

# Two-Distance Vertex-Distinguishing Index of Sparse Subcubic Graphs

Loumngam Kamga Victor<sup>1</sup> · Juan Liu<sup>1</sup> · Weifan Wang<sup>1</sup>

Received: 19 October 2018 / Revised: 12 November 2019 / Published online: 26 November 2019 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

# Abstract

The 2-distance vertex-distinguishing index  $\chi'_{d2}(G)$  of a graph *G* is the minimum number of colors required for a proper edge coloring of *G* such that any pair of vertices at distance two have distinct sets of colors. It was conjectured that every subcubic graph *G* has  $\chi'_{d2}(G) \leq 5$ . In this paper, we confirm this conjecture for subcubic graphs with maximum average degree less than  $\frac{8}{3}$ .

**Keywords** Subcubic graph  $\cdot$  Maximum average degree  $\cdot$  Edge coloring  $\cdot$  2-Distance vertex-distinguishing index  $\cdot$  AVD edge coloring

Mathematics Subject Classification 05C15

# **1 Introduction**

All graphs considered in this paper are finite and simple. Let *G* be a graph with vertex set V(G), edge set E(G), maximum degree  $\Delta(G)$ , and minimum degree  $\delta(G)$ . Let  $N_G(v)$  denote the set of neighbors of a vertex v in *G*, and let  $d_G(v) = |N_G(v)|$  denote the degree of v in *G*. A vertex of degree k (at most k, at least k, resp.) is called a k-vertex (k<sup>--vertex</sup>, k<sup>+</sup>-vertex, resp.). The *distance*, denoted by d(u, v) between two vertices u and v is the length of a shortest path connecting them. If no confusion arises, we abbreviate  $\Delta(G)$  to  $\Delta$ .

A proper edge k-coloring of a graph G is a mapping  $\phi : E(G) \rightarrow \{1, 2, ..., k\}$  such that  $\phi(e) \neq \phi(e')$  for any two adjacent edges e and e'. The chromatic index,

Communicated by Sandi Klavžar.

⊠ Weifan Wang wwf@zjnu.cn

Research supported by NSFC (No. 11771402).

<sup>&</sup>lt;sup>1</sup> Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

denoted  $\chi'(G)$ , of a graph G is the smallest integer k such that G has a proper edge k-coloring. For a vertex  $v \in V(G)$ , let  $C_{\phi}(v)$  denote the set of colors assigned to the edges incident to v, that is,

$$C_{\phi}(v) = \{\phi(uv) | uv \in E(G)\}.$$

The coloring  $\phi$  is called 2-distance vertex-distinguishing (or a 2DVDE-coloring, in short) if  $C_{\phi}(u) \neq C_{\phi}(v)$  for any pair of vertices u and v with d(u, v) = 2. Let  $\chi'_{d2}(G)$  denote the 2-distance vertex-distinguishing index of G, which is the smallest integer k such that G has a 2DVDE-coloring using k colors.

The 2-distance vertex-distinguishing edge coloring of graphs can be thought of as a special case of the *r*-strong edge coloring of graphs, see [1]. Let  $r \ge 1$  be an integer. The *r*-strong chromatic index  $\chi'_s(G, r)$  of a graph *G* is the minimum number of colors required for a proper edge coloring of *G* such that any two vertices *u* and *v* with  $d(u, v) \le r$  have  $C_{\phi}(x) \ne C_{\phi}(y)$ . In particular, when r = 1, we have  $\chi'_s(G, 1) = \chi'_a(G)$ , which is called the *neighbor-distinguishing index* of *G*. Zhang, Liu, and Wang [12] first investigated this parameter and proposed the following conjecture:

**Conjecture 1** If G is a graph different from a 5-cycle, then  $\chi'_a(G) \leq \Delta + 2$ .

Balister et al. [2] confirmed Conjecture 1 for bipartite graphs and subcubic graphs. Using a probabilistic analysis, Hatami [3] showed that every graph *G* with  $\Delta > 10^{20}$  has  $\chi'_a(G) \le \Delta + 300$ . Akbari et al. [1] proved that every graph *G* satisfies  $\chi'_a(G) \le 3\Delta$ . Zhang et al. [11] proved that every graph *G* has  $\chi'_a(G) \le 2.5(\Delta + 2)$ . Wang et al. [9] improved these upper bounds to  $\chi'_a(G) \le 2.5\Delta$  if  $\Delta \ge 7$ , and to  $\chi'_a(G) \le 2\Delta$  if  $\Delta \le 6$ . The currently best known upper bound that  $\chi'_a(G) \le 2\Delta + 2$  for any graph *G* was obtained by Vučković [6].

It follows from the definition that  $\chi'_{d2}(G) \ge \chi'(G) \ge \Delta$ , and moreover  $\chi'_{d2}(G) \ge \Delta + 1$  if *G* contains two vertices of maximum degree at distance 2. The 2-distance vertex-distinguishing index for special graphs such as cycles, paths, trees, complete graphs, complete bipartite graphs, and unicycle graphs has been determined in [8]. Using an algorithmic analysis, Wang et al. [7] proved that every outerplanar graph *G* satisfies  $\chi'_{d2}(G) \le \Delta + 8$ . Additionally, it was shown in [4] that if *G* is a bipartite outerplanar graph, then  $\chi'_{d2}(G) \le \Delta + 2$ .

A *cubic graph* is a 3-regular graph, and a *subcubic graph* is a graph of maximum degree at most 3. The *maximum average degree* of a graph G is defined as

$$\operatorname{mad}(G) = \operatorname{max}\left\{\frac{2|E(H)|}{|V(H)|} \mid H \subseteq G\right\}.$$

Very recently, Victor et al. [5] showed that every subcubic graph G satisfies  $\chi'_{d2}(G) \le 6$ , and raised the following conjecture:

**Conjecture 2** For a subcubic graph G,  $\chi'_{d2}(G) \leq 5$ .

Note that if Conjecture 2 were true, then the upper bound 5 is tight. In this paper, we confirm partially this conjecture by showing the following result:

**Theorem 1** If *H* is a subcubic graph with  $mad(H) < \frac{8}{3}$ , then  $\chi'_{d2}(H) \le 5$ .

To prove Theorem 1, we need to apply repeatedly the following easy fact (see [10]):

Lemma 2 Let G be a graph.

(1) If v is a leaf of G, then  $mad(G - v) \leq mad(G)$ .

(2) If e is an edge of G, then  $mad(G - e) \leq mad(G)$ .

Let *G* be a subcubic graph and *v* be a 3-vertex of *G*. For  $0 \le i \le 3$ , *v* is called a  $3_i$ -vertex if *v* is adjacent to exactly *i* 2-vertices. For a subgraph *H* of *G* and a 2DVDE-coloring  $\phi$  of *H*, we say, in short, that  $\phi$  is a *legal coloring* of *H*. Two vertices  $u, v \in V(G)$  with d(u, v) = 2 are called *conflict* with respect to the coloring  $\phi$  if  $C_{\phi}(u) = C_{\phi}(v)$ .

# 2 Proof of Theorem 1

The proof is by contradiction. Let *H* be a minimum counterexample that minimizes |E(H)| + |V(H)|. Then,  $\Delta(H) \leq 3$ , mad $(H) < \frac{8}{3}$ , and  $\chi'_{d2}(H) > 5$ . It is easy to note that *H* is connected, for otherwise by the minimality of *H*, we can 5-2DVDE-color independently each connected component of *H* using the same set of colors and consider the resulting coloring as a 5-2DVDE-coloring of *H*. Let *H'* denote the graph obtained by deleting all 1-vertices of *H*. Then, *H'* is clearly connected,  $\Delta(H') \leq 3$ , and mad $(H') \leq mad(H) < \frac{8}{3}$  by Lemma 2. Moreover, by the minimality of *H*, any of its subgraph obtained by edge deletion can be legally colored with at most five colors. We first list some structural properties of *H'*. In the subsequent proofs, we routinely construct 5-2DVDE-colorings of *H* without verifying in detail that *H* is legally-5-colored since this can be supplied in a straightforward manner. In the following, we always let  $C = \{1, 2, \ldots, 5\}$  denote a set of five colors. Given a 5-2DVDE-coloring  $\phi$  of a subgraph *G* of *H* using the color set *C*, for a vertex  $v \in V(G)$ , we denote simply  $C_{\phi}(v)$  by C(v).

Claim 1  $\delta(H') \geq 2$ .

**Proof** Suppose to the contrary that  $\delta(H') \leq 1$ . If  $\delta(H') = 0$ , then H' is isomorphic to  $K_1$  and so H is isomorphic to the star  $K_{1,n-1}$  with |V(H)| = n. Obviously, we can color the edges of  $K_{1,n-1}$  with distinct colors, so  $\chi'_{d2}(H) = \Delta(H) \leq 3$ , which contradicts the hypothesis on H. Assume that  $\delta(H') = 1$ , and let u be a 1-vertex of H' adjacent to a vertex v. Then,  $d_H(u) \in \{2, 3\}$ , let  $u_1$  be another neighbor of u different from v in H, and let  $G = H - uu_1$ . By the minimally of H, G has a 5-2DVDE-coloring  $\phi$  using the color set C. Observe that  $|C(u) \cup C(v)| \leq 4$  since  $d_H(v) \leq 3$  and v is adjacent to u. Therefore, to extend  $\phi$  to H, it suffices to color  $uu_1$  with a color in C - C(u) - C(v). This contradicts the choice of H.

**Claim 2** H' contains no two adjacent 2-vertices.

**Proof** Suppose to the contrary that H' contains two adjacent 2-vertices u and v. Let  $N_{H'}(u) = \{v, u_1\}$  and  $N_{H'}(v) = \{u, v_1\}$ . Then,  $d_H(u), d_H(v) \in \{2, 3\}$ . We discuss the following two cases by symmetry.

