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Abstract
In this paper, by the affine analogue of the fundamental theorem for Euclidean planar
curves, we classify the affine curves with constant affine curvatures. Note that we use
the fully affine group and not the equi-affine subgroup consisting of area-preserving
affine transformations. (Caution: much of the literature omits the “equi-” in their
treatment.) According to the equivariant method of moving frames, explicit formulas
for the generating affine differential invariants and invariant differential operators are
constructed. At the same time, by using the fact that the affine transformation group
GA(2, R) can factor as a product of two subgroup B ·SE(2, R) and the moving frame
of the subgroup SE(2, R), we build the moving frame of GA(2, R) and obtain the
relations among invariants of group GA(2, R) and its subgroup SE(2, R). Applying
the affine curvature to recognize affine equivalent objects is considered in the last part
of this paper.

Keywords Arc length parameter · Affine curvature · Maurer–Cartan invariant ·
Moving frame

Communicated by Young Jin Suh.

This work was supported by China Scholarship Council (Grant No. 201706085065), the Fundamental
Research Funds for the Central Universities (Grant No. N170504014) , 111 Project (Grant No. B16009),
the Fund for Innovative Research Groups of the National Natural Science Foundation of China
(71621061) and the Major International Joint Research Project of the National Natural Science
Foundation of China (71520107004).

B Yanhua Yu
yyh_start@126.com

Yun Yang
yangyun@mail.neu.edu.cn

1 Department of Mathematics, Northeastern University, Shenyang 110819, Liaoning,
People’s Republic of China

2 Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University),
Ministry of Education, Shenyang, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-019-00864-z&domain=pdf


3230 Y. Yang, Y. Yu

Mathematics Subject Classification 53A15

1 Introduction

In Euclidean differential geometry, the Frenet–Serret frame is a moving frame defined
on a curve which can be constructed purely from the velocity and acceleration of
the curve. The torsion and curvature are obtained by differentiating the frame, which
describe completely how the frame evolves in time along the curve [4]. Special affine
curvature, also known as the equi-affine curvature, is a particular type of curvature
that is defined on a plane curve and remains unchanged under a special affine trans-
formation (an affine transformation that preserves area) [16]. Hu and Liu studied
centro-affine invariant arc length and centro-affine curvature functions of a curve in
affine space directly by the parameter transformations and the centro-affine transfor-
mations [7,13]. Yang and Yu defined the notion of affine curvatures on a discrete
planar curve and studied the applications in self-affine fractals [24]. By using the
equivariant method of moving frames, Olver gave the complete systems of function-
ally independent differential invariants for curves under centro-affine transformations
and equi-affine transformations [21,22]. Applications of full affine invariance to image
processing can be found, for instance, in [25]. In this paper, we introduce and study the
fully affine invariant arc length and fully affine curvature functions on a planar curve.

The arrangement of this paper is as follows: In Sect. 2, we introduce moving frames
and the definitions. The equivariant method of moving frames is applied to generate
affine differential invariants and invariant differential operators. In Sect. 3, we use the
traditional method to obtain the fully affine invariants and then study the arc length
and affine curvature. A classification for the planar curves with the constant affine
curvatures is also given. Section 4 expresses the differential invariants for the affine
transformation group in terms of the differential invariants of its subgroup. Finally, in
Sect. 5, we investigate some applications of the affine curvature invariants.

2 Preliminaries

2.1 The Equivariant Method of Moving Frames

Let us first recall the basic equivariant moving frame method introduced by Fels and
Olver [5,6]. For more details, see [5,6,14,15,19]. Assume G is an r -dimensional Lie
group acting smoothly on an m-dimensional manifold M with a left action, such that

G × M → M, h · (g · z) = (hg) · z.
A right (resp. left) group-based moving frame is a smooth, G-equivariant map

ρ : M → G, with respect to the action on M and the inverse right (resp. left) action
of G on itself, specifically,

ρ : M → G, ρ(g · z) = ρ(z)g−1 (resp. ρ(g · z) = gρ(z)).

In many cases, right moving frames can be easier to compute.
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Given a Lie group G acting on a manifold M , a moving frame exists in a neigh-
borhood of a point z ∈ M if and only if G acts freely and regularly near z; that is, the
existence of a moving frame on the open subset U ⊂ M is guaranteed if:

1. the intersection of the orbits with U has the same dimension as that of the group
G and further foliate U (the regularity of the foliation is necessary);

2. there exists a submanifoldK ⊂ U that intersects the orbits ofU transversally, and
the intersection O ∩ K contains a single point, and this submanifold K is known
as the cross section and has dimension equal to dim(M) − dim(G);

3. given a point z ∈ O(z) ∩U , where O(z) is the orbit through z, the group element
h = ρ(z) ∈ G which takes z to a point h · z ∈ O(z) ∩ K on the cross section is
unique.

Given local coordinates Z = (z1, . . . , zm) on M , letω(g, z) = g ·z be the formulae
for the transformed coordinates under the group transformation. The right moving
frame g = ρ(z) associated with the coordinate cross section K = {z1 = c1, . . . , zr =
cr } is found by solving the normalization equations

ω1(g, z) = c1, . . . , ωr (g, z) = cr , (2.1)

for the group parameters (g1, . . . , gr ) in terms of the coordinates z = (z1, . . . , zm).
The remaining coordinates are the non-constant invariants.

Theorem 2.1 If g = ρ(z) is the moving frame solution to Eq. (2.1), then

I1(z) = ω(ρ(z) · z), . . . , Iz−r (z) = ωm(ρ(z) · z), (2.2)

form a complete system of functionally independent invariants.

Definition 2.2 The invariantization of a scalar function F : M → R with respect to a
right moving frame is the invariant function I = ι(F) defined by I (z) = F(ρ(z) · z).

However, most interesting group actions (Euclidean, affine, projective, etc.) are not
free, and freeness typically fails because the dimension of the underlying manifold is
not large enough, i.e., dim(M) = m < r = dim(G). There are two basic methods for
converting a non-free (but effective) action into a free action. The first is to look at the
product action of G on a sufficiently large Cartesian product M×(n+1), leading to joint
invariants [18], which are especially interesting in classical algebra and numerical
analysis [20,23]. The second is to prolong the group action to a jet space Jn of suitably
high order, which is the natural setting for the traditional moving frame theory, and
leads to the classical differential invariants for the group [22]. Combining the two
methods of prolongation and product will lead to joint differential invariants [18].

Definition 2.3 Given a smooth manifold M of dimensionm and an integer p < m, the
kth-order jet bundle J k = J k(M, p) is a fiber bundle over M , such that the fiber of a
point z ∈ M consists of the set of equivalence classes of p-dimensional submanifolds
of M under the equivalence relation of kth-order contact at the point z.
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Assume themanifoldM is given by the local coordinates (x1, · · · , x p, u1, · · · , uq)
in some neighborhood where the submanifold S can be represented as a graph u =
u(x). The fundamental differential invariants are obtained by invariantization of the
individual jet coordinate functions,

Hi = ι(xi ), I α
J = ι(uα

J ), i = 1, . . . , p, α = 1, . . . , q, #J ≥ 0. (2.3)

The specification of independent and dependent variables on M further splits the
differential one forms on the infinite-order jet bundle J∞ into horizontal one forms,
spanned by dx1, · · · , dx p and contact one form, spanned by the basic contact one
forms

θα
J = duα

J −
p∑

i=1

uα
J ,idx

i , α = 1, . . . , q, 0 ≤ #J . (2.4)

A connected transformation group G can be prescribed by its infinitesimal gener-
ators. A basis for the infinitesimal generators of the effectively acting r -dimensional
transformation group is

vσ =
p∑

i=1

ξ iσ (x, u)
∂

∂xi
+

q∑

α=1

ϕα
σ (x, u)

∂

∂uα
, σ = 1, . . . , r , (2.5)

which can be identified with a basis of its Lie algebra g. The corresponding prolonged
infinitesimal generator

pr vσ =
p∑

i=1

ξ iσ (x, u)
∂

∂xi
+

q∑

α=1

∑

k=#J≥0

ϕα
J ,σ (x, u(k))

∂

∂uα
, σ = 1, . . . , r ,

(2.6)
generates the prolongation of the associated one-parameter subgroup acting on jet
bundles and

ϕα
J ,σ = DJ

(
ϕα

σ −
p∑

i=1

ξ iσu
α
i

)
+

p∑

i=1

ξ iσu
α
J ,i .

