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Abstract
The trace norm of the digraph is defined as the sum of the singular values of its
adjacency matrix. We determine the orientations with, respectively, small and large
trace norms among orientations of trees and unicyclic graphs, respectively.
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1 Introduction

We consider digraphs without loops or multiple arcs. Let D be a digraph with vertex
set V (D) and arc set E(D). Denote by uv the arc from vertex u to vertex v (i.e., the
arc with tail u and head v). The outdegree (indegree, respectively) of a vertex u of
D, denoted by d+

D(u) (d−
D(u), respectively), is the number of arcs of the form uv (vu,

respectively) in D. A vertex u with d+
D(u)+d−

D (u) = 1 is a leaf of D. A vertex u with
d+
D(u) = 0 (d−

D(u) = 0, respectively) is called a sink (source, respectively) of D. The
transpose D� of a digraph D is obtained from D by reversing all arcs.

The adjacency matrix of an n-vertex digraph D is the n × n matrix A(D) =
(auv)u,v∈V (G), where auv = 1 if uv ∈ E(D) and 0 otherwise.

We mention that a (simple undirected) graph G corresponds naturally to a digraph
D(G) with the same vertex set such that if there is an edge connecting vertices u
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Fig. 1 Digraph Yn

Yn

and v in G, then there are arcs uv and vu in D(G). The adjacency matrix of G is
A(G) = A(D(G)).

An orientation of a graph G is a digraph obtained by choosing a direction for each
edge of G. A source-sink orientation (SS-orientation for short) of a graph G is an
orientation such that each vertex is either a source or a sink.

For a real matrix M , its trace normN (M) is the sum of singular values of M (i.e.,
the square roots of the eigenvalues ofMMT ). For a (0, 1)-matrixM , bounds onN (M)

may be found in [7,12]. Agudelo et al. [3] studied the trace norm of a matrix related
to the Laplacian matrix of a digraph.

For a digraph D, we call N (A(D)) the trace norm of D. Let σ1, . . . , σn be the
singular values of the A(D), arranged in a non-increasing order, where n = |V (D)|.
Then, N (D) =

n∑

i=1
σi . If G is a graph, then ε(G) = N (D(G)) is just the energy of

G, a graph invariant with many applications, being extensively studied [4,8].
Let Pn be a path on n vertices, and denote by

−→
Pn the directed path on n vertices.

The vertices of
−→
Pn may be labeled as v1, . . . , vn such that its arcs are vivi+1 for

i = 1, . . . , n − 1. Under this labeling, v1 is the origin and vn is the end of
−→
Pn . Let

Cn be a cycle on n vertices, where n ≥ 3, and denote by
−→
Cn the directed cycle on n

vertices. The vertices of
−→
Cn may be labeled as v1, . . . , vn such that its arcs are vivi+1

for i = 1, . . . , n with vn+1 = v1. Let Sn be the star on n vertices. LetUn,3 with n ≥ 3
be the graph obtained from Sn by adding an edge (between two vertices of degree 1),
and let Yn be the orientation of Un,3 in Fig. 1.

Agudelo and Rada [2] gave lower bounds on the trace norm of digraphs. It is
of interest to determine the orientations with minimum and maximum trace norms,
respectively, among some classes of graphs. The classes of trees, unicyclic graphs,
and bicyclic graphs have been considered by Agudelo et al. [1], Monsalve and Rada
[9], and Monsalve, Rada, and Shi [10], respectively.

Theorem 1.1 [1] Let D be an orientation of a tree with n vertices. Then,

√
n − 1 ≤ N (D) ≤ n − 1

with left equality if and only if D is isomorphic to an SS-orientation of Sn, and with

right equality if and only if D ∼= −→
Pn.

Theorem 1.2 [1] Let D be an orientation of a unicyclic graph with n vertices. Then,

N (Yn) ≤ N (D) ≤ n
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with left equality if and only if D is isomorphic to Yn or Y�
n , and with right equality

if and only if D ∼= −→
Cn.

More results on the trace norms of digraphs may be found in [3,11,13].
We continue the study of the trace norms of orientations of trees and unicyclic

graphs. We determine the orientations with small trace norms among all orientations
of trees different from SS-orientations of Sn , the orientations with maximum trace
norm among all orientations of trees different from

−→
Pn , the orientations with minimum

trace norm among all orientations of unicyclic graphs different from Yn and Y�
n , and

the orientations with maximum trace norm among all orientations of unicyclic graphs
different from

−→
Cn . These results may help to understand graph energy in a broad sense.