#### **Case 1.** $d_H(u) = d_H(v) = 2$ .

Consider the graph G = H - uv. By the minimally of H, G has a 5-2DVDEcoloring  $\phi$  using the color set C. We assume that uv cannot be colored with any color in C. Therefore, at least one of  $u_1$  and  $v_1$  is a 3-vertex; otherwise, we color uv with a color in  $C - C(u_1) - C(v_1)$ . Without loss of generality, assume that  $d_G(u_1) = 3$ ,  $N_G(u_1) = \{u, u_2, u_3\}$ , and  $C(u_1) = \{1, 2, 3\}$  such that  $\phi(uu_1) = 1$  and  $\phi(u_1u_2) = 2$ . We discuss two possibilities:

- Let  $d_G(v_1) = 2$ , say  $N_G(v_1) = \{v, v_2\}$ . If  $d_G(v_2) = 2$ , then the proof is reduced to the previous case by replacing uv with  $vv_1$ . Otherwise,  $d_G(v_2) = 3$ , we may color uv with a color in  $\{4, 5\} \{\phi(vv_1)\}$ . This contradicts the assumption that uv cannot be colored.
- Let  $d_G(v_1) = 3$ , say  $N_H(v_1) = \{v, v_2, v_3\}$ . First assume that at least two of  $u_2, u_3, v_2, v_3$  are 3-vertices. By symmetry, we have the following two possibilities. If  $d_G(u_2) = d_G(u_3) = 3$ , then we color uv with a color in  $\{2, 3, 4, 5\} C(v_1)$ . If  $d_G(u_2) = d_G(v_2) = 3$ , then we color uv with a color in  $\{2, 4, 5\} \{\phi(vv_1), \phi(v_1v_3)\}$ . Next assume that at most one of  $u_2, u_3, v_2, v_3$  is of degree 3, say,  $d_G(u_2) = d_G(u_3) = d_G(v_2) = 2$  and  $2 \le d_G(v_3) \le 3$ . It is easy to see that  $\{4, 5\} \subset C(v_1)$  because uv can not be legally colored.

First suppose that  $d_G(v_3) = 2$ . If  $\phi(vv_1) = 2$ , then  $\phi(v_1v_2) = 4$  and  $\phi(v_1v_3) = 5$ . It follows that  $C(u_2) = \{1, 2\}, C(u_3) = \{1, 3\}, C(v_2) = \{2, 4\}, \text{ and } C(v_3) = \{2, 5\}$ . It suffices to recolor  $vv_1$  with 1 and color uv with 4. If  $\phi(vv_1) \in \{1, 3\}$ , we have a similar discussion. So assume that  $\phi(vv_1) \in \{4, 5\}$ , say  $\phi(vv_1) = 4$ . Then,  $C(u_2) = \{1, 2\}$  and  $C(u_3) = \{1, 3\}$ . Without loss of generality, assume that  $\phi(v_1v_3) = 5$  and so  $\phi(v_1v_2) \in \{1, 2, 3\}$ . Let z be the other neighbor of  $v_3$  different from  $v_1$ . Then, we must have  $\phi(zv_3) = 4$ . Now we recolor  $uu_1$  with 4 and color uv with a color in  $\{1, 2, 3\}$  such that v does not conflict with  $v_2$ .

Next suppose that  $d_G(v_3) = 3$ . A similar and easier proof can be established. **Case 2.**  $d_H(u) = 3$  and  $d_H(v) \in \{2, 3\}$ .

Let  $N_H(u) = \{v, u_1, x\}$  with  $d_H(x) = 1$ . If  $d_H(v) = 3$ , then we furthermore assume that  $N_H(v) = \{u, v_1, y\}$  with  $d_H(y) = 1$ . Consider the graph G = H - ux. By the minimality of H, G has a 5-2DVDE-coloring  $\phi$  using the color set C. Assume that ux cannot be colored with any color in C. We have to consider two cases as follows.

Assume that  $u_1$  is a 2-vertex of G. Then,  $N_G(u_1) = \{u, u_2\}$ . If  $u_2$  is a 2-vertex, then we can color ux with a color in  $C - C(u_1) - \{\phi(uv), \phi(vv_1)\}$ , which is a contradiction. Otherwise,  $u_2$  is a 3-vertex. If  $\phi(uv) \neq \phi(u_1u_2)$ , then we color ux with a color in  $C - C(u_1) - \{\phi(uv), \phi(vv_1)\}$ . If  $\phi(uv) = \phi(u_1u_2)$ , then  $C - C(u_1) - \{\phi(uv), \phi(vv_1)\}$ contains at least two colors, so that we can choose one of them to color ux.

Assume that  $d_G(u_1) = 3$  and  $N_G(u_1) = \{u, u_2, u_3\}$ . If  $d_G(v_1) = 2$ , then we color ux with a color in  $C - C(u_1) - \{\phi(uv)\}$ . Thus, assume that  $d_G(v_1) = 3$ . Without loss of generality, we may assume that  $\phi(uv) = 1$ ,  $\phi(uu_1) = 2$ ,  $C(u_2) = \{1, 2, 4\}$ ,  $C(u_3) = \{1, 2, 3\}$ , and  $C(v_1) = \{1, 2, 5\}$ . There are two possibilities to be handled.

• Let  $d_H(v) = 2$ . If  $C(u_1) = \{2, 3, 4\}$ , it suffices to recolor  $uu_1$  with 5 and color ux with 4. So assume that  $C(u_1) = \{1, 2, 4\}$ , and hence, it suffices to recolor uv with 4 and color ux with 5.

• Let  $d_H(v) = 3$ . Then,  $N_G(v) = \{u, y, v_1\}$ . Let  $N_G(v_1) = \{v, v_2, v_3\}$ . If  $C(u_1) = \{2, 3, 4\}$ , then we recolor  $uu_1$  with 5 and color ux with 4. So assume that  $C(u_1) = \{1, 2, 4\}$  by symmetry. Note that  $\phi(vv_1) \in \{2, 5\}$ . If  $\phi(vv_1) = 2$ , then it follows immediately that  $\phi(vy) \in \{3, 5\}$ , we switch the colors of vy and vu and color ux with 4. Now suppose that  $\phi(vv_1) = 5$ , and furthermore, let  $\phi(v_1v_2) = 2$ . Then,  $\phi(vy) \in \{2, 3, 4\}$ . If  $\phi(vy) = 2$ , then we recolor vu with 3 or 4 such that v does not conflict with  $v_2$ , and color ux with 5. If  $\phi(vy) \in \{3, 4\}$ , then after switching the colors of vy and vu, we color ux with 5.

The proof of Claims 3–5 below will be given in the subsequent sections.

**Claim 3** H' contains no 3<sub>3</sub>-vertex.

**Claim 4** H' contains no 2-vertex adjacent to two 3<sub>2</sub>-vertices.

**Claim 5** H' contains no  $3_2$ -vertex.

We define an initial weight function  $w(v) = d_{H'}(v)$  for every vertex  $v \in V(H')$ . Then, we redistribute weights according to the following rule:

(**R**) Every 3<sub>1</sub>-vertex sends the weight of  $\frac{1}{3}$  to the uniquely adjacent 2-vertex.

The sum of all charges is kept fixed when the discharging is in process. Once the discharging is finished, a new charge function w' is produced. Nevertheless, we can show that  $w'(v) \ge \frac{8}{3}$  for all  $v \in V(H')$ . In fact, let  $v \in V(H')$ . By Claims 1–5, v is either a 2-vertex or a 3<sub>1</sub>-vertex or a 3<sub>0</sub>-vertex. If v is a 3<sub>0</sub>-vertex, then w'(v) = 3. If v is a 3<sub>1</sub>-vertex, then  $w'(v) = 3 - \frac{1}{3} = \frac{8}{3}$ . If v is a 2-vertex, then  $w'(v) = 2 + 2 \cdot \frac{1}{3} = \frac{8}{3}$ . This leads to the following obvious contradiction:

$$\frac{8}{3} = \frac{\frac{8}{3}|V(H')|}{|V(H')|} \le \frac{\sum_{v \in V(H')} w'(v)}{|V(H')|} = \frac{\sum_{v \in V(H')} w(v)}{|V(H')|} = \frac{2|E(H')|}{|V(H')|} \le \operatorname{mad}(H') < \frac{8}{3}.$$

This completes the proof of Theorem 1.

## 3 Proof of Claim 3

Assume to the contrary that H' contains a 3-vertex x adjacent to three 2-vertices u, v, w (see Fig. 1). Let  $N_{H'}(u) = \{x, u_1\}, N_{H'}(v) = \{x, v_1\}$ , and  $N_{H'}(w) = \{x, w_1\}$ . By Claims 1 and 2,  $d_{H'}(u_1) = d_{H'}(v_1) = d_{H'}(w_1) = 3$ . Note that  $d_H(u), d_H(v), d_H(w) \in \{2, 3\}$ . Setting  $N_{H'}(u_1) = \{u, u_2, u_3\}$ , we discuss two cases below.

**Case 1.**  $d_H(u) = d_H(v) = d_H(w) = 2$ .

Let G = H - ux, which admits a 5-2DVDE-coloring  $\phi$  with  $\phi(xv) = 1$  and  $\phi(xw) = 2$ . Assume that xu cannot be colored with any color in C. Let us deal with the following cases, depending on the color of  $uu_1$ .

(1)  $\phi(uu_1) \in \{1, 2\}$ , say  $\phi(uu_1) = 2$  by symmetry.

(1.1) Suppose that at least one of  $u_2$  and  $u_3$  is a 3-vertex in G, say  $d_G(u_3) = 3$ . By symmetry, the proof splits into two cases.

 $W_1$ 

w

х

0-----



 $u_{1}$  = 1. Without loss of generality, assume that  $C(v_{1}) = \{1, 2, 4\}$ 

(1.1.1) Let  $\phi(ww_1) = 1$ . Without loss of generality, assume that  $C(v_1) = \{1, 2, 4\}$ and  $C(w_1) = \{1, 2, 5\}$ . It follows that  $C(u_1) = \{1, 2, 3\}$ , or  $C(u_2) = \{2, 3\}$ . Recolor *xw* with 4 and color *xu* with 5. If  $\phi(vv_1) \neq 4$ , we are done. Otherwise, we recolor *xv* with 3.