In particular, specializing the recurrence relations to the cross section coordinates
produces the following formulas that enable one to easily determine the formulas for
the invariantized Maurer–Cartan forms by merely solving a system of r = dimG
linear equations.

Theorem 2.4 [22] Let I1 = ι(z1), . . . , Ir = ι(zr ) be the phantom invariants related
to the cross section coordinates z1, . . . , zr . Then

0 = dIς = dι(zς ) = ι(dzς ) +
r∑

k=1

νk ι[pr vk(zς )] , ς = 1, . . . , r . (2.7)
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When we only consider curves, p = 1, the invariant Maurer–Cartan forms can be
rewritten in terms of the invariant horizontal and contact forms

νk = Rk +
∑

α,J

Sk,Jα ϑα
J , (2.8)

where ϕ = ι(dx) and ϑα
J = ι(θα

J ). The coefficient Rk are known as theMaurer–Cartan
invariants and SK ,J

α are also differential invariants. The Maurer–Cartan invariants can
be written as R = {Rσ , σ = 1, . . . , r}.
Theorem 2.5 [22] If the moving frame has order n, then the set of fundamental differ-
ential invariants

I(n+1) = {Hi , I
α
J | i = 1, . . . p, α = 1, . . . , q, #J ≤ n + 1}

of order ≤ n + 1 forms a generating set.

Theorem 2.6 [22] The differential invariants I(0) ∪ R form a generating set.

2.2 Recurrence and the Algebra of Affine Differential Invariants

According to the Erlangen program, a Klein geometry is the theory of geometric
invariants of a transformation group. A geometric invariant is an invariant of a trans-
formation group which is not changed in any differentiable coordinate transformation.
For example, Euclidean geometry studies the theory of geometric invariants under rigid
motion. Affine geometry is the theory of geometric invariants under affine transfor-
mation group. The nice thing about Klein geometry for curves is that we have a very
precise notion of group arc length and group curvature. According to [3], several group
arc lengths and curvatures for planar curves are specified in Table 1. In Table 1,

P = 3uxxuxxxx − 5u2xxx , Q = 9u2xxuxxxxx − 45uxxuxxxuxxxx + 40u2xxx .

Let us now implement the moving frame calculation for the affine group acting on
plane curves based on Sect. 2.1. We write the standard action of the affine group on
the plane in a slightly more convenient form:
(
y
v

)
= λ

(
α β

γ δ

)(
x
u

)
+
(
a
b

)
, where det

(
α β

γ δ

)
= 1, λ 
= 0. (2.9)

Table 1 The arc length and
curvature for several Klein
geometries

Group name Arc length Curvature

E(2)
√
1 + u2xdx (1 + u2x )

−3/2uxx

Sim(2) (1 + u2x )
−1uxxdx

[
(1 + u2x )uxxx − 3uxu2xx

]
u−2
xx

SA(2) u1/3xx dx u−8/3
xx P

A(2) u−1
xx

√
Pdx P−3/2Q
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Byadirect computation, the prolonged affine transformations up to order 6 are given by

y = λαx + λβu + a,

v = λγ x + λδu + b,

vy = γ + δux
α + βux

,

vyy = uxx
λ(α + βux )3

,

vyyy = (α + βux )uxxx − 3βu2xx
λ2(α + βux )5

,

vyyyy = (α + βux )2uxxxx − 10βuxxuxxx (α + βux ) + 15β2u3xx
λ3(α + βux )7

,

vyyyyy = A

λ4(α + βux )9
,

vyyyyyy = B

λ5(α + βux )11
,

where

A = (α + βux )
3uxxxxx − 15βuxxuxxxx (α + βux )

2 − 10βu2xxx (α + βux )
2

+ 105β2u2xxuxxx (α + βux ) − 105β3u4xx ,

B = (α + βux )
4uxxxxxx − 21βuxxuxxxxx (α + βux )

3 − 35βuxxxuxxxx (α + βux )
3

+ 210β2u2xxuxxxx (α + βux )
2

+ 280β2uxxu
2
xxx (α + βux )

2 − 1260β3u3xxuxxx (α + βux ) + 945β4u5xx .

To construct a moving frame, we use the cross section normalizations

y = 0, v = 0, vy = 0, vyy = 9

2
, vyyy = 0, vyyyy = 3

2
. (2.10)

Generally, the choice of cross section normalizations should be vyy = 1 and vyyyy = 1.
In order to produce the fully affine curvature in agreement with the following section,
here we use vyy = 9

2 and vyyyy = 3
2 .

Solving for the group parameters (omitting the translational components a, b since
they play no role) yields

δ4 = 81(3uxxuxxxx − 5u2xxx )

4u4xx
, λ = 2

9
δ3uxx , γ = −δux , β = uxxx

3δu2xx
,

α = 1

δ
− uxxxux

3δu2xx
, (2.11)

which prescribes the right-equivariant moving frame. Then, the affine arc length ele-
ment is given as
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ds =
√
3uxxuxxxx − 5u2xxx

uxx
dx . (2.12)

By a direct calculation,

vyyyyy = 9

2(3uxxuxxxx − 5u2xxx )
3
2

(
uxxxxxu

2
xx − 5uxxuxxxuxxxx + 40

9
u3xxx

)
= κ,

vyyyyyy =
9
(
uxxxxxxu3xx − 7u2xxuxxxuxxxxx + 35

3 uxxu
2
xxxuxxxx − 35

9 u
4
xxx

)

2(3uxxuxxxx − 5u2xxx )2
.

So

ι(x) = H = 0, ι(u) = I0 = 0, ι(ux ) = I1 = 0, ι(uxx ) = I2 = 9

2
,

ι(uxxx ) = I3 = 0, ι(uxxxx ) = I4 = 3

2
, ι(uxxxxx ) = κ = I5. (2.13)

As for the recurrence formulas, the prolonged infinitesimal generators of the planar
affine group action on curve jets are

pr v1 = ∂x ,

pr v2 = ∂u,

pr v3 = x∂x − ux∂ux − 2uxx∂uxx − 3uxxx∂uxxx − 4uxxxx∂uxxxx − · · · ,

pr v4 = u∂x − u2x∂ux − 3uxuxx∂uxx − (3u2xx + 4uxuxxx )∂uxxx
− (10uxxuxxx + 5uxuxxxx )∂uxxxx

− (10u2xxx + 15uxxuxxxx + 6uxuxxxxx )∂uxxxxx − · · · ,

pr v5 = x∂u + ∂ux ,

pr v6 = u∂u + ux∂ux + uxx∂uxx + uxxx∂uxxx + · · · .

Then, using the phantom recurrence formulas (2.7),

0 = dι(x) = ι(dx) +
6∑

i=1

νi ι(pr vi (x)) =  + ν1,

0 = dι(u) = ι(du) +
6∑

i=1

νi ι(pr vi (u)) = ι(uxdx + θ) + ν2 = ϑ + ν2,

0 = dι(ux ) = ι(dux ) +
6∑

i=1

νi ι(pr vi (ux )) = ι(uxxdx + θx ) + ν5 = 9

2
 + ϑ1 + ν5,

0 = dι(uxx ) = ι(duxx ) +
6∑

i=1

νi ι(pr vi (uxx )) = ι(uxxxdx + θxx ) − 9ν3 + 9

2
ν6

= ϑ2 − 9ν3 + 9

2
ν6,

123



3236 Y. Yang, Y. Yu

0 = dι(uxxx ) = ι(duxxx ) +
6∑

i=1

νi ι(pr vi (uxxx )) = ι(uxxxxdx + θxxx ) − 243

4
ν4

= 3

2
 + ϑ3 − 243

4
ν4,

0 = dι(uxxxx ) = ι(duxxxx ) +
6∑

i=1

νi ι(pr vi (uxxxx )) = ι(uxxxxxdx + θxxxx )

− 6ν3 + 3

2
ν6 = I5 + ϑ4 − 6ν3 + 3

2
ν6. (2.14)

These can be solved for the Maurer–Cartan forms

ν1 = −, ν2 = −ϑ, ν3 = I5
3

 − ϑ2

9
+ ϑ4

3
,

ν4 = 2

81
 + 4

243
ϑ3, ν5 = −9

2
 − ϑ1, ν6 = 2

3
I5 − 4

9
ϑ2 + 2

3
ϑ4.

