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Abstract
In this article, we investigate the interplay between stem covers, the Schur multiplier
of Leibniz crossed modules and the non-abelian exterior product of Leibniz algebras.
Explicitly, we obtain a six-term exact sequence associated with a central extension
of Leibniz crossed modules, which is useful to characterize stem covers. We show
the existence of stem covers and determine the structure of all stem covers of Leibniz
crossedmodules. Also, we give the connection between the stem cover of a Lie crossed
module in the categories of Lie and Leibniz crossed modules, respectively.

Keywords Leibniz algebra · Leibniz crossed module · Schur multiplier · Stem
cover · Stem extension
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1 Introduction

Leibniz algebras are algebraic structures introduced by Bloh in [1,2] as a non-skew
symmetric generalization of Lie algebras. In the 1990s, Loday rediscovered and devel-
oped them [22,23]when he handled periodicity phenomena in algebraicK-theory [24].
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This structure is not only important by algebraic reasons, but also for its applications
in other branches such as geometry or physics (see, for instance, [11,18,20,25]).

A Leibniz algebra is a K-vector space q equipped with a bilinear map [−,−] :
q × q −→ q satisfying the Leibniz identity [x, [y, z]] = [[x, y], z] − [[x, z], y], for
all x, y, z ∈ q. If we assume [x, x] = 0 for all x ∈ q, then q is a Lie algebra.

An active line of research consists in the extension of properties from Lie algebras
to Leibniz algebras. As an example of these generalizations, stem covers and stem
extensions of a Leibniz algebra were studied in [10]; in [19] was extended to Leibniz
algebras the notion of non-abelian tensor product of Lie algebras introduced by Ellis
in [14]; in [12], authors investigated the interplay between the non-abelian tensor and
exterior products of Leibniz algebras with the low-dimensional Leibniz homology of
Leibniz algebras.

Crossed modules of groups were described for the first time by Whitehead
in the late 1940s [32] as an algebraic model for path-connected CW spaces
whose homotopy groups are trivial in dimensions greater than 2. Crossed mod-
ules of different algebraic objects can be regarded as algebraic structures that
generalize simultaneously the notions of normal subobject and module. They
were used in many branches of mathematics such as category theory, coho-
mology of algebraic structures, differential geometry or physics. Also crossed
modules were defined in different categories such as Lie algebras and commu-
tative algebras [21,29], either as tools or as algebraic structures in their own
right. Leibniz crossed modules were introduced in [24] to study the cohomol-
ogy of Leibniz algebras. They were also used as coefficients for non-abelian
(co)homology of Leibniz algebras in [8]. Since Leibniz crossed modules are gen-
eralizations of Lie crossed modules and Leibniz algebras, it is of interest to extend
results from Leibniz algebra and Lie crossed modules to Leibniz crossed mod-
ules.

Accordingly, in this paper we show that Leibniz crossed modules constitute
a semi-abelian category with enough projective objects; hence, the Baer invari-
ant (u,r,μ)∩[(m,f,μ),(m,f,μ)]

[(u,r,μ),(m,f,μ)] associated with the projective presentation 0 −→
(u, r, μ) −→ (m, f, μ)

(π1,π2)−→ (n, q, δ) −→ 0, called the Schur multiplier of the
Leibniz crossed module (n, q, δ) and denoted by M(n, q, δ), plays a central role in
the study of connections with the non-abelian exterior product of Leibniz algebras, in
the study of stem covers of Leibniz crossed modules and in the study of connections
with stem covers of Lie crossed modules.

The paper is organized as follows: in Sect. 2, we recall some basic categorical
concepts such as the commutator of two ideals, the center and central exten-
sions of Leibniz crossed modules. Moreover, we show that the category of Leibniz
crossed modules has enough projective objects. In Sect. 3, we describe the Schur
multiplier of a Leibniz crossed module and analyze its interplay with the non-
abelian exterior product of Leibniz algebras given in [12]. Explicitly, we show that
M(n, q, δ) ∼= Ker ((q � n, q � q, id � δ) −→ (n, q, δ)) andwe construct the six-term
exact sequence
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(I , b � p, σ � id) M(h, p, σ ) M(n, q, δ)

(a, b, σ ) (h, p, σ )ab (n, q, δ)ab 0.

associated with the central extension of Leibniz crossed modules (e) : 0 −→ (a, b, σ )

−→ (h, p, σ )
ϕ−→ (n, q, δ) −→ 0.

In Sect. 4, we characterize and study properties of stem covers of Leibniz crossed
modules through the Schur multiplier; in particular, we show the existence of stem
covers for an arbitrary Leibniz crossed module and similarly to a result of Schur in
the group case [31], we determine the structure of all stem covers of a Leibniz crossed
module whose Schur multiplier is finite dimensional. Finally, in the last section, we
study the connections between the stemcovers of aLie crossedmodule in the categories
of Lie and Leibniz crossed modules, respectively.

2 Preliminaries on Leibniz CrossedModules

This section is devoted to recall some basic definitions on Leibniz crossed modules,
which will be needed in the sequel.

Definition 1 [24] Let m and n be Leibniz algebras. A Leibniz action of m on n is a
couple of bilinear maps m× n −→ n, (m, n) �−→m n, and n×m −→ n, (n,m) �−→
nm , satisfying the following axioms:

[m,m′]n =m (m
′
n) + (mn)m

′
, m[n, n′] = [mn, n′] − [mn′, n],

n[m,m′] = (nm)m
′ − (nm

′
)m, [n, n′]m = [nm, n′] + [n, n′m],

m(m
′
n) = −m(nm

′
), [n,m n′] = −[n, n′m],

for each m,m′ ∈ m, n, n′ ∈ n.

Definition 2 [24] A Leibniz crossed module (n, q, δ) is a homomorphism of Leibniz
algebras δ : n −→ q together with a Leibniz action of q on n such that

(i) δ(qn) = [q, δ(n)], δ(nq) = [δ(n), q],
(ii) δ(n1)n2 = [n1, n2] = n1δ(n2),

for all q ∈ q and n1, n2 ∈ n.

Example 1 (i) Let n be a two-sided ideal of a Leibniz algebra q, then (n, q, i) is a
Leibniz crossed module, where i is the inclusion map and the Leibniz action of
q on n is given by the Leibniz bracket. In this way, every Leibniz algebra q can
be regarded as crossed module in the two obvious ways (0, q, i) and (q, q, id).

(ii) For any q-module m the trivial map 0 : m → q is a crossed module with the
trivial action of q on the abelian Leibniz algebra m.

(iii) Any homomorphism of Leibniz algebras δ : n → q, with n abelian and Im(δ) in
the center of q, provides a crossed module with q acting trivially on n.
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Definition 3 [6] A homomorphism of Leibniz crossed modules, (ϕ, ψ) : (n, q, δ)
−→ (n′, q′, δ′), is a pair of Leibniz algebra homomorphisms ϕ : n −→ n′ and
ψ : q −→ q′ such that ψ ◦ δ = δ′ ◦ ϕ and ϕ preserves the Leibniz action of q via ψ ,
i.e., ϕ(qn) = ψ(q)ϕ(n) and ϕ(nq) = ϕ(n)ψ(q), for all n ∈ n and q ∈ q.

A homomorphism of crossed modules (ϕ, ψ) is called injective if both ϕ and ψ

are injective homomorphisms of Leibniz algebras. Also, (ϕ, ψ) is called surjective if
ϕ and ψ are onto maps.