(1.1.2) Let  $\phi(ww_1) \in \{3, 4, 5\}$ , and assume  $\phi(ww_1) = 5$  by symmetry. Similarly, we can assume that  $C(v_1) = \{1, 2, 4\}$ ; and  $C(u_1) = \{1, 2, 3\}$  or  $C(u_2) = \{2, 3\}$ . Recolor *xv* with 3 and color *ux* with 1 or 4 such that *x* does not conflict with  $u_1$ .

(1.2) Suppose that  $d_G(u_2) = d_G(u_3) = 2$ . There are two subcases below by symmetry.

 $(1.2.1) \{ C(u_2), C(u_3) \} = \{ \{2, 3\}, \{2, 4\} \}.$ 

Assume that  $C(v_1) = \{1, 2, 5\}$ . If  $C(w_1) \neq \{1, 2, 3\}$ , then we first recolor  $uu_1$  with 5 and color xu with 3. Otherwise,  $C(w_1) = \{1, 2, 3\}$ , recolor  $uu_1$  with 5 and color xu with 3.

Assume  $C(w_1) = \{1, 2, 5\}$ , then a similar strategy as in the previous case is applied. Assume now that  $C(v_1) \neq \{1, 2, 5\}$  and  $C(w_1) \neq \{1, 2, 5\}$ . If  $\phi(ww_1) \neq 5$ , then we color xu with 5. Otherwise, assume that  $\phi(ww_1) = 5$ . Recolor  $uu_1 = 5$ , color uxwith 3 or 4 such that x does not conflict with  $v_1$ .

(1.2.2) At most one of  $C(u_2)$  and  $C(u_3)$  is  $\{2, i\}$  for some  $i \in \{3, 4, 5\}$ , say  $C(u_2) = \{2, 3\}$  by symmetry.

Assume that  $\phi(ww_1) \in \{4, 5\}$ , say  $\phi(ww_1) = 4$ . Then, it is immediate to derive that  $C(v_1) = \{1, 2, 5\}$ . We first recolor xv with 3 and color xu with 5. If  $C(u_1) \neq \{2, 3, 5\}$ , we are done. Otherwise, we recolor ux with 1.

Assume that  $\phi(ww_1) \notin \{4, 5\}$ . Furthermore, suppose that  $C(v_1) = \{1, 2, 5\}$  and  $C(w_1) = \{1, 2, 4\}$ . This implies that  $\phi(ww_1) = 1$ . Recolor xv with 3 and color xu with 4 or 5 such that x does not conflict with  $u_1$ .

(2)  $\phi(uu_1) \notin \{1, 2\}$ , say  $\phi(uu_1) = 3$  by symmetry.

We have to handle three possibilities by symmetry.

(2.1)  $d_G(u_2) = d_G(u_3) = 3$ . Assume that  $C(v_1) = \{1, 2, 4\}$  and  $C(w_1) = \{1, 2, 5\}$ . Recolor xw with 4 and color xu with 5. If v does not conflict with w, then we are done. Otherwise, we know that  $\phi(ww_1) = 1$  and  $\phi(vv_1) = 4$ . In this case, we keep  $\phi(xw) = 2$ , and then we recolor xv with 5 and xu with 4.

(2.2)  $d_G(u_2) = 2$  and  $d_G(u_3) = 3$ .

If  $C(u_2) \notin \{\{3, 4\}, \{3, 5\}\}$ , then the proof can be analogously given as in Case (2.1). Otherwise, without loss of generality, assume that  $C(u_2) = \{3, 4\}$ , and further

 $C(v_1) = \{1, 2, 5\}$ . If  $\phi(ww_1) \neq 4$ , then we recolor xv with 4 and ux with 1 or 5 such that x does not conflict with  $w_1$ . If  $\phi(ww_1) = 4$ , then we recolor xv with 3 and color ux with 1.

 $(2.3) d_G(u_2) = d_G(u_3) = 2.$ 

If  $3 \notin C(u_2) \cup C(u_3)$ , then the proof is similar to that of Case (2.1).

Assume that  $3 \in C(u_2)$  and  $3 \notin C(u_3)$  (if  $3 \in C(u_3)$  and  $3 \notin C(u_2)$ , we have a similar proof). If  $\phi(u_1u_2) \in \{1, 2\}$ , say  $\phi(u_1u_2) = 1$ , then we assume that  $C(v_1) = \{1, 2, 5\}$  and  $C(w_1) = \{1, 2, 4\}$ . Recolor xw with 3 and color xu with 4 or 5, say 4, such that x does not conflict with  $u_1$ . If  $\phi(ww_1) \neq 4$ , we are done. Otherwise, we recolor xv with 3 and xw with 5. If  $\phi(u_1u_2) \in \{4, 5\}$ , say  $\phi(u_1u_2) = 4$ , then at least one of  $v_1$  and  $w_1$  has color set  $\{1, 2, 5\}$ , say  $v_1$ . Recolor xv with 4 and ux with 1 or 5 such that x does not conflict with  $w_1$ . If  $\phi(ww_1) \neq 4$  or  $\phi(vv_1) \neq 2$ , we are done. Otherwise,  $\phi(ww_1) = 4$  and  $\phi(vv_1) = 2$ , we recolor xv with 3, and color ux with 1.

Assume that  $3 \in C(u_2) \cap C(u_3)$ . If  $C(u_1) = \{1, 2, 3\}$ , then we may assume that  $C(v_1) = \{1, 2, 4\}$  and  $C(w_1) = \{1, 2, 5\}$ . Recolor xw with 4 and color xu with 5. If v and w are not conflicting, we are done. Otherwise,  $\phi(vv_1) = 4$  and  $\phi(ww_1) = 1$ , it suffices to recolor xv with 3. If  $C(u_1) \neq \{1, 2, 3\}$ , say  $1 \notin C(u_1)$ , we recolor  $uu_1$  with 1 and return to a case similar to (1.2.2).

**Case 2.** At least one of u, v, w is a 3-vertex in H, say  $d_H(u) = 3$ .

Let  $N_H(u) = \{x, u_1, u_4\}$ . Let  $G = H - uu_4$ , which admits a 5-2DVDE-coloring  $\phi$  such that  $\phi(xu) = 1$  and  $\phi(uu_1) = 2$ . In view of the number of 2-vertices in the set  $\{v, w, u_2, u_3\}$  in G, we need to consider four cases by symmetry.

(1)  $d_G(u_2) = d_G(w) = 2$ . We color  $uu_4$  with a color in {3, 4, 5} such that u does not conflict with  $u_3$  and v.

(2)  $d_G(u_2) = d_G(u_3) = 2$ . We color  $uu_4$  with a color in {3, 4, 5} such that u does not conflict with w and v.

(3)  $d_G(u_2) = 2$  and  $d_G(u_3) = d_G(v) = d_G(w) = 3$ . Let  $N_G(v) = \{x, v_1, v_2\}$  with  $d_G(v_2) = 1$  and  $N_G(w) = \{x, w_1, w_2\}$  with  $d_G(w_2) = 1$ . By Claim 2,  $d_G(v_1) = d_G(w_1) = 3$ . Hence we assume that  $C(u_3) = \{1, 2, 3\}, C(v) = \{1, 2, 5\}, \text{ and } C(w) = \{1, 2, 4\}$ . If  $C(x) = \{1, 4, 5\}$ , we recolor ux with 3 and color  $uu_4$  with 5. Otherwise, assume that  $C(x) = \{1, 2, 4\}$  by symmetry. Then,  $\phi(vv_1) \in \{1, 5\}, \text{ if } \phi(vv_1) = 1$ , exchange the color of  $vv_2$  and vx, then recolor ux with 3 and color  $uu_4$  with 4. Now if  $\phi(vv_1) = 5$ , observe that  $\phi(ww_1) \in \{1, 2\}$ . So if  $\phi(ww_1) = 1$ , we recolor ux with 3 and color  $uu_4$  with 5. Otherwise,  $\phi(ww_1) = 2$ , exchange the color of  $vv_2$  and vx, then recolor  $uu_4$  with 5.

(4)  $d_G(v) = d_G(w) = d_G(u_2) = d_G(u_3) = 3$ . Let us consider two possibilities below.

(4.1)  $C(v) \notin \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}\}$ . Assume by symmetry that  $C(w) = \{1, 2, 3\}, C(u_2) = \{1, 2, 4\}, \text{ and } C(u_3) = \{1, 2, 5\}$ . If  $C(u_1) = \{2, 4, 5\}$ , then we recolor  $uu_1$  with 3 and color  $uu_4$  with 4 or 5 such that u does not conflict with v. So assume that  $C(u_1) = \{1, 2, 4\}$  by symmetry. This implies that  $\phi(u_1u_2) = 4$  and  $\phi(u_1u_3) = 1$ . Noting that  $\phi(xw) \in \{2, 3\}$ , we have to handle two situations as follows.

• Let  $\phi(xw) = 2$ . Then,  $\phi(vx) \in \{3, 4, 5\}$ .

First suppose that  $\phi(vx) = 3$ . If we can recolor ux with 4 and color  $uu_4$  with 5, or recolor ux with 5 and  $uu_4$  with 4, we are done. Otherwise, we assume that

 $C(v_1) = \{2, 3, 4\}$  and  $C(w_1) = \{2, 3, 5\}$ , then we recolor  $ww_2$  with 2, wx with 1, ux with 5, and color  $uu_4$  with 4.

Next suppose that  $\phi(vx) \in \{4, 5\}$ , say  $\phi(vx) = 4$  by symmetry. If we can recolor ux with 3 and  $uu_4$  with 5, or recolor ux with 5 and  $uu_4$  with 3, we are done. Otherwise, assume that  $C(v_1) = \{2, 4, 5\}$  and  $C(w_1) = \{2, 3, 4\}$ , then we recolor  $ww_2$  with 2, wx with 1, ux with 5, and color  $uu_4$  with 3.

• Let  $\phi(xw) = 3$ . Then,  $\phi(vx) \in \{2, 4, 5\}$ . If  $\phi(vx) = 2$ , then we use the same strategy as in the previous case to color  $uu_4$ . So assume that  $\phi(vx) = 4$ , say. If  $C(v_1) \neq \{3, 4, 5\}$ , then we recolor ux with 5 and color  $uu_4$  with 3. If  $C(v_1) = \{3, 4, 5\}$ , then we exchange the color of  $ww_2$  and xw. Then, we color ux with 5, and color  $uu_4$  with 4.