(2.15)

From these expressions, we can obtain the Maurer–Cartan invariants

R1 = −1, R2 = 0, R3 = I5
3

, R4 = 2

81
, R5 = −9

2
, R6 = 2I5

3
. (2.16)

The nonzero coefficients related to the vertical forms are

S20 = −1, S32 = −1

9
, S34 = 1

3
, S43 = 4

243
, S51 = −1, S62 = −4

9
, S64 = 2

3
.

(2.17)

Then we find the horizontal derivatives

dH I5 =
(
I6 − I 25 − 5

2

)
, dH I6 =

(
I7 − 4

3
I5 I6 − 7

3
I5

)
,

which yield

I6 = κs + κ2 + 5

2
, I7 = κss + 10

3
κκs + 4

3
κ3 + 17

3
κ.

3 Planar Curves with Constant Affine Curvatures

In this section, we obtain the affine arc length and affine curvature for plane curves in
affine differential geometry. Note that we use the full affine group and not the equi-
affine subgroup consisting of area-preserving affine transformations. (Caution: much
of the literature omits the “equi-” in their treatment.) The affine plane R

2 is referred
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to in terms of a coordinate system {x, y}. The allowable coordinate changes are given
by affine maps of the form

(
x̄
ȳ

)
=
(

α β

γ δ

)(
x
y

)
+
(
a
b

)
, where det

(
α β

γ δ

)

= 0. (3.1)

Consider a smooth curve, parameterized by

x(t) = (x(t) y(t))T , (3.2)

where x(t), y(t) are smooth functions of t defined over a certain interval I . It is
convenient to denote by ẋ = dx/dt the tangent vector. Now we seek a new parameter
σ for the curve, whereby x′ = dx/dσ to distinguish ẋ = dx/dt .

We assume that the given curve x(t) satisfies the condition

[ .
x

..
x
] = det

( .
x

..
x
) 
= 0, (3.3)

for any t , where, from here on, we use the notation [. . . ] = det (. . . ). Accordingly, it
follows that

ẋ = x′ dσ
dt

,

ẍ = x′′
(
dσ

dt

)2

+ x′ d2σ
dt2

,

...
x = x′′′

(
dσ

dt

)3

+ 3x′′ dσ
dt

d2σ

dt2
+ x′ d3σ

dt3
,

....
x = x′′′′

(
dσ

dt

)4

+ 6x′′′
(
dσ

dt

)2 d2σ

dt2
+ 4x′′ dσ

dt

d3σ

dt3
+ 3x′′

(
d2σ

dt2

)2

+ x′ d4σ
dt4

.

(3.4)

By a direct computation, we find

(
dσ

dt

)2 3
[
x′ x′′] [x′ x′′′′]− 5

[
x′ x′′′]2 + 12

[
x′ x′′] [x′′ x′′′]

[x′ x′′]2

= 3
[ .
x

..
x
] [ .
x

....
x
]− 5

[ .
x

...
x
]2 + 12

[ .
x

..
x
] [..
x

...
x
]

[ .
x

..
x
]2 . (3.5)

Definition 3.1 The curve x(t) is called degenerate at the point t if

3
[ .
x

..
x
] [ .
x

....
x
]− 5

[ .
x

...
x
]2 + 12

[ .
x

..
x
] [..
x

...
x
] = 0. (3.6)

We note that, according to the identity (3.5), the degeneracy condition (3.6) holds
for all parameterizations of the curve. Let us first classify the degenerate affine planar
curves.
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Theorem 3.2 The curve x(t) is degenerate for all t ∈ I if and only if it is locally affine
equivalent to a fixed point, a straight line segment or an arc of a parabola y = x2.

Proof If
[ .
x

..
x
] = 0, by taking the derivative both sides of it, we have

[ .
x

...
x
] = 0. In

this case, according to Eq. (3.8) it is easy to see that the curve is degenerate. On the
other hand,

[ .
x

..
x
] = 0 implies it is a point or straight line.

If
[ .
x

..
x
] 
= 0, and x is degenerate, we choose σ to be the equi-affine arc length

parameter [16]. By the theory of equi-affine planar curves [16], it follows that

[
x′ x′′] = 1,

[
x′′ x′′′] = κ, x′′′ = −κx′, (3.7)

where κ denotes the equi-affine curvature. Substituting (3.7) into the degeneracy con-
dition (3.6) (with derivatives with respect to σ replacing those with respect to t)
produces κ = 0, which implies the curve is equi-affine equivalent to an arc of a
parabola y = x2, [16], which is degenerate according to (3.6). This completes the
proof of this theorem. �

From here on, we will assume that the curve x(t) is non-degenerate, meaning
that

3
[ .
x

..
x
] [ .
x

....
x
]− 5

[ .
x

...
x
]2 + 12

[ .
x

..
x
] [..
x

...
x
] 
= 0, (3.8)

for all t ∈ I . We will not discuss isolated degenerate points on curves here.
According to the deduced conclusion by the method of moving frames in previous
section, by Eq. (2.12) we obtain the affine arc length parameter σ as the following
formula

dσ

dt
=

√√√√√

∣∣∣3
[ .
x

..
x
] [ .
x

....
x
]− 5

[ .
x

...
x
]2 + 12

[ .
x

..
x
] [..
x

...
x
]∣∣∣

[ .
x

..
x
]2 , (3.9)

which implies that

∣∣∣3
[
x′ x′′] [x′ x′′′′]− 5

[
x′ x′′′]2 + 12

[
x′ x′′] [x′′ x′′′]

∣∣∣

[x′ x′′]2
= 1. (3.10)

Definition 3.3 This parameter σ in Eq. (3.9) is called the affine arc length parameter
of the non-degenerate curve parameterized by x(t).

Differentiating with respect to the affine arc length parameter yields

x′′′ = −κ1x′ − κ2x′′, x′′′′ = (−κ ′
1 + κ1κ2)x′ + (−κ ′

2 − κ1 + κ2
2 )x′′, (3.11)
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where

κ1 =
[
x′′ x′′′]

[x′ x′′]
, κ2 = −

[
x′ x′′′]

[x′ x′′]
. (3.12)

From Eq. (3.10), it is easy to obtain the syzygy

κ1 = 2κ2
2 + 3κ ′

2 + ε

9
, (3.13)

where

ε = sign(3
[
x′ x′′] [x′ x′′′′]− 5

[
x′ x′′′]2 + 12

[
x′ x′′] [x′′ x′′′])

= sign(3
[ .
x

..
x
] [ .
x

....
x
]− 5

[ .
x

...
x
]2 + 12

[ .
x

..
x
] [..
x

...
x
]
), (3.14)

and sign(·) is the signum function.
On the other hand, according to Eqs. (3.4) and (3.12), the expression of κ2 in terms

of a general parameter t is given by

κ2 = −
[ .
x

...
x
]

[ .
x

..
x
] dt

dσ
− 3

dσ

dt

d2t

dσ 2 = −
[ .
x

...
x
]

[ .
x

..
x
] dt

dσ
− 3

d

dt

(
dt

dσ

)
, (3.15)

where dt/dσ can be deduced from Eq. (3.9).

Remark 3.4 Observe that ε is constant on a non-degenerate curve, because ε = 0
implies the curve has a point where it is degenerate. Furthermore, dσ/dt remains
positive in Eq. (3.9), while κ2 can change sign under the orientation-reversing change
of parameter t̃ = −t . In fact, one can verify that ε, |κ2|, dκ2/dœ are all invariant under
affine transformations and reparameterizations from Eqs. (3.5), (3.9) and (3.15).