2 Preliminaries

We need the following lemmas.

Lemma 2.1 [5] Let A be a n × n real matrix and B the submatrix of A obtained by
deleting one row and one column of A. For k = 1, . . . , n − 1, we have

σk(A) ≥ σk(B) ≥ σk+1(A).

Lemma 2.2 [5] Let A and C be n × n real matrices. Then,

n∑

i=1

|σi (A) − σi (C)| ≤
n∑

i=1

σi (A − C).

Lemma 2.3 [1] Let D be a digraph and u a leaf of D. Then,N (D) −N (D − u) ≤ 1.

Let Di be a digraph with vi ∈ V (Di ) for i = 1, 2. The coalescence of the digraphs
D1 and D2 with respect to the vertices v1, v2, denoted by D1 •v1,v2 D2, is the digraph
obtained from D1 and D2 by identifying vertices v1 and v2. By similar argument as
in the proof of Case 2 of Theorem 3.2 in [1], we have the following result.

Lemma 2.4 Let Di be a digraph with vi ∈ V (Di ) for i = 1, 2. Suppose that v1 is a
leaf of D1 and v2 is a leaf of D2. Then, N (D1 •v1,v2 D2) ≤ N (D1) + N (D2).

Recall that the characteristic polynomial of a bipartite graph G with n vertices,
denoted by φ(G, x), has the form

φ(G, x) =
∑

k≥0

(−1)kb2k(G)xn−2k,

where b2k(G) ≥ 0 for all k. Let G1 and G2 be two bipartite graphs on n vertices. A
quasi-order 	 is defined as G1 	 G2 if b2k(G1) ≤ b2k(G2) for all k. If G1 	 G2
and b2k(G1) < b2k(G2) for some k, then we write G1 ≺ G2. It turns out that G1 ≺
G2 ⇒ ε(G1) < ε(G2), see [8].
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For integers a and b with b ≥ a ≥ 1, the tree obtained by adding an edge between
the centers of two vertex-disjoint stars Sa+1 and Sb+1 is denoted by Ba+b+2(a).

Lemma 2.5 [4] Let T be a tree with n vertices different from Sn, Bn(1). Then,

ε(T ) ≥ ε(Bn(2)) > ε(Bn(1)) > ε(Sn)

with equality if and only if G ∼= Bn(2).

For integer n ≥ 4, the unicyclic graph obtained by attaching n − 4 pendant edges
at a vertex of a cycle of length 4 is denoted by Un,4.

Lemma 2.6 [6] Let G be a unicyclic graph with n vertices different from Un,3. Then,

ε(G) ≥ ε(Un,4) > ε(Un,3).

with equality if and only if G ∼= Un,4.

Lemma 2.7 [9] Let G be a graph and D an orientation of G. Then, ε(G) ≤ 2N (D)

with equality if and only if D is an SS-orientation of G.

For vertex-disjoint graphs G and H , G ∪ H denotes the union of G and H , and kG
denotes the union of k copies of G for integer k ≥ 2.

3 Trace Norm of Orientations of Trees

First, we recall a result from [9].

Lemma 3.1 [9] Let D be a digraph. For u ∈ V (D), let N (u) = {w ∈ V (D) :
wu ∈ E(D)}, and let D(u) be the digraph with vertex set V (D) ∪ {u′} and arc
set (E(D) \ {wu : w ∈ N (u)}) ∪ {wu′ : w ∈ N (u)}. For any u ∈ V (D), we have
N (D) = N (D(u)).

Consider a digraph D. For a vertex u of D that is neither source nor sink, let
D′ = D(u) as in Lemma 3.1. Then, u is a source and u′ is a sink in D′. If there exists
a vertex in D′ that is neither a source nor a sink, then repeating this process, we may
finally obtain a digraph D̃, in which all vertices are either sources or sinks. The digraph
D̃ is called the SS-expansion of D. Let D̃ = D if all vertices of D are either sources
or sinks. Obviously, D̃ consists of maximal vertex-disjoint digraphs whose vertices
are either sources or sinks. In the sense of isomorphism, these maximal vertex-disjoint
digraphs whose vertices are either sources or sinks of D̃ may be viewed as maximal
arc-disjoint subdigraphs whose vertices are either sources or sinks of D. Thus, we call
these maximal vertex-disjoint digraphs whose vertices are either sources or sinks of
D̃ the maximal SS-subdigraphs of D̃ or D. If D is an orientation of a tree, then the
number of maximal SS-subdigraphs of D is one more than the number of vertices that
are neither sources nor sinks.
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Theorem 3.1 Let D be an orientation of a tree on n vertices, and D1, . . . , Dk be the
maximal SS-subdigraphs of D. Then,

N (D) =
k∑

i=1

N (Di ).