(4.2)  $C(v) \in \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}\}$ , say  $C(v) = \{1, 2, 3\}$ . We need to discuss two subcases.

(4.2.1)  $C(w) \notin \{\{1, 2, 4\}, \{1, 2, 5\}\}$ . Then, we may assume that  $C(u_2) = \{1, 2, 4\}$  and  $C(u_3) = \{1, 2, 5\}$ . If  $C(u_1) = \{2, 4, 5\}$ , then we recolor  $uu_1$  with 3 and color  $uu_4$  with 4 or 5 such that u does not conflict with w. So assume that  $C(u_1) = \{1, 2, 4\}$  by symmetry. Since  $\phi(xv) \in \{2, 3\}$ , we have two possibilities.

• Let  $\phi(vx) = 2$ . Then,  $\phi(wx) \in \{3, 4, 5\}$ . First assume that  $\phi(wx) = 3$ . If we can legally recolor ux with 4 and  $uu_4$  with 5, or recolor ux with 5 and  $uu_4$  with 4, we are done. Otherwise, it is easy to see that  $C(v_1) = \{2, 3, 4\}$  and  $C(w_1) = \{2, 3, 5\}$  (up to symmetry). It suffices to recolor  $vv_2$  with 2, vx with 1, ux with 5, and color  $uu_4$  with 4. Next assume that  $\phi(wx) \in \{4, 5\}$ , say  $\phi(wx) = 4$ . If we can legally recolor ux with 3 and color  $uu_4$  with 5, or recolor ux with 5 and color  $uu_4$  with 3, we are done. Otherwise, we derive that  $C(v_1) = \{2, 3, 4\}$  and  $(w_1) = \{2, 4, 5\}$  (up to symmetry). It suffices to recolor  $vv_2$  with 1, ux with 5, and color  $uu_4$  with 3.

• Let  $\phi(vx) = 3$ . Then,  $\phi(wx) \in \{2, 4, 5\}$ . First assume that  $\phi(wx) = 2$ . If we can legally recolor ux with 5 and color  $uu_4$  with 3 or 4 such that u does not conflict with w, or recolor ux with 4 and color  $uu_4$  with 3 or 5 such that u does not conflict with w, we are done. Otherwise, it follows that  $C(v_1) = \{2, 3, 4\}$  and  $C(w_1) = \{2, 3, 5\}$ , say. It suffices to recolor vx with 5, ux with 4 and  $uu_4$  with 3 or 5 such that u does not conflict with u does not conflict with w. Next, assume that  $\phi(wx) \in \{4, 5\}$ , say  $\phi(wx) = 4$ . If we can legally recolor ux with 5 and color  $uu_4$  with 3, we are done. Otherwise, we derive that  $C(w_1) = \{3, 4, 5\}$ . When  $\phi(vv_2) = 1$ , we recolor  $vv_2$  with 3, vx with 1, ux with 3, and color  $uu_3$  with 5. When  $\phi(vv_2) = 2$ , we recolor  $vv_2$  with 3, vx with 2, ux with 5, and color  $uu_4$  with 3.

(4.2.2)  $C(w) \in \{\{1, 2, 4\}, \{1, 2, 5\}\}$ , say  $C(w) = \{1, 2, 4\}$ . Without loss of generality, we suppose that  $C(u_2) = \{1, 2, 5\}$ . Since  $\phi(vx) \in \{2, 3\}$ , we need to discuss two subcases.

• Let  $\phi(vx) = 2$ . Then,  $\phi(wx) = 4$ . If we can legally recolor ux with 3 and color  $uu_4$  with 4 or 5 such that u does not conflict with  $u_3$ , or recolor ux with 5 and color  $uu_4$  with 3 or 4 such that u does not conflict with  $u_3$ , we are done. Otherwise, we may assume that  $C(v_1) = \{2, 3, 4\}$  and  $C(w_1) = \{2, 4, 5\}$ , then we recolor  $ww_2$  with 4, xw with 1, ux with 4, and color  $uu_4$  with 3 or 5 such that u does not conflict with  $u_3$ .

• Let  $\phi(vx) = 3$ . Then,  $\phi(wx) \in \{2, 4\}$ . If  $\phi(wx) = 4$ , then we recolor ux with 5 and color  $uu_4$  with 3 or 4 such that u does not conflict with  $u_3$ . So assume that  $\phi(wx) = 2$ . If we can legally recolor ux with 4 and color  $uu_4$  with 3 or 5 such that u





does not conflict with  $u_3$ , or recolor ux with 5 and color  $uu_4$  with 3 or 4 such that u does not conflict with  $u_3$ , we are done. Otherwise,  $C(v_1) = \{2, 3, 5\}$  and  $C(w_1) = \{2, 3, 4\}$ , say. Now it suffices to recolor  $vv_2$  with 3, vx with 1, ux with 3, and color  $uu_4$  with 4 or 5 such that u does not conflict with  $u_3$ .

## 4 Proof of Claim 4

Assume to the contrary that H' contains a 2-vertex x adjacent to two  $3_2$ -vertices uand v (see Fig. 2). Let  $N_{H'}(u) = \{x, y, u_1\}$  with  $d_{H'}(y) = 2$ ,  $N_{H'}(v) = \{x, z, v_1\}$ with  $d_{H'}(z) = 2$ ,  $N_{H'}(y) = \{u, y_1\}$ , and  $N_{H'}(z) = \{v, z_1\}$ . By Claims 1 and 2,  $d_{H'}(u_1) = d_{H'}(v_1) = d_{H'}(y_1) = d_{H'}(z_1) = 3$ . Let  $N_{H'}(u_1) = \{u, u_2, u_3\}$ ,  $N_{H'}(v_1) = \{v, v_2, v_3\}$ ,  $N_{H'}(y_1) = \{y, y_2, y_3\}$ , and  $N_{H'}(z_1) = \{z, z_2, z_3\}$ . By Claim 3, at most one of  $y_2$  and  $y_3$  has degree two; and at most one of  $z_2$  and  $z_3$  has degree two. So assume, without loss of generality, that  $d_{H'}(y_3) = d_{H'}(z_3) = 3$ . We discuss two cases, depending on the degree of x, y, z in H.

**Case 1.**  $d_H(x) = d_H(y) = d_H(z) = 2$ .

Consider the graph G = H - xu, which has a 5-2DVDE-coloring  $\phi$  using the color set *C*. We assume that *xu* cannot be colored with any color in *C*. Let  $\phi(uu_1) = 1$  and  $\phi(uy) = 2$ . We discuss three possibilities according to the degree of  $u_2$  and  $u_3$  in *G*.

(1)  $d_G(u_2) = d_G(u_3) = 2$ . Without loss of generality, we assume that  $\phi(vx) = \phi(zz_1) = 3$ ,  $\phi(vz) = 5$ , and  $C(y_1) = \{1, 2, 4\}$ . Then, it suffices to recolor uy with 5 and color ux with 4.

(2)  $d_G(u_2) = 3$  and  $d_G(u_3) = 2$ . If  $\{1, 2\} \subset C(v)$ , say  $C(v) = \{1, 2, 3\}$ , then we may assume that  $C(u_2) = \{1, 2, 4\}$ , and  $C_{\phi}(y) = \{2, 5\}$  with  $\phi(xv) = 2$  or  $C(y_1) = \{1, 2, 5\}$ . If  $C(y_1) = \{1, 2, 5\}$ , recolor *uy* with 3 and color *ux* with 4. Next suppose  $C(y) = \{2, 5\}$  and  $\phi(xv) = 2$ , if  $C(y_2) \neq \{3, 5\}$ , we proceed as in the previous case. Otherwise  $C(y_1) = \{3, 5\}$ , then we recolor *uy* with 4, color *ux* with 3 or 5, such that *x* does not conflict with *z*.

Now suppose that  $\{1, 2\} \not\subset C(v)$ . We have to consider two subcases as follows.

(2.1)  $\phi(vx) \in \{1, 2\}$ , say  $\phi(vx) = 2$  (if  $\phi(vx) = 1$ , our discussion is similar). Then, it follows that  $1 \notin \{\phi(vz), \phi(vv_1)\}$ , and we may assume that  $\phi(zz_1) = 2, \phi(vz) = 3$ ,  $C(u_2) = \{1, 2, 4\}$ , and  $C(y) = \{2, 5\}$  or  $C(y_1) = \{1, 2, 5\}$ . If  $C(y_1) = \{1, 2, 5\}$ , recolor *uy* with 3 and color *ux* with 4. Next suppose  $C(y) = \{2, 5\}$ , if  $C(y_2) \neq \{3, 5\}$ , we proceed as in the previous case. Otherwise  $C(y_1) = \{3, 5\}$ , then recolor *uy* with 4, color *ux* with 5.

(2.2)  $\phi(vx) \in \{3, 4, 5\}$ , say  $\phi(vx) = 3$  by symmetry. If  $C(z) \notin \{\{3, 4\}, \{3, 5\}\}$ , then we may assume that  $C(u_2) = \{1, 2, 4\}$ , and  $C(y_1) = \{1, 2, 5\}$ . It suffices to

recolor *uy* with 3, color *ux* with 4 or 5 such that *u* does not conflict with *v*. So assume that  $C(z) \in \{\{3, 4\}, \{3, 5\}\}$ , say  $C(z) = \{3, 4\}$  by symmetry. Then, at least one of  $u_2$  and  $y_1$  has color set  $\{1, 2, 5\}$ . If  $C(y_1) = \{1, 2, 5\}$ , we first suppose  $C(u_2) \neq \{1, 2, 3\}$ , then we recolor *uy* with 3 and color *ux* with 2. If  $C(u_2) = \{1, 2, 3\}$ , then we recolor *uy* with 4, and color *ux* with 2.