It is clear that Leibniz crossed modules constitute a category, which is denoted
by XLb. Theorem 10 in [8], in the particular case n = 2, provides the equivalence
between the categories XLb and Cat1-Lb of cat1-Leibniz algebras (see also [6]).
Moreover, [4] shows that Cat1-Lb is a modified category of interest, which is a semi-
abelian category. Hence, XLb is a semi-abelian category (see also [6]). Subobjects
and normal subobjects in XLb are the crossed submodules and ideals of a crossed
module, that is, (m, g, ∂) is a crossed submodule of a crossed module (n, q, δ) if m is
a subalgebra of n, g is a subalgebra of q, ∂ = δ|m and the Leibniz action of g on m is
the restriction of the Leibniz action of q on n. A crossed submodule (m, g, ∂) is said
to be an ideal of (n, q, δ) when gn, ng ∈ m, for all g ∈ g, n ∈ n, and qm,mq ∈ m, for
all m ∈ m, q ∈ q.

According to [17] (see also [15,16]), we have the following notions corresponding
to the category XLb:

– The commutator of two ideals (s, h, δ) and (t, j, δ) of a Leibniz crossed module
(n, q, δ) is the ideal

[(s, h, δ), (t, j, δ)] = (
< Dh(t), Dj(s) >, [h, j], δ|

)

where Dh(t) = {ht, th | h ∈ h, t ∈ t} and Dj(s) = { j s, s j | j ∈ j, s ∈ s}.
– In particular, the derived crossed module of a crossed module (n, q, δ) is

(n, q, δ)′ = [(n, q, δ), (n, q, δ)] = (
Dq(n), [q, q], δ|

)

– Following [5], the ideal (n, q, δ)ann is the crossed submodule (n, qLie, δ̄), where n
is the ideal of n generated by all elements [n, n] and [q, n] + [n, q], q ∈ q, n ∈ n,
and qann is the ideal of q generated by all elements [q, q] for q ∈ q. Moreover,
(n, q, δ)Lie = (n, q, δ)/(n, q, δ)ann is a Lie crossed module.

– Following [6], the ideal Z(n, q, δ) = (
nq, stq(n) ∩ Z(q), δ|

)
is the center of the

crossed module (n, q, δ), where Z(q) is center of q, nq = {n ∈ n | qn = nq =
0, for all q ∈ q} and stq(n) = {q ∈ q | qn = nq = 0, for all n ∈ n}.

– An extension of Leibniz crossed modules (e) : 0 → (a, b, σ ) → (h, p, σ ) →
(n, q, δ) → 0 is said to be central if (a, b, σ ) ⊆ Z(h, p, σ ), equivalently [(a, b, σ ),

(h, p, σ )] = 0.
– A Leibniz crossed module (n, q, δ) is said to be finite dimensional if the Leibniz
algebras n and q are both finite dimensional.

– A Leibniz crossed module (n, q, δ) is perfect if it coincides with its commutator
crossed submodule and it is abelian if it coincides with its center. It is easy to show
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that (n, q, δ) is abelian if and only if n and q are abelian Leibniz algebras and the
Leibniz action of q on n is trivial. We will denote the category of abelian crossed
modules by AbXmod. Obviously, (n, q, δ)ab = (n, q, δ)/[(n, q, δ), (n, q, δ)] =(
n/Dq(n), q/[q, q], δ

)
is an abelian crossed module called the abelianization of

(n, q, δ).

Theorem 1 XLb is a category with enough projective objects.

Proof There is a faithful functorU1 : XLb → Lb, which assigns to a Leibniz crossed
module (n, q, δ) the direct product of Leibniz algebras n × q. Now we define the
functor F1 : Lb → XLb that assigns to any Leibniz algebra h the inclusion crossed
module (h̄, h ∗ h, inc), where ∗ is the coproduct of Leibniz algebras, with the natural
inclusions i1, i2 : h → h ∗ h, and h̄ is the kernel of the retraction p2 : h ∗ h → h
determined by the conditions p2 ◦ i1 = 0 and p2 ◦ i2 = idh. A direct adaptation of the
proof of [7, Proposition 2.1.1] to Leibniz algebras case shows that F1 is left adjoint
to U1.

Now consider the forgetful functorU2 : Lb → Set that assigns to a Leibniz algebra
q its underlying set. It is well known (see, for instance, [12]) thatU2 has as left adjoint
the free Leibniz algebra functor F2 : Set → Lb.

Hence, the composition (F,U) = (F1 ◦ F2,U2 ◦ U1) is an adjoint pair, so the free
Leibniz crossedmoduleF(X), for X ∈ Set, is a projective objectwith respect to regular
epimorphisms in XLb and any Leibniz crossed module (n, q, δ) admits a projective
presentation by means of the counit of the adjunction FU(n, q, δ) � (n, q, δ). ��

The following lemma is useful in our investigation.

Lemma 1 (i) Anabelian crossedmodule (A, B, μ) is projective in the categoryAbX-
mod if and only if μ is injective.

(ii) Let (m, f, μ) be a projective Leibniz crossed module, then:

(a) any crossed submodule of (m, f, μ)ab is projective in AbXmod.
(b) the homomorphismμ is injective, f and f/μ(m) are projective Leibniz algebras

and HLi (f/μ(m)) = 0, i ≥ 2.

Proof (i) We can consider (A, B, μ) as a Leibniz crossed module. According to The-
orem 1, (A, B, μ) admits a projective presentation by means of the counit of the

adjunction FU(A, B, μ)
(π1,π2)� (A, B, μ). If (A, B, μ) is projective, then the mor-

phism (π1, π2) is split. Thus, (A, B, μ) is isomorphic to a crossed submodule of
FU(A, B, μ) = (F(X), F(X) ∗ F(X), inc), so μ is injective.

Conversely, let (A, B, μ) be aspherical (that isμ is injective), and X , Y be the basis
of A and B, respectively. We may assume that X ⊆ Y . Let (δ1, δ2) : (A, B, μ) −→
(T2, L2, σ2) and (ε1, ε2) : (T1, L1, σ1) � (T2, L2, σ2) be homomorphisms of crossed
modules in AbXmod, such that (ε1, ε2) is surjective. There is a homomorphism θ1 :
A −→ T1 such that ε1◦θ1 = δ1.We define themap h : Y −→ L1, as h(x) = σ1◦θ1(x)
if x ∈ X , otherwise h(x) = lx , where lx is a preimage of δ2(x) via ε2, that is
ε2(lx ) = δ2(x). Then, h extends to a homomorphism θ2 : B −→ L2. It is readily
verified that (θ1, θ2) : (A, B, μ) −→ (T1, L1, σ ) is a homomorphism of crossed
modules.
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(ii) (a) The abelianization functor Ab : XLb −→ AbXmod, Ab(n, q, δ) =
(n, q, δ)ab is left adjoint of the inclusion functor inc : AbXmod −→ XLb. Since
the inclusion functor preserves epimorphisms, Ab preserves projective objects. Now,
if (m, f, μ) is a projective Leibniz crossed module, then (m, f, μ)ab is also projective
in the category AbXmod and the result follows.

