ) is a right

A-module comonoid.
(iii) If H is a Hopf quasigroup, the pair (H , φH ) is a right A-module comonoid.

Proof We prove the result for left Hopf quasigroups. The proof for right Hopf quasi-
groups is similar and is left to the reader. Trivially, by (3) for H , (a3) of Definition
4.1, (80), and the counit properties we obtain that ϕA ◦ (ηH ⊗ A) = idA. The equality
εA ◦ ϕA = εH ⊗ εA follows by the counit properties, the invertibility of τ and the
naturality of c. Moreover,

ϕA ◦ (μH ⊗ A)

= ((τ ◦ (A ⊗ μH )) ⊗ A ⊗ (τ−1 ◦ (A ⊗ μH ))) ◦ (A ⊗ H ⊗ H

⊗δA ⊗ H ⊗ H) ◦ δA⊗H⊗H ◦ (cH ,A ⊗ H)

◦ (H ⊗ cH ,A) (by (a2
′
) of Definition 4.1 and (81))

= (((τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ δA) ⊗ H ⊗ H)) ⊗ A

⊗((τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (δA ⊗ H ⊗ H)))

◦ (A ⊗ H ⊗ H ⊗ δA ⊗ H ⊗ H) ◦ δA⊗H⊗H ◦ (cH ,A ⊗ H)

◦ (H ⊗ cH ,A) (by naturality of c and coassociativity)

= ϕA ◦ (H ⊗ ϕA) (by naturality of c and (4)).

Finally,

(ϕA ⊗ ϕA) ◦ δH⊗A

= (A ⊗ (τ−1 ∗ τ) ⊗ A) ◦ (A ⊗ A ⊗ cA,H ) ◦ (A ⊗ δA ⊗ H)

◦ (δA ⊗ H ⊗ τ−1) ◦ (τ ⊗ δA⊗H ) ◦ δA⊗H ◦ cH ,A

(by naturality of c and coassociativity)

= δA ◦ ϕA (by naturality of c, invertibility of τ , and counit properties).

The proof for (i i) follows a similar pattern but using (a1) of Definition 4.1 and (85)
instead of (a2′) and (81). By Proposition 4.6, we obtain (iii) because in the quasigroup
setting condition (85) is true without the assumption of λH be an isomorphism. 
�
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The following result is a version of [25], Theorem 7.2.2 for left Hopf quasigroups
(see also [19], Theorem IX.2.3).

Theorem 5.3 Let A, H be left Hopf quasigroups with left antipodes λA, λH , respec-
tively. Assume that (A, ϕA) is a left H-module comonoid and (H , φH ) is a right
A-module comonoid. Then, the following assertions are equivalent:

(i) The double cross product A �� H built on the object A ⊗ H with product

μA��H = (μA ⊗ μH ) ◦ (A ⊗ ϕA ⊗ φH ⊗ H) ◦ (A ⊗ δH⊗A ⊗ H)

and tensor product unit, counit and coproduct, is a left Hopf quasigroup with left
antipode

λA��H = (ϕA ⊗ φH ) ◦ δH⊗A ◦ (λH ⊗ λA) ◦ cA,H .

(ii) The equalities

ϕA ◦ (H ⊗ ηA) = εH ⊗ ηA, (98)

φH ◦ (ηH ⊗ A) = ηH ⊗ εA, (99)

(φH ⊗ ϕA) ◦ δH⊗A = cA,H ◦ (ϕA ⊗ φH ) ◦ δH⊗A, (100)

ϕA ◦ (H ⊗ μA) ◦ (λH ⊗ λA ⊗ A)

= μA ◦ (A ⊗ ϕA) ◦ ((λA��H ◦ cH ,A) ⊗ A), (101)

μH ◦ (φH ⊗ μH ) ◦ (λH ⊗ ((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ H)

◦(δH ⊗ A ⊗ H) = εH ⊗ εA ⊗ H , (102)

μH ◦ (φH ⊗ μH ) ◦ (H ⊗ ((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ H)

◦(((H ⊗ λH ) ◦ δH ) ⊗ A ⊗ H) = εH ⊗ εA ⊗ H , (103)

hold.

Proof (i) ⇒ (i i) First of all, we have

idA⊗H = ((μA ◦ (A ⊗ (ϕA ◦ (H ⊗ ηA)))) ⊗ H) ◦ (A ⊗ δH ) (104)

because

idA⊗H

= μA��H ◦ (A ⊗ H ⊗ ηA⊗H ) (by unit properties)

= ((μA ◦ (A ⊗ (ϕA ◦ (H ⊗ ηA)))) ⊗ H) ◦ (A ⊗ δH )

(by (3) for A, (90) for φH , and the properties of ηA).

Therefore, composing with A ⊗ εH on the left side and with ηA ⊗ H on the right
side of equality (104), we get (98). In a similar way, the identity μA��H ◦ (ηA⊗H ⊗
A⊗ H) = idA⊗H leads to (99). As far as (100), it can be obtained by composing with
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ηA ⊗ H ⊗ A⊗ηH on the right and with εA ⊗ H ⊗ A⊗ εH on the left in the two terms
of the equality

δA⊗H ◦ μA��H = (μA��H ⊗ μA��H ) ◦ (A ⊗ H ⊗ cA⊗H ,A⊗H

⊗A ⊗ H) ◦ (δA⊗H ⊗ δA⊗H ).

Indeed:

(φH ⊗ ϕA) ◦ δH⊗A

= ((((εA ◦ ϕA) ⊗ φH ) ◦ δH⊗A) ⊗ ((ϕA ⊗ (εH ◦ φH ))

◦δH⊗A)) ◦ δA⊗H (by (95) for ϕA and φH , naturality of c, and counit properties)

= (εA ⊗ H ⊗ A ⊗ εH ) ◦ (μA��H ⊗ μA��H ) ◦ (A ⊗ H ⊗ cA⊗H ,A⊗H

⊗A ⊗ H) ◦ (δA⊗H ⊗ δA⊗H )

◦ (ηA ⊗ H ⊗ A ⊗ ηH ) (by (3) for A and H , naturality of c, and the properties of ηA and ηH )

= (εA ⊗ H ⊗ A ⊗ εH ) ◦ δA⊗H ◦ μA��H ◦ (ηA ⊗ H ⊗ A ⊗ ηH ) (by (4) for A �� H)

= cA,H ◦ (ϕA ◦ φH ) ◦ δH⊗A (by naturality of c, and the properties of ηA , ηH , εA and εH ).

On the other hand, if A �� H is a left Hopf quasigroup with left antipode λA��H ,
(27) holds. Then, we have

μA��H ◦ (λA��H ⊗ μA��H ) ◦ (δA⊗H ⊗ A ⊗ H) = εA⊗H ⊗ A ⊗ H . (105)

Composing with A ⊗ εH on the left and with A ⊗ H ⊗ A ⊗ ηH on the right in the
two terms of equality (105), we get

εA ⊗ εH ⊗ A

= μA ◦ (A ⊗ ϕA) ◦ (((ϕA ⊗ φH ) ◦ δH⊗A ◦ (λH ⊗ λA)) ⊗
◦ (H ⊗ ((A ⊗ μA) ◦ (δA ⊗ A))) ◦ (cA,H ⊗ A)

◦ (A ⊗ ((H ⊗ ϕA) ◦ (δH ⊗ A))). (106)

Indeed:

εA ⊗ εH ⊗ A

= εA ⊗ εH ⊗ A ⊗ (εH ◦ ηH ) (by (1) for H)

= (A ⊗ εH ) ◦ μA��H ◦ (λA��H ⊗ μA��H ) ◦ (δA⊗H ⊗ A ⊗ ηH ) (by (105) for A �� H)

= μA ◦ (A ⊗ ϕA) ◦ (λA��H ⊗ μA) ◦ (A ⊗ cA,H ⊗ A) ◦ (δA ⊗ ((H ⊗ ϕA)

◦(δH ⊗ A))) (by (2) for H , (95) for φH , the naturality of c and counit properties)

= μA ◦ (A ⊗ ϕA) ◦ (((ϕA ⊗ φH ) ◦ δH⊗A ◦ (λH ⊗ λA)) ⊗ A)

◦ (H ⊗ ((A ⊗ μA) ◦ (δA ⊗ A))) ◦ (cA,H ⊗ A)

◦ (A ⊗ ((H ⊗ ϕA) ◦ (δH ⊗ A))) (by the naturality of c).
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Having into account that (H ⊗ ϕA) ◦ (δH ⊗ A) and (A ⊗ μA) ◦ (δA ⊗ A) are
isomorphisms with inverses (H ⊗ ϕA) ◦ (H ⊗ λH ⊗ A) ◦ (δH ⊗ A) and (A ⊗ μA) ◦
(A ⊗ λA ⊗ A) ◦ (δA ⊗ A), respectively, we have

μA ◦ (A ⊗ ϕA) ◦ ((λA��H ◦ cH ,A) ⊗ A)

μA ◦ (A ⊗ ϕA) ◦ (((ϕA ⊗ φH ) ◦ δH⊗A ◦ (λH ⊗ λA)) ⊗ A) (by c2 = id)

= μA ◦ (A ⊗ ϕA) ◦ (((ϕA ⊗ φH ) ◦ δH⊗A ◦ (λH ⊗ λA)) ⊗ A)

◦ (H ⊗ ((A ⊗ μA) ◦ (δA ⊗ A))) ◦ (cA,H ⊗ A)

◦ (A ⊗ ((H ⊗ ϕA) ◦ (δH ⊗ A))) ◦ (A ⊗ ((H ⊗ ϕA) ◦ (H ⊗ λH ⊗ A)

◦ (δH ⊗ A))) ◦ (cH ,A ⊗ A) ◦ (H ⊗ ((A ⊗ μA)

◦ (A ⊗ λA ⊗ A) ◦ (δA ⊗ A)) (by composition with the inverses)

= (εA ⊗ εH ⊗ A) ◦ (A ⊗ (((H ⊗ ϕA) ◦ (H ⊗ λH ⊗ A)

◦ (δH ⊗ A)))) ◦ (cH ,A ⊗ A) ◦ (H ⊗ ((A ⊗ μA)

◦ (A ⊗ λA ⊗ A) ◦ (δA ⊗ A))) (by (106))

= ϕA ◦ (H ⊗ μA) ◦ (λH ⊗ λA ⊗ A) (by naturality of c and counit properties).