Otherwise,  $C(u_2) = \{1, 2, 5\}$ , we have  $\phi(vv_1) \in \{1, 2, 5\}$ . First assume that  $\phi(vv_1) = 1$ . If we can recolor vx with 2 and color ux with 3 or 4 such that u does not conflict with  $y_1$ , and x does not conflict with y, or recolor vx with 5 and color ux with 3 or 4 such that u does not conflict with  $y_1$ , we are done. Otherwise, we may assume that  $C(v_2) = \{1, 2, 4\}$  and  $C(v_3) = \{1, 4, 5\}$ . When  $C(z_2) = \{3, 5\}$ , we recolor vz with 5 and color ux with 3 or 4 such that u does not conflict with 3 or 4 such that u does not conflict with 3 or 4 such that u does not conflict vz with 2 and vx with 5 and color vz with 3 or 4 such that u does not conflict with 3 or 4 such that u does not conflict with  $y_1$ . When  $C(z_2) \neq \{3, 5\}$ , we recolor vz with 5 and color vz with 2 and color ux with 3 or 4 such that u does not conflict with  $y_1$  and x does not conflict with y.

If  $\phi(vv_1) = 2$  or  $\phi(vv_1) = 5$ , we have a similar argument.

(3)  $d_G(u_2) = d_G(u_3) = 3$ . We discuss two possibilities according to the color set of v.

(3.1)  $\{1, 2\} \subset C(v)$ , say  $C(v) = \{1, 2, 3\}$ . We discuss the following subcases:

• Assume that  $C(y) = \{2, 5\}$ . Since ux cannot be colored, we assume  $C(u_2) = \{1, 2, 4\}$ .

If  $C(y_2) = \{3, 5\}$  and  $C(z) \neq \{2, 3\}$ , then we recolor uy with 4 and color ux with 3 or 5 such that u does not conflict with  $u_3$ . Now, suppose  $C(y_2) = \{3, 5\}$  and  $C(z) = \{2, 3\}$ ; if  $C(u_3) \neq \{1, 2, 3\}$  we color ux with 3 and if we can recolor vx with 4 or 5, we are done. If vx cannot be recolor with 4 or 5, then we may assume that  $C(v_2) = \{1, 3, 4\}$  and  $C(v_3) = \{1, 3, 5\}$ ; in this case, if  $C(z_3) = \{2, 4\}$ , recolor vz with 5, vx with 4 and color ux with 3. If  $C(z_3) \neq \{2, 4\}$ , recolor vz with 4 and color ux with 3. We next suppose  $C(u_3) = \{1, 2, 3\}$ , then recolor uy with 4 and color ux with 5.

If  $C(y_2) \neq \{3, 5\}$ , then we recolor *uy* with 3 and color *ux* with 4 or 5 such that *u* does not conflict with  $u_3$ .

• Assume that  $C(y_1) \in \{\{1, 2, 4\}, \{1, 2, 5\}\}$ , say  $C(y_1) = \{1, 2, 5\}$ , and  $C(y) \neq \{2, 5\}$ . Then, at least one of  $u_2$  and  $u_3$ , say  $u_2$ , has color set  $\{1, 2, 4\}$ . If  $C(u_3) = \{1, 4, 5\}$ , then we recolor uy with 3 and color ux with 4. If  $C(u_3) \neq \{1, 4, 5\}$ , then we recolor uy with 4 and color ux with 5.

• Assume now that  $C(y_1) \notin \{\{1, 2, 4\}, \{1, 2, 5\}\}$  and  $C(y) \neq \{2, 5\}$ . Then, it is easy to see that  $C(u_2) = \{1, 2, 4\}$  and  $C(u_3) = \{1, 2, 5\}$  by symmetry. If  $C(y_1) \neq \{3, 4, 5\}$ , say  $3 \notin C(y_1)$ , then we recolor *uy* with 3 and *ux* with 4. If  $C(y_1) = \{3, 4, 5\}$ , say  $\phi(yy_1) = 3$  and  $\phi(y_2y_2) = 4$ ; if  $C(y_2) = \{3, 4\}$ , then we recolor *uy* with 5 and color *uy* with 4; otherwise, we recolor *uy* with 4 and color *uy* with 5.

(3.2) {1, 2}  $\not\subset C(v)$ . In view of the color of xv, we consider three subcases.

(3.2.1)  $\phi(vx) = 1$ . If  $1 \notin C(z)$  or  $C(z) = \{1, 2\}$ , then we may assume that  $C(u_2) = \{1, 2, 3\}, C(u_3) = \{1, 2, 4\}, \text{ and } C(y_1) = \{1, 2, 5\}.$  Recolor *uy* with 4 and color *ux* with 3 or 5 such that *u* does not conflict with *v*. Otherwise, let  $C(z) = \{1, 5\}.$  Then,  $\{1, 2, 3\}$  and  $\{1, 2, 4\}$  are the color sets of at least two of  $u_2, u_3, y_1$ . Assume that  $C(y_1) \in \{\{1, 2, 3\}, \{1, 2, 4\}\}, \text{ say } C(y_1) = \{1, 2, 3\}, \text{ and moreover, } C(u_2) = \{1, 2, 4\}.$  If  $C(u_3) = \{1, 3, 4\}$ , then we recolor *uy* with 5 and color *ux* with 3 or 4 such that *u* does not conflict with *v*. If  $C(u_3) \neq \{1, 3, 4\}$ , then we recolor *uy* with 4 and color *ux* with 5 and color *uy* with 4 and color *ux* with 5 and color *uy* with 4 and color *ux* with 5 and color *uy* with 5 and color

3192

with 3. If  $C(y_1) \notin \{\{1, 2, 3\}, \{1, 2, 4\}\}$ , then  $C(u_2) = \{1, 2, 4\}$  and  $C(u_3) = \{1, 2, 3\}$ . If  $C(y_1) \neq \{3, 4, 5\}$ , say  $4 \notin C(y_1)$ , then we recolor uy with 4 and color ux with 3. So suppose that  $C(y_1) = \{3, 4, 5\}$ , say  $\phi(yy_1) = 3$  and  $\phi(y_1y_2) = 4$ . When  $C(y_2) = \{3, 4\}$ , we recolor uy with 5 and color ux with 3 or 4 such that u does not conflict with v. When  $C(y_2) \neq \{3, 4\}$ , we recolor uy with 4 and color ux with 3 or 5 such that u does not conflict with v.

(3.2.2)  $\phi(vx) = 2$ . If 2 ∉ C(z) or C(z) = {1, 2}, then we may assume that  $C(u_2) = \{1, 2, 3\}, C(u_3) = \{1, 2, 4\}, \text{ and } C(y) = \{2, 5\} \text{ or } C(y_1) = \{1, 2, 5\}.$ First if  $C(y_1) = \{1, 2, 5\}$ , recolor uy with 4 and color ux with 3. Next suppose  $C(y) = \{2, 5\}$ , then if  $C(y_2) \neq \{4, 5\}$ , recolor uy with 4 and color ux with 3. Otherwise,  $C(y_2) = \{4, 5\}$  and we recolor uy with 3 and color ux with 4.

So assume that  $2 \in C(z)$ ; furthermore, let  $C(z) = \{2, 5\}$ . Note that  $\phi(vv_1) \in \{3, 4\}$  since  $\{1, 2\} \not\subset C(v)$ . By symmetry, we may assume that  $\phi(vv_1) = 3$ . We discuss the following subcases:

• Suppose that  $C(y) \in \{\{2, 3\}, \{2, 4\}\}$ , say  $C(y) = \{2, 3\}$  by symmetry. Then, we may assume that  $C(u_2) = \{1, 2, 4\}$ .

If  $C(y_2) = \{3, 5\}$ , we first suppose  $C(u_3) \neq \{1, 3, 4\}$ ; then we recolor uy with 4 and color ux with 3. Next assume  $C(u_3) = \{1, 3, 4\}$ ; then, we assign color 5 to ux, and so if we can recolor vx with 1 or 4 we are done. Otherwise, we may assume  $C(v_2) = \{1, 3, 5\}$  and  $C(v_3) = \{3, 4, 5\}$ . In the latter case, when  $C(z_2) \neq \{2, 4\}$ , recolor vz with 4 and vx with 1. Otherwise, if  $C(z_2) = \{2, 4\}$ , recolor vz with 1 and vx with 4.

Now if  $C(y_2) \neq \{3, 5\}$ , suppose  $C(y_1) \neq \{1, 3, 5\}$ , then we recolor uy with 5 and color ux with 3 or 4 such that u does not conflict with  $u_3$ . If  $C(y_1) = \{1, 3, 5\}$  and  $C(u_3) \neq \{1, 4, 5\}$ , then we recolor uy with 5 and color ux 4. Finally, assume that  $C(y_1) = \{1, 3, 5\}$  and  $C(u_3) = \{1, 4, 5\}$ . If we can recolor xv with 1 and color ux with 5, or recolor xv with 4 and color ux with 5, we are done. Otherwise, it follows that  $C(v_2) = \{1, 3, 5\}$  and  $C(v_3) = \{3, 4, 5\}$  (up to symmetry), and henceforth when  $C(z_2) \neq \{2, 4\}$ , recolor vz with 4, vx with 1 and color ux with 5. Otherwise, if  $C(z_2) = \{2, 4\}$ , recolor vz with 1, vx with 4 and color ux with 5.

• Suppose that  $C(y) \notin \{\{2, 3\}, \{2, 4\}\}$ , and  $C(y_1) \in \{\{1, 2, 3\}, \{1, 2, 4\}\}$ , say  $C(y_1) = \{1, 2, 3\}$  by symmetry. Then, we may assume that  $C(u_2) = \{1, 2, 4\}$ . If  $C(u_3) = \{1, 3, 4\}$ , then we recolor *uy* with 5 and color *ux* with 3. If  $C(u_3) \neq \{1, 3, 4\}$ , then we recolor *uy* with 4 and color *ux* with 3.

• Suppose that  $C(y) \notin \{\{2, 3\}, \{2, 4\}\}$  and  $C(y_1) \notin \{\{1, 2, 3\}, \{1, 2, 4\}\}$ . Then,  $C(u_2) = \{1, 2, 4\}$  and  $C(u_3) = \{1, 2, 3\}$ . If  $C(y_1) \neq \{3, 4, 5\}$ , say  $4 \notin C(y_1)$ , then we recolor *uy* with 4 and color *ux* with 3. Otherwise,  $C(y_1) = \{3, 4, 5\}$ , say  $\phi(yy_1) = 3$  and  $\phi(y_1y_2) = 4$ . When  $C(y_2) = \{3, 4\}$ , we recolor *uy* with 5 and color *ux* with 3. When  $C(y_2) \neq \{3, 4\}$ , we recolor *uy* with 4 and color *ux* with 3.