(b) The homomorphism μ is injective by applying an argument similar to the proof
of statement (i). Now, assume there exist the homomorphisms of Leibniz algebras
g : q � q2 and h : f/μ(m) −→ q2. So, we have the induced morphisms of crossed
modules (0, g) : (0, q1, i) � (0, q2, i) and (0, h ◦ π) : (m, f, μ) −→ (0, q2, i). By
the assumptions, there is a morphism of crossed modules (β1, β2) : (m, f, μ) −→
(0, q1, i), such that g ◦ β2 = h ◦ π . Since β2(μ(m)) = 0, β̄ : f/μ(m) −→ q1 is
induced by β2. It is easy to check that g ◦ β = h, so f/μ(m) is projective. Similarly,
f is projective. Finally, since HL∗(f/μ(m)) = T ORUL(f/μ(m))∗

(
U ((f/μ(m))Lie)

)

[24, Theorem 3.4], and (f/μ(m))Lie is a projective Lie algebra, U
(
(f/μ(m))Lie

)
is

projective; then, the result follows for any i ≥ 2. ��
Remark 1 Let q be a projective Leibniz algebra. Then, Lemma 1 (ii) applied to the
Leibniz crossed module (0, q, i) implies that HLi (q) = 0 for i ≥ 2.

3 Schur Multiplier of Leibniz CrossedModules

Due to Theorem 1, any Leibniz crossed module has a projective presentation 0 −→
(u, r, μ) −→ (m, f, μ)

(π1,π2)−→ (n, q, δ) −→ 0 and following [16, Theorem 6.9 and
Corollary 6.10] the quotient

(u, r, μ) ∩ [(m, f, μ), (m, f, μ)]
[(u, r, μ), (m, f, μ)]

is a Baer invariant, which means it does not depend on the chosen projective presen-
tation. By analogy with other algebraic theories, we call this term Schur multiplier of
the Leibniz crossed module (n, q, δ) and we denote it byM(n, q, δ).

Remark 2 Let q be any Leibniz algebra, and 0 → (m, r, μ) → (m, f, μ) →
(0, q, i) → 0 be a projective presentation of the Leibniz crossed module (0, q, i).
Then,

M(0, q, i) ∼=
(
0,

r ∩ [f, f]
[r, f] , μ

)

On the other hand, by the proof of Theorem 1, there is a projective presentation
0 → (m1, r1, μ1) → (m1, f1, μ1) → (0, q, i) → 0 of (0, q, i) such that (m1, f1, μ1)

and f1 are free objects in XLb and Lb, respectively. So, 0 → r1 → f1 → q → 0 is a

free presentation of q, implying that M(q) ∼=
(
r1∩[f1,f1][r1,f1]

) ∼= HL2 (q). We therefore

conclude that M(0, q, i) ∼= (0, HL2(q), i).
With a similar reasoning,wecan conclude thatM(q, q, id) ∼= (HL2(q), HL2(q), id).
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Moreover, associated with a short exact sequence of Leibniz crossed modules (e) :
0 −→ (a, b, σ )

(i1,i2)−→ (h, p, σ )
( f1, f2)−→ (n, q, δ) −→ 0 there exists the following

five-term exact sequence:

M(h, p, σ ) → M(n, q, δ)
θ∗(e)→ (a, b, σ )

[(a, b, σ ), (h, p, σ )]
→ (h, p, σ )ab → (n, q, μ)ab → 0. (1)

3.1 Non-abelian Tensor and Exterior Product

Definition 4 [19] Let m and n be Leibniz algebras with mutual Leibniz actions on
each other. The non-abelian tensor product ofm and n, denoted bym�n, is the Leibniz
algebra generated by the symbols m ∗ n and n ∗ m, for all m ∈ m and n ∈ n, subject
to the following relations:

(1a) k(m ∗ n) = km ∗ n = m ∗ kn, (1b) k(n ∗ m) = kn ∗ m = n ∗ km,

(2a) (m + m′) ∗ n = m ∗ n + m′ ∗ n, (2b) (n + n′) ∗ m = n ∗ m + n′ ∗ m,

(2c) m ∗ (n + n′) = m ∗ n + m ∗ n′, (2d) n ∗ (m + m′) = n ∗ m + n ∗ m′,
(3a) m ∗ [n, n′] = mn ∗ n′ − mn′ ∗ n, (3b) n ∗ [m,m′] = nm ∗ m′ − nm

′ ∗ m

(3c) [m,m′] ∗ n =m n ∗ m′ − m ∗ nm
′
, (3d) [n, n′] ∗ m = nm ∗ n′ − n ∗ mn′

,

(4a) m ∗m′
n = −m ∗ nm

′
, (4b) n ∗n′

m = −n ∗ mn′
,

(5a) mn ∗m′
n′ = [m ∗ n,m′ ∗ n′] =m n ∗ m′n′

, (5b) nm ∗ n′m′ = [n ∗ m, n′ ∗ m′] = nm ∗ n′
m′,

(5c) mn ∗ n′m′ = [m ∗ n, n′ ∗ m′] =m n ∗n′
m′, (5d) nm ∗m′

n′ = [n ∗ m,m′ ∗ n′] = nm ∗ m′n′
,

for all k ∈ K,m,m′ ∈ m and n, n′ ∈ n.

Let us consider two Leibniz crossed modules η : m −→ q and δ : n −→ q.
Then, there are induced Leibniz actions of m and n on each other via the action of
q. Therefore, we can consider the non-abelian tensor product m�n. In [12] is defined
m�n as the vector subspace of m�n generated by the elements m ∗ n′ − n ∗ m′ such
that η(m) = δ(n) and η(m′) = δ(n′). The vector subspace m�n is contained in the
center of m�n, so in particular it is an ideal of m�n [12, Proposition 1].

Definition 5 [12] The non-abelian exterior product m � n of m and n is the quotient

m � n = m�n

m�n
.

The cosets of m ∗ n and n ∗ m will be denoted by m � n and n � m, respectively.

Given a crossed module (n, q, δ), by the Leibniz action of q on n and the Leibniz
action of n on q, given by δ, we can form the non-abelian tensor products q�n and
q�q. As explained in [19, Proposition 4.3], the homomorphisms λq : q�n → q,
λq(q ∗ n) = qn, λq(n ∗ q) = nq and μq : q�q → q, μq(q ∗ q ′) = [q, q ′] are Leibniz
crossed modules, where the Leibniz action of q on q�n is given by:

q(q ′ ∗ n′) = [q, q ′] ∗ n′ − qn′ ∗ q ′, q(n′ ∗ q ′) = qn′ ∗ q ′ − [q, q ′] ∗ n′,
(q ′ ∗ n′)q = [q ′, q] ∗ n′ + q ′ ∗ n′q , (n′ ∗ q ′)q = n′q ∗ q ′ + n′ ∗ [q ′, q].
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The Leibniz action of q on q�q is defined similarly. It is apparent that λq(q�n) = 0 and
μq(q�q) = 0, so the induced homomorphisms λq : q � n → q and μq : q � q → q
are Leibniz crossed modules.

Remark 3 Given homomorphisms of Leibniz algebras ϕ1 : m −→ n and ϕ2 : p −→ q
such that m and p, respectively, n and q, have mutual Leibniz actions on each other,
then there is an induced homomorphism ϕ1 � ϕ2 : m � p −→ n � q defined by
(ϕ1 � ϕ2)(m � p) = ϕ1(m) � ϕ2(p), (ϕ1 � ϕ2)(p � m) = ϕ2(p) � ϕ1(m).