In addition, if the curve is described as a graph, x = ( t, u(t) )T , then

dσ

dt
=
√

ε(3utt uttt t − 5u2t t t )

ε1utt
,

d2t

dσ 2 = 13u2t t uttt uttt t − 10u3t t t utt − 3u3t t uttt t t
2ε(3utt uttt t − 5u2t t t )2

.

(3.16)
Given

ε = sign(3utt uttt t − 5u2t t t ), ε1 = sign(utt ),

we have

κ2 = 9εε1
(
u2t t uttt t t − 5utt uttt uttt t + 40

9 u
3
t t t

)

2(ε(3utt uttt t − 5u2t t t ))
3
2

. (3.17)

Furthermore,
dκ2
dσ

= dκ2
dt

dt

dσ
= 9utt A

2(ε(3utt uttt t − 5u2t t t ))3
, (3.18)
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where

A = 3u3t t uttt t uttt t t t − 5u2t t u
2
t t t uttt t t t + 24u2t t uttt uttt t uttt t t

− 5utt u
3
t t t uttt t t − 9

2
u3t t u

2
t t t t t − 15u2t t u

3
t t t t − 5

2
utt u

2
t t t u

2
t t t t + 5u4t t t uttt t .

Next, we are able to define the fully affine curvature.

Definition 3.5 The affine curvature of a curve on the plane is defined by κ = |κ2|,
where κ2 is given by Eq. (3.12) with the affine arc length parameter σ or Eq. (3.15)
with a general parameter t .

The following states the fundamental theorem for affine plane curves.

Theorem 3.6 Given a smooth positive function κ = κ(σ ) on an interval I and a con-
stant ε ∈ {1,−1}, there exists a planar curve with σ as its affine arc length parameter
and κ as its affine curvature. Such a curve is unique up to an affine transformation.

Proof Firstly, for the given positive function κ and the fixed value ε, it is feasible that

κ2 = κ or κ2 = −κ, and κ1 = 2κ2
2 + 3κ ′

2 + ε

9
.

If κ2 = κ , Eqs. (3.11) and (3.13) can be written as

d3x
dσ 3 + κ

d2x
dσ 2 + 2κ2 + 3κσ + ε

9

dx
dσ

= 0. (3.19)

The change of parameter σ1 = −σ converts Eq. (3.19) into

d3x

dσ 3
1

− κ
d2x

dσ 2
1

+ 2κ2 − 3κσ1 + ε

9

dx
dσ1

= 0. (3.20)

On the other hand, if κ2 = −κ , Eq. (3.11) can be changed to

d3x
dσ 3 − κ

d2x
dσ 2 + 2κ2 − 3κσ + ε

9

dx
dσ

= 0. (3.21)

It is easy to see the solution sets for (3.20) and (3.21) are same.
The first equation in (3.11) can be viewed as a linear second-order ordinary dif-

ferential equation for the components of x′(t), and hence, we can write the general
solution as a linear combination

x′ = C1φ1(t) + C2φ2(t), (3.22)

of two linearly independent solutions φ1(t), φ2(t), whereC1,C2 are arbitrary constant
vectors. Integration yields

x = C1

∫
φ1(t)dt + C2

∫
φ2(t)dt + C3, (3.23)
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where C3 is another arbitrary constant vector. Then x is affine equivalent to

(∫
φ1(t)dt,

∫
φ2(t)dt

)T

. (3.24)

Now, let us prove that the curve is unique up to an affine transformation of the
plane.

Assume (x1) and (x2) are two curves, and they have the same value ε and affine
curvatures κ(σ ) at the corresponding points. By a suitable affine transformation, we
can allow x1(σ0) = x2(σ0), x′

1(σ0) = x′
2(σ0) and x

′′
1(σ0) = x′′

2(σ0) at the point which
affine arc length parameter σ = σ0.

{x′
1, x

′′
1} and {x′

2, x
′′
2} are the basic vectors of curves (x1) and (x2), respectively.

They are the solutions of the differential equation system (3.19) with the same initial
conditions. According to the existence theorem of solutions for differential equation
system, the solutions x1(σ ) and x2(σ ) are totally same, that is, x1 = x2. �

Let us consider the special case where κ is a constant function, which implies that

κ2 is constant, and hence, κ1 = 2κ2
2 + ε

9
is also constant. We conclude that

Theorem 3.7 If a non-degenerate affine curve has constant curvature κ , it is locally
affine equivalent to an arc of one of the following curves:

1. y = xα where x > 0 and α /∈ {0, 1, 1
2 , 2}; in this case κ = |2α2 + α − 1||α −

2|− 1
2 |2α − 1|− 3

2 and ε = −sign(2α2 − 5α + 2).
2. y = x log x; in this case κ = 2 and ε = 1.

3. a logarithmic spiral with polar coordinatesρ = exp

(
α

β
θ

)
, whereβ =

√
1 − α2

3
,

where 0 ≤ α < 1, while ρ is the radial coordinate and θ the polar angle; in this
case κ = 2α and ε = 1.

From Eqs. (3.11) and (3.13), one concludes the following:

Corollary 3.8 A non-degenerate affine curve has affine curvature κ = 0 if and only if
it is locally affine equivalent to an arc of either the unit circle x2 + y2 = 1, where
ε = 1, or the rectangular hyperbola y = x−1, where ε = −1.

The following theorem, due originally to Cartan, characterizes curves whose
curvature is constant, which in turn is a special case of a more general result char-
acterizing submanifolds with all constant differential invariants under transformation
groups [17].

Theorem 3.9 [17] Let G be an ordinary transformation group acting on X ⊂ R
2. Let

C ⊂ X be an analytic curve with G-invariant signature set S. Then the following
conditions are equivalent:

(i) C has constant G-invariant curvature κ .
(ii) S degenerates to a point.
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(iii) C is the orbit of a one-parameter subgroup of G.
(iv) C admits a one-parameter symmetry group.

Thus, the curves with constant affine curvatures in Theorem 3.7 are the orbits of the
following one-parameter subgroups. (It is worth noting that these curves correspond
to the list of adjoint-inequivalent one-parameter subgroups of the affine group.)

Theorem 3.10 1. The curve y = xα, x > 0, α /∈ {0, 1, 1
2 , 2} is the orbit of the

one-parameter subgroup
{
exp(Xt)|X =

(
1 0
0 α

) }
,

2. The curve y = x ln x is the orbit of the one-parameter subgroup
{
exp(Xt) |X =

(
1 1
0 1

) }
,

3. The logarithmic spiral with polar coordinates ρ = exp
(α
β

θ
)
, where β =

√
1 − α2

3
with 0 ≤ α < 1 is the orbit of the one-parameter subgroup

{
exp(Xt) |X =

(
α −β

β α

) }
.

Remark 3.11 By Eqs. (3.7) and (3.9), the fully affine arc length element dσ can be
expressed in terms of the equi-affine differential invariants as dσ

dν = 3
√|μ|,where ν is

the equi-affine arc length element and μ is the equi-affine curvature. Then from Eqs.
(3.7) and (3.15), the fully affine curvature can bewritten in terms of the equi-affine cur-

vature and its derivatives as
(

1√|μ|
)

ν
. Furthermore, the affine arc length element dσ can

be expressed in terms of the Euclidean arc length element s and differential invariants

as dσ
ds =

√
|3φφss−5φ2

s +9φ4|
φ2 , where s is the Euclidean arc length element and φ is the

Euclidean curvature. The fully affine curvature can bewritten in terms of the Euclidean

curvature and its derivatives as:

∣∣∣∣
φs√|3φφss−5φ2

s +9φ4| + 3

(√
φ2

|3φφss−5φ2
s +9φ4|

)

s

∣∣∣∣ . In fact,

according to [11], we have dν
ds = φ

1
3 and μ = 3φφss−5φ2

s +9φ4

9φ
8
3

.