(3.2.3)  $\phi(vx) \in \{3, 4, 5\}$ , say  $\phi(vx) = 3$  by symmetry. We first observe that if  $3 \notin C(y_1)$ , then it suffices to recolor *uy* with 3 and reduce the proof to Case (3.2.2). So, assume that  $3 \in C(y_1)$  and let us discuss the following two cases.

•  $3 \notin C(z)$  or  $C(z) \in \{\{1, 3\}, \{2, 3\}\}$ . Without loss of generality, assume that  $C(u_2) = \{1, 2, 4\}$  and  $C(u_3) = \{1, 2, 5\}$ . If  $C(y_1) \neq \{3, 4, 5\}$ , say  $4 \notin C(y_1)$ , then we recolor uy with 4 and color ux with 5. Otherwise,  $C(y_1) = \{3, 4, 5\}$ , say

 $\phi(yy_1) = 3$  and  $\phi(y_1y_2) = 4$ . When  $C(y_2) = \{3, 4\}$ , we recolor uy with 5 and color ux with 4. When  $C(y_2) \neq \{3, 4\}$ , we recolor uy with 4 and color ux with 5.

•  $3 \in C(z)$  and  $C(z) \notin \{\{1, 3\}, \{2, 3\}\}$ , say  $C(z) = \{3, 5\}$ . Then, at least one of  $u_2$  and  $u_3$ , say  $u_2$ , has color set  $\{1, 2, 4\}$ . Since  $\phi(vv_1) \in \{1, 2, 4\}$ , we have some subcases below.

Assume that  $\phi(vv_1) = 1$  (if  $\phi(vv_1) = 2$ , we have a similar discussion). If we can recolor vx with 4 and color ux with 3 or 5, we are done. If vx can be recolored with 4, but neither 3 nor 5 can assign to ux, then this implies that  $C(u_3) = \{1, 2, 5\}$  and  $C(y_1) = \{1, 2, 3\}$ , say. It suffices to recolor uy with 5 and color ux with 3. If vx cannot be recolored with 4, then at least one of  $v_2$  and  $v_3$ , say  $v_3$ , has color set  $\{1, 4, 5\}$ . If  $C(v_2) \neq \{1, 2, 5\}$ , then we recolor vx with 2 and then reduce to Case (3.2.2). So assume that  $C(v_2) = \{1, 2, 5\}$ . If  $C(z_2) \neq \{2, 3\}$ , then we recolor zv with 2 and reduce to the previous case. If  $C(z_2) = \{2, 3\}$ , then we recolor zv with 4 and vx with 2 and then reduce to Case (3.2.2).

Assume that  $\phi(vv_1) = 4$ . If we can recolor vx with 1 or 2, then the proof is reduced to Cases (3.2.1) and (3.2.2). Otherwise, we may assume that  $C(v_2) = \{1, 4, 5\}$  and  $C(v_3) = \{2, 4, 5\}$ . If  $C(z_2) = \{2, 3\}$ , then we recolor zv with 1 and reduce to the previous case. If  $C(z_2) \neq \{2, 3\}$ , then we recolor zv with 2 and reduce the previous cases.

**Case 2.** At least one of x, y, and z is a 3-vertex in H.

All notations in Case 1 are kept in the following discussion. Since  $2 \le d_H(x) \le 3$ , we need to consider two subcases.

(1) Assume that  $d_H(x) = 2$ . Then, at least one of y and z, say z, is a 3-vertex in H. Let  $N_H(z) = \{v, z_1, z_4\}$  with  $d_H(z_4) = 1$ . Consider the graph  $G = H - zz_4$ , which has a 5-2DVDE-coloring  $\phi$  using the color set C such that  $\phi(zz_1) = 1$  and  $\phi(zv) = 2$ . Assume that  $zz_4$  cannot be colored with any color in C. If  $z_2$  is a 2-vertex, then  $zz_4$  can be colored with a color in  $\{3, 4, 5\} - \{\phi(vv_1), \phi(z_1z_3)\}$  such that z does not conflict with any of  $v_1$  and  $z_3$ . So,  $z_2$  and  $z_3$  must be 3-vertices in G, and we may assume that  $C(v_1) = \{1, 2, 3\}, C(z_2) = \{1, 2, 4\}, \text{ and } C(z_3) = \{1, 2, 5\}$ . If  $C(z_1) = \{1, 4, 5\}$ , then we recolor  $zz_1$  with 3 and color  $zz_4$  with 5. If  $C(z_1) \in \{\{1, 2, 4\}, \{1, 2, 5\}\}$ , say  $C(z_1) = \{1, 2, 4\}$ , then  $\phi(vv_1) \in \{1, 3\}$ , we deal with two possibilities according to the color of  $vv_1$ .

•  $\phi(vv_1) = 1$ . Let  $\phi(v_1v_3) = 3$ , so  $\phi(vx) \in \{3, 4, 5\}$ . If  $\phi(vx) = 3$ , then we can recolor vz with 4 or 5, and then color  $zz_4$  with 3. Otherwise, it is easy to derive that  $C(v_3) = \{1, 3, 4\}$  and  $C(u) = \{1, 3, 5\}$ , say. It suffices to recolor xv with 2, vz with 3, and color  $zz_4$  with 4.

If  $\phi(vx) = 4$  or 5, we have a similar proof.

•  $\phi(vv_1) = 3$ . Then,  $\phi(vx) \in \{1, 4, 5\}$ . First assume that  $\phi(vx) = 1$ . If we can recolor vz with 4 or 5, and color  $zz_4$  with 3, we are done. Otherwise, it follows that  $C(v_3) = \{1, 3, 4\}$  and  $C(u) = \{1, 3, 5\}$ , say. Recolor xv with 4, vz with 5, and color  $zz_4$  with 3. Next assume that  $\phi(vx) \in \{4, 5\}$ , say  $\phi(vx) = 4$ . If we can recolor vz with 5, then 3 is assigned to  $zz_4$ . Otherwise, we have  $C(u) = \{3, 4, 5\}$ . It suffices to exchange the colors of vx and vz and color  $zz_4$  with 5.

(2) Assume that  $d_H(x) = 3$ . Let  $N_H(x) = \{u, v, x_1\}$  with  $d_H(x_1) = 1$ . Let  $G = H - xx_1$ , which has a 5-2DVDE-coloring  $\phi$  with  $\phi(xv) = 1$  and  $\phi(xu) = 2$ . Assume that  $xx_1$  cannot be colored with any color in C. If  $d_G(y) = d_G(z) = 2$ , then

we color  $xx_1$  with a color in {3, 4, 5} such that x does not conflict with  $u_1$  and  $v_1$ . So suppose that  $d_G(z) = 3$ . Without loss of generality, assume that  $C(z) = \{1, 2, 3\}$  and  $C(v_1) = \{1, 2, 4\}$ . Note that either y or  $u_1$  has color set  $\{1, 2, 5\}$ , say  $C(y) = \{1, 2, 5\}$  by symmetry.

If  $C(v) = \{1, 3, 4\}$ , then we recolor xv with 5 and color  $xx_1$  with 3 or 4 such that x does not conflict with  $u_1$ . Otherwise, suppose that  $C(v) = \{1, 2, 4\}$  with  $\phi(v_1v_2) = 1$  by symmetry. If vx can be recolored with 3, then we color  $xx_1$  with 4 or 5 such that x does not conflict with  $u_1$ . Similarly, if vx can be recolored with 5, then we color  $xx_1$  with 3 or 4 such that x does not conflict with  $u_1$ . Otherwise, we may assume that  $C(z_1) = \{2, 3, 4\}$  and  $C(v_3) = \{2, 4, 5\}$ . If  $C(v_2) = \{1, 3, 4\}$ , then we exchange the colors of  $zz_1$  and  $zz_4$ , recolor vx with 5, and color  $xx_1$  with 3 or 4 such that x does not conflict with  $u_1$ . If  $C(v_2) \neq \{1, 3, 4\}$ , then we exchange the colors of  $zz_1$  and  $zz_4$ , recolor vx with 4 or 5 such that x does not conflict with  $u_1$ . If  $C(v_2) \neq \{1, 3, 4\}$ , then we exchange the colors of  $zz_1$  and  $zz_4$ , recolor vx with 4 or 5 such that x does not conflict with  $u_1$ . If  $C(v_2) \neq \{1, 3, 4\}$ , then we exchange the colors of  $zz_1$  and  $zz_4$ , recolor vx with 4 or 5 such that x does not conflict with  $u_1$ .

## 5 Proof of Claim 5

Assume to the contrary that H' contains a 3<sub>2</sub>-vertex x adjacent to two 2-vertices u and v (see Fig. 3). Let  $N_{H'}(x) = \{u, v, w\}$ ,  $N_{H'}(w) = \{x, w_1, w_2\}$ ,  $N_{H'}(u) = \{x, u_1\}$  and  $N_{H'}(v) = \{x, v_1\}$ . By Claims 1 and 2,  $d_{H'}(u_1) = d_{H'}(v_1) = 3$ . Furthermore, let  $N_{H'}(u_1) = \{u, u_2, u_3\}$  and  $N_{H'}(v_1) = \{v, v_3, v_4\}$ . By Claims 3 and 4,  $d_{H'}(u_2) = d_{H'}(u_3) = d_{H'}(v_3) = d_{H'}(v_4) = 3$ . We deal with three cases depending on the degree of u and v in H.

**Case 1.**  $d_H(u) = d_H(v) = 2$ .

Let G = H - xu, which admits a 5-2DVDE-coloring  $\phi$  using the color set C with  $\phi(xv) = 2$  and  $\phi(xw) = 1$ . Assume that ux cannot be colored with any color in C. If  $d_G(w_1) = d_G(w_2) = 2$ , then we can color ux with a color in  $\{3, 4, 5\} - \{\phi(vv_1), \phi(uu_1)\}$  such that x does not conflict with  $v_1$ . This is impossible. Thus,  $d_G(w_2) = 3$ . We discuss three possibilities depending on the color of  $uu_1$ .