Proposition 1 Let (n, q, δ)beaLeibniz crossedmodule. Then, the following statements
hold:

(i) There is a Leibniz action of q�q on q�n defined by x y = μq(x)y and yx = yμq(x),
for all x ∈ q � q and y ∈ q � n.

(ii) The map id � δ : q � n −→ q � q with the Leibniz action defined in statement
(i) is a Leibniz crossed module.

(iii) There is a homomorphism φ = (λ̄n, μ̄q) : (q � n, q � q, id � δ) −→ (n, q, δ)
such that Ker(φ) ⊆ Z(q � n, q � q, id � δ).

Proof For statement (i), thanks to the Leibniz action of q on q � n, everything can be
easily checked.

For statement (ii), it immediately follows, by using relations (5a)–(5d) in Defini-
tion 4, that id� δ is a homomorphism of Leibniz algebras. Also, by using the defining
conditions of Leibniz crossed module and Leibniz action of q on q � n, it is readily
checked that (id � δ)(x y) = [x, id � δ(y)] and (id � δ)(yx ) = [id � δ(y), x] for all
x ∈ q � q, y ∈ q � n.

Now we indicate that id�δ(y1)y2 = [y1, y2] = yid�δ(y2)
1 for all y1, y2 ∈ q � n. Let

yi = qi � ni , for i = 1, 2, then we have

q1�δ(n1)(q2 � n2) = [q1,δ(n1)](q2 � n2)

= [[q1, δ(n1)], q2] � n2 −[q1,δ(n1)] n2 � q2

= − [q1, δ (n1)] � nq22
= −q1

n1 � n2
q2

= [q1 � n1, q2 � n2]

= q1n1 � q2
n2

= [q1, [q2, δ(n2)]] � n1 + q1 � n[q2,δ(n2)]
1

= (q1 � n1)
q2�δ(n2).

For the other generators, it can proved in a similar way, so we obtain the result.
For statement (iii), it is easy to check that φ is a crossed module homomorphism.

To show that Ker(φ) ⊆ Z(q� n, q� q, id� δ), let x ∈ Ker(λ̄n). We may assume that
x = q � n. So for any q1 � q2 ∈ q � q, we have:

q1�q2(q � n) =[q1,q2] (q � n)=[[q1, q2], q] � n −[q1,q2] n � q=[q1, q2] �q n=0,
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by relations (3c) and (4a) in Definition 4. Other generators can be proved similarly, so
we conclude that Ker(λ̄n) ⊆ (q � n)q�q.

Also, if q1 � q2 ∈ Ker(μ̄q), then [q1, q2] = 0. So it is an easy task to check that
Ker(μ̄q) ⊆ Z(q � q) ∩ stq�q(q � n), and the result follows. ��
Lemma 2 Let (h, p, σ ) be a Leibniz crossed module and (a, b, σ ) be an ideal of
(h, p, σ ) such that (a, b, σ ) ⊆ Z(h, p, σ ). Then, the map

σ � id : I −→ b � p

is an abelian Leibniz crossed module, where I is the ideal of p � h generated by all
elements p � a, a � p, b � h and h � b for any p ∈ p, a ∈ a, b ∈ b and h ∈ h.

Proof By the assumption b ⊆ Z(p) ∩ stp(h) and a ⊆ hp, so by relation (5c) in
Definition 4, we have

[b � p, p′ � b′] = [b, p] � [p′, b′] = 0, [a � p, p′ � a′] = a p � p′a′ = 0,

[b � h, b′ � h′] = bh � b′h′ = 0, [a � p, p′ � h′] = a p � p′h′ = 0,

for all b, b′ ∈ b, p, p′ ∈ p, a, a′ ∈ a, and h, h′ ∈ h. Therefore, I and b�p are abelian
Leibniz algebras. Evidently, the canonical homomorphism σ � id is an abelian Leibniz
crossed module. ��
Lemma 3 Let ϕ = (ϕ1, ϕ2) : (h, p, σ ) −→ (n, q, δ) be a surjective homomorphism of
Leibniz crossed modules. Then ϕ�ϕ = (ϕ2�ϕ1, ϕ2�ϕ2) : (p�h, p�p, id�σ) −→
(q� n, q� q, id� δ) is also a surjective homomorphism of Leibniz crossed modules.

Proof Obviously, homomorphism (ϕ1, ϕ2) induces surjective homomorphisms of
Leibniz algebras ϕ2 � ϕ1 : p � h −→ q � n and ϕ2 � ϕ2 : p � p −→ q � q. It
is easy to check that (ϕ2 �ϕ1)◦ (id�σ) = (id� δ)◦ (ϕ2 �ϕ2) and ϕ2 �ϕ1 preserves
the action of crossed module via ϕ2 � ϕ2, for instance

ϕ2 � ϕ1
(p1�p2h � p

)

= ϕ2 � ϕ1

([p1,p2]h � p
)

= ϕ2 � ϕ1

([p1,p2]h � p − [[p1, p2], p] � h
)

= ϕ2([p1,p2])ϕ1(h) � ϕ2(p) − [[ϕ2(p1), ϕ2(p2)], ϕ2(p)] � ϕ1(h)

= ϕ2(p1)�ϕ2(p2)(ϕ1(h) � ϕ2(p)).

Therefore, it is a homomorphism of crossed modules, as required. ��
Remark 4 Under the assumptions of Lemma 3, let Ker(ϕ1, ϕ2) = (a, b, σ ), then we
have the natural induced map of Leibniz algebras ψ1 : p � a + b � h −→ p � h and
ψ2 : p� b −→ p� p, such that Im(ψ1) = Ker(ϕ2 � ϕ1) and Im(ψ2) = Ker(ϕ2 � ϕ2)

(see [12]). So we may assume that the Ker(ϕ2 � ϕ1) is an ideal of p� h generated by
all elements p � a, a � p, b � h and h � b for any p ∈ p, a ∈ a, h ∈ h and b ∈ b.
Moreover, Ker(ϕ2 �ϕ2) is an ideal of p�p generated by p�b and b� p for all p ∈ p
and b ∈ b.
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3.2 Connections Between the Schur Multiplier and the Non-abelian Exterior
Product

The following result shows the connection between a projective presentation of the
given crossedmodule (n, q, δ) and the non-abelian exterior product of Leibniz algebras
q and n.

Theorem 2 Let 0 −→ (u, r, μ) −→ (m, f, μ)
(π1,π2)−→ (n, q, δ) −→ 0 be a projective

presentation of the Leibniz crossed module (n, q, δ). Then, there is an isomorphism

(q � n, q � q, id � δ) ∼=
( [f,m]

[f, u] + [r,m] ,
[f, f]
[r, f] , μ̄

)
.

Proof According to Lemma 1 (ii), f and f/m are projective Leibniz algebras and so
HLi (f) = 0 = HLi (f/m) for i ≥ 2. So by [12, Proposition 2 and Proposition 7] the
surjective homomorphism θf,m : f � m −→ [f,m] is an isomorphism. It is easy to
see that θf,m (Ker(π2 � π1)) = [f, u] + [r,m] by Remark 4. So, it gives rise to the
isomorphism

θ̄f,m : f � m

Ker(π2 � π1)
−→ [f,m]

[f, u] + [r,m] .