Proof Note that D1, . . . , Dk are the maximal vertex-disjoint SS-subdigraphs of D̃. By
labeling the vertices of D̃ properly, A(D̃) is a diagonal block matrix with diagonal
blocks A(D1), . . . , A(Dk). Obviously, the singular values of A(D̃) consist of the
singular values of A(D1), . . . , A(Dk). Thus,N (D̃) = ∑k

i=1N (Di ). By Lemma 3.1,
we have N (D) = N (D̃). ��

Theorem 3.2 Let D be an orientation of a tree with n vertices, and D �
−→
Pn. Then,

N (D) ≤ n − 3 + √
2 with equality if and only if D is obtainable by identifying the

end (or origin) of some
−→
Ps and a vertex of some

−→
Pt except the origin (or end), where

s, t ≥ 2 and s + t = n + 1.

Proof Let T be the tree with orientation D. We only need to show that eitherN (D) <

n − 3 + √
2 or N (D) = n − 3 + √

2 and D is obtainable by identifying the end (or
origin) of some

−→
Ps and a vertex of some

−→
Pt except the origin (or end), where s, t ≥ 2

and s + t = n + 1.
Suppose first that the degree of u is at least 4 for some u ∈ V (T ). Then, T contains

S5 with center u. Let D1 be the orientation of this S5 in D. If D1 contains an SS-
orientation D′ of S4, then by using Lemma 2.3 (n − 4 times), we have

N (D) ≤ n − 4 + N (D′) = n − 4 + √
3 < n − 3 + √

2.

Otherwise, D1 consists of two arc-disjoint SS-orientations of S3, N (D1) = 2
√
2 by

Theorem 3.1, and using Lemma 2.3 (n − 5 times), we have

N (D) ≤ n − 5 + N (D1) = n − 5 + 2
√
2 < n − 3 + √

2.

We assume that the maximum degree of T is at most 3. Suppose that there are two
vertices with degree 3 in T . Then, D contains an SS-orientation of S4, and as earlier,
we have N (D) < n − 3 + √

2, or D contains two arc-disjoint SS-orientations of S3.
Assume that the latter case occurs. Let D1, . . . , Dk be the maximal SS-subdigraphs
of D. We may assume that Di contains an SS-orientation of S3 for i = 1, 2. Let
ni = |V (Di )| for i = 1, 2, . . . , k. By considering the number of arcs in D, we have∑k

i=1(n1 − 1) = n − 1. For i = 1, 2, using Lemma 2.3 (ni − 3 times), we have
N (Di ) ≤ N (D∗) + ni − 3 = ni − 3 + √

2, where D∗ is an SS-orientation of S3 in
Di . Now by Theorems 3.1 and 1.1,
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N (D) = N (D1) + N (D2) +
k∑

i=3
N (Di )

≤ n1 − 3 + √
2 + n2 − 3 + √

2 +
k∑

i=3
(ni − 1)

= n − 5 + 2
√
2

< n − 3 + √
2,

Now we assume that the maximum degree of T is at most 3 and there is at most
one vertex of degree 3. Let V ′ be the set of vertices of T except leaves. If there are
two vertices in V ′ that are sources or sinks of D, then D contains two arc-disjoint
SS-orientations of S3, and as earlier, we haveN (D) < n − 3+ √

2, or D contains an
SS-orientation D′ of P4, and thus we have by using Lemma 2.3 (n − 4 times) that

N (D) ≤ N (D′) + n − 4 = n − 4 + √
5 < n − 3 + √

2.

Now we assume that there is at most one vertex in V ′ that is a source or a sink of
D. There are two cases.

Suppose first that the maximum degree of T is 3, i.e., T � Pn . If v is a source or
a sink of D for v ∈ V ′, then D contains an SS-orientation of S4 (if the degree of v in
T is 3), or D contains two edge-disjoint SS-orientations of S3 or an SS-orientation of
P4 (if the degree of v in T is 2), and in either case, we haveN (D) < n − 3+ √

2, as
earlier. We are left with the case that all vertices of degree 2 or 3 are neither sources
nor sinks.