(1)  $\phi(uu_1) = 1$ . Suppose that  $2 \notin C(u_1)$ , then  $d_G(w_1) = 3$ , otherwise we color ux with a color in  $\{3, 4, 5\} - \{\phi(vv_1), \phi(ww_2)\}$  such that x does not conflict with  $v_1$  or  $w_2$ . Without loss of generality, assume that  $C(w_1) = \{1, 2, 3\}, C(w_2) = \{1, 2, 4\}$ , and  $C(v_1) = \{1, 2, 5\}$ . We recolor vx with 4 and color ux with 3 or 5 such that x does not conflict with  $u_1$ . If  $2 \in C(u_1)$ , then we suppose by symmetry that  $C(u_1) = \{1, 2, 3\}$ . We first assume that  $C(v_1) \notin \{\{1, 2, 4\}, \{1, 2, 5\}\}$ , then  $C(w_1) = \{1, 2, 4\}$  and  $C(w_2) = \{1, 2, 5\}$ . Since  $d_{H'}(v_3) = d_{H'}(v_4) = 3$ , if  $C(v_1) \neq \{1, 3, 4\}$ , say  $3 \notin C(v_1)$ , then recolor vx with 3 and color ux with 4. Otherwise,  $C(v_1) = \{1, 3, 4\}$ , recolor vx with 5 and color ux with 4. we recolor vx with a color  $c \in \{3, 4, 5\} - \{\phi(vv_1)\}$ ,



and color *ux* with a color in  $\{3, 4, 5\} - \{c\}$ . Now if  $C(v_1) \in \{\{1, 2, 4\}, \{1, 2, 5\}\}$ , say  $C(v_1) = \{1, 2, 4\}$ , then  $C(w_2) = \{1, 2, 5\}$ , recolor *vx* with 5 and color *ux* with 3 or 4 such that *x* does not conflict with  $w_1$ .

(2)  $\phi(uu_1) = 2$ . If  $1 \notin C(u_1)$ , then  $d_G(w_1) = 3$ , otherwise we color ux with a color in  $\{3, 4, 5\} - \{\phi(vv_1), \phi(ww_2)\}$  such that x does not conflict with  $v_1$  or  $w_2$ . Without loss of generality, assume that  $C(w_1) = \{1, 2, 3\}, C(w_2) = \{1, 2, 4\}$ , and either  $C(v_1) = \{1, 2, 5\}$  or  $\phi(vv_1) = 5$ . We recolor vx with 4 and color ux with 3. If  $1 \in C(u_1)$ , we proceed in a similar way as for the previous case when  $2 \in C(u_1)$ .

(3)  $\phi(uu_1) \in \{3, 4, 5\}$ , say  $\phi(uu_1) = 3$  by symmetry. If  $\phi(vv_1) \neq 3$ , it suffices to recolor vx with 3 an obtain a situation similar to (2). Thus, suppose that  $\phi(vv_1) = 3$ , then  $d_G(w_1) = 3$ , otherwise we color ux with a color in  $\{4, 5\} - \{\phi(ww_2)\}$  such that x does not conflict with  $w_2$ . Furthermore,  $C(w_1) = \{1, 2, 4\}$  and  $C(w_2) = \{1, 2, 5\}$ . It suffices to recolor vx with 4 and color ux with 5.

**Case 2.**  $d_H(u) = 3$  and  $d_H(v) = 2$ .

Set  $N_H(u) = \{x, u_1, u_4\}$  with  $d_H(u_4) = 1$ . Let  $G = H - u_4$ , which admits a 5-2DVDE-coloring  $\phi$  using the color set *C* such that  $\phi(ux) = 1$  and  $\phi(uu_1) = 2$ . Assume that  $uu_4$  cannot be colored with any color in *C*. By symmetry, we suppose that  $C(w) = \{1, 2, 3\}, C(u_2) = \{1, 2, 4\}, \text{ and } C(u_3) = \{1, 2, 5\}$ . If  $C(u_1) = \{2, 4, 5\}$ , then we recolor  $uu_1$  with 3 and color  $uu_4$  with 4. Otherwise, we assume that  $C(u_1) = \{1, 2, 5\}$  by symmetry. Since  $\phi(xw) \in \{2, 3\}$ , we need to consider two possibilities as follows.

- $\phi(xw) = 2$ . Note that  $\phi(vx) \in \{3, 4, 5\}$ , say  $\phi(vx) = 3$  (if  $\phi(vx) \in \{4, 5\}$ , we will have a similar proof). If we can legally recolor ux with 4 and color  $uu_4$  with 5, or recolor ux with 5 and color  $uu_4$  with 4, we are done. Otherwise, we may assume that  $C(v_1) = \{2, 3, 5\}$  and  $C(w_1) = \{2, 3, 4\}$ . It suffice to recolor vx with 4, ux with 5 and color  $uu_4$  with 3.
- $\phi(xw) = 3$ . Then,  $\phi(vx) \in \{2, 4, 5\}$ . First suppose that  $\phi(vx) = 2$ . If we can legally recolor ux with 4 and color  $uu_4$  with 5, or recolor ux with 5 and color  $uu_4$  with 4, we are done. Otherwise, it is easy to see that at least one of  $w_1$  and  $w_2$  is of degree 3, say  $d_G(w_1) = 3$ , and  $C(w_1) = \{2, 3, 4\}$  and  $C(v_1) = \{2, 3, 5\}$ . We recolor vx with 4, ux with 5 and color  $uu_4$  with 3. If  $\phi(vx) \in \{4, 5\}$ , we assume that  $\phi(vx) = 4$  by symmetry. If possible, we recolor ux with 5 and color  $uu_4$  with 4. Otherwise, assume that  $C(v_1) = \{3, 4, 5\}$ , recolor vx with 1, ux with 4, and color  $uu_4$  with 5.

**Case 3.**  $d_H(u) = d_H(v) = 3$ .

We continue to use notations in Case 2 and let  $N_H(v) = \{x, v_1, v_2\}$  with  $d_H(v_2) = 1$ . Then,  $G = H - u_4$  has a 5-2DVDE-coloring  $\phi$  such that  $\phi(ux) = 1$  and  $\phi(uu_1) = 2$ . Assume that  $uu_4$  cannot be colored with any color in C. We discuss the following possibilities according to the color set of v.

(1)  $C(v) \notin \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}\}$ . Assume that  $C(u_2) = \{1, 2, 4\}, C(u_3) = \{1, 2, 5\}$ , and  $C(w) = \{1, 2, 3\}$ . If  $C(u_1) = \{2, 4, 5\}$ , we recolor  $uu_1$  with 3 and colors  $uu_4$  with 4 or 5 such that u does not conflict with v. Otherwise, assume that  $C(u_1) = \{1, 2, 5\}$  by symmetry. Noting that  $\phi(xw) \in \{2, 3\}$ , we discuss two subcases below.

(1.1) Assume that  $\phi(xw) = 2$ , then  $\phi(vx) \in \{3, 4, 5\}$ . First suppose that  $\phi(vx) = 3$ . If possible, we recolor ux with 4 and color  $uu_4$  with 5, or recolor ux with 5 and color  $uu_4$  with 4. Otherwise, we assume that  $C(v_1) = \{2, 3, 4\}$  and  $C(w_1) = \{2, 3, 5\}$ . There are two possibilities to be considered.

- $\phi(vv_1) = 4$ . Then,  $\phi(vv_2) \in \{1, 2, 5\}$ . If  $\phi(vv_2) = 1$ , then we recolor vx with 5, ux with 4, and color  $uu_4$  with 3. If  $\phi(vv_2) = 2$ , then we recolor  $vv_2$  with 5, vx with 1, ux with 3, and color  $uu_4$  with 5. If  $\phi(vv_2) = 5$ , then we recolor vx with 1, ux with 3, and color  $uu_4$  with 5.
- $\phi(vv_1) = 2$ . Then,  $\phi(vv_2) \in \{4, 5\}$ . If  $\phi(vv_2) = 4$ , then we recolor  $vv_2$  with 3, vx with 4, ux with 5, and color  $uu_4$  with 3. If  $\phi(vv_2) = 5$ , then we recolor  $vv_2$  with 3, vx with 5, ux with 4, and color  $uu_4$  with 3. The cases  $\phi(vx) = 4$  and  $\phi(vx) = 5$  are symmetric and are solve in a similar way as the one of  $\phi(vx) = 3$ .

(1.2) Assume that  $\phi(xw) = 3$ . Since  $\phi(vx) \in \{2, 4, 5\}$ , we investigate two situations as follows.

(1.2.1)  $\phi(vx) = 2$ . If we can legally recolor ux with 4 and color  $uu_4$  with 5, or recolor ux with 5 and color  $uu_4$  with 4, we are done. Otherwise, it follows that  $C(v_1) = \{2, 3, 5\}$  and  $C(w_2) = \{2, 3, 4\}$ , say. Note that  $\phi(vv_1) \in \{3, 5\}$ .

- $\phi(vv_1) = 5$ . Then,  $\phi(vv_2) \in \{1, 3, 4\}$ . If  $\phi(vv_2) = 1$ , then we recolor vx with 4, ux with 5, and color  $uu_4$  with 3. If  $\phi(vv_2) = 3$ , then we recolor  $vv_2$  with 1, vx with 4, ux with 5, and color  $uu_4$  with 3. If  $\phi(vv_2) = 4$ , then we recolor  $vv_2$  with 2, vx with 4, ux with 5, and color  $uu_4$  with 3.
- $\phi(vv_1) = 3$ . Then,  $\phi(vv_2) \in \{4, 5\}$ . If  $\phi(vv_2) = 4$ , then we recolor  $vv_2$  with 2, vx with 4, ux with 5, and color  $uu_4$  with 4. If  $\phi(vv_2) = 5$ , then we recolor  $vv_2$  with 2, vx with 5, ux with 4, and color  $uu_4$  with 3.