Also, invoking [12, Theorem 4], Ker(f � f −→ f) = HL2( f ) = 0 so the surjection
θf,f : f � f −→ [f, f] is an isomorphism in which θf,f(Ker(π2 � π2)) = [f, r]. So we
obtain the induced isomorphism θ̄f,f : f� f/Ker(π2 � π2) −→ [f, f]/[f, r]. Easily, the
pair (θ̄f,m, θ̄f,f) is an isomorphism of crossed modules. Therefore, we conclude from
Lemma 3 that

(q � n, q � q, id � δ) ∼= (f � m, f � f, id � μ)

Ker(π2 � π1, π2 � π2)
∼=

( [f,m]
[f, u] + [r,m] ,

[f, f]
[r, f] , μ̄

)
.

The proof is complete. ��
For any Leibniz algebra q, we have HL2(q) ∼= Ker(q � q −→ q) [12, Theorem

4]. As an immediate consequence of the above theorem, we generalize this result for
Leibniz crossed modules as follows:

Corollary 1 Let (n, q, δ) be a Leibniz crossed module. Then, we have

M(n, q, δ) ∼= Ker ((q � n, q � q, id � δ) −→ (n, q, δ))
= (Ker(q � n −→ n), Ker(q � q −→ q), id � δ) .

Remark 5 Corollary 1 shows that for any abelian Leibniz crossed module (a, b, σ )we
have M(a, b, σ ) = (b � a, b � b, id � σ).

Now we extend sequence (1) to a six-term natural exact sequence as follows:
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Theorem 3 Let (e) : 0 −→ (a, b, σ ) −→ (h, p, σ )
ϕ−→ (n, q, δ) −→ 0 be a central

extension of Leibniz crossed modules, then the exact sequence (1) can be extended one
term further to the following natural exact sequence

(I , b � p, σ � id) M(h, p, σ ) M(n, q, δ)

(a, b, σ ) (h, p, σ )ab (n, q, δ)ab 0.

(2)

Proof Considering the inclusion map β : I −→ p�h and the homomorphism α : b�
p −→ p�p one easily sees thatφ = (β, α) : (I , b�p, σ�id) −→ (p�h, p�p, id�σ)

is a homomorphism of crossed modules. Thanks to Remark 4, we have the following
commutative diagram:

(I , b � p, σ � id)
φ

(λ̄h , λ̄p )|

(p � h, p � p, id � σ)
ϕ�ϕ

(λ̄h , λ̄p )

(q � n, q � q, id � δ)

(λ̄n , λ̄q )

0

0 (a, b, σ ) (h, p, σ )
ϕ

(n, q, δ) 0.

Now the Snake Lemma (which is valid in any semi-abelian category [3]) completes
the proof, thanks to Corollary 1 and since Im(λ̄h, λ̄p)| = 0, and Coker(λ̄h, λ̄p) ∼=
(h, p, σ )ab, and Coker(λ̄n, λ̄q) ∼= (n, q, δ)ab. ��
Remark 6 If we consider Leibniz algebras as crossed modules in any of the two usual
ways [Example 1 (i)], we get the corresponding results for Leibniz algebras in [12,
Proposition 7].

4 Stem Extensions and Stem Covers of Leibniz CrossedModules

This section is devoted to generalizing the notions of stem extension and stem covers
of Leibniz algebras to the context of Leibniz crossed modules. For that the homo-
morphism θ∗(e) in exact sequence (1) plays a central role. When a Leibniz algebra
is regarded as a Leibniz crossed module in the two usual ways [Example 1 (i)], then
the subsequent results recover the corresponding ones for stem extensions and stem
covers of Leibniz algebras in [10,13].

Definition 6 A central extension of Leibniz crossed modules (e) : 0 → (a, b, σ ) →
(h, p, σ )

ϕ=(ϕ1,ϕ2)→ (n, q, δ) → 0 is said to be a stem extension if (a, b, σ ) ⊆ [(h, p, σ ),

(h, p, σ )].
Also, if (a, b, σ ) ∼= M(n, q, δ), then the stem extension (e) is called a stem cover

or covering of (n, q, δ).

The following result provides a characterization of stem extensions and stem covers.
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Proposition 2 Let (e) : 0 → (a, b, σ ) → (h, p, σ )
ϕ=(ϕ1,ϕ2)→ (n, q, δ) → 0 be a

central extension of Leibniz crossed modules.

(i) The following statements are equivalent:

(a) (e) is stem extension of (n, q, δ).
(b) The homomorphism θ∗(e) : M(n, q, δ) −→ (a, b, σ ) is surjective.
(c) The homomorphism (a, b, σ ) −→ (h, p, σ )/[(h, p, σ ), (h, p, σ )] is the zero

map.
(d) The homomorphism (h,p,σ )

[(h,p,σ ),(h,p,σ )] −→ (n,q,δ)
[(n,q,δ),(n,q,δ)] is an isomorphism.

(ii) Under the assumption M(n, q, δ) is finite dimensional in the central extension
(e), the following statements are equivalent:

(a) (e) is a stem cover.
(b) θ∗(e) is an isomorphism.
(c) The homomorphism (h,p,σ )

[(h,p,σ ),(h,p,σ )] −→ (n,q,δ)
[(n,q,δ),(n,q,δ)] is an isomorphism

and the induced homomorphismM(h, p, σ ) −→ M(n, q, δ) is the zero map.

Proof Direct checking from the exact sequence (1). ��
Corollary 2 Let (n, q, δ) be a perfect Leibniz crossed module. Then the central exten-
sion (e) : 0 → (a, b, σ ) → (h, p, σ ) → (n, q, δ) → 0 is a stem cover if and only if
(h, p, σ )ab = M(h, p, σ ) = 0.

Proof According to Proposition 2 (i) (d), (h, p, σ ) is a perfect crossed module. Hence,
(h, p, σ )ab = 0. So we have p = [p, p] and h = Dp(h).

We claim that the crossed module (I , b�p, σ � id) is trivial. Indeed, thanks to [19,
Proposition 4.2], b�p = b⊗ pab ⊕ pab ⊗ b = 0 and so b� p = 0. Now, let b� h ∈ I ,
then we can assume h = p0h0, for some h0 ∈ h, p0 ∈ p, then we have

b � h = b � p0h0 = −b � h p0
0 = [b, p0] � h0 − bh0 � p0 = 0,

by relations (4a) and (3c) in Definition 2. Similar computations can be done with the
other generators of I . Thus, we can conclude that I is trivial. Then M(h, p, σ ) = 0
from sequence (2) and Theorem 2 (ii) (c).

The converse is immediately followed from sequence (2) and Theorem 2. ��
The following proposition plays a basic role in the proofs of most of the subsequent

results.