4 Moving Frame Construction for the Affine Group that Factors as a
Product

In fact, it will be simpler to construct the moving frames and then obtain differential
invariants if the acting group has fewer parameters. Thus, it is desirable to use the
results obtained for a subgroup A ⊂ G to construct a moving frame and differential
invariants for the entire groupG. The inductive algorithms [10,11] presented byKogan
allow us, in the case when the group G factors as a product, to extend a moving frame
for a subgroup to the entire group. One also obtains at the same time the relations
among the invariants of group G and its subgroup A. It is worth remarking that, in
order to obtain such relations, the algorithm does not require the explicit formulae for
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the invariants of either G and A, but only the corresponding moving frames which
lead to these invariants.

In this section,weuse the algorithm [10,11] tomake an induction from theEuclidean
action on plane curves to the affine action. Firstly, let us review the action of the special
Euclidean group SE(2) = SO(2) � R

2 on plane curve u = u(x) [10,11]. Its first
prolongation, given by

y = x cosα − u sin α + a,

v = x sin α + u cosα + b,

vy = sin α + ux cosα

cosα − ux sin α
, (4.1)

defines a free action on J 1(R2, 1). We could get a moving frame on J 1(R2, 1) by
choosing a cross section {x = 0, u = 0, ux = 0}. Then by setting {y = 0, v =
0, vy = 0}, it is simple to find an equivariant map J 1(R2, 1) → SE(2)

α = − arctan ux , a = − uxu + x√
1 + u2x

, b = ux x − u√
1 + u2x

. (4.2)

Therefore, the corresponding element of the special Euclidean group can be written
in a matrix form

ρ =

⎛

⎜⎜⎝

1√
1+u2x

ux√
1+u2x

− uux+x√
1+u2x

− ux√
1+u2x

1√
1+u2x

xux−u√
1+u2x

0 0 1

⎞

⎟⎟⎠ . (4.3)

Then the following differential invariants can be obtained directly

I e2 = vyy = uxx

(1 + u2x )
3
2

,

I e3 = vyyy = (1 + u2x )uxxx − 3uxu2xx
(1 + u2x )

3 , (4.4)

I e4 = vyyyy = (1 + u2x )
2uxxxx − 10uxuxxuxxx (1 + u2x ) + 15u2xu

3
xx

(1 + u2x )
9
2

.

Now we denote by I e2 = κ the Euclidean curvature. Immediately, from the recurrence
formula (2.7) , we have

I e3 = κs,

I e4 = κss + 3κ3, (4.5)

I e5 = κsss + 19κ2κs,

where ds = √
1 + u2xdx is infinitesimal Euclidean arc length. The contact invariant

differential form equals to ω = √
1 + u2xdx = ds. The dual total vector field D =
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1√
1+u2x

Dx = d
ds provides an invariant differential operator, and any other invariant

can be expressed as a function of I e2 and its derivatives with respect to D.
Now it is time to build a moving frame for the affine group, by using the moving

frame obtained above for the special Euclidean group SE(2, R) acting on curves in
R
2. Obviously, the affine group transformation GA(2, R) on the plane is the semi-

direct product of the general linear group GL(2, R) and translations in R
2. Thus, we

prolong it to the first jet bundle and notice that the isotropy group B of the point
z(1)0 = {x = 0, u = 0, ux = 0} is given by all linear transformations of the form

(
α β

0 δ

)
, (4.6)

where αδ 
= 0. Thus, GA(2, R) = B · SE(2, R) and B ∩ SE(2, R) is finite. Exactly
B ∩ SE(2, R) = {I ,−I }. Then let us prolong the action of B up to fifth order:

y = αx + βu,

v = δu,

vy = δux
α + βux

,

vyy = αδuxx
(α + βux )3

,

vyyy = αδ(α + βux )uxxx − 3αβδu2xx
(α + βux )5

,

vyyyy = αδ(α + βux )2uxxxx − 10αβδuxxuxxx (α + βux ) + 15αβ2δu3xx
(α + βux )7

,

vyyyyy = A

(α + βux )9
,

where

A = αδ(α + βux )
3uxxxxx − 15αβδuxxuxxxx (α + βux )

2 − 10αβδu2xxx (α + βux )
2

+ 105αβ2δu2xxuxxx (α + βux ) − 105αβ3δu4xx .

If we restrict these transformations to the Euclidean cross section

K5
E = {z(5) | π5

1 (z(5)) = z(1)0 } = {z(5) | x = 0, u = 0, ux = 0},

then it follows that

vyy = δ
uxx
α2 ,

vyyy = δ
αuxxx − 3βu2xx

α4 ,

vyyyy = δ
α2uxxxx − 10αβuxxuxxx + 15β2u3xx

α6 ,
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vyyyyy = δ
α3uxxxxx − 15α2βuxxuxxxx − 10α2βu2xxx + 105αβ2u2xxuxxx − 105β3u4xx

α8 .

In fact, the above action is free on the open subset {z(5) ∈ K5
E | uxx 
= 0}. The cross

section

K5 =
{
z(5) ∈ K5

E | uxx = 9

2
, uxxx = 0, uxxxx = 3

2

}

to the orbit of B on K5
E can generate a moving frame ρB : K5

E → B:

α2 = 3uxxuxxxx − 5u2xxx
u2xx

, β = αuxxx
3u2xx

, δ = 9α2

2uxx
.

Thus, we obtain the corresponding fifth-order invariant for the action of B on K5
E

I b5 = 9

2

u2xxuxxxxx − 5uxxuxxxuxxxx + 40
9 u

3
xxx

(3uxxuxxxx − 5u2xxx )
3
2

, (4.7)

which is the affine curvature in Eqs. (3.17) and (2.13).
It is clear thatK5 is a cross section to the orbits of the entire group GA(2, R) on the

open subset of J 5 where uxx 
= 0. Then the fifth-order affine invariant can be obtained
by invariantization of I b5 with respect to Euclidean action. So we get the lowest order
affine invariant μ according to Euclidean invariants

μ = I a5 = 9
(
(I e2 )2 I e5 − 5I e2 I

e
3 I

e
4 + 40

9 (I e3 )3
)

2(3I e2 I
e
4 − 5(I e3 )2)

3
2

. (4.8)

This equation can be rewritten by using the Euclidean curvature I e2 = κ and its
derivatives in Eq. (4.5). The moving frame for the affine group corresponding to the
cross section K5 is the product of two matrices

⎛

⎜⎜⎝

√
3uxx uxxxx−5u2xxx

uxx
uxxx

√
3uxx uxxxx−5u2xxx

3u3xx
0

0 9(3uxx uxxxx−5u2xxx )
2u3xx

0

0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1√
1+u2x

ux√
1+u2x

− uux+x√
1+u2x

− ux√
1+u2x

1√
1+u2x

xux−u√
1+u2x

0 0 1

⎞

⎟⎟⎠ .

(4.9)
We can obtain the affine contact invariant horizontal form dθ in terms of the Euclidean
arc length ds (see [10,11] for the detailed definitions of the notations):

dθ = σ ∗
Bσ ∗

EπHω∗
EdHω∗

E (x),
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where the Euclidean invariantization of dHω∗
B(x) = (α + βux )dx equals to αds and

hence

dθ = σ ∗
B(αds) =

√
3I e2 I

e
4 − 5(I e3 )2

I e2
ds. (4.10)

The form dθ is the affine arc length and can be written in the standard coordinates as

dθ =
√
3uxxuxxxx − 5u2xxx

uxx
dx,

which is coincident to Eq. (2.12).

5 Applications of Affine Curvature

In this section, we will employ the affine curvature defined in the previous sections
to determine whether two smooth (or discrete) planar curves are affine equivalent.
Furthermore, once we can confirm that the two smooth (or discrete) curves are affine
equivalent, the least squares method will be utilized for identifying the most suitable
affine transformation between them. After applying the affine transformation to trans-
form one of the two curves, the accuracy can be calculated and evaluated. In Sect. 5.1,
we introduce a numerical algorithm to assess the degree of equivalence between two
planar curves. In Sect. 5.2, the affine signature curves will be applied to judge whether
there exist an affine transformation between two smooth planar curves. In Sect. 5.3,
the discrete case is considered.