Therefore, (101) holds. Now, we show (102): Composing with εA ⊗ H on the left
and with ηA ⊗ H ⊗ A ⊗ H on the right in the two terms of equality (105), we get

εH ⊗ εA ⊗ H

= μH ◦ (φH ⊗ μH ) ◦ (λH ⊗ ((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ H) ◦ (δH ⊗ A ⊗ H)

(by (1), (2), (3), (19) for A, (93) (95) for ϕA , (90) for φH , naturality of c and counit properties).

Finally, by (27) for A �� H , we have

μA��H ◦ (A ⊗ H ⊗ μA��H ) ◦ (A ⊗ H ⊗ λA��H ⊗ A ⊗ H)

◦(δA⊗H ⊗ A ⊗ H) = εA⊗H ⊗ A ⊗ H . (107)

Then, composing with εA ⊗ H on the left and with ηA ⊗ H ⊗ A ⊗ H on the right
in the two terms of equality (107),

εH ⊗ εA ⊗ H

= μH ◦ (φH ⊗ μH ) ◦ (H ⊗ ϕA ◦ φH ⊗ H) ◦ (H ⊗ δH⊗A ⊗ H)

◦ (((H ⊗ λH ) ◦ δH ) ⊗ A ⊗ H)

(by (1), (2), (3), (19) for A, (93), (95), (98) for ϕA , (90) for φH , naturality of c and counit properties).

Therefore, (103) holds.
(i i) ⇒ (i) We only prove the equalities involving the left antipode. The proof for

the other conditions is analogous to the ones given in [25], Theorem 7.2.2.

μA��H ◦ (λA��H ⊗ μA��H ) ◦ (δA⊗H ⊗ A ⊗ H)

= ((μA ◦ (A ⊗ ϕA)) ⊗ μH ) ◦ (((((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ A
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⊗(φH ◦ (φH ⊗ A))) ◦ δH⊗A⊗A) ⊗ H)

◦ (((λH ⊗ λA) ◦ cA,H ) ⊗ μA��H ) ◦ (δA⊗H ⊗ A ⊗ H)

(by the comonoid morphism condition for φH , coassociativity, and naturality of c)

= ((μA ◦ (A ⊗ ϕA) ◦ ((λA��H ◦ cH ,A) ⊗ A)) ⊗ (μH ◦ (φH

◦ (H ⊗ μA) ◦ (λH ⊗ λA ⊗ A)) ⊗ H))

◦ (H ⊗ ((A ⊗ cH ,A ⊗ A) ◦ (cH ,A ⊗ cA,A)) ⊗ A ⊗ H) ◦ ((cH ,H ◦ δH )

⊗(cA,A ◦ δA) ⊗ δA ⊗ H) ◦ (cA,H ⊗ μA��H )

◦ (δA⊗H ⊗ A ⊗ H)

(by (24) for λH and λA , coassociativity, naturality of c, and condition of A-module for H)

= ((ϕA ◦ (H ⊗ μA) ◦ (λH ⊗ λA ⊗ A)) ⊗ (μH ◦ (φH

◦ (H ⊗ μA) ◦ (λH ⊗ λA ⊗ A)) ⊗ H))

◦ (H ⊗ ((A ⊗ cH ,A ⊗ A) ◦ (cH ,A ⊗ cA,A)) ⊗ A ⊗ H) ◦ ((cH ,H ◦ δH )

⊗(cA,A ◦ δA) ⊗ δA ⊗ H) ◦ (cA,H ⊗ μA��H )

◦ (δA⊗H ⊗ A ⊗ H) (by (101)))

= (A ⊗ μH ) ◦ (((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ H) ◦ (λH ⊗ (μA

◦(λA ⊗ μA) ◦ (δA ⊗ A)) ⊗ μH )

◦ (cA,H ⊗ ((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ H) ◦ (A ⊗ δH ⊗ A ⊗ H)

(by (24) for λH and λA , (4) for A, and naturality of c)

= (A ⊗ μH ) ◦ (((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ μH ) ◦ (λH ⊗ ((ϕA ⊗ φH )

◦δH⊗A) ⊗ H) ◦ (εA ⊗ δH ⊗ A ⊗ H)

(by (27) for A and naturality of c)

= (A ⊗ μH ) ◦ ((ϕA ◦ (H ⊗ ϕA)) ⊗ (φH ◦ (H ⊗ ϕA)) ⊗ μH )

◦ (δH⊗H⊗A ⊗ φH ⊗ H) ◦ (λH ⊗ δH⊗A ⊗ H)

◦ (εA ⊗ δH ⊗ A ⊗ H) (by the condition of comonoid morphism for ϕA and naturality of c)

= (A ⊗ μH ) ◦ (A ⊗ φH ⊗ μH ) ◦ (cH ,A ⊗ ϕA ⊗ φH ⊗ H)

◦ ((λH ⊗ (ϕA ◦ ((λH ∗ idH ) ⊗ A))

◦ (δH ⊗ A)) ⊗ H ⊗ A ⊗ H ⊗ A ⊗ H) ◦ (δH⊗A ⊗
⊗A ⊗ H) ◦ (εA ⊗ δH⊗A ⊗ H)

(by (24) for λH , the condition of H -module for A, coassociativity of δH , and naturality of c)

= (A ⊗ (μH ◦ (φH ⊗ μH ) ◦ (λH ⊗ ϕA ⊗ φH ⊗ H) ◦ (H ⊗ δH⊗A

⊗H) ◦ (δH ⊗ A ⊗ H))) ◦ (cH ,A ⊗ A ⊗ H)

◦ (εA ⊗ H ⊗ δA ⊗ H) (by (28), the condition of H -module for A and counit properties)

= (A ⊗ εH ⊗ εA ⊗ H) ◦ (cH ,A ⊗ A ⊗ H) ◦ (εA ⊗ H ⊗ δA ⊗ H) (by (102))

= εA⊗H ⊗ A ⊗ H (by counit properties and naturality of c).

On the other hand,

μA��H ◦ (A ⊗ H ⊗ μA��H ) ◦ (A ⊗ H ⊗ λA��H ⊗ A ⊗ H) ◦ (δA⊗H ⊗ A ⊗ H)
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= μA��H ◦ (A ⊗ H ⊗ (μA ◦ (A ⊗ ϕA) ◦ (((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ A))

⊗(μH ◦ (φH ⊗ H) ◦ (H ⊗ μA ⊗ H))) ◦ (A ⊗ H ⊗ δH⊗A⊗A ⊗ H)

◦ (A ⊗ H ⊗ ((λH ⊗ λA) ◦ cA,H ) ⊗ A ⊗ H)

◦ (δA⊗H ⊗ A ⊗ H)

(by the condition of comonoid morphism for

φH , coassociativity, the condition of A-module for H , and naturality of c)

= μA��H ◦ (A ⊗ H ⊗ (μA ◦ (A ⊗ ϕA) ◦ ((λA��H ◦ cH ,A) ⊗ A))

⊗(μH ◦ (φH ⊗ H) ◦ (H ⊗ μA ⊗ H)

◦ (λH ⊗ λA ⊗ A ⊗ H))) ◦ (A ⊗ H ⊗ H ⊗ ((A ⊗ cH ,A

⊗A) ◦ (cH ,A ⊗ cA,A)) ⊗ A ⊗ H)

◦ (A ⊗ H ⊗ (cH ,H ◦ δH ) ⊗ (cA,A ◦ δA) ⊗ δA ⊗ H)

◦ (A ⊗ H ⊗ cA,H ⊗ A ⊗ H) ◦ (δA⊗H ⊗ A ⊗ H)

(by (24) for the antipodes λA , λH , and naturality of c)

= μA��H ◦ (A ⊗ H ⊗ ((ϕA ◦ (H ⊗ μA) ◦ (λH ⊗ λA ⊗ A))

⊗((μH ◦ (φH ⊗ H) ◦ (H ⊗ μA ⊗ H)

◦ (λH ⊗ λA ⊗ A ⊗ H)))) ◦ (A ⊗ H ⊗ H ⊗ ((A ⊗ cH ,A

⊗A) ◦ (cH ,A ⊗ cA,A)) ⊗ A ⊗ H)

◦ (A ⊗ H ⊗ (cH ,H ◦ δH ) ⊗ (cA,A ◦ δA) ⊗ δA ⊗ H)

◦ (A ⊗ H ⊗ cA,H ⊗ A ⊗ H) ◦ (δA⊗H ⊗ A ⊗ H)

(by (101))

= μA��H ◦ (A ⊗ H ⊗ A ⊗ μH ) ◦ (A ⊗ H ⊗ ((ϕA ⊗ φH ) ◦ (H ⊗ cH ,A ⊗ A)

◦ ((δH ◦ λH ) ⊗ ((μA ⊗ μA) ◦ δA⊗A

◦ (λA ⊗ A)))) ⊗ H) ◦ (A ⊗ H ⊗ cA,H ⊗ A ⊗ H) ◦ (δA⊗H ⊗ A ⊗ H)

(by (24) for λA and λH , and naturality of c)

= (μA ⊗ μH ) ◦ (A ⊗ ((ϕA ⊗ φH ) ◦ δH⊗A ◦ (H ⊗ ϕA)) ⊗ (μH

◦ (φH ⊗ H))) ◦ (A ⊗ H ⊗ (δH⊗A ◦ (λH ⊗ (μA

◦ (λA ⊗ A))) ◦ (cA,H ⊗ A)) ⊗ H) ◦ (δA⊗H ⊗ A ⊗ H)

(by the definition of μA��H , and (4) for H)

= (μA ⊗ μH ) ◦ (A ⊗ (ϕA ◦ (H ⊗ ϕA)) ⊗ (φH ◦ (H ⊗ ϕA))

⊗μH ) ◦ (A ⊗ δH⊗H⊗A ⊗ φH ⊗ H)

◦ (A ⊗ H ⊗ δH⊗A ⊗ H) ◦ (A ⊗ H ⊗ H ⊗ μA ⊗ H)