Proposition 3 Let 0 −→ (u, r, μ) −→ (m, f, μ)
π=(π1,π2)−→ (n, q, δ) −→ 0 be a

projective presentation of (n, q, δ), then the following statements hold:

(i) The following exact sequence is split

0 −→ M(n, q, δ) −→ (ū, r̄, μ̄) −→ (u, r, μ)

(u, r, μ) ∩ [(m, f, μ), (m, f, μ)] −→ 0,

where (ū, r̄, μ̄) = (u,r,μ)
[(u,r,μ),(m,f,μ)] .
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(ii) If 0 −→ (a, b, σ ) −→ (h, p, σ )
γ=(γ1,γ2)−→ (n1, q1, δ1) −→ 0 is a stem

extension of another Leibniz crossed module (n1, q1, δ1) and α = (α1, α2) :
(n, q, δ) −→ (n1, q1, δ1) is a homomorphism of Leibniz crossed modules, then
there exists a homomorphism β = (β1, β2) : (m̄, f̄, μ̄) −→ (h, p, σ ) such that
β̄(M(n, q, δ)) ⊆ β̄(ū, r̄, μ̄) ⊆ (a, b, σ ), and the following diagram is commuta-
tive

0 (u, r, μ) (m, f, μ)
π

β

(n, q, δ)

α

0

0 (a, b, σ ) (h, p, σ )
γ

(n1, q1, δ1) 0.

where (m, f, μ) = (m,f,μ)
[(u,r,μ),(m,f,μ)] . Furthermore, if α is surjective, then so is β̄,

and β̄(M(n, q, δ)) = (a, b, σ ).

Proof (i) By the isomorphism theorem.
(ii) It is a straightforward adaptation of the proof of Lemma 3.3 in [26]. ��
In the following, we determine the structure of stem covers of Leibniz crossed

modules which is analogous to similar results in group and in Lie crossed modules
[26,30].

Theorem 4 Let 0 −→ (u, r, μ) −→ (m, f, μ) −→ (n, q, δ) −→ 0 be a projective
presentation of a Leibniz crossed module (n, q, δ). Then, the following statements
hold:

(i) If (ū, r̄, μ̄) ∼= M(n, q, δ) ⊕ (t̄, s̄, μ̄) for some ideal (t, s, μ) of (m, f, μ), where
(t̄, s̄, μ̄) denotes the quotient (t,s,μ)

[(u,r,μ),(m,f,μ)] , then the extension (e) : 0 −→
(u/t, r/s, μ̄) −→ (m/t, f/s, μ̄) −→ (n, q, δ) −→ 0 is a stem cover of (n, q, δ).

(ii) IfM(n, q, δ) is finite dimensional and (e1) : 0 −→ (a, b, σ ) −→ (h, p, σ ) −→
(n, q, δ) −→ 0 is a stem cover of (n, q, δ), then there is an ideal (t, s, μ) of
(m, f, μ) satisfying statement (i) and such that (h, p, σ ) ∼= (m/t, f/s, μ̄) and
(a, b, σ ) ∼= (u/t, r/s, μ̄).

Proof (i) By the assumption, we have (u/t, r/s, μ̄) ∼= M(n, q, δ) and (u, r, μ) =
(u, r, μ) ∩ [(m, f, μ), (m, f, μ)] + (t, s, μ) ⊆ [(m, f, μ), (m, f, μ)] + (t, s, μ), then

(u/t, r/s, μ̄) ⊆ [(m,f,μ),(m,f,μ)]+(t,s,μ)
(t,s,μ)

∩ Z
(

(m,f,μ)
(t,s,μ)

)

⊆ [(m/t, f/s, μ̄), (m/t, f/s, μ̄)] ∩ Z
(

(m,f,μ)
(t,s,μ)

)
,

so (e) is stem cover of (n, q, δ).
(ii) According to Proposition 3 (ii), there is a surjective homomorphism β̄ =

(β̄1, β̄2) : (m̄, f̄, μ̄) −→ (h, p, σ ) such that β̄(M(n, q, δ)) = β̄(ū, r̄, μ̄) = (a, b, σ ).
SettingKer(β̄) = (t̄, s̄, μ̄), we have that (h, p, σ ) ∼= (m, f, μ)/(t, s, μ) and (a, b, σ ) ∼=
(u, r, μ)/(t, s, μ). Also the restriction of β̄| from M(n, q, δ) to (a, b, σ ) is surjec-
tive and since M(n, q, δ) is finite dimensional, β̄| is an isomorphism; therefore,
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M(n, q, δ) ∩ Ker(β̄) = Ker(β̄|) = 0. As the kernel of the restriction of β̄ to (ū, r̄, μ̄)

is Ker(β̄) and the image of this restriction is (a, b, σ ), the result follows. ��
Thanks to Theorem 4 and Proposition 3, we provide the following important con-

sequence.

Corollary 3 Any Leibniz crossed module (n, q, δ) admits at least one stem cover.
In particular, any Leibniz algebra admits at least one stem cover.

Proof Let 0 −→ (u, r, μ) −→ (m, f, μ) −→ (n, q, δ) −→ 0 be a projective presen-
tation of a Leibniz crossed module (n, q, δ). Then, by Proposition 3 (i), there is an
ideal (t, s, μ) of (m, f, μ) such that (ū, r̄, μ̄) ∼= M(n, q, δ)⊕ (t̄, s̄, μ̄). Now the result
follows by Theorem 4 (i). ��

It is very interesting to find the relations between two stem covers of given Leibniz
crossed module. In the following, we prove that some crossed submodules and factor
crossed modules of covering crossed modules are always isomorphic.

Corollary 4 Let (n, q, δ) be a Leibniz crossed module with finite dimensional Schur

multiplier and let (ei ) : 0 −→ (ai , bi , σi ) −→ (hi , pi , σi )
ϕi=(ϕi1,ϕi2)−→ (n, q, δ) −→ 0

be two stem covers of (n, q, δ), for i = 1, 2. Then

(i) [(h1, p1, σ1), (h1, p1, σ1)] ∼= [(h2, p2, σ2), (h2, p2, σ2)].
(ii) (h1, p1, σ1)/Z(h1, p1, σ1) ∼= (h2, p2, σ2)/Z(h2, p2, σ2).
(iii) Z(h1, p1, σ1)/(a1, b1, σ1) ∼= Z(h2, p2, σ2)/(a2, b2, σ2).

Proof (i) Let ( f ) : 0 −→ (u, r, μ) −→ (m, f, μ)
π=(π1,π2)−→ (n, q, δ) −→ 0 be a

projective presentation of (n, q, δ). By applying a similar argument to the proof of
[26, Theorem 3.7], we can show that the crossed modules

[(hi , pi , σi ), (hi , pi , σi )], (hi , pi , σi )/Z(hi , pi , σi ), and Z(hi , pi , σi )/(ai , bi , σi ),

are uniquely determined by the projective presentation ( f ).
By virtue of Proposition 3 (ii) and Theorem 4 (ii), there is a surjective

homomorphism β : (m̄, f̄, μ̄) −→ (h1, p1, σ1) such that β̄ (M(n, q, δ)) =
(a1, b1, σ1). Since M(n, q, δ) is finite dimensional, then the restriction of β̄ from
M(n, q, δ) onto (a1, b1, σ1) is an isomorphism. Thus, 0 = Ker(β̄|) = Ker(β̄) ∩
M(n, q, δ), and it implies that Ker(β̄) ∩ [(m̄, f̄, μ̄), (m̄, f̄, μ̄)] = 0. It is easy to
see that β̄ induces the surjective homomorphism β̂ : [(m̄, f̄, μ̄), (m̄, f̄, μ̄)] −→
[(h1, p1, σ1), (h1, p1, σ1)] with Ker(β̂) = Ker(β̄) ∩ [(m̄, f̄, μ̄), (m̄, f̄, μ̄)] = 0. There-
fore, we have [(h1, p1, σ1), (h1, p1, σ1)] ∼= [(m̄, f̄, μ̄), (m̄, f̄, μ̄)].
(ii), (iii) Now, put Ker(β̄) = (t̄, s̄, μ̄) = (t, s, μ)/[(u, r, μ), (m, f, μ)] and
Z(m̄, f̄, μ̄) = (k̄, l̄, μ̄) = (k, l, μ)/[(u, r, μ), (m, f, μ)]. We claim that it is sufficient
to prove that Z(m/t, f/s, μ̄) = (k/t, l/s/μ̄). Hence, we have