If T ∼= Pn , then as D �
−→
Pn , there is exactly one vertex of degree 2 that is a source

or a sink in D.
Therefore, D is obtainable by identifying the end (or origin) of some

−→
Ps and a

vertex of some
−→
Pt except origin (or end), where s, t ≥ 2 and s + t = n + 1, for which

we have by Theorem 3.1 that

N (D) = (n − 3)N (
−→
P2) + N (D′) = n − 3 + √

2,

where D′ is an SS-orientation of P3. ��
It follows from Theorems 1.1 and 3.2 that there is no orientation D of a tree on n

vertices such that n − 3 + √
2 < N (D) < n − 1.

Recall that φ(nP1, x) = xn for n ≥ 1, φ(Sn, x) = xn − (n − 1)xn−2 for n ≥ 2,
and φ(Bn(a), x) = xn − (n − 1)xn−2 + a(n − 2 − a)xn−4 for 1 ≤ a ≤ � n

2 � − 1.

Lemma 3.2 ε(S2 ∪ Sn−1) < ε(Bn(2)) and ε(Sa+1 ∪ Sn−a) > ε(Bn(2)) for 2 ≤ a ≤
n − 3 and n ≥ 7.

Proof Obviously,

φ(Sa+1 ∪ Sn−a, x) = φ(Sa+1, x)φ(Sn−a, x)
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= (xa+1 − axa−1)
(
xn−a − (n − a − 1)xn−a−2

)

= xn+1 − (n − 1)xn−1 + a(n − a − 1)xn−3

for 1 ≤ a ≤ n − 3, and

φ(Bn(2) ∪ P1, x) = φ(Bn(2), x)x

= xn+1 − (n − 1)xn−1 + (2n − 8)xn−3.

For 1 ≤ a ≤ n − 3 and n ≥ 7, we have

a(n − a − 1)

{
= n − 2 < 2n − 8 if a = 1,

≥ 2n − 6 > 2n − 8 if a ≥ 2,

and thus ε(S2∪ Sn−1) < ε(Bn(2)) and ε(Sa+1∪ Sn−a) > ε(Bn(2)) for 2 ≤ a ≤ n−3.
��

For 2 ≤ a ≤ n − 3, we have

φ(Sa+1 ∪ Bn−a(1), x)

=
(
xa+1 − axa−1

) (
xn−a − (n − a − 1)xn−a−2 + (n − a − 3)xn−a−4

)

= xn+1 − (n − 1)xn−1 + (−a2 + (n − 2)a + n − 3)xn−3 − a(n − a − 3)xn−5

and

φ(S2 ∪ Bn−1(1), x) = xn+1 − (n − 1)xn−1 + (2n − 6)xn−3 − (n − 4)xn−5.

Thus, we have

Lemma 3.3 ε(Sa+1 ∪ Bn−a(1)) > ε(Bn(2)) for 1 ≤ a ≤ n − 3.

Lemma 3.4 ε(S2 ∪ Sa+1 ∪ Sn−1−a) > ε(Bn(2)) for 1 ≤ a ≤ n − 3.

Proof Note that

φ(S2 ∪ Sa+1 ∪ Sn−1−a, x)
= (x2 − 1)(xa+1 − axa−1)

(
xn−1−a − (n − a − 2)xn−a−3

)

= xn+2 − (n − 1)xn + (−a2 + (n − 2)a + (n − 2)
)
xn−2 − a(n − 2 − a)xn−4

and

φ(Bn(2) ∪ 2P1, x) = xn+2 − (n − 1)xn + (2n − 8)xn−2.

The result follows as −a2 + (n − 2)a + (n − 2) ≥ 2n − 5 > 2n − 8. ��
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Agudelo et al. [1] showed that among all orientations of trees of order n, the SS-
orientations of Sn achieve uniquely theminimum trace norm. For 0 ≤ a ≤ �(n−1)/2�,
let Sn,a be the orientation of Sn such that the outdegree of the center is a. For 0 ≤
a ≤ n − 3, let Bn,a be the orientation of Bn(1) containing

−→
P3 with end u such that the

outdegree of u is a, where u is the vertex of Bn(1) with degree n − 2.