◦ (A ⊗ H ⊗ ((λH ⊗ λA) ◦ cA,H ) ⊗ A ⊗ H)

◦ (δA⊗H ⊗ A ⊗ H) (by the condition of comonoid morphism for ϕA)

= (μA ⊗ ((μH ◦ (φH ⊗ μH ) ◦ (H ⊗ ϕA ⊗ φH ⊗ H) ◦ (H ⊗ δH⊗A

⊗H) ◦ (((H ⊗ λH ) ◦ δH ) ⊗ A ⊗ H))

◦ (A ⊗ (ϕA ◦ (μH ⊗ A)) ⊗ H ⊗ A ⊗ H) ◦ (A ⊗ H ⊗ λH ⊗ cH ,A ⊗ A ⊗ H)

◦ (A ⊗ H ⊗ (cH ,H ◦ δH ) ⊗ (δA ◦ μA) ⊗ H) ◦ (A ⊗ H

⊗H ⊗ λA ⊗ A ⊗ H) ◦ (A ⊗ H ⊗ cA,H ⊗ A ⊗ H)

◦ (δA⊗H ⊗ A ⊗ H)

(by (24) for λH , the condition of left H -module for A, coassociativity of the coproducts, and naturality of c)
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= ((μA ◦ (A ⊗ ϕA) ◦ (A ⊗ μH ⊗ A)) ⊗ εH ⊗ εA ⊗ H)

◦(A ⊗ H ⊗ H ⊗ cH ,A ⊗ A ⊗ H) ◦ (A ⊗ H ⊗ (cH ,H

◦ (H ⊗ λH ) ◦ δH ) ⊗ (δA ◦ μA ◦ (λA ⊗ A)) ⊗ H) ◦ (A ⊗ H ⊗ cA,H ⊗ A

⊗H) ◦ (δA⊗H ⊗ A ⊗ H) (by (103))

= ((μA ◦ (A ⊗ (ϕA ◦ ((μH ◦ (H ⊗ λH )) ⊗ (μA ◦ (λA ⊗ A)))

◦ (H ⊗ cA,H ⊗ A))) ◦ (δA⊗H ⊗ A)) ⊗ H)

(by naturality of c and counit properties)

= ((μA ◦ (A ⊗ ϕA) ◦ (A ⊗ (idH ∗ λH ) ⊗ μA) ◦ (A ⊗ H ⊗ λA ⊗ A)

◦(A ⊗ cA,H ⊗ A) ◦ (δA ⊗ H ⊗ A)) ⊗ H)

(by naturality of c)

= ((μA ◦ (A ⊗ μA) ◦ (A ⊗ λA ⊗ A) ◦ (δA ⊗ A)) ⊗ H)

◦ (A ⊗ εH ⊗ A ⊗ H) (by (13) and (90) for ϕA)

= εA⊗H ⊗ A ⊗ H (by (27) for A).


�
As in the previous results, we can obtain a similar theorem for right Hopf quasi-

groups. In this case, the corresponding equalities to (101), (102) and (103) are

φH ◦ (μH ⊗ A) ◦ (H ⊗ �H ⊗ �A)

= μH ◦ (φH ⊗ H) ◦ (H ⊗ (�A��H ◦ cH ,A)), (108)

μA ◦ (μA ⊗ ϕA) ◦ (A ⊗ ((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ �A)

◦ (A ⊗ H ⊗ δA) = A ⊗ εH ⊗ εA, (109)

μA ◦ (μA ⊗ ϕA) ◦ (A ⊗ ((ϕA ⊗ φH ) ◦ δH⊗A) ⊗ A)

◦ (A ⊗ H ⊗ ((�A ⊗ A) ◦ δA)) = A ⊗ εH ⊗ εA, (110)

where ρH and ρA denote the right antipodes.
As a consequence of Theorem 5.3 and its right version, we have:

Corollary 5.4 Let A, H be Hopf quasigroups with antipodes λA, λH , respectively.
Assume that (A, ϕA) is a left H-module comonoid and (H , φH ) a right A-module
comonoid. Then, the following assertions are equivalent:

(i) The double cross product A �� H built on the object A ⊗ H with product

μA��H = (μA ⊗ μH ) ◦ (A ⊗ ϕA ⊗ φH ⊗ H) ◦ (A ⊗ δH⊗A ⊗ H)

and tensor product unit, counit and coproduct, is aHopf quasigroupwith antipode

λA��H = (ϕA ⊗ φH ) ◦ δH⊗A ◦ (λH ⊗ λA) ◦ cA,H .

(ii) The equalities (98), (99), (100), (101), (102), (103), (108), (109), and (110) hold
for λH and λA.
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Now, we show that the construction of A ��τ H introduced in the previous section
is an example of a double cross product. We will prove the left version and leave to
the patient reader to get the right one.

Proposition 5.5 Let A, H be left Hopf quasigroups with left antipodes λA, λH such
that λH is an isomorphism, and let τ : A ⊗ H → K be a skew pairing. Then, the
left Hopf quasigroup A ��τ H introduced in Corollary 4.9 is the double cross product
induced by the actions ϕA, φH defined in Proposition 5.2.

Proof First, note that

(ϕA ⊗φH ) ◦ δH⊗A = (τ ⊗ A⊗ H ⊗ τ−1) ◦ (A⊗ H ⊗ δA⊗H ) ◦ δA⊗H ◦ cH ,A. (111)

Indeed:

(ϕA ⊗ φH ) ◦ δH⊗A

= (A ⊗ (τ−1 ∗ τ) ⊗ H) ◦ (τ ⊗ δA ⊗ δH ⊗ τ−1) ◦ (A ⊗ H ⊗ δA⊗H )

◦δA⊗H ◦ cH ,A (by naturality of c, and coassociativity)

= (τ ⊗ A ⊗ H ⊗ τ−1) ◦ (A ⊗ H ⊗ δA⊗H ) ◦ δA⊗H ◦ cH ,A

(by invertibility of τ , naturality of c, and counit properties).

As a consequence, it is not difficult to see thatμA��τ H = μA��H . On the other hand,
λA��τ H = λA��H because

λA��H
= (τ ⊗ λA ⊗ λH ⊗ τ−1) ◦ (A ⊗ H ⊗ ((A ⊗ cA,H ⊗ H)

◦ ((cA,A ◦ δA) ⊗ (cH ,H ◦ δH )))) ◦ (A ⊗ cA,H ⊗ H)

◦ ((cA,A ◦ δA) ⊗ (cH ,H ◦ δH ))

(by (24) for λA and λH , naturality of c, c2 = id , (83) and (84))

= (τ−1 ⊗ λA ⊗ λH ⊗ τ) ◦ (A ⊗ H ⊗ cA⊗H ,A⊗H ) ◦ (cA⊗H ,A⊗H ⊗ A

⊗H) ◦ (A ⊗ H ⊗ δA⊗H ) ◦ cA⊗H ,A⊗H ◦ δA⊗H

(by naturality of c, and c2 = id)

= (τ−1 ⊗ λA ⊗ λH ⊗ τ) ◦ (δA⊗H ⊗ A ⊗ H) ◦ δA⊗H

(by naturality of c, and c2 = id)

= λA��τ H (by coasociativity).


�
Finally, by the previous results, we have the following corollary for quasigroups

without conditions over the antipode of H .

Corollary 5.6 Let A, H be Hopf quasigroups and let τ : A ⊗ H → K be a skew
pairing. Then, the Hopf quasigroup A ��τ H introduced in Corollary 4.10 is the
double cross product induced by the actions ϕA and φH , defined in Proposition 5.2.
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6 Quasitriangular Hopf Quasigroups, Skew Pairings, Biproducts and
Projections

In this section, we will explore the connections between Yetter–Drinfeld modules for
Hopf quasigroups, projections of Hopf quasigroups, skew pairings and quasitriangular
structures, obtaining the non-associative version of the main results proved in [1].

There is no difference between the notion of left H -comodule for a Hopf algebra
and for a Hopf quasigroup since it only depends on the comonoid structure of H .
Then, we will denote a left H -comodule by (M, ρM ) where M is an object in C and
ρM : M → H ⊗ M is a morphism in C (called the coaction) satisfying the comodule
conditions:

(εH ⊗ M) ◦ ρM = idM , (112)

(H ⊗ ρM ) ◦ ρM = (δH ⊗ M) ◦ ρM . (113)

Given two left H -comodules (M, ρM ) and (N , ρN ), f : M → N is a morphism
of left H -comodules if ρN ◦ f = (H ⊗ f ) ◦ ρM . We denote the category of left
H -comodules by HC.

For two left H -comodules (M, ρM ) and (N , ρN ), the tensor product M ⊗ N is a
left H -comodule with the codiagonal coaction

ρM⊗N = (μH ⊗ M ⊗ N ) ◦ (H ⊗ cM,H ⊗ N ) ◦ (ρM ⊗ ρN ).

This tensor product endows to the category of left H -comodules with a structure
of strict monoidal category (HC,⊗, K ).

Moreover, we will say that a unital magma A is a left H -comodule magma if it is
a left H -comodule with coaction ρA and the following equalities hold:

ρA ◦ ηA = ηH ⊗ ηA, (114)

ρA ◦ μA = (H ⊗ μA) ◦ ρA⊗A. (115)

Finally, a comonoid A is a left H -comodule comonoid if it is a left H -comodule
with coaction ρA and

(H ⊗ εA) ◦ ρA = ηH ⊗ εA, (116)

(H ⊗ δA) ◦ ρA = ρA⊗A ◦ δA, (117)

hold.
Now, following [2], we recall the notion of Yetter–Drinfeld quasimodule for a Hopf

quasigroup H .

Definition 6.1 Let H be a Hopf quasigroup. We say that M = (M, ϕM , ρM ) is a
left-left Yetter–Drinfeld quasimodule over H if (M, ϕM ) is a left H -quasimodule and
(M, ρM ) is a left H -comodule which satisfies the following equalities:
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(b1) (μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ ((ρM ◦ ϕM ) ⊗ H) ◦ (H ⊗ cH ,M ) ◦ (δH ⊗ M)

= (μH ⊗ ϕM ) ◦ (H ⊗ cH ,H ⊗ M) ◦ (δH ⊗ ρM ).