(h1, p1, σ1)

Z(h1, p1, σ1)
∼= (m̄, f̄, μ̄)/Ker(β̄)

(k/t, l/s/μ̄)
∼=

(
m

k
,
f

l
, μ̄

)
,

Z(h1, p1, σ1)

(a1, b1, σ1)
∼= (k/t, l/s/μ̄)

(ū, r̄, μ̄)/Ker(β̄)
∼=

(
k

u
,
l

r
, μ̄

)
,
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and we get exactly what we want to prove.
To prove our assertion, clearly, Ker(β̄) ⊆ (ū, r̄, μ̄) ⊆ Z(m̄, f̄, μ̄) and [(k, l, μ),

(m, f, μ)] ⊆ (t, s, μ). So, (k/t, l/s, μ) ⊆ Z (m/t, f/s, μ̄). To prove the opposite
content, assume Z (m/t, f/s, μ̄) = (x/t, z/s, μ̄), then by the assumptions we have

[(x, z, μ), (m, f, μ)] ⊆ (t, s, μ) ∩ [(m, f, μ), (m, f, μ)] = [(u, r, μ), (m, f , μ)].

Therefore,

(x, z, μ)

[(u, r, μ), (m, f, μ)] ⊆Z

(
(m, f, μ)

[(u, r, μ), (m, f, μ)]
)

= (k, l, μ)

[(u, r, μ), (m, f, μ)]
and so Z (m/t, f/s, μ̄) = (k/t, l/s/̄). The proof is complete. ��
Remark 7 Corollary 4 shows that every perfect crossed module admits only one iso-
morphism class of stem covers.

Theorem 5 The central extension (e) : 0 → Ker(φ) → (q � n, q � q, δ � id)
φ→

(n, q, δ) → 0 is a stem cover of (n, q, δ) if and only if (n, q, δ) is perfect.

Proof Let the extension (e) be a stem cover of (n, q, δ). Then we have Im(φ) =
[(n, q, δ), (n, q, δ)] = (n, q, δ), so the crossed module (n, q, δ) is perfect.

Conversely, if (n, q, δ) is perfect then [q, q] = q and Dq(n) = n. For every q ∈
q, n ∈ n, we can assume q = [q1, q2] and n = q ′

n′ for some q1, q2, q ′ ∈ q and n′ ∈ n.
Then

q � n = [q1, q2] � q ′
n′ = [[q1, q2], q ′] � n′ −[q1,q2] n′ � q ′

= (q1�q2)q ′ � n′ ∈ Dq�q(q � n),

by the relations (4a) and (3c) in Definition 4 and the Leibniz action of q� q on q� n.
Consequently, q � n ⊆ Dq�q(q � n).

Easily, [q� q, q� q] = q� q, so the Leibniz crossed module (n� q, q� q, δ � id)

is perfect. Now the result follows by Corollary 1 and Proposition 1 (iii). ��
Theorem 6 Let (n, q, δ) be a Leibniz crossed module such that M(n, q, δ) is finite

dimensional. If (e) : 0 −→ (a, b, σ ) −→ (h, p, σ )
ϕ=(ϕ1,ϕ2)−→ (n, q, δ) −→ 0 is a

stem extension of (n, q, δ), then there is a stem cover (e1) : 0 −→ (a1, b1, σ1) −→
(h1, p1, σ1) −→ (n, q, δ) −→ 0 such that (e) is homomorphic image of (e1).

Proof Assume that 0 −→ (u, r, μ) −→ (m, f, μ)
π=(π1,π2)−→ (n, q, δ) −→ 0 is a

projective presentation of (n, q, δ). Thanks to Proposition 3 (ii), there is a surjective
homomorphism β : (m̄, f̄, μ̄) −→ (h, p, σ ) such that γ ◦ β̄ = π̄ and β̄(ū, r̄, μ̄) =
(a, b, σ ). Putting Ker(β̄) = (t̄, s̄, μ̄), then we have

(u, r, μ)

(t, s, μ)
∼= (a, b, σ ) ∼= ((u, r, μ) ∩ [(m, f, μ), (m, f, μ)]) + (t, s, μ)

(t, s, μ)
,
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so (u, r, μ) = (u, r, μ) ∩ [(m, f, μ), (m, f, μ)] + (t, s, μ), because (a, b, σ ) has finite
dimension. On the other hand, the following exact sequence splits by Lemma 1 (ii):

0 → [(m̄, f̄, μ̄), (m̄, f̄, μ̄)] ∩ (t̄, s̄, μ̄) → (t̄, s̄, μ̄)

→ (t̄, s̄, μ̄)

[(m̄, f̄, μ̄), (m̄, f̄, μ̄)] ∩ (t̄, s̄, μ̄)
→ 0

Thus, (t̄, s̄, μ̄) = ([(m̄, f̄, μ̄), (m̄, f̄, μ̄)] ∩ (t̄, s̄, μ̄)) ⊕ (t̄1, s̄1, μ̄), for some ideal
(t̄1, s̄1, μ̄) of (m̄, f̄, μ̄), where (t̄1, s̄1, μ̄) = (t̄,s̄,μ̄)

[(m̄,f̄,μ̄),(m̄,f̄,μ̄)]∩(t̄,s̄,μ̄)
. It yields that

(ū, r̄, μ̄) = M(n, q, δ) ⊕ (t̄1, s̄1, μ̄) and so by Theorem 4 (i), the extension (e1) :
0 → (u/t1, r/s1, μ̄) → (m/t1, f/s1, μ̄) → (n, q, δ) → 0 is a stem cover of (n, q, δ)
and the extension (e) is homomorphic image of (e1), as required. ��

An immediate consequence of the above theorem is a new characterization of stem
covers of finite dimensional Leibniz crossed modules.

Corollary 5 A stem extension (e) of a finite dimensional crossed module (n, q, δ) is
a stem cover if and only if any surjective homomorphism of other stem extension of
(n, q, δ) onto (e) is an isomorphism.

Proof The sufficient condition follows from Theorem 6. For necessary condition, let
(e) : 0 −→ (a, b, σ ) −→ (h, p, σ ) −→ (n, q, δ) −→ 0 be a stem cover of (n, q, δ)
and (e1) be a stem extension of (n, q.δ) such that there is a surjective homomorphism
α = (α1, α2) : (e1) −→ (e). According to Theorem 6, we can find a stem cover
(e2) : 0 −→ (a2, b2, σ2) −→ (h2, p2, σ2) −→ (n, q, δ) −→ 0 of (n, q.δ) such that
(e1) is homomorphic image of (e2) and β = (β1, β2) : (e2) −→ (e1) is a surjective
homomorphism. So, we have the surjective homomorphism α ◦ β from (e2) onto
(e). Now, since (n, q, δ) is finite dimensional, then we have (dim(h2), dim(p2)) =
(dim(n), dim(q)) + (dim(a2), dim(b2)) = (dim(n), dim(q)) + (dim(a), dim(b)) =
(dim(h), dim(p)). Therefore, α ◦ β is an isomorphism and then α is an isomorphism,
as required. ��

5 Connection with Stem Cover of Lie CrossedModules

In this section, we investigate the interplay between the notions of stem cover and the
Schur multiplier of Leibniz crossed modules with the same notations for Lie crossed
modules in [9].