5.1 Measuring Numerically HowWell Two Curves Match

As we know, the inner product between two (sufficiently nice) functions f (x) and
g(x) over the interval [a, b],

〈 f (x), g(x)〉 :=
∫ b

c
f (x)g(x)dx,

often is considered as a standard way to compare the degree of equivalence between
these two functions, and from which we get

|| f (x) − g(x)|| =
√∫ b

a
( f (x) − g(x))2dx,

where || f (x) − g(x)|| can be defined as the distance between the functions f (x) and
g(x), and denoted by dist( f (x), g(x)). Thus, if dist( f (x), g(x)) = 0, immediately
we can conclude that

f (x) ≡ g(x), ∀x ∈ [a, b].
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Now we can apply this concept to compare two discrete curves. Let us say, the curve
A consists of N points and all the points are

(xa1 , ya1)
Trans, (xa2 , ya2)

Trans, . . . , (xaN , yaN )Trans.

Similarly, the curve B consists of M points

(xb1 , yb1)
Trans, (xb2 , yb2)

Trans, . . . , (xbM , ybM )Trans.

Locally, we can always assume that xa1 < xa2 < · · · < xaN and xb1 < xb2 < · · · <

xbM . For the sake of convenience, we take the following notations to indicate the maps
of Curve A and Curve B, that is,

yai = f (xai ), yb j = g(xb j ), i = 1, 2, . . . , N , j = 1, 2, . . . , M .

Two new sets {x ′
ai } and {x ′

bi
} of x-coordinates are created by choosing x ′

ai ∈ {xai } and
x ′
bi

∈ {xbi } such that x ′
a1 < x ′

b1
< x ′

a2 < x ′
b2

< · · · or x ′
b1

< x ′
a1 < x ′

b2
< x ′

a2 < · · · .
Then, we need to generate a common set of points for both curves with x-coordinates
from the following set.

{x1, x2, . . . , xK } = {x ′
a1 , x

′
a2 , . . . , x

′
aN ′ } ∪ {x ′

b1 , x
′
b2 , . . . , x

′
bM ′ },

where x1 < x2 < · · · < xK and max{M ′, N ′} ≤ K ≤ M ′ + N ′. The next step is to
define the maps for the set {x1, x2, · · · , xK }, and here we take

f (xi ) =

⎧
⎪⎪⎨

⎪⎪⎩

(xi−x ′
al−1

) f (x ′
al

)+(x ′
al

−xi ) f (x ′
al−1

)

x ′
al

−x ′
al−1

, x ′
al−1

≤ xi ≤ x ′
al , 1 < l ≤ N ′,

g(xi ) xi < x ′
a1 ,

g(xi ) xi > x ′
aN ′ ,

(5.1)

and

g(xi ) =

⎧
⎪⎪⎨

⎪⎪⎩

(xi−x ′
bl−1

)g(x ′
bl

)+(x ′
bl

−xi )g(x ′
bl−1

)

x ′
bl

−x ′
bl−1

, x ′
bl−1

≤ xi ≤ x ′
bl

, 1 < l ≤ M ′,
f (xi ) xi < x ′

b1
,

f (xi ) xi > x ′
bM ′ .

(5.2)

Themissing y-coordinates (if any) for each curve are obtained via interpolating neigh-
boring points. Notice that in the second and third entries, f and g are reversed. For
the new function f (x), if xi < x ′

a1 or xi > x ′
aN , then xi is the first one or last one. So

xi ∈ {x ′
bi

}, and we take its value from g(x). The same operation is performed for the
new function g(x). Thus, we can calculate the difference between Curve A and Curve
B by
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dist1 = max{| f (xi )−g(xi )|, i = 1, 2, . . . , K } or dist2 = 1

K

√√√√
K∑

i=1

| f (xi ) − g(xi )|2.
(5.3)

The value of difference rate can be given by

error1 = dist1
1

N

∑N

i=1
|yai |

or error2 = dist2

1

N

√∑N

i=1
y2ai

. (5.4)

Remark 5.1 The possible signature metrics for comparison of digital signatures are
Hausdorff, Monge–Kantorovich transport, electrostatic repulsion, latent semantic
analysis, histograms, geodesic distance, diffusion metric, Gromov–Hausdorff, etc
[1,2]. In [8], Hoff and Olver used signature similarity coefficient to measure the close-
ness of the two signatures. In this paper, in order to simple show the practicability
of the signature curve in matching curves up to an affine transformation, we directly
use the L2 inner product and norm to compare signatures. Practical issues require the
appropriate metric to compare signatures, which is an important issue we are studying.

5.2 Detecting the Affine Equivalence Between Two Smooth Planar Curves

On the basis of the previous sections, it is clear that, by a certain generating set
of invariants and a collection of invariant differential operators, all of the essential
differential invariants can be produced, while the differential invariants often are used
to find the global equivalence of two curves and symmetries of the curve. Certainly, the
equivalence and symmetry problem can be solved using the signature curves [9,18,22].
As introduced in Sect. 2.1, S is the submanifold of manifold M . Let n be the order of
stabilization of the group action and {I1, I2, . . . , INk } be a complete list of differential
invariants for any k ≥ n. The restriction of the invariants to the k-jet of S, j k S, is
denoted by Ĩα = Iα|J k S , and we define φk : S → { Ĩ1, . . . , ĨNk }. Accordingly, the kth-
order signature curve Ck of the submanifold S is the immersed manifold Im(φk) ⊂
R

Nk .
In fact, if two curves C1 and C2 are affine equivalent, they have same κ =

|κ2|, ε, (κ2)σ appearing in Eqs. (3.14), (3.15) and (3.18). Hence, the curves (κ, ε)

and (κ, (κ2)σ ) generated by curves C1 and C2 are same. On the contrary, ε, κ decide
a unique curve up to an affine transformation from Theorem 3.6. If we have exact
functions for (κ, ε) and (κ, (κ2)σ ), the curve can be identified uniquely up to an affine
transformation. Thus, the curves (κ, ε) and (κ, (κ2)σ ) are considered as the affine
signature curves.

In the following, through an example, we elaborate the process to assess the affine
equivalence of two curves and identify the affine transformation between them.

Example 5.2 Firstly, we list three parametric curves expressed by the following equa-
tions
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Fig. 1 The images of the curves
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Fig. 2 The relations between κ and ε

x1(t) =
(
cos t + cos 2t + cos 3t
sin t − sin 2t − sin 3t

)
, 0 < t < π, (5.5)

x2(t) =
(

(2 − t)(1 − t)(1 − 2t)
(2 − t)(1 − 2t)

√
8t − t4

)
, 0 < t < 2, (5.6)

and

x3(t) =
(

8t3 − 14t2 + 7t
(4t2 − 5t + 1)(

√
t − t2 + 0.5(1 − 2t))

)
, 0 < t < 1. (5.7)

Our goal is to make sure whether there are some affine transformations between
them. Generally, we should first draw graphs of these curves which can clearly show
topological and geometrical properties. Sometimes, we can know two curves are not
affine equivalent directly from their graphs according to the properties preserved by
the affine transformation.

Definitely, their graphs are shown in Fig. 1. However, in this example, directly
observing the graphs in Fig. 1, it is difficult to determine affine equivalence among
them.

Thus, we need to further investigate their signature curves which are shown in Figs.
2 and 3. In Fig. 2, these three graphs are almost same. But in Fig. 3, we do not hesitate
to tell that the curve x2(t) can not be affine equivalent to either of the two curves x1(t)
and x3(t), since the middle graphs of Fig. 3 look obviously different from the other
two. Of course, it seems that the left and right of Fig. 3 are the same.
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Fig. 3 The relations between (κ2)σ and κ

Table 2 The ranges of
parameter t for seven parts

x1(t) x3(t)

s1 (0, 0.4180312) (0, 0.04305502)

s2 (0.0.4180312, 0.8050989) (0.04305502, 0.15348005)

s3 (0.8050989, 1.3450748) (0.15348005, 0.38809517)

s4 (1.3450748, 1.8195723) (0.38809517, 0.62310890)

s5 (1.8195723, 2.1421153) (0.62310890, 0.77037101)

s6 (2.1421153, 2.4224184) (0.77037101, 0.87617499)

s7 (2.4224184, π) (0.87617499, 1)

With the help of Figs. 2 and 3, the possibility of the curve x2(t) is excluded, and
we could move ahead to estimate if there exist an affine transformation between x1(t)
and x3(t).