Theorem 3.3 Among the orientations of trees on n vertices with n ≥ 7, the SS-
orientations of Bn(1) achieve uniquely the second smallest trace norm, Sn,1, Bn,0
and their transposes achieve uniquely the third smallest trace norm, and the SS-
orientations of Bn(2) achieve uniquely the fourth smallest trace norm.

Proof Let T be a tree on n vertices and D an orientation of T , where D is not an
SS-orientation of Sn .

Suppose first that T � Sn, Bn(1). Then by Lemma 2.5, ε(T ) ≥ ε(Bn(2)) >

ε(Bn(1)) > ε(Sn) with equality if and only if G ∼= Bn(2). Let D be an SS-orientation
of Bn(2). By Lemma 2.7, we have

N (D) ≥ 1

2
ε(T ) ≥ 1

2
ε(Bn(2)) = N (D)

with equalities if and only if T ∼= Bn(2) and D is an SS-orientation of T , i.e., D is an
SS-orientation of Bn(2). Thus, if T � Sn, Bn(1), then, among orientations of T , the
SS-orientations of Bn(2) achieve uniquely the smallest trace norm.

Suppose next that T ∼= Sn . Then D ∼= Sn,a or S�
n,a for some a with 1 ≤ a ≤

�(n−1)/2� since D is not an SS-orientation of Sn . By Theorem 3.1 and by Lemma 2.7,
we have

N (D) = N (D1) + N (D2) = 1

2
ε(Sa+1 ∪ Sn−a),

where D1 is an SS-orientation of Sa+1 and D2 is an SS-orientation of Sn−a . By
Lemmas 3.2 and 2.7 , we have

N (Sn,1) = N (S�
n,1) < N (D) < N (Sn,a) = N (S�

n,a)

for 2 ≤ a ≤ �(n − 1)/2�.
Now suppose that T ∼= Bn(1). Let v be the vertex of degree 2 in Bn(1).
Suppose that d+

D(v)d−
D(v) = 0, say d−

D(v) = 0. If D is not an SS-orientation of
Bn(1), then d+

D (u) = a for some a with 1 ≤ a ≤ n − 3, and by Lemma 3.3 and
Theorem 3.1, we have

N (D) = N (D1) + N (D2) = 1

2
ε(Sa+1 ∪ Bn−a(1)) >

1

2
ε(Bn(2)) = N (D),

where D1 is an SS-orientation of Sa+1 and D2 is an SS-orientation of Bn−a(1). If
d+
D(v)d−

D(v) �= 0, then D, D� ∼= Bn,b for some b with 0 ≤ b ≤ n − 3, and if b ≥ 1,
then by Theorem 3.1 and Lemmas 2.7 and 3.4 , we have

N (D) = N (D1) + N (D2) + N (D3) = 1

2
ε(S2 ∪ Sb+1 ∪ Sn−1−b) >

1

2
ε(Bn(2)) = N (D),
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where D1 is an SS-orientation of S2, D2 is an SS-orientation of Sb+1 and D3 is an SS-
orientation of Sn−1−b. Thus, if D is not an SS-orientation of Bn(1), and D, D� � Bn,0,
we have

N (D) > N (D).

LetBn be an SS-orientation of Bn(1). Note that ε(S2∪ Sn−1) = xn+1−(n−1)xn−1+
(n−2)xn−3 and ε(Bn(1)∪P1) = xn+1−(n−1)xn−1+(n−3)xn−3. Thus, ε(Bn(1)) =
ε(Bn(1)∪P1) < ε(S2∪Sn−1). ByLemma2.7,Theorem3.1 and the fact thatN (Sn,1) <

N (D), we have

N (Bn) < N (Bn,0) = N (D1) + N (D2) = N (Sn,1) < N (D),

where D1 is an SS-orientation of S2 and D2 is an SS-orientation of Sn−1.
By Theorem 1.1 and combining the above three cases, the result follows. ��

4 Trace Norm of Orientations of Unicyclic Graphs

Lemma 4.1 Let D be an orientation of Cn with u being a sink or source. Then,N (D)−
N (D − u) ≤ √

2.