(1.2.2)  $\phi(vx) \in \{4, 5\}$ , say  $\phi(vx) = 4$ . If we can legally recolor ux with 5 and color  $uu_4$  with 3, we are done. Otherwise, assume that  $C(v_1) = \{3, 4, 5\}$ . Note that  $\phi(vv_1) \in \{3, 5\}$ . Suppose that  $\phi(vv_1) = 3$ , then  $\phi(vv_2) \in \{1, 2, 5\}$ . If  $\phi(vv_2) = 1$ , then we recolor  $vv_2$  with 4, vx with 1, ux with 4, and color  $uu_4$  with 5. If  $\phi(vv_2) = 2$ , then we recolor vx with 1, ux with 4, and color  $uu_4$  with 5. If  $\phi(vv_2) = 5$ , then we recolor  $vv_2$  with 2, vx with 1, ux with 4, and color  $uu_4$  with 5. The case  $\phi(vv_1) = 5$  is solved using a similar recoloring strategy.

(2)  $C(v) \in \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}\}$ , say  $C(v) = \{1, 2, 3\}$ . The proof is split into the following two subcases, depending on the color set of w.

(2.1)  $C(w) \notin \{\{1, 2, 4\}, \{1, 2, 5\}\}$ . Then, we can assume that  $C(u_2) = \{1, 2, 4\}$  and  $C(u_3) = \{1, 2, 5\}$ . Since  $\phi(vx) \in \{2, 3\}$ , we have two possibilities.

(2.1.1)  $\phi(vx) = 2$ . It is straightforward to see that  $\phi(wx) \in \{3, 4, 5\}$ .

•  $\phi(wx) = 3$ . If we can legally recolor ux with 4 and color  $uu_4$  with 5, or recolor ux with 5 and color  $uu_4$  with 4, we are done. Otherwise, we have two possibilities as follows:

Suppose that  $C(v_1) \in \{\{2, 3, 4\}, \{2, 3, 5\}\}$ , say  $C(v_1) = \{2, 3, 4\}$ . Let  $C(w_2) = \{2, 3, 5\}$ . If  $C(w_1) \neq \{3, 4, 5\}$ , then we recolor  $vv_2$  with 1, vx with 5, ux with 4, and color  $uu_4$  with 5. If  $C(w_1) = \{3, 4, 5\}$ , then we recolor  $vv_2$  with 5, vx with 1, ux with 5, and color  $uu_4$  with 4.

Suppose that  $C(v_1) \notin \{\{2, 3, 4\}, \{2, 3, 5\}\}$ , then  $C(w_1) = \{2, 3, 4\}$  and  $C(w_2) = \{2, 3, 5\}$ . If  $C(v_1) \neq \{1, 3, 4\}$ , then we recolor  $vv_2$  with 2, vx with 1, ux with 4, and

color  $uu_4$  with 5. If  $C(v_1) = \{1, 3, 4\}$ , then we recolor  $vv_2$  with 2, vx with 5, ux with 4, and color  $uu_4$  with 3 or 5 such that u does not conflict with v.

•  $\phi(wx) \in \{4, 5\}$ , say  $\phi(wx) = 4$ . If we can legally recolor ux with 3 and color  $uu_4$  with 5, or recolor ux with 5 and color  $uu_4$  with 3, we are done. Otherwise, we have two possibilities: (i)  $C(v_1) \neq \{2, 3, 4\}$ . We may assume that  $C(w_1) = \{2, 4, 5\}$  and  $C(w_2) = \{2, 3, 4\}$ . It suffices to exchange the colors of  $vv_2$  and vx, recolor ux with 5, and color  $uu_4$  with 3. (ii)  $C(v_1) = \{2, 3, 4\}$ , then  $C(w_2) = \{2, 4, 5\}$ . It suffices to exchange the colors of  $vv_2$  and vx, recolor ux with 3 or 5 such that x does not conflict with  $w_1$ , and color  $uu_4$  with 4.

(2.1.2)  $\phi(vx) = 3$ . Then,  $\phi(wx) \in \{2, 4, 5\}$ .

First assume that  $\phi(wx) = 2$ . If we can legally recolor ux with 5, and color  $uu_4$  with 3 or 4 such that u does not conflict with w, or recolor ux with 4 and color  $uu_4$  with 3 or 5 such that u does not conflict with w, we are done. Otherwise, we have two possibilities: If  $C(v_1) \in \{\{2, 3, 4\}, \{2, 3, 5\}\}$ , say  $C(v_1) = \{2, 3, 4\}$ , then we may assume that  $C(w_1) = \{2, 3, 5\}$ . Now, if  $C(w_2) \neq \{2, 4, 5\}$ , then we recolor vx with 5, ux with 4, and color  $uu_4$  with 3 or 5 such that u does not conflict with w. If  $C(w_2) = \{2, 4, 5\}$ , then we exchange the colors of  $vv_2$  and vx, recolor ux with 4, and color  $uu_4$  with 3 or 5 such that u does not conflict with w. So suppose that  $C(v_1) \notin \{\{2, 3, 4\}, \{2, 3, 5\}\}$ . We may assume that  $C(w_1) = \{2, 3, 5\}$  and  $C(w_2) = \{2, 3, 4\}$ . Recolor  $vv_2$  with 3, vx with 1, ux with 3 and color  $uu_4$  with 4 or 5 such that u does not conflict with w.

Next assume that  $\phi(wx) \in \{4, 5\}$ , say  $\phi(wx) = 4$ . If possible, we recolor ux with 5 and color  $uu_4$  with 3. Otherwise, we may assume that  $C(w_1) = \{3, 4, 5\}$ , and furthermore  $\phi(vv_2) = 1$  (if  $\phi(vv_2) = 2$ , we have a similar discussion). If  $C(w_2) \neq \{1, 3, 4\}$ , then we recolor  $vv_2$  with 3, vx with 1, ux with 3, and color  $uu_4$  with 5. If  $C(w_2) = \{1, 3, 4\}$ , then we recolor  $vv_2$  with 3, vx with 1, ux with 5, and color  $uu_4$  with 3.

(2.2)  $C(w) \in \{\{1, 2, 4\}, \{1, 2, 5\}\}, \text{ say } C(w) = \{1, 2, 4\}.$  Then, we may suppose that  $C(u_2) = \{1, 2, 5\}.$  Note that  $\phi(vx) \in \{2, 3\}.$ 

(2.2.1) Let  $\phi(vx) = 2$ . Then,  $\phi(wx) = 4$ . If we can recolor ux with 3 and color  $uu_4$  with 4 or 5 such that u does not conflict with  $u_3$ , or recolor ux with 5 and color  $uu_4$  with 3 or 4 such that u does not conflict with  $u_3$ , we are done. Otherwise, we may assume that  $C(v_1) = \{2, 3, 4\}$  and  $C(w_2) = \{2, 4, 5\}$ . When  $C(w_1) = \{1, 4, 5\}$ , we recolor  $vv_2$  with 2, vx with 1, ux with 3, and color  $uu_4$  with 4 or 5 such that u does not conflict with  $u_3$ . When  $C(w_2) \neq \{1, 4, 5\}$ , we recolor  $vv_2$  with 2, vx with 1, ux with 3, and color  $vv_2$  with 2, vx with 1, ux with 3, and color  $vv_2$  with 2, vx with 1, ux with 3, and color  $vv_2$  with 2, vx with 1, ux with 5, and color  $uu_4$  with 3 or 4 such that u does not conflict with  $u_3$ .

(2.2.2) Let  $\phi(vx) = 3$ . Then,  $\phi(wx) \in \{2, 4\}$ . If  $\phi(wx) = 4$ , then we recolor ux with 5 and color  $uu_4$  with 3 or 4 such that u does not conflict with  $u_3$ . So assume that  $\phi(wx) = 2$ . If we can legally recolor ux with 4 and color  $uu_4$  with 3 or 5 such that u does not conflict with  $u_3$ , or recolor ux with 5 and color  $uu_4$  with 3 or 4 such that u does not conflict with  $u_3$ , or recolor ux with 5 and color  $uu_4$  with 3 or 4 such that u does not conflict with  $u_3$ , we are done. Otherwise, we may assume that  $C(v_1) = \{2, 3, 5\}$  and  $C(w_2) = \{2, 3, 4\}$ . Recolor  $vv_2$  with 3, vx with 1, ux with 3, and color  $uu_4$  with 4 or 5 such that u does not conflict with  $u_3$ .

#### References

 Akbari, S., Bidkhori, H., Nosrati, N.: r-Strong edge colorings of graphs. Discrete Math. 306, 3005– 3010 (2006)

- Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Adjacent vertex distinguishing edge-colorings. SIAM J. Discrete Math. 21, 237–250 (2007)
- Hatami, H.: ∆+300 is a bound on the adjacent vertex distinguishing edge chromatic number. J. Combin. Theory Ser. B 95, 246–256 (2005)
- Huang, D., Lih, K.-W., Wang, W.: Legally (Δ + 2)-coloring bipartite outerplanar graphs in cubic time. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.Z. (eds.) Combinatorial Optimization and Applications. Lecture Notes in Comput Sci, vol. 9486, pp. 617–632. Springer, Cham (2015)
- Victor, L.K., Wang, W., Wang, Y., Chen, M.: 2-Distance vertex-distinguishing index of subcubic graphs. J. Combin. Optim. 36, 108–120 (2018)
- Vučković, B.: Edge-partitions of graphs and their neighbor-distinguishing index. Discrete Math. 340, 3092–3096 (2017)
- Wang, W., Huang, D., Wang, Y., Wang, Y., Du, D.Z.: A polynomial-time nearly-optimal algorithm for an edge coloring problem in outerplanar graphs. J. Global Optim. 65, 351–367 (2016)
- 8. Wang, W., Wang, Y., Huang, D., Wang Y.: 2-Distance vertex-distinguishing edge coloring of graphs. Preprint (2016)
- Wang, Y., Wang, W., Huo, J.: Some bounds on the neighbor-distinguishing index of graphs. Discrete Math. 338, 2006–2013 (2015)
- Wang, W., Wang, Y.: Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree. J. Combin. 0ptim. 19, 471–485 (2010)
- Zhang, L., Wang, W., Lih, K.-W.: An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph. Discrete Appl. Math. 162, 348–354 (2014)
- 12. Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. 15, 623–626 (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.