By a direct computation, we obtain both maximum values of κ for the curves x1(t)
and x3(t) are the same value 2.5. At the same time, according to Eqs. (3.8) and (3.14),
ε is constant for a non-degenerate affine curve. Thus, it is obvious that the left and
right of Fig. 2 are totally the same.

In order to verify the left and right of Fig. 3 are the same graph, we need to use
the method stated in Sect. 5.1. Exactly, if they are same, we can conclude that the
two curves x1(t) and x3(t) are affine equivalent, and we will further obtain the affine
transformation between them from some corresponding points.

Let us first calculate the difference and the value of difference rate in Eqs. (5.3)
and (5.4) between the left and the right pictures in Fig. 3. According to the signature
curves in Fig. 3,we should divide them into seven parts on the basis of themonotonicity
marked by different colors in Fig. 3. By careful comparison and analysis, it is easy to
obtain the ranges of parameter t for these seven parts which are listed in Table 2.

Then we choose 50001 points at each part of s1, s2,. . . s7 in Fig. 3. Using the
method stated in Sect. 5.1, we obtain the difference and the value of difference rate
for these seven parts which are shown in Table 3.

From the data listed in Table 3, it is apparent that all the values are very small and
almost zero. If we increase the number of points, all the values in Table 3 will further
decrease. Inevitably, there are some errors in numerical calculation and the values for
difference rate are considered to be within acceptable limits, so we can conclude that
the curves {x1(t), 0 < t < π} and {x3(t), 0 < t < 1} are affine equivalent.

Now let us search for the affine transformation between the curves x1(t) and x3(t).
According to the method and Eqs. (5.1)–(5.2) in Sect. 5.1, we have obtained three
series
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Table 3 The distances and errors for seven parts

dist1 dist2 error1 error2

s1 8.3377 × 10−07 1.4162 × 10−11 1.6427 × 10−05 6.8278 × 10−08

s2 8.9892 × 10−07 1.2962 × 10−11 1.0874 × 10−05 4.2581 × 10−08

s3 5.7532 × 10−07 1.0202 × 10−11 5.2672 × 10−06 2.6494 × 10−08

s4 7.5898 × 10−08 2.9708 × 10−12 8.4158 × 10−07 9.5412 × 10−09

s5 3.6450 × 10−07 6.9472 × 10−12 4.5309 × 10−06 2.4653 × 10−08

s6 3.6608 × 10−07 6.5532 × 10−12 3.0857 × 10−06 1.4534 × 10−08

s7 7.5166 × 10−08 2.5005 × 10−12 1.6544 × 10−07 1.4606 × 10−09

{κ1, κ2, . . . , κK },
{ f (κ1), f (κ2), . . . , f (κK )},

and

{g(κ1), g(κ2), . . . , g(κK )}.

At the same time, it is easy to collect the values (t1)i ∈ (0, π) and (t2)i ∈ (0, 1)
which correspond to the curvature κi , i = 1, 2, . . . , K for curves x1(t) and x3(t),
respectively.

In order to compute it more accurately, we fix a small number e and choose these
corresponding points (t1)i and (t2)i which satisfying the condition | f (κi )−g(κi )| < e.
In the above case, if we choose e = 10−8, we still gain 634793 points which satisfy
the condition.

Since there exists an affine transformation between {x1(t), 0 < t < π} and
{x3(t), 0 < t < 1} from above analysis, we assume

x1(t1) =
(
a b
c d

)
x3(t2) +

(
e
f

)
, 0 < t1 < π, 0 < t2 < 1, (5.8)

which implies

(
(x3(t2))x (x3(t2))y 0 0 1 0

0 0 (x3(t2))x (x3(t2))y 0 1

)

⎛

⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f

⎞

⎟⎟⎟⎟⎟⎟⎠
=
(

(x1(t1))x
(x1(t1))y

)
, (5.9)

where (x)x , (x)y denote the x-coordinate and y-coordinate of the vectorx, respectively.
Then using the least square method at the corresponding points (t1)i and (t2)i which
satisfying that | f (κi ) − g(κi )| < e, we can get the most suitable solution for the
parameters a, b, c, d, e, f .
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Fig. 4 Comparison between x1(t) and x3(t) after the affine transformation

Table 4 The ranges of t for c1, c2 and c3 in Fig. 4

c1 c2 c3

x1(t) (0, 1.2929432) (1.2929432, 2.2238639) (2.2238639, π)

x3(t) (0, 0.36285406) (0.36285406, 0.80381261) (0.80381261, 1)

Table 5 The distances and errors between the left and right (Fig. 4)

dist1 dist2 error1 error2

c1 8.6938 × 10−07 3.4209 × 10−13 1.0149 × 10−06 7.2097 × 10−10

c2 4.9645 × 10−07 5.1244 × 10−13 2.6618 × 10−07 3.4371 × 10−10

c3 2.2899 × 10−04 9.5435 × 10−10 4.2645 × 10−04 1.3826 × 10−06

In the above case, there are more than 508210 points which satisfy the condition.
Then using them and the least square method, we can find that the solution of the
parameters a, b, c, d, e, f is

a = −4.0000000, b = 0.0000000, c = −4.0000000, d = −8.0000000,

e = 3.0000000, f = 4.0000000. (5.10)

Now by using these parameters, we transform the middle graph x3(t), 0 < t < 1 to
the right graph of Fig. 4 and then compare it with the original graph x1(t), 0 < t < π

as shown in the left of Fig. 4.
Exactly, to make sure the left graph and the right graph of Fig. 4 are the same,

we still need to use the method stated in Sect. 5.1. According to the monotonicity as
shown in Fig. 4, it is better to divide it into three parts. By a careful calculation, we
can obtain the ranges of t for Parts c1, c2 and c3 in Fig. 4 and the results are shown in
Table 4.

In each unit-length interval of x-axis, we choose 600001 points as an example. By
using the method stated in Sect. 5.1, we obtain the distances and errors in Eqs. (5.3)
and (5.4) between the left graph and the right graph of Fig. 4 which are shown in
Table 5.
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Remark 5.3 It seems that the results of Part c3 in Table 5 are slightly bigger than
these of Part c1 and Part c2, and that is because some sections in Part c3 are abrupt
with respect to x-axis, which is unfavorable for interpolation. In fact, in this part, the
relation of x values and y values is the one-to-one correspondence for x1(t) and the
transformation of x3(t). Then if we exchange x and y axis, the desired effects of Part
c3 are discernible, which are

dist1 = 2.7672 × 10−09, dist2 = 6.9579 × 10−15, error1 = 7.7556 × 10−09,

error2 = 1.4592 × 10−11.

To sum up, the above result again shows that there exists an affine transformation
between x1(t), 0 < t < π and x3(t), 0 < t < 1.

5.3 Applying the Affine Curvatures to the Discrete Point Sequence

In this part, we first prove that the fitting cubic curve of a discrete point set is affine
invariant under an affine transformation, and then identify the discrete points with the
affine curvatures along the fitting cubic curves.

Given n points in the plane, represented as (x1, y1)Trans, (x2, y2)Trans, · · · , (xn,
yn)Trans, which generate a matrix

M1 =

⎛

⎜⎜⎜⎜⎝

x31 x21 y1 x1y21 y31 x21 x1y1 y21 x1 y1 1

x32 x22 y2 x2y22 y32 x22 x2y2 y22 x2 y2 1
...

...
...

...
...

...
...

...
...