Theorem 7 Let (T , L, τ ) be a Lie crossed module with finite dimensional Schur mul-
tiplier M(T , L, τ ) as Leibniz crossed module and let (e) : 0 −→ (A, B, ϑ) −→
(M, P, ϑ) −→ (T , L, τ ) −→ 0 be a stem cover of (T , L, τ ) in XLie (the category
of Lie crossed modules). Then, there exists a stem cover (e1) : 0 −→ (a, b, σ ) −→
(h, p, σ ) −→ (T , L, τ ) −→ 0 of Leibniz crossed modules, such that (e) is homomor-
phic image of (e1).

Moreover, if (T , L, τ ) is finite dimensional Lie crossed module, then (h, p, σ )Lie ∼=
(M, P, ϑ).
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Proof Clearly, (e) is a stem extension of (T , L, τ ) in XLb. According to Theorem 6,
there exists a stem cover (e1) : 0 → (a, b, σ ) → (h, p, σ ) → (T , L, τ ) → 0 and
a surjective homomorphism β = (β1, β2) : (h, p, σ ) � (M, P, ϑ). Obviously, β

induces a surjective homomorphism β̄ = (β̄1, β̄2) : (h, p, σ )Lie −→ (M, P, ϑ).
On theother hand, 0 −→ ((a, b, σ )+(h, p, σ )ann)/(h, p, σ )ann −→ (h, p, σ )Lie −→

(T , L, τ ) −→ 0 is a stem extension of (T , L, τ ) in the category XLie of crossed
modules in Lie algebras, so by the proof of Theorem 3.6 in [30], there is a surjective
homomorphism α = (α1, α2) from (M1, P1, ϑ1) to (h, p, σ )Lie, where (M1, P1, ϑ1)

is a stem cover of (T , L, τ ) in XLie. Now, combining [30, Corollary 3.5] with [28,
Proposition 22] and [27, Theorem 13], we deduce that M ∼= M1 and P ∼= P1. So,

the homomorphisms M −→ M1
α1−→ h̄

β̄1−→ M and P −→ P1
α2−→ pLie

β̄2−→ P are
surjective. Thus, they are isomorphism, in finite dimensional case.

It is easy to check that β̄1 and β̄2 are isomorphisms and so β̄ is an isomorphism of
crossed modules, as required. ��
Remark 8 Theorem 7 applied to the particular Lie crossed modules (T , T , id) or
(0, T , inc) recovers the corresponding results for Lie algebras provided in [13, The-
orem 3.4].

Note that in the proof of Theorem 7 we have Ker(β) ⊆ (a, b, σ ). This fact and
exact sequence (1) provide the following consequence:

Corollary 6 Under the assumptions of Theorem 7, the exact sequence (ê) : 0 →
Ker(β) → (h, p, σ ) → (M, P, ϑ) → 0 is a stem extension of (M, P, ϑ) in the
category XLb.

Moreover, if (T , L, τ ) is a perfect Lie crossed module, then (ê) is a stem cover of
(M, P, ϑ) in XLb.

Proof By the assumptions of Theorem 7 we have Ker(β) ⊆ (a, b, σ ) ⊆ Z(h, p, σ )

∩[(h, p, σ ), (h, p, σ )]. So (ê) is a stem extension. By application of sequence (1), we
obtain the following exact sequence:

M(h, p, σ ) −→ M(M, P, ϑ) −→ Ker(β) −→ (h, p, σ )ab −→ (M, P, ϑ)ab −→ 0

Now if (T , L, τ ) is a perfect Lie crossed module, it also is a perfect Leibniz crossed
module. Since (ê) is a stem cover of (T , L, τ ), then thanks to Corollary 2 we have
(h, p, σ )ab = M(h, p, σ ) = 0. Therefore, Ker(β) ∼= (M,P, ϑ). The proof is com-
plete. ��
Corollary 7 Let (T , L, τ ) be a Lie crossed module. Then MLie(T , L, τ ) (the Schur
multiplier in XLie [9]) is homomorphic image of M(T , L, τ ).

Corollary 8 Let (T , L, τ ) be a perfect Lie crossedmodulewith finite dimensional Schur
multiplierM(T , L, τ ) as a Leibniz crossed module. Then, the stem cover (e) : 0 −→
(a, b, σ ) −→ (h, p, σ )

ϕ−→ (T , L, τ ) −→ 0 of (T , L, τ ) in XLb is a stem cover of
(T , L, τ ) in XLie, if and only ifM(T , L, τ ) ∼= MLie(T , L, τ ).
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Proof Let (e1) : 0 −→ (A, B, σ1) −→ (H , P, σ1)
ϕ̄−→ (T , L, τ ) −→ 0 be a stem

cover of (T , L, τ ) in XLie. Then (e1) is a stem extension of (T , L, τ ) in XLb, so
by Theorem 6 and Remark 7, there is a surjective homomorphism β : (h, p, σ ) −→
(H , P, σ1) such that the following diagram is commutative:

0 (a, b, σ )

β|

(h, p, σ )
ϕ

β

(T , L, τ ) 0

0 (A, B, σ1) (H , P, σ1)
ϕ̄

(T , L, τ ) 0.

Note that, Ker(β) ⊆ (a, b, σ ), so the restriction β| from (a, b, σ ) onto (A, B, σ1) is
an isomorphism if and only if β is an isomorphism, Thus, by finiteness ofM(a, b, σ ),
we concludeM(T , L, τ ) ∼= MLie(T , L, τ ) if and only if (H , P, σ1) ∼= (h, p, σ ). The
result follows. ��

Corollary 7 is extended to Leibniz crossed modules as follows:

Theorem 8 Let (n, q, δ) be a Leibniz crossed module. ThenMLie((n, q, δ)Lie) is homo-
morphic image of M(n, q, δ).

Proof Let 0 −→ (u, r, μ) −→ (m, f, μ)
π−→ (n, q, δ) −→ 0 be a projective presen-

tation of (n, q, δ). Since (m, f, μ)Lie is a projective crossed module in XLie, we have
the projective presentation

0 → (u, r, μ) + (m, f, μ)ann

(m, f, μ)ann
→ (m, f, μ)Lie → (n, q, δ)Lie → 0

of the Lie crossed module (n, q, δ)Lie. Clearly, the projection homomorphism
pr : (m, f, μ) → (m, f, μ)Lie induces the surjective homomorphism p̄r :
[(m, f, μ), (m, f, μ)] → [(m, f, μ)Lie, (m, f, μ)Lie], which gives rise to a surjective
homomorphism

M(n, q, δ) = (u,r,μ)∩[(m,f,μ),(m,f,μ)]
[(u,r,μ),(m,f,μ)]

p̃r

MLie((n, q, δ)Lie) = (u,r,μ)∩[(m,f,μ)Lie,(m,f,μ)Lie]
[(u,r,μ),(m,f,μ)Lie] ,

where (u, r, μ) = ((u, r, μ) + (m, f, μ)ann)/(m, f, μ)ann, and the result follows. ��
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