(b2) (μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ (ρM ⊗ μH )

= (μH ⊗ M) ◦ (μH ⊗ cM,H ) ◦ (H ⊗ cM,H ⊗ H) ◦ (ρM ⊗ H ⊗ H).

(b3) (μH ⊗ M) ◦ (H ⊗ μH ⊗ M) ◦ (H ⊗ H ⊗ cM,H ) ◦ (H ⊗ ρM ⊗ H)

= (μH ⊗ M) ◦ (μH ⊗ cM,H ) ◦ (H ⊗ ρM ⊗ H).

IfM and N are two left–left Yetter–Drinfeld quasimodules over H and f : M → N
is a morphism between them, we will say that f is a morphism of left–left Yetter–
Drinfeld quasimodules if it is a morphism of H -quasimodules and H -comodules.

We shall denote by H
HQYD the category of left–left Yetter–Drinfeld quasimodules

over H and by H
HYD its subcategory of left–left Yetter–Drinfeldmodules (the category

formed by the objects that are also left H -modules and with the obvious morphisms).
Note that if H is a Hopf algebra, conditions (b2) and (b3) trivialize and in this case
H
HYD is the classical category of left–left Yetter–Drinfeld modules over H .

Let (M, ϕM , ρM ) and (N , ϕN , ρN ) be two objects in H
HQYD. Then, M ⊗ N , with

the diagonal structure ϕM⊗N and the codiagonal costructure ρM⊗N , is an object in
H
HQYD. Therefore, (HHQYD,⊗, K ) is a strictmonoidal category. IfmoreoverλH is an
isomorphism, (HHYD,⊗, K ) is a strict braided monoidal category where the braiding
t and its inverse are defined by

tM,N = (ϕN ⊗ M) ◦ (H ⊗ cM,N ) ◦ (ρM ⊗ N ) (118)

and

t−1
M,N = cN ,M ◦ ((ϕN ◦ cN ,H ) ⊗ M) ◦ (N ⊗ λ−1

H ⊗ M) ◦ (N ⊗ ρM ),

respectively (see Proposition 1.8 of [2]). As a consequence, we can consider Hopf
quasigroups in H

HYD. The definition is the following:

Definition 6.2 Let H be a Hopf quasigroup such that its antipode is an isomorphism.
Let (D, uD,mD) be a unital magma in C such that (D, eD,�D) is a comonoid in C,
and let sD : D → D be a morphism in C. We say that the triple (D, ϕD, �D) is a Hopf
quasigroup in H

HYD if:

(c1) The triple (D, ϕD, ρD) is a left–left Yetter–Drinfeld H -module.
(c2) The triple (D, uD,mD) is a unital magma in H

HYD, i.e., (D, uD,mD) is a unital
magma in C, (D, ϕD) is a left H -module magma and (D, ρD) is a left H -
comodule magma.

(c3) The triple (D, eD,�D) is a comonoid in H
HYD, i.e., (D, eD,�D) is a comonoid

in C, (D, ϕD) is a left H -module comonoid and (D, ρD) is a left H -comodule
comonoid.

(c4) The following identities hold:

(c4-1) eD ◦ uD = idK ,

(c4-2) eD ◦ mD = eD ⊗ eD,

(c4-3) �D ◦ eD = eD ⊗ eD,
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(c4-4) �D ◦ mD = (mD ⊗ mD) ◦ (D ⊗ tD,D ⊗ D) ◦ (�D ⊗ �D),

where tD,D is the braiding of H
HYD for M = N = D.

(c5) The following identities hold:

(c5-1) mD ◦ (sD ⊗ mD) ◦ (�D ⊗ D) = eD ⊗ D = mD ◦ (D ⊗ mD) ◦ (D ⊗ sD ⊗
D) ◦ (�D ⊗ D).

(c5-2) mD ◦ (mD ⊗ D) ◦ (D ⊗ sD ⊗ D) ◦ (D ⊗ �D) = D ⊗ eD = μD ◦ (mD ⊗
sD) ◦ (D ⊗ �D).

Note that under these conditions, sD is a morphism in H
HYD (see Lemmas 1.11,

1.12 of [2]).
By Theorem 1.14 of [2], we know that if (D, ϕD, �D) is a Hopf quasigroup in

H
HYD, then

D � H = (D ⊗ H , ηD�H , μD�H , εD�H , δD�H , λD�H )

is a Hopf quasigroup in C, with the biproduct structure induced by the smash product
coproduct, i.e.,

ηD�H = ηD ⊗ ηH , μD�H = (μD ⊗ μH ) ◦ (D ⊗ �H
D ⊗ H),

εD�H = εD ⊗ εH , δD�H = (D ⊗ �H
D ⊗ H) ◦ (δD ⊗ δH ),

λD�H = �H
D ◦ (λH ⊗ λD) ◦ �H

D ,

where the morphisms �H
D : D ⊗ H → H ⊗ D, �H

D : H ⊗ D → D ⊗ H are defined
by

�H
D = (μH ⊗ D) ◦ (H ⊗ cD,H ) ◦ (�D ⊗ H), �H

D

= (ϕD ⊗ H) ◦ (H ⊗ cH ,D) ◦ (δH ⊗ D).

Let H and B be Hopf quasigroups and let f : H → B and g : B → H be
morphisms of Hopf quasigroups such that g ◦ f = idH . By Proposition 2.1 of [2], we
know that qB

H = idB ∗ ( f ◦ λH ◦ g) : B → B is an idempotent morphism. Moreover,
if BH is the image of qB

H and pBH : B → BH , i BH : BH → B a factorization of qB
H ,

� �
�BH B B ⊗ H

i BH
(B ⊗ g) ◦ δB

B ⊗ ηH

is an equalizer diagram. As a consequence, the triple (BH , uBH ,mBH ) is a unital
magma where uBH and mBH are the factorizations, through the equalizer i BH , of the
morphisms ηB and μB ◦ (i BH ⊗ i BH ), respectively. Therefore, the equalities

uBH = pBH ◦ ηB, mBH = pBH ◦ μB ◦ (i BH ⊗ i BH ), (119)

hold.
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Definition 6.3 Let H be a Hopf quasigroup. A Hopf quasigroup projection over H is
a triple (B, f , g) where B is a Hopf quasigroup, f : H → B and g : B → H are
morphisms of Hopf quasigroups such that g ◦ f = idH , and the equality

qB
H ◦ μB ⊗ (B ⊗ qB

H ) = qB
H ◦ μB (120)

holds.
Let (B, f , g) and (B ′, f ′, g′) two Hopf quasigroup projections. We will say that a

Hopf quasigroupmorphism h : B → B ′ is amorphismofHopf quasigroup projections
if it satisfies that h ◦ f = f ′, g′ ◦ h = g. The category of Hopf quasigroup projections
over H will be denoted by Proj(H).

If (B, f , g) is a Hopf quasigroup projection over H ,

�
� �

μB ◦ (B ⊗ f )

B ⊗ εH

pBHB ⊗ H B BH

is a coequalizer diagram. Moreover, the triple (BH , eBH ,�BH ) is a comonoid, where
eBH and �BH are the factorizations, through the coequalizer pBH , of the morphisms
εB and (pBH ⊗ pBH ) ◦ δB , respectively. Moreover, the equalities

eBH = εB ◦ i BH , �BH = (pBH ⊗ pBH ) ◦ δB ◦ i BH (121)

hold (see Proposition 2.3 of [2]).

Definition 6.4 Let H be a Hopf quasigroup. We say that a Hopf quasigroup projection
(B, f , g) over H is strong if it satisfies

pBH ◦ μB ◦ (B ⊗ μB) ◦ (i BH ⊗ f ⊗ i BH )

= pBH ◦ μB ◦ (μB ⊗ B) ◦ (i BH ⊗ f ⊗ i BH ), (122)

pBH ◦ μB ◦ (B ⊗ μB) ◦ ( f ⊗ i BH ⊗ i BH )

= pBH ◦ μB ◦ (μB ⊗ B) ◦ ( f ⊗ i BH ⊗ i BH ), (123)

pBH ◦ μB ◦ (B ⊗ μB) ◦ ( f ⊗ f ⊗ i BH )

= pBH ◦ μB ◦ (μB ⊗ B) ◦ ( f ⊗ f ⊗ i BH ). (124)

Note that, by the factorization of qB
H , we have that (122), (123), and (124) are

equivalent to

qB
H ◦ μB ◦ (B ⊗ μB) ◦ (i BH ⊗ f ⊗ i BH )

= qB
H ◦ μB ◦ (μB ⊗ B) ◦ (i BH ⊗ f ⊗ i BH ), (125)

qB
H ◦ μB ◦ (B ⊗ μB) ◦ ( f ⊗ i BH ⊗ i BH )

= qB
H ◦ μB ◦ (μB ⊗ B) ◦ ( f ⊗ i BH ⊗ i BH ), (126)
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qB
H ◦ μB ◦ (B ⊗ μB) ◦ ( f ⊗ f ⊗ i BH )

= qB
H ◦ μB ◦ (μB ⊗ B) ◦ ( f ⊗ f ⊗ i BH ). (127)

We will denote by SProj(H) the category of strong Hopf quasigroup projections
over H . The morphisms of SProj(H) are the morphisms of Proj(H).

Let H be a Hopf quasigroup with invertible antipode. By Proposition 2.7 of [2],
if D is a Hopf quasigroup in H

HYD, the triple (D � H , f = ηD ⊗ H , g = εD ⊗ H)

is a strong Hopf quasigroup projection over H . In this case qD�H
H = D ⊗ ηH ⊗ εH .

As a consequence, we can choose pD�H
H = D ⊗ εH and i D�H

H = D ⊗ ηH and then
(D � H)H = D.