Proof Let Cn = v1v2 . . . vnv1 with u = v1. Assume that u is a source, i.e., d+
D(u) = 2

and d−
D(u) = 0. Consider the matrix A(D). The first row of A(D) is (0, 1, 0, ..., 0, 1)

and the first column of A(D) is a zero vector. By deleting the first row and column
from A(D), we obtain the adjacency matrix B of D − u. By Lemma 2.1,

σk(A) ≥ σk(B) ≥ σk+1(A)

for k = 1, . . . , n − 1. Now consider the n × n matrix C =
(
0 0
0T B

)

. Then σk(C) =
σk(B) for all k = 1, . . . , n − 1 and σn(C) = 0. Furthermore, σ1(A − C) = √

2 and
σk(A − C) = 0 for all k = 2, . . . , n. Since |σi (A) − σi (C)| = σi (A) − σi (C) for all
i = 1, . . . , n, we have by Lemma 2.2 that

N (D) − N (D − u) =
n∑

i=1
σi (A) −

n−1∑

i=1
σi (B)

=
n∑

i=1
σi (A) −

n∑

i=1
σi (C)

≤
n∑

i=1
σi (A − C)

= √
2,

as desired. ��
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Fig. 2 Digraph Dn,k

Dn,k

v1

vk

vk+1

Lemma 4.2 For 3 ≤ k ≤ n − 1, let Dn,k be the orientation of a graph on n-vertex
oriented graphs shown in Fig. 2. Then, N (Dn,k) = n − 2 + √

2.

Proof Let D = Dn,k . By Lemma 3.1 and Theorem 3.1, we have

N (D) = N (D(v1)) = (n − 2)
−→
P2 + N (D′) = n − 2 + √

2,

where D′ is an SS-orientation of P3. ��

Lemma 4.3 Let D be an orientation of Cn and D �= −→
Cn. Then,N (D) ≤ n − 3+ √

5.

Proof As D �= −→
Cn , there is at least one sink or source in D. Suppose first that there is

exactly one sink u in D, then there is exactly one source v in D. Let w ∈ V (D) and
w �= u, v. By Lemma 3.1,N (D) = N (D(w)). If uv ∈ E(Cn), then by Theorem 3.1,
N (D(w)) = (n−3)N (

−→
P2)+N (D′) = n−3+√

5, where D′ is an SS-orientation of
P4. If uv /∈ E(Cn), then by Theorem 3.1, N (D(w)) = (n − 4)N (

−→
P2) + 2N (D′) =

n − 4 + 2
√
2 < n − 3 + √

5, where D′ is an SS-orientation of P3. Thus, N (D) =
N (D(w)) ≤ n − 3 + √

5.
Suppose now that D has at least two sinks. Let u be a sink of D. Then, D − u is an

oriented tree with n − 1 vertices and D − u �= −−→
Pn−1. By Theorem 3.2, N (D − u) ≤

n−4+√
2. By Lemma 4.1,N (D) ≤ N (D−u)+√

2 ≤ n−4+2
√
2 < n−3+√

5.
��

Theorem 4.1 Let D be an oriented unicyclic graph with n vertices and D �= −→
Cn. Then,

N (D) ≤ n − 2 + √
2 with equality if and only if D ∼= Dn,k, D�

n,k for some k with
3 ≤ k ≤ n − 1.

Proof Let G = GD . Assume that Ck is the unique cycle of G. If k = n, then by
Lemma 4.3,N (D) ≤ n − 3+ √

5 < n − 2+ √
2. Suppose that k < n. Let D1 be the

orientation ofCk in D. If D1 �= −→
Ck , then byLemma 4.3, we haveN (D1) ≤ k−3+√

5,
and thus by applying Lemma 2.3 (n − k times), we haveN (D) ≤ N (D1) + n − k ≤
k − 3 + √

5 + n − k = n − 3 + √
5 < n − 2 + √

2.
Assume that D1 = −→

Ck , V (D1) = {v1, . . . , vk} and v1v2 ∈ E(D1).
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U1

v1

v2

U2

v1

v2

Fig. 3 Digraphs U1, U2

If there is a vertex, say v1, in Ck with degree at least 4 in G, then this vertex
has two neighbors outside Ck in G, and thus D contains an induced subdigraph that
is isomorphic to one of U1 , U�

1 or U2, where U1 and U2 are shown in Fig. 3. By
Lemma 3.1 and Theorem 3.1, we have

N (U1) = N (U1(v1)) = (k − 1)N (
−→
P2) + N (D′

1) = k − 1 + √
3 < k + √

2

and

N (U2) = N (U2(v1)) = (k − 2)N (
−→
P2) + 2N (D′

2) = k − 2 + 2
√
2 < k + √

2,

where D′
1 is an SS-orientation of S4 and D′

2 is an SS-orientation of P3. Now with
i = 1, 2, by applying Lemma 2.3 (repeatedly n − (k + 2) times), we have

N (D) ≤ N (Ui ) + n − (k + 2) < n − 2 + √
2.