...

x3n x2n yn xn y2n y3n x2n xn yn y2n xn yn 1

⎞

⎟⎟⎟⎟⎠
. (5.11)

Suppose v1, v2, · · · , v10 are the ten column vectors of the matrix M1, that is,

M1 = (v1 v2 v3 v4 v5 v6 v7 v8 v9 v10). (5.12)

Thus, another matrix M2 can be constructed by using these column vectors, and

M2 = (v5 v6 v7 v8 v9 v10) . (5.13)

In particular, we can prove that

Theorem 5.4 If the ranks of the matrices M1 and M2 satisfy that

rank(M1) = 9, rank(M2) = 6, (5.14)

then there exists a unique cubic curve

A1x
3 + A2x

2y + A3xy
2 + A4y

3 + A5x
2 + A6xy + A7y

2 + A8x + A9y + A10 = 0,

A2
1 + A2

2 + A2
3 + A2

4 
= 0 (5.15)

passing through these n points (x1, y1)Trans, (x2, y2)Trans, · · · , (xn, yn)Trans.
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Proof Since rank(M2) = 6, the solution vector (A5, A6, · · · , A10) of the equations

A5x
2
i + A6xi yi + A7y

2
i + A8xi + A9yi + A10 = 0, i = 1, 2, . . . , n

is A5 = A6 = · · · = A10 = 0.
On the other hand, rank(M1) = 9 implies that the unit vector (A1, A2, · · · , A10)

satisfying the equations

A1x
3
i + A2x

2
i yi + A3xi y

2
i + A4y

3
i + A5x

2
i + A6xi yi + A7y

2
i

+A8xi + A9yi + A10 = 0, i = 1, 2, · · · , n

is unique up to a sign. Therefore, it is obvious that the conclusion of this theorem
holds. �

Let us consider an affine transformation

x = λ1x ′ + λ2y′ + λ3
y = λ4x ′ + λ5y′ + λ6

, where λ1λ5 − λ2λ4 
= 0, (5.16)

on a plane. Clearly, by a computation, the relation between (v1, v2, · · · , v10) and(
v′
1, v

′
2, · · · , v′

10

)
follows

(v1, v2, . . . , v10) = (
v′
1, v

′
2, · · · , v′

10

)

⎛

⎜⎜⎝

N 0 0 0
N2 N1 0 0
N3 N4 N5 0
N6 N7 N8 1

⎞

⎟⎟⎠ , (5.17)

where

N =

⎛

⎜⎜⎝

λ31 λ21λ4 λ24λ1 λ34
3λ21λ2 λ21λ5 + 2λ1λ2λ4 λ24λ2 + 2λ1λ4λ5 3λ24λ5
3λ1λ22 λ22λ4 + 2λ1λ2λ5 λ1λ

2
5 + 2λ2λ4λ5 3λ4λ25

λ32 λ22λ5 λ25λ2 λ35

⎞

⎟⎟⎠ ,

N1 =
⎛

⎝
λ21 λ1λ4 λ24

2λ1λ2 λ1λ5 + λ2λ4 2λ4λ5
λ22 λ2λ5 λ25

⎞

⎠ ,

N2 =
⎛

⎝
3λ21λ3 λ21λ6 + 2λ1λ3λ4 λ3λ

2
4 + 2λ1λ4λ6 3λ24λ6

6λ1λ2λ3 2(λ1λ2λ6 + λ1λ3λ5 + λ2λ3λ4) 2(λ3λ4λ5 + λ2λ4λ6 + λ1λ5λ6) 6λ4λ5λ6
3λ22λ3 λ22λ6 + 2λ2λ3λ5 λ3λ

2
5 + 2λ2λ5λ6 3λ35λ6

⎞

⎠ ,

N3 =
(
3λ1λ23 λ23λ4 + 2λ1λ3λ6 λ1λ

2
6 + 2λ3λ4λ6 3λ4λ26

3λ2λ23 λ23λ5 + 2λ2λ3λ6 λ2λ
2
6 + 2λ3λ5λ6 3λ5λ26

)
,

N4 =
(
2λ1λ3 λ1λ6 + λ3λ4 2λ4λ6
2λ2λ3 λ2λ6 + λ3λ5 2λ5λ6

)
,

N5 =
(

λ1 λ4
λ2 λ5

)
, N6 = (

λ33 λ23λ6 λ3λ
2
6 λ36

)
, N7 = (

λ23 λ3λ6 λ26

)
, N8 = (

λ3 λ6
)
.

Hence, it yields that

123



Moving Frames and Differential Invariants on Fully Affine… 3255

Theorem 5.5 A cubic curve

A1x
3 + A2x

2y + A3xy
2 + A4y

3 + A5x
2 + A6xy + A7y

2 + A8x + A9y + A10 = 0,

A2
1 + A2

2 + A2
3 + A2

4 
= 0

is still a cubic curve under an affine transformation.

Let us also verify the following theorem.

Theorem 5.6 Assume two point sets P = {P1, P2, . . . , Pn} and Q = {Q1, Q2, . . . ,

Qn} are affine equivalent, where n ≥ 9. If the n points P1, P2, · · · , Pn satisfy the
conditions of Theorem 5.4, which determine uniquely a cubic curve Cp, then the n
points Q1, Q2, · · · , Qn also determine uniquely a cubic curve Cq, and the cubic
curves Cp and Cq are affine equivalent with the same correspondence as that between
P and Q.

Proof Under the affine transformation (5.16), we have the relation in Eq. (5.17). By a
direct calculation, it appears that

det(N ) = (λ1λ5 − λ2λ4)
6 
= 0, det(N1) = (λ1λ5 − λ2λ4)

3 
= 0,

det(N5) = λ1λ5 − λ2λ4 
= 0.

Then, again from Eq. (5.17), we can conclude that

rank {v1, v2, · · · , v10} = rank
{
v′
1, v

′
2, · · · , v′

10

}

and

rank {v5, v6, · · · , v10} = rank
{
v′
5, v

′
6, · · · , v′

10

}
.

Finally, combining of Theorem 5.4 and Theorem 5.5 yields the conclusion of this
theorem. �
Remark 5.7 In fact, by using the abovemethod,we can consider further the similar con-
clusions for quartic curve, quintic curve, and so on. On the other hand, if rank(M2) = 6
and 6 ≤ rank(M1) < 9, there are more than one cubic curves passing through these
points, and after an affine transformation, we need to verify them respectively.

Next let us consider how to describe the affine curvature of the discrete curve. Firstly,
we fit piecewise the discrete points by using the cubic curves. In fact, it is convenient to
find the derivatives of the implicit functions. Then according to Eqs. (3.16)-(3.18), we
can obtain the affine invariants ε, κ , dκ2

dσ of these points along the fitting cubic curve,
and these points can be identified by the affine invariants ε, κ , dκ2

dσ . By this way, it
is more convenient to find the correspondence relation between two affine equivalent
point sets. In the following example, we show the relations of the affine curvatures
among a smooth curve, the fitting cubic curves for the discrete points on this smooth
curve and the fitting cubic curves for the smooth curve after an affine transformation.
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Example 5.8 From Sect. 5.2, we know the curves {x1(t), 0 < t < 0.4180312} and
{x3(t), 0 < t < 0.04305502} in Example 5.2 are affine equivalent. It is convenient to
obtain some discrete points on these two curves. We choose 6000 equidistant points
for parameter t on the intervals (0, 0.4180312) and (0, 0.04305502) and generate two
discrete point sets P1 and P2 on the curves x1(t) and x3(t), respectively.

Next, we fit piecewise the discrete points in the sets P1 and P2 to the cubic curves
by using Theorem 5.4 and calculate their smooth affine curvatures at every point along
the fitting cubic curves. Their signature curves are shown in Fig. 5.

In every row of Fig. 5, the left ones are the signature curves of the smooth curve
x1(t), and the middle twos are the signature curves of the fitting cubic curves to the
discrete point sequence P1 and P2. For the sake of direct comparison and contrast, we
put the left three results together into one graph as shown in the right ones of Fig. 5.
From the visual point of view in Fig. 5, it is no doubt that the fitting affine curvatures
are very close to the origin affine curvatures on the curves x1(t) and x3(t) in Example
5.2, and the fitting effect is satisfactory. Of course, in order to obtain a more accurate
result, we need to apply the similar numerical method as that used in Sect. 5.2 and find
the affine transformation through those corresponding points whose affine curvatures
are the nearest and by using the least square method mentioned in Sect. 5.2. Finally,
we can compare the difference between one point set P1 and the image of another
point set P2 after the affine transformation obtained.
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