On the other hand, by Corollary 2.10 and Proposition 2.5 of [2], we can assure that,
if (B, f , g) is a strong Hopf quasigroup projection over H , the triple (BH , ϕBH , �BH )

is a Hopf quasigroup in H
HYD, where the magma–comonoid structure is defined by

(119) and (121),

ϕBH = pBH ◦ μB ◦ ( f ⊗ i BH ), ρBH = (g ⊗ pBH ) ◦ δB ◦ i BH , (128)

and
sBH = pBH ◦ (( f ◦ g) ∗ λB) ◦ i BH . (129)

Moreover, w = μB ◦ (i BH ⊗ f ) : BH � H → B is an isomorphism of Hopf
quasigroups in C with inverse w−1 = (pBH ⊗ g) ◦ δB (see Propositions 2.8 and 2.9
of [2]). Therefore, there exists an equivalence between the categories SProj(H) and
the category of Hopf quasigroups in H

HYD (see Theorem 2.11 of [2]).
In the final part of the paper, we will prove that we can construct examples of strong

projections by working with quasitriangular structures and skew pairings. First, we
will introduce the notion of quasitriangular Hopf quasigroup.

Definition 6.5 Let H be a Hopf quasigroup. We will say that H is quasitriangular if
there exists a morphism R : K → H ⊗ H such that:

(d1) (δH ⊗ H) ◦ R = (H ⊗ H ⊗ μH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R),

(d2) (H ⊗ δH ) ◦ R = (μH ⊗ cH ,H ) ◦ (H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R),

(d3) μH⊗H ◦ ((cH ,H ◦ δH ) ⊗ R) = μH⊗H ◦ (R ⊗ δH ),

(d4) (εH ⊗ H) ◦ R = (H ⊗ εH ) ◦ R = ηH .

In the Hopf algebra setting, the morphism R is convolution invertible with inverse
R−1 = (λH ⊗ H) ◦ R and R = (λH ⊗ λH ) ◦ R. In our non-associative context, we
have that if S = (λH ⊗H)◦ R and T = (λH ⊗λH )◦ R, the following identities hold:

R ∗ S = S ∗ R = ηH⊗H , (130)

S ∗ T = T ∗ S = ηH⊗H . (131)

Indeed:

R ∗ S
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= ((μH ◦ (H ⊗ λH )) ⊗ μH ) ◦ (H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R) (by naturality of c)

= ((idH ∗ λH ) ⊗ H) ◦ R (by (d1) of Definition 6.5)

= ((εH ⊗ ηH ) ⊗ H) ◦ R (by (13))

= ηH⊗H (by (d4) of Definition 6.5).

Similarly, we prove S ∗ R = ηH⊗H using (28) instead of (13). On the other hand,

S ∗ T

= ((μH ◦ (λH ⊗ λH )) ⊗ (μH ◦ (H ⊗ λH )))

◦ (H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R) (by naturality of c)

= ((λH ◦ μH ◦ cH ,H ) ⊗ (μH ◦ (H ⊗ λH )))

◦ (H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R) (by (31))

= ((λH ◦ μH ) ⊗ (μH ◦ (H ⊗ λH ) ◦ cH ,H ))

◦ (H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R) (by naturality of c)

= (λH ⊗ (idH ∗ λH )) ◦ R (by (d2) of Definition 6.5)

= (λH ⊗ (εH ⊗ ηH )) ◦ R (by (13))

= ηH⊗H (by (d4) of Definition 6.5 and (19)).

The proof for T ∗ S = ηH⊗H is similar using (28) instead of (13).
Note that, by the lack of associativity, we cannot assure that S be the unique mor-

phism satisfying (130) and (131).
Finally, the identity

(μH ⊗ H ⊗ (μH ◦ cH ,H )) ◦ (H ⊗ H ⊗ (cH ,H ◦ (H ⊗ μH )) ⊗ H)

◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R ⊗ R)

= (μH ⊗ μH ⊗ μH ) ◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R ⊗ R) (132)

holds because

(μH ⊗ H ⊗ (μH ◦ cH ,H )) ◦ (H ⊗ H ⊗ (cH ,H ◦ (H ⊗ μH )) ⊗ H)

◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R ⊗ R)

= (H ⊗ (((μH ◦ cH ,H ) ⊗ (μH ◦ cH ,H )) ◦ (H ⊗ cH ,H ⊗ H)))

◦(((μH ⊗ cH ,H ) ◦ (H ⊗ cH ,H ⊗ H)

◦ (R ⊗ R)) ⊗ R) (by naturality of c)

= (H ⊗ (((μH ◦ cH ,H ) ⊗ (μH ◦ cH ,H )) ◦ (H ⊗ cH ,H ⊗ H)))

◦ (((H ⊗ δH ) ◦ R) ⊗ R) (by (d2) of Definition 6.5)

= (H ⊗ (μH⊗H ◦ cH⊗H ,H⊗H ◦ (δH ⊗ R))) ◦ R (by c2 = id)

= (H ⊗ (μH⊗H ◦ (R ⊗ δH ))) ◦ R (by naturality of c)

= (H ⊗ (μH⊗H ◦ ((cH ,H ◦ δH ) ⊗ R))) ◦ R (by (d3) of Definition 6.5)

= (H ⊗ μH⊗H ) ◦ (μH ⊗ (cH ,H ◦ cH ,H ) ⊗ R)
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◦ (H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R) (by (d2) of Definition 6.5)

= (μH ⊗ μH ⊗ μH ) ◦ (H ⊗ cH ,H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R ⊗ R) (by naturality of c).

Proposition 6.6 Let A, H be Hopf quasigroups and let τ : A ⊗ H → K be a skew
pairing. Assume that H is quasitriangular with morphism R. Let A ��τ H be the Hopf
quasigroup defined in Corollary 4.10. Define the morphism g : A ��τ H → H by

g = (τ ⊗ μH ) ◦ (A ⊗ R ⊗ H).

Then, g is a morphism of unital magmas if and only if the following equalities hold:

μH ◦ (g ⊗ H) = g ◦ (A ⊗ μH ), (133)

μH ◦ (H ⊗ g) = μH ◦ (μH ⊗ H) ◦ (H ⊗ ((τ ⊗ H) ◦ (A ⊗ R)) ⊗ H). (134)

Proof Assume that g = (τ ⊗ μH ) ◦ (A ⊗ R ⊗ H) is a magma morphism. Then,

g ◦ μA��τ H = μH ◦ (g ⊗ g) (135)

holds. Moreover,

g ◦ (A ⊗ μH )

= g ◦ μA��τ H ◦ (A ⊗ H ⊗ ηA ⊗ H)

(by naturality of c, (3), (a3) of Definition 4.1, (79), and unit and counit properties)

= μH ◦ (g ⊗ g) ◦ (A ⊗ H ⊗ ηA ⊗ H) (by (135))

= μH ◦ (g ⊗ H) (by (a3) of Definition 4.1, (d4) of Definition 6.5, and unit properties).

Therefore, (133) holds. On the other hand, the proof for (134) is the following:

μH ◦ (H ⊗ g)

= μH ◦ ((g ◦ (ηA ⊗ H)) ⊗ g) (by (a3) of Definition 4.1 and unit properties)

= g ◦ μA��τ H ◦ (ηA ⊗ H ⊗ A ⊗ H) (by (135))

= (τ ⊗ (g ◦ (A ⊗ μH ))) ◦ (((δA⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ H) (by unit properties)

= (τ ⊗ (μH ◦ (g ⊗ H))) ◦ (((δA⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ H) (by (133))

= ((τ ◦ (A ⊗ (μH ◦ cH ,H ))) ⊗ (μH ◦ (μH ⊗ H))) ◦ (A ⊗ ((H ⊗ R

⊗H) ◦ δH ) ⊗ τ−1 ⊗ H) ◦ ((δA⊗H ◦ cH ,A) ⊗ H) (by (78))

= (τ ⊗ μH ) ◦ (((A ⊗ (μH⊗H ◦ (R ⊗ δH )) ⊗ τ−1)

◦δA⊗H ◦ cH ,A) ⊗ H) (by naturality of c)

= (τ ⊗ μH ) ◦ (((A ⊗ (μH⊗H ◦ ((cH ,H ◦ δH ) ⊗ (R ◦ τ−1))))

◦δA⊗H ◦ cH ,A) ⊗ H) (by (d3) of Definition 6.5)

= μH ◦ (((τ ⊗ τ ⊗ μH ) ◦ (A ⊗ cH ,H ⊗ cH ,H ⊗ H) ◦ ((cA,A ◦ δA)

123



3606 J. N. A. Álvarez et al.

⊗(cH ,H ◦ δH ) ⊗ (R ◦ τ−1)) ◦ δA⊗H ◦ cH ,A) ⊗ H)

(by (a2′) of Definition 4.1)

= μH ◦ (((τ ⊗ (μH ◦ cH ,H ) ⊗ (τ ∗ τ−1)) ◦ (A ⊗ R ⊗ H

⊗A ⊗ H) ◦ δA⊗H ◦ cH ,A) ⊗ H) (by naturality of c)

= (τ ⊗ (μH ◦ ((μH ◦ cH ,H ) ⊗ H))) ◦ (A ⊗ R ⊗ H ⊗ H)

◦ (cH ,A ⊗ H) (by naturality of c, invertibility of τ and counit properties)

= μH ◦ (μH ⊗ H) ◦ (H ⊗ ((τ ⊗ H) ◦ (A ⊗ R)) ⊗ H) (by naturality of c).