If there are two vertices, say v1 and vs with s = 2, . . . , k−1, inCk with degree 3 in
G, then each of them has a neighbor outside Ck in G, and thus D contains an induced
subdigraph D∗ that is isomorphic to one of the digraphs Ws,i , which are shown in
Fig. 4 for i = 1, 2, 3, 4. By Lemma 3.1 and Theorem 3.1, if (s, i) �= (2, 2), then

N (Ws,i ) = N (Ws,i (v1)) = (k − 2)N (
−→
P2) + 2N (D′

1) = k − 2 + 2
√
2

for 2 ≤ s ≤ k − 1 and 1 ≤ i ≤ 4, and

N (W2,2) = N (W2,2(v1)) = (k − 1)N (
−→
P2) + N (D′

2) = k − 1 + √
5,

where D′
1 (D′

2, respectively) is an SS-orientation of P3 (P4, respectively). Thus,
N (D∗) < k + √

2. In either case, by applying Lemma 2.3 (repeatedly n − (k + 2)
times), we have

N (D) ≤ N (D∗) + n − (k + 2) < n − 2 + √
2.
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Ws,1

v1

v2

vs

Ws,2

v1

v2

vs

Ws,3

v1

v2

vs

Ws,4

v1

v2

vs

Fig. 4 Digraphs Ws,i with i = 1, 2, 3, 4

Q1

v1

v2

vk+1

Q2

v1

v2

vk+1

Q3

v1

v2

vk+1

Fig. 5 Digraphs Q1, Q2 and Q3

Now we may assume that there is exactly one vertex, say v1, in Ck with degree 3 in
G. Let vk+1 be the unique neighbor of v1 outside Ck . Suppose first that the degree of
vk+1 in G is at least 3. Then, D contains an induced subdigraph D∗ that is isomorphic
to one of the digraphs Qi and Q�

i for i = 1, 2, 3, which are shown in Fig. 5. By
Lemma 3.1 and Theorem 3.1, we have

N (Q1) = N (Q1(v1)) = (k − 1)N (
−→
P2) + 2N (D′

1) = k − 1 + 2
√
2 < k + 1 + √

2,

N (Q2) = N (Q2(v1)) = kN (
−→
P2) + N (D′

2) = k + √
5

and

N (Q3) = N (Q3(v1)) ≤ kN (
−→
P2) + N (D′

2) = k + √
5 < k + 1 + √

2,
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Fig. 6 Digraph D̂

v1

v2

vk+1

where D′
1 is an SS-orientation of P3 and D

′
2 is an SS-orientation of P4. Thus,N (D∗) <

k + 1 + √
2. Using Lemma 2.3 by n − (k + 3) times, we have

N (D) ≤ N (D∗) + n − (k + 3) < n − 2 + √
2.

Assume that the degree of vk+1 in G is 1 or 2. If the degree of vk+1 in G is 1, then
D ∼= Dn,n−1, D�

n,n−1, and by Lemma 4.2, N (D) = n − 2 + √
2.

Assume that the degree of vk+1 inG is 2. Then, D = P•vk+1,vQ, where P = Dk+1,k
or D�

k+1,k and Q is an orientation of tree on n − k vertices. Note that vk+1 is a leaf of

P and v is a leaf of Q. By Lemma 4.2, N (P) = (k + 1) − 2 + √
2. If Q �= −−→

Pn−k ,
then by Theorem 3.2, N (Q) ≤ n − k − 3 + √

2, and by Lemma 2.4, we have

N (D) ≤ N (P) + N (Q) ≤ (k + 1) − 2 + √
2 + n − k − 3 + √

2

= n − 4 + 2
√
2 < n − 2 + √

2.

If Q = −−→
Pn−k , then D = Dn,k , D�

n,k with 3 ≤ k ≤ n − 2 or D contains an induced

subdigraph that is isomorphic to D̂ or D̂�, where D̂ is shown in Fig. 6.
Suppose that D � Dn,k or D�

n,k . By Lemma 3.1 and Theorem 3.1, we have

N (D̂) = N (D̂(v1)) = (k − 1)N (
−→
P2) + N (D′) = k − 1 + √

5 < k + √
2,

where D′ is an SS-orientation of P4. Using Lemma 2.3 by n− (k +2) times, we have

N (D) ≤ N (D̂) + n − (k + 2) < n − 2 + √
2.