Conversely, assume that (133) and (134) hold. Firstly, note that g ◦ ηA��τ H =
ηH follows by (a4) of Definition 4.1, (d4) of Definition 6.5, and the unit properties.
Secondly,

g ◦ μA��τ H

= μH ◦ ((g ◦ (μA ⊗ H) ◦ (A ⊗ ((((τ ⊗ A ⊗ H) ◦ δA⊗H )

⊗τ−1) ◦ δA⊗H ◦ cH ,A))) ⊗ H)

(by (133))

= (((τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ (A ⊗ A ⊗ δH )) ⊗ (μH ◦ (μH ⊗ H)))

◦ (A ⊗ τ ⊗ A ⊗ R ⊗ H ⊗ τ−1 ⊗ H)

◦ (A ⊗ ((δA⊗H ⊗ A ⊗ H) ◦ δA⊗H ◦ cH ,A) ⊗ H)

(by (a1) of Definition 4.1)

= μH ◦ (((τ ⊗ τ ⊗ (μH ◦ (μH ⊗ H)) ⊗ H) ◦ (A

⊗τ ⊗ cA,H ⊗ cH ,H ⊗ H ⊗ H ⊗ H)

◦ (A ⊗ A ⊗ cA,H ⊗ ⊗A ⊗ R ⊗ R ⊗ H ⊗ H) ◦ (A ⊗ δA ⊗ δH

⊗τ−1 ⊗ H) ◦ (A ⊗ (δA⊗H ◦ cH ,A) ⊗ H)

(by (d1) of Definition 6.5)

= μH ◦ ((μH ◦ (((τ ⊗ H) ◦ (A ⊗ R)) ⊗ ((((τ ⊗ τ) ◦ (A

⊗cA,H ⊗ H) ◦ ((cA,A ◦ δA) ⊗ cH ,H )) ⊗ μH )

◦ (A ⊗ ((H ⊗ R ⊗ H) ◦ δH ))))) ⊗ τ−1 ⊗ H) ◦ (A ⊗ (δA⊗H ◦ cH ,A) ⊗ H)

(by naturality of c, c2 = id , and (134))

= μH ◦ ((μH ◦ (((τ ⊗ H) ◦ (A ⊗ R)) ⊗ ((τ ⊗ H) ◦ (A

⊗((((μH ◦ cH ,H ) ⊗ μH )) ◦ (H ⊗ R ⊗ H)

◦δH ))))) ⊗ τ−1 ⊗ H) ◦ (A ⊗ (δA⊗H ◦ cH ,A) ⊗ H)

(by (a2
′
) of Definition 4.1)

= μH ◦ ((μH ◦ (((τ ⊗ H) ◦ (A ⊗ R)) ⊗ ((τ ⊗ H) ◦ (A

⊗((μH⊗H ◦ (R ⊗ δH ))))))) ⊗ τ−1 ⊗ H)

◦ (A ⊗ (δA⊗H ◦ cH ,A) ⊗ H) (by naturality of c and c2 = id)

= μH ◦ ((μH ◦ (((τ ⊗ H) ◦ (A ⊗ R)) ⊗ ((τ ⊗ H) ◦ (A

⊗((μH⊗H ◦ ((cH ,H ◦ δH ) ⊗ R))))))) ⊗ τ−1 ⊗ H)
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◦ (A ⊗ (δA⊗H ◦ cH ,A) ⊗ H) (by (d3) of Definition 6.5)

= μH ◦ ((μH ◦ (((τ ⊗ H) ◦ (A ⊗ R)) ⊗ ((τ ⊗ τ ⊗ μH )

◦ (A ⊗ cA,H ⊗ cH ,H ⊗ H) ◦ ((cA,A ◦ δA) ⊗ (cH ,H

◦δH ) ⊗ R)))) ⊗ τ−1 ⊗ H) ◦ (A ⊗ (δA⊗H ◦ cH ,A) ⊗ H)

(by (a2
′
) of Definition 4.1)

= μH ◦ ((μH ◦ (((τ ⊗ H) ◦ (A ⊗ R)) ⊗ ((τ ⊗ (μH ◦ cH ,H ))

◦ (A ⊗ R ⊗ H)))) ⊗ (τ ∗ τ−1) ⊗ H)

◦(A ⊗ (δA⊗H ◦ cH ,A) ⊗ H) (by naturality of c)

= μH ◦ ((g ◦ (A ⊗ μH )) ⊗ H) ◦ (A ⊗ H ⊗ ((τ ⊗ H) ◦ (A ⊗ R)) ⊗ H)

(by invertibility of τ and counit properties)

= μH ◦ ((μH ◦ (g ⊗ (((τ ⊗ H) ◦ (A ⊗ R))))) ⊗ H) (by (133))

= μH ◦ (g ⊗ g) (by (134)),

and then g is morphism of unital magmas. 
�
Remark 6.7 In the previous Proposition, note that, if H is a Hopf algebra, equalities
(133) and (134) always hold.

Theorem 6.8 Let A, H be Hopf quasigroups and let τ : A ⊗ H → K be a skew
pairing. Assume that H is quasitriangular with morphism R. Let A ��τ H be the Hopf
quasigroup defined in Corollary 4.10 and let g : A ��τ H → H be the morphism
introduced in Proposition 6.6. Define the morphism f : H → A ��τ H by f =
ηA ⊗ H . Then, if (133) and (134) hold, the triple (A ��τ H , f , g) is a strong Hopf
quasigroup projection over H.

Proof By Proposition 6.6, we know that g is a morphism of unital magmas. Also, by
(2), (d4) of Definition 6.5 and (a3) of Definition 4.1, we obtain that εH ◦ g = εA��τ H .
Moreover,

δH ◦ g

= (τ ⊗ (μH⊗H ◦ (δH ⊗ δH ))) ◦ (A ⊗ R ⊗ H) (by (4))

= (τ ⊗ τ ⊗ μH⊗H ) ◦ (A ⊗ cA,H ⊗ H ⊗ cH ,H ⊗ H ⊗ H)

◦ ((cA,A ◦ δA) ⊗ ((H ⊗ cH ,H ⊗ H) ◦ (R ⊗ R)) ⊗ δH )

(by (d2) of Definition 6.5, and (a2
′
) of Definition 4.1)

= (g ⊗ g) ◦ δA��τ H (by naturality of c and c2 = id).

Therefore, g is a comonoidmorphism. On the other hand, trivially f ◦ηH = ηA��τ H

andμA��τ H ◦( f ⊗ f ) = f ◦μH follows easily by naturality of c, (3), (a4) of Definition
4.1, (79), and unit and counit properties. By (1), it is clear that εA��τ H ◦ f = εH and
the identity δA��τ H ◦ f = ( f ⊗ f ) ◦ δH can be proved using (3) and the naturality of
c. As a consequence, f is a morphism of unital magmas and comonoids. By (a4) of
Definition 4.1 and (d4) of Definition 6.5, an easy computation shows that g◦ f = idH .
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Our next goal is to obtain a simple expression for the idempotent morphism

q A��τ H
H = idA��τ H ∗ ( f ◦ λH ◦ g) : A ��τ H → A ��τ H .

Indeed, the equality

q A��τ H
H = (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R ⊗ εH ) (136)

holds because

q A��τ H
H

= (A ⊗ (μH ◦ (H ⊗ (λH ◦ g)))) ◦ δA⊗H

(by naturality of c, (3), (a4) of Definition 4.1, (79), and unit and counit properties)

= (A ⊗ (μH ◦ (H ⊗ τ ⊗ (μH ◦ cH ,H ◦ (λH ⊗ λH )))

◦ (H ⊗ A ⊗ R ⊗ H))) ◦ δA⊗H (by (31))

= (A ⊗ (μH ◦ (H ⊗ μH ) ◦ (H ⊗ λH ⊗ H) ◦ (δH ⊗ H) ◦ cH ,H

◦ (τ ⊗ λH ⊗ H))) ◦ (δA ⊗ R ⊗ H) (by naturality of c)

= (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R ⊗ εH ) (by (27)).

Then, using (136), we can prove that (A ��τ H , f , g) is a Hopf quasigroup pro-
jection over H . Indeed:

q A��τ H
H ◦ μA��τ H ◦ (A ⊗ H ⊗ q A��τ H

H )

= (A ⊗ τ ⊗ H) ◦ ((δA ◦ μA) ⊗ ((H ⊗ λH ) ◦ R)) ◦ (A ⊗ ((τ ⊗ A)

◦ (A ⊗ cA,H ⊗ τ−1) ◦ (δA ⊗ H ⊗ A ⊗ H)

◦δA⊗H ◦ cH ,A) ⊗ εH )

(by (2), (18), (d4) of Definition 6.5, (a3) of Definition 4.1, and counit properties)

= q A��τ H
H ◦ μA��τ H

(by (2), and counit properties).

Note that, by (3), the naturality of c, (79), (a4) of Definition 4.1, and unit and counit
properties, we have the equality

μA��τ H ◦ (A ⊗ H ⊗ ηA ⊗ H) = μH , (137)

and, by unit and counit properties, and (2), the identity

q A��τ H
H ◦ μA��τ H ◦ (A ⊗ H ⊗ A ⊗ (ηH ◦ εH )) = q A��τ H

H ◦ μA��τ H (138)

holds.
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To finish the proof, it is sufficient to show that the projection is strong, i.e., (125),
(126) and (127) hold. Let us first prove (125):

q A��τ H
H ◦ μA��τ H ◦ (A ⊗ H ⊗ μA��τ H ) ◦ (i A��τ H

H ⊗ f ⊗ i A��τ H
H )

= (A ⊗ τ ⊗ λH ) ◦ ((δA ◦ μA) ⊗ (R ◦ τ−1)) ◦ (A ⊗ ((((τ ⊗ H)

◦ (A ⊗ cA,H ) ◦ (δA ⊗ H)) ⊗ A ⊗ H) ◦ δA⊗H ))

◦ (A ⊗ cH ,A) ◦ (i A��τ H
H ⊗ ((((τ ⊗ H) ◦ (A ⊗ cA,H )

◦ (δA ⊗ H)) ⊗ τ−1) ◦ δA⊗H ◦ (cH ,A ⊗ εH )

◦ (H ⊗ i A��τ H
H ))) (by (2), (138) and unit and counit properties)

= (A ⊗ τ ⊗ λH ) ◦ ((δA ◦ μA) ⊗ (R ◦ ((τ ⊗ τ) ◦ (A ⊗ cA,H

⊗H) ◦ ((cA,A ◦ δA) ⊗ H ⊗ H))))

◦ (A ⊗ (((cA,A ◦ δA) ⊗ H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ H

⊗τ−1) ◦ (i A��τ H
H ⊗ (((δA⊗H ◦ cH ,A) ⊗ εH )

◦ (H ⊗ i A��τ H
H ))) (by naturality of c, coassociativity, and c2 = id)

= (A ⊗ τ ⊗ λH ) ◦ ((δA ◦ μA) ⊗ (R ◦ τ ◦ (A ⊗ μH ))) ◦ (A ⊗ (((cA,A ◦ δA)

⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ H ⊗ τ−1)

◦ (i A��τ H
H ⊗ (((δA⊗H ◦ cH ,A) ⊗ εH ) ◦ (H ⊗ i A��τ H

H ))) (by (a2
′
) of Definition 4.1)

= (A ⊗ ((τ ⊗ λH ) ◦ (A ⊗ R)) ◦ ((δA ◦ μA) ⊗ ((τ−1 ⊗ τ−1)

◦ (A ⊗ cA,H ⊗ H) ◦ (δA ⊗ H ⊗ H))) ◦ (A ⊗ ((((τ ⊗ δA)

◦ (A ⊗ cA,H ) ◦ (δA ⊗ μH )) ⊗ H ⊗ H) ◦ (A ⊗ δH⊗H )

◦ (cH ,A ⊗ H))) ◦ (i A��τ H
H ⊗ ((cH ,A ⊗ εH )

◦ (H ⊗ i A��τ H
H ))) (by naturality of c, coassociativity, and c2 = id)

= (A ⊗ ((τ ⊗ λH ) ◦ (A ⊗ R)) ◦ ((δA ◦ μA) ⊗ τ−1)

◦ (A ⊗ ((((τ ⊗ δA) ◦ (A ⊗ cA,H )) ⊗ H)

◦ (δA ⊗ ((μH ⊗ μH ) ◦ δH⊗H )) ◦ (cH ,A ⊗ H)))

◦ (i A��τ H
H ⊗ ((cH ,A ⊗ εH ) ◦ (H ⊗ i A��τ H

H ))) (by (81))

= (A ⊗ ((τ ⊗ λH ) ◦ (A ⊗ R)) ◦ ((δA ◦ μA) ⊗ τ−1)

◦(A ⊗ ((((τ ⊗ δA) ◦ (A ⊗ cA,H )) ⊗ H)

◦ (δA ⊗ (δH ◦ μH )) ◦ (cH ,A ⊗ H))) ◦ (i A��τ H
H

⊗((cH ,A ⊗ εH ) ◦ (H ⊗ i A��τ H
H ))) (by (4))

= (A ⊗ ((τ ⊗ λH ) ◦ (A ⊗ R)) ◦ ((δA ◦ μA) ⊗ (εH ◦ μH ))

◦ (A ⊗ ((((τ ⊗ A ⊗ H) ◦ δA⊗H ) ⊗ τ−1)

◦δA⊗H ◦ cH ,A) ⊗ H) ◦ (((A ⊗ μH ) ◦ (i A��τ H
H ⊗ H))

⊗i A��τ H
H ) (by (2), and counit properties)

= q A��τ H
H ◦ μA��τ H ◦ (μA��τ H ⊗ A ⊗ H) ◦ (i A��τ H

H ⊗ f ⊗ i A��τ H
H ) (by (137)).
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Secondly, we will prove (126):

q A��τ H
H ◦ μA��τ H ◦ (μA��τ H ⊗ A ⊗ H) ◦ ( f ⊗ i A��τ H

H ⊗ i A��τ H
H )

= (A ⊗ τ ⊗ λH ) ◦ ((δA ◦ μA) ⊗ R) ◦ (A ⊗ ((((τ ⊗ A) ◦ (A ⊗ cA,H )

◦ (δA ⊗ H)) ⊗ τ−1) ◦ δA⊗H ◦ cH ,A))

◦ (((τ ⊗ A ⊗ μH ) ◦ (((δA⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ H))

⊗A) ◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H ))

(by (2), and unit and counit properties)

= (A ⊗ τ ⊗ λH ) ◦ ((δA ◦ μA) ⊗ R) ◦ (A ⊗ ((((τ ⊗ A) ◦ (A ⊗ cA,H )

◦ (δA ⊗ H)) ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H)

◦ (δA ⊗ (δH ◦ μH )) ◦ (cH ,A ⊗ H))) ◦ (((τ ⊗ A ⊗ H)

◦ (((δA⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A))) ⊗ cH ,A)

◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H )) (by naturality of c)

= (A ⊗ τ ⊗ λH ) ◦ ((δA ◦ μA) ⊗ R) ◦ (A ⊗ ((((τ ⊗ A) ◦ (A ⊗ cA,H )

◦ (δA ⊗ H)) ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H)

◦(δA ⊗ ((μH ⊗ μH ) ◦ δH⊗H )) ◦ (cH ,A ⊗ H))) ◦ (((τ ⊗ A ⊗ H)

◦ (((δA⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A))) ⊗ cH ,A)

◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H )) (by (4))

= (A ⊗ τ ⊗ λH ) ◦ ((δA ◦ μA) ⊗ (R ◦ τ−1 ◦ (A ⊗ μH )))

◦ (A ⊗ (((τ ◦ (A ⊗ μH )) ⊗ A ⊗ A ⊗ H ⊗ H)

◦ (A ⊗ cA⊗A,H⊗H ⊗ H ⊗ H) ◦ (((δA ⊗ A) ◦ δA) ⊗ δH⊗H ) ◦ (cH ,A

⊗H))) ◦ (((τ ⊗ A ⊗ H) ◦ (((δA⊗H ⊗ τ−1)

◦δA⊗H ◦ cH ,A))) ⊗ cH ,A) ◦ (H ⊗ i A��τ H
H

⊗((A ⊗ εH ) ◦ i A��τ H
H )) (by naturality of c)

= (A ⊗ τ ⊗ λH ) ◦ ((δA ◦ μA) ⊗ (R ◦ τ−1 ◦ (A ⊗ μH ))) ◦ (A

⊗((((τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ δA)

⊗H ⊗ H)) ⊗ A ⊗ A ⊗ H ⊗ H) ◦ (A ⊗ cA⊗A,H⊗H ⊗ H ⊗ H)

◦ (((δA ⊗ A) ◦ δA) ⊗ δH⊗H ) ◦ (cH ,A ⊗ H)))

◦ (((τ ⊗ A ⊗ H) ◦ (((δA⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A))) ⊗ cH ,A)

◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H ))

(by (a2′) of Definition 4.1)

= (((τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ (A ⊗ A ⊗ δH )) ⊗ ((A

⊗τ ⊗ λH ) ◦ (δA ⊗ R))) ◦ (A ⊗ ((A ⊗ cA,H )

◦ (((A ⊗ μA) ◦ (cA,A ⊗ A) ◦ (A ⊗ δA)) ⊗ H) ◦ (A

⊗cH ,A)) ⊗ τ ⊗ (τ−1 ◦ (A ⊗ μH )))

◦ (δA ⊗ H ⊗ (cA,A ◦ δA) ⊗ cA,H ⊗ H ⊗ H) ◦ (A ⊗ H ⊗ δA
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⊗cH ,H ⊗ H) ◦ (A ⊗ H ⊗ cH ,A ⊗ δH )

◦(((A ⊗ δH ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ cH ,A) ◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH )

◦ i A��τ H
H )) (by naturality of c, coassociativity, and c2 = id)

= (τ ⊗ ((A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R))) ◦ (A ⊗ cA,H )

◦ (((μA ⊗ μA) ◦ δA⊗A) ⊗ H)

◦(A ⊗ cH ,A ⊗ τ ⊗ (τ−1 ◦ (A ⊗ μH ))) ◦ (A ⊗ H ⊗ (cA,A ◦ δA) ⊗ cA,H

⊗H ⊗ H) ◦ (A ⊗ H ⊗ δA ⊗ cH ,H ⊗ H)

◦ (A ⊗ H ⊗ cH ,A ⊗ δH ) ◦ (((A ⊗ δH ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ cH ,A)

◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H )) (by (a1) of Definition 4.1)

= (τ ⊗ ((A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R))) ◦ (A ⊗ cA,H ) ◦ (((δA ◦ μA) ⊗ H)

◦ (A ⊗ cH ,A ⊗ τ ⊗ (τ−1 ◦ (A ⊗ μH ))) ◦ (A ⊗ H ⊗ (cA,A ◦ δA) ⊗ cA,H

⊗H ⊗ H) ◦ (A ⊗ H ⊗ δA ⊗ cH ,H ⊗ H)

◦ (A ⊗ H ⊗ cH ,A ⊗ δH ) ◦ (((A ⊗ δH ⊗ τ−1) ◦ δA⊗H ◦ cH ,A)

⊗cH ,A) ◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H ))

(by (4))

= (τ ⊗ ((A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R))) ◦ (A ⊗ cA,H ) ◦ (((δA ◦ μA) ⊗ H)

◦ (A ⊗ cH ,A ⊗ τ ⊗ ((τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (δA ⊗ H ⊗ H)))

◦(A ⊗ H ⊗ (cA,A ◦ δA) ⊗ cA,H ⊗ H ⊗ H)

◦(A ⊗ H ⊗ δA ⊗ cH ,H ⊗ H) ◦ (A ⊗ H ⊗ cH ,A ⊗ δH )

◦ (((A ⊗ δH ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ cH ,A)

◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H )) (by (81))

= (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R) ◦ (((τ ⊗ A) ◦ (A ⊗ cA,H ) ◦ ((δA ◦ μA)

⊗H)) ⊗ ((τ−1 ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H)

◦ (A ⊗ A ⊗ (cH ,H ◦ δH )))) ◦ δA⊗A⊗H ◦ (A ⊗ cH ,A)

◦ (cH ,A ⊗ A) ◦ (H ⊗ A ⊗ ((A ⊗ τ ⊗ τ−1)

◦ ((cA,A ◦ δA) ⊗ H ⊗ A ⊗ H) ◦ δA⊗H ◦ cH ,A)) ◦ (H ⊗ i A��τ H
H

⊗((A ⊗ εH ) ◦ i A��τ H
H )) (by naturality of c, coassociativity, and c2 = id)

= (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R) ◦ (((τ ⊗ A) ◦ (A ⊗ cA,H )

◦ ((δA ◦ μA) ⊗ H)) ⊗ (τ−1 ◦ (μA ⊗ H))

◦δA⊗A⊗H ◦ (A ⊗ cH ,A) ◦ (cH ,A ⊗ A) ◦ (H ⊗ A ⊗ ((A ⊗ τ ⊗ τ−1)

◦ ((cA,A ◦ δA) ⊗ H ⊗ A ⊗ H) ◦ δA⊗H ◦ cH ,A))

◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H )) (by (85))

= (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R) ◦ (((τ ⊗ A) ◦ (A ⊗ cA,H ) ◦ (δA ⊗ H))

⊗τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (((μA ⊗ μA)

◦δA⊗A) ⊗ δH ) ◦ (A ⊗ cH ,A) ◦ (cH ,A ⊗ A) ◦ ◦(H ⊗ A

⊗((A ⊗ τ ⊗ τ−1) ◦ ((cA,A ◦ δA) ⊗ H ⊗ A ⊗ H)
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◦δA⊗H ◦ cH ,A)) ◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H )) (by naturality of c)

= (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R) ◦ (((τ ⊗ A) ◦ (A ⊗ cA,H ) ◦ (δA

⊗H)) ⊗ τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ ((δA

◦μA) ⊗ δH ) ◦ (A ⊗ cH ,A) ◦ (cH ,A ⊗ A) ◦ (H ⊗ A

⊗((A ⊗ τ ⊗ τ−1) ◦ ((cA,A ◦ δA) ⊗ H ⊗ A ⊗ H)

◦δA⊗H ◦ cH ,A)) ◦ (H ⊗ i A��τ H
H ⊗ ((A ⊗ εH ) ◦ i A��τ H

H )) (by (4))

= q A��τ H
H ◦ μA��τ H ◦ (A ⊗ A ⊗ (ηH ◦ εH )) ◦ (A ⊗ H ⊗ μA��τ H ) ◦ ( f ⊗ i A��τ H

H

⊗i A��τ H
H ) (by (2), (1), naturality of c, and unit and counit properties)

= q A��τ H
H ◦ μA��τ H ◦ (A ⊗ H ⊗ μA��τ H ) ◦ ( f ⊗ i A��τ H

H ⊗ i A��τ H
H ) (by (138)).