If D = Dn,k or D�
n,k , then by Lemma 4.2, N (D) = n − 2 + √

2. ��
In [9], Monsalve and Rada proved that Yn or Y�

n achieves uniquely the minimum
trace norm over the set of orientations of unicyclic graphs with n ≥ 7 vertices.

Lemma 4.4 ε(Un,4) < ε(Bn−k+1(1) ∪ Sk+1) for 1 ≤ k ≤ n − 3.

Proof It is obvious that Un,4 and Un,4 ∪ 2P1 have equal energy. By Sachs theorem,

φ(Bn−k+1(1) ∪ Sk+1, x)
= (

xn−k+1 − (n − k)xn−k−1 + (n − k − 2)xn−k−3
)
(xk+1 − kxk−1)

= xn+2 − nxn + (−k2 + (n − 1)k + n − 2
)
xn−2 − k(n − k − 2)xn−4
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and

φ(Un,4 ∪ 2P1, x) = xn+2 − nxn + (2n − 8)xn−2.

Let f (k) = −k2+(n−1)k+n−2with 1 ≤ k ≤ n−3. Then, f (k) ≥ min{ f (1), f (n−
3)} = 2n−4 > 2n−8. The result follows from the increasing property of the energy.

��
Let DSn be the tree obtained from P4 = v1v2v3v4 by attaching k pendent vertices

to v1 and n − 4 − k pendent vertices to v4.

Lemma 4.5 ε(Un,4) < ε(DSn+1) for n ≥ 4.

Proof By Sachs theorem,

φ(DSn+1, x) = xn+1 − nxn−1 +
(
−k2 + (n − 3)k + 2n − 5

)
xn−3

−k(n − k − 3)xn−5

and

φ(Un,4 ∪ P1, x) = xn+1 − nxn−1 + (2n − 8)xn−3.

Let g(k) = −k2+(n−3)k+2n−5with 0 ≤ k ≤ n−3. Then, g(k) ≥ min{g(0), g(n−
3)} = 2n−5 > 2n−8. The result follows from the increasing property of the energy.

��
Let Un,4 be an SS-orientation of Un,4.

Theorem 4.2 Let D be an orientation of a unicyclic graph with n vertices different
from Yn, Y�

n . Then,

N (D) ≥ N (Un,4) > N (Yn) = N (Y�
n )

with equality if and only if D is an SS-orientation of Un,4.

Proof Let G = GD . If G � Un,3, then by Lemmas 2.6 and 2.7, we have

N (D) ≥ 1

2
ε(G) ≥ 1

2
ε(Un,4) = N (Un,4)

with equality if and only if G ∼= Un,4 and D is an SS-orientation of G. From [9], we
have

N (Un,4) > N (Yn) = N (Y�
n ).

Suppose that G ∼= Un,3 and D � Yn,Y�
n . Then D is of the form Un,3;i , U�

n,3;i
with i = 1, 2, 3, which are displayed in Fig. 7, and in Un,3;1 the indegree of v is k,
1 ≤ k ≤ n − 3, and in Un,3;i with i = 2, 3, the indegree of v is k + 1, 0 ≤ k ≤ n − 3.
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Un,3;1

v

k

Un,3;2

v

k

Un,3;3

v

k

Fig. 7 Digraphs Un,3;1, Un,3;2, Un,3;3

If D, D� ∼= Un,3;1, U�
n,3;1, then by Lemmas 2.7, 3.1 and 4.4 and Theorem 3.1,

N (D) = N (D(v)) = N (D1) + N (D2)

= 1

2
ε(Bn−k+1(1) ∪ Sk+1) >

1

2
ε(Un,4) = N (Un,4),

where D1 is an SS-orientation of Bn−k+1(1) and D2 is an SS-orientation of Sk+1.
If D, D� ∼= Un,3;i , U�

n,3;i with i = 2, 3, then by Lemmas 2.7, 3.1 and 4.5 ,

N (D) = N (D(v)) ≥ 1

2
ε(DSn+1) >

1

2
ε(Un,4) = N (Un,4).

The result follows. ��
Acknowledgements This work was supported by National Natural Science Foundation of China
(No. 11701102) and Guangdong Provincial Natural Science Foundation of China (Nos. 2017A030310441
and 2017A030313032).
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