Finally, we prove (127):

q A��τ H
H ◦ μA��τ H ◦ (A ⊗ H ⊗ μA��τ H ) ◦ ( f ⊗ f ⊗ i A��τ H

H )

= (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R) ◦ (((τ ⊗ A) ◦ (A ⊗ cA,H ) ◦ (δA ⊗ H))

⊗τ−1) ◦ δA⊗H ◦ cH ,A ◦ (H ⊗ ((((τ ⊗ A)

◦ (A ⊗ cA,H ) ◦ (δA ⊗ H)) ⊗ τ−1) ◦ δA⊗H ◦ cH ,A)) ◦ (H ⊗ H ⊗ ((A

⊗εH ) ◦ i A��τ H
H )) (by (2), and unit and counit properties)

= (((τ ⊗ τ) ◦ (A ⊗ cA,H ⊗ H) ◦ ((cA,A ◦ δA) ⊗ H ⊗ H))

⊗((A ⊗ τ ⊗ λH ) ◦ (δA ⊗ (R ◦ τ−1))))

◦ (A ⊗ H ⊗ cA,H ⊗ A ⊗ H) ◦ (((((A ⊗ cA,H ) ◦ (δA ⊗ H))

⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ H ⊗ A ⊗ H)

◦ (H ⊗ (δA⊗H ◦ cH ,A)) ◦ (H ⊗ H ⊗ ((A ⊗ εH ) ◦ i A��τ H
H ))

(by naturality of c, coassociativity, and c2 = id)

= ((τ ◦ (A ⊗ μH )) ⊗ ((A ⊗ τ ⊗ λH ) ◦ (δA ⊗ (R ◦ τ−1))))

◦ (A ⊗ H ⊗ cA,H ⊗ A ⊗ H) ◦ (((((A ⊗ cA,H ) ◦ (δA ⊗ H))

⊗H ⊗ τ−1) ◦ δA⊗H ◦ cH ,A) ⊗ H ⊗ A ⊗ H)

◦ (H ⊗ (δA⊗H ◦ cH ,A)) ◦ (H ⊗ H ⊗ ((A ⊗ εH ) ◦ i A��τ H
H ))

(by (a2
′
) of Definition 4.1)

= ((τ ◦ (A ⊗ μH )) ⊗ ((A ⊗ τ ⊗ λH ) ◦ (δA ⊗ (R ◦ ((τ−1

⊗τ−1) ◦ (A ⊗ cA,H ⊗ H) ◦ (δA ⊗ H ⊗ H))))))

◦ (A ⊗ cA⊗A,H⊗H ⊗ H ⊗ H) ◦ (((δA ⊗ A) ◦ δA)

⊗δH⊗H ) ◦ (cH ,A ⊗ H) ◦ (H ⊗ cH ,A)

◦(H ⊗ H ⊗ ((A ⊗ εH ) ◦ i A��τ H
H ))

(by naturality of c, coassociativity, and c2 = id)

= ((τ ◦ (A ⊗ μH )) ⊗ ((A ⊗ τ ⊗ λH ) ◦ (δA ⊗ (R ◦ (τ−1 ◦ (A ⊗ μH ))))))

◦ (A ⊗ cA⊗A,H⊗H ⊗ H ⊗ H) ◦ (((δA ⊗ A)
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◦δA) ⊗ δH⊗H ) ◦ (cH ,A ⊗ H) ◦ (H ⊗ cH ,A)

◦(H ⊗ H ⊗ ((A ⊗ εH ) ◦ i A��τ H
H )) (by (81))

= (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ (R ◦ τ−1)) ◦ (((τ ⊗ A) ◦ (A ⊗ cA,H )

◦ (δA ⊗ H)) ⊗ A ⊗ H) ◦ (A ⊗ cA,H ⊗ H)

◦ (δA ⊗ ((μH ⊗ μH ) ◦ δH⊗H )) ◦ (cH ,A ⊗ H) ◦ (H ⊗ cH ,A)

◦(H ⊗ H ⊗ ((A ⊗ εH ) ◦ i A��τ H
H )) (by naturality of c)

= (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ (R ◦ τ−1)) ◦ (((τ ⊗ A) ◦ (A ⊗ cA,H )

◦ (δA ⊗ H)) ⊗ A ⊗ H) ◦ (A ⊗ cA,H ⊗ H)

◦ (δA ⊗ ((δH ◦ μH )) ◦ (cH ,A ⊗ H) ◦ (H ⊗ cH ,A)

◦(H ⊗ H ⊗ ((A ⊗ εH ) ◦ i A��τ H
H )) (by (4))

= (τ ⊗ ((A ⊗ τ ⊗ λH ) ◦ (δA ⊗ (R ◦ εH ◦ μH )))) ◦ (((δA⊗H ⊗ τ−1)

◦δA⊗H ◦ cH ,A) ⊗ H) ◦ (μH ⊗ i A��τ H
H )

(by naturality of c, (2), and counit properties)

= q A��τ H
H ◦ μA��τ H ◦ (μA��τ H ⊗ A ⊗ H) ◦ ( f ⊗ f ⊗ i A��τ H

H )

(by (2), (137), (138) and unit and counit properties).


�
Corollary 6.9 Let A, H beHopf quasigroups and let τ : A⊗H → K bea skewpairing.
Assume that H is quasitriangular with morphism R. Then, if (133) and (134) hold,
there exist an action ϕA and a coaction ρA such that (A, ϕA, ρA) is a Hopf quasigroup
in H

HYD. Moreover, A � H and A ��τ H are isomorphic Hopf quasigroups in C.
Proof By theproof of the previous theorem,weknow that (A ��τ H , f = ηA⊗H , g =
(τ ⊗ μH ) ◦ (A ⊗ R ⊗ H)) is a strong projection over H and (136) holds. Put

pA��τ H
H = A ⊗ εH , i A��τ H

H = (A ⊗ τ ⊗ λH ) ◦ (δA ⊗ R).

Then, q A��τ H
H = i A��τ H

H ◦ pA��τ H
H and pA��τ H

H ◦ i A��τ H
H = idA because

pA��τ H
H ◦ i A��τ H

H

= (A ⊗ τ ⊗ εH ) ◦ (δA ⊗ R) (by (18))

= (A ⊗ τ) ◦ (δA ⊗ ηH ) (by (d4) of Definition 6.5)

= idA (by (a3) of Definition 4.1, and counit properties).

Therefore, we can choose A = (A ��τ H)H ,

� �
�A A ��τ H A ��τ H ⊗ H

i A��τ H
H

(A ��τ H ⊗ g) ◦ δA��τ H

A ��τ H ⊗ ηH
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is an equalizer diagram and

�
� �

μA��τ H ◦ (A ��τ H ⊗ f )

A ��τ H ⊗ εH

pA��τ H
HA ��τ H ⊗ H A ��τ H A

is a coequalizer diagram.Moreover, by the general theory developed in [2] [see (128)],
we know that (A, ϕA, �A) is aHopf quasigroup in H

HYD, whereϕA is the action defined
in Proposition 5.2, and

ρA = (τ ⊗ cA,H ) ◦ (A ⊗ cA,H ⊗ μH ) ◦ (δA ⊗ (R ◦ τ) ⊗ λH ) ◦ (δA ⊗ R).

By (119) and (121), the new magma–comonoid structure of A is

uA = ηA, mA = μA ◦ (A ⊗ ϕA) ◦ (i A��τ H
H ⊗ A), eA = εA, �A = δA,

and the antipode sA [see (129)] admits the following expression sA = (τ ⊗ϕA)◦ (A⊗
R ⊗ λA) ◦ δA.

Finally, the isomorphism of Hopf quasigroups w = μA��τ H ◦ (i A��τ H
H ⊗ f ) :

A � H → A ��τ H is w = (A ⊗ μH ) ◦ (i A��τ H
H ⊗ H). 
�

Example 6.10 Let H4 be the four-dimensional Taft Hopf algebra and consider theHopf
quasigroup A ��τ H4 constructed in Example 4.12. By [31], we know that H4 has a
one-parameter family of quasitriangular structures Rα defined by

Rα = 1

2
(1 ⊗ 1 + 1 ⊗ x + x ⊗ 1 − x ⊗ x) + α

2
(y ⊗ y − y ⊗ w + w ⊗ y + w ⊗ w).

Therefore, we are in the conditions of the previous corollary and, as a consequence,
A admits a structure of Hopf quasigroup in the category H4

H4
YD. Moreover, A ��τ

H4 � A � H4.
Note that in this case the action on A trivializes because A is cocommutative. As a

consequence, this example does not lead to new solutions of the Yang–Baxter equation
because the associated braiding with A in H4

H4
YD is the usual twist in the category of

vector spaces.
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