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Abstract
The 2-distance vertex-distinguishing index χ ′

d2(G) of a graph G is the minimum
number of colors required for a proper edge coloring ofG such that any pair of vertices
at distance two have distinct sets of colors. It was conjectured that every subcubic graph
G has χ ′

d2(G) ≤ 5. In this paper, we confirm this conjecture for subcubic graphs with
maximum average degree less than 8

3 .

Keywords Subcubic graph · Maximum average degree · Edge coloring · 2-Distance
vertex-distinguishing index · AVD edge coloring

Mathematics Subject Classification 05C15

1 Introduction

All graphs considered in this paper are finite and simple. Let G be a graph with vertex
set V (G), edge set E(G), maximum degree �(G), and minimum degree δ(G). Let
NG(v) denote the set of neighbors of a vertex v in G, and let dG(v) = |NG(v)| denote
the degree of v in G. A vertex of degree k (at most k, at least k, resp.) is called a
k-vertex (k−-vertex, k+-vertex, resp.). The distance, denoted by d(u, v) between two
vertices u and v is the length of a shortest path connecting them. If no confusion arises,
we abbreviate �(G) to �.

A proper edge k-coloring of a graph G is a mapping φ : E(G) → {1, 2, . . . , k}
such that φ(e) �= φ(e′) for any two adjacent edges e and e′. The chromatic index,
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denoted χ ′(G), of a graph G is the smallest integer k such that G has a proper edge
k-coloring. For a vertex v ∈ V (G), let Cφ(v) denote the set of colors assigned to the
edges incident to v, that is,

Cφ(v) = {φ(uv)|uv ∈ E(G)}.

The coloring φ is called 2-distance vertex-distinguishing (or a 2DVDE-coloring, in
short) if Cφ(u) �= Cφ(v) for any pair of vertices u and v with d(u, v) = 2. Let χ ′

d2(G)

denote the 2-distance vertex-distinguishing index of G, which is the smallest integer
k such that G has a 2DVDE-coloring using k colors.

The 2-distance vertex-distinguishing edge coloring of graphs can be thought of
as a special case of the r -strong edge coloring of graphs, see [1]. Let r ≥ 1 be
an integer. The r -strong chromatic index χ ′

s(G, r) of a graph G is the minimum
number of colors required for a proper edge coloring of G such that any two vertices
u and v with d(u, v) ≤ r have Cφ(x) �= Cφ(y). In particular, when r = 1, we
have χ ′

s(G, 1) = χ ′
a(G), which is called the neighbor-distinguishing index of G.

Zhang, Liu, andWang [12] first investigated this parameter and proposed the following
conjecture:

Conjecture 1 If G is a graph different from a 5-cycle, then χ ′
a(G) ≤ � + 2.

Balister et al. [2] confirmed Conjecture 1 for bipartite graphs and subcubic graphs.
Using a probabilistic analysis, Hatami [3] showed that every graph G with � > 1020

has χ ′
a(G) ≤ � + 300. Akbari et al. [1] proved that every graph G satisfies χ ′

a(G) ≤
3�. Zhang et al. [11] proved that every graph G has χ ′

a(G) ≤ 2.5(� + 2). Wang et
al. [9] improved these upper bounds to χ ′

a(G) ≤ 2.5� if � ≥ 7, and to χ ′
a(G) ≤ 2�

if � ≤ 6. The currently best known upper bound that χ ′
a(G) ≤ 2� + 2 for any graph

G was obtained by Vučković [6].
It follows from the definition that χ ′

d2(G) ≥ χ ′(G) ≥ �, and moreover χ ′
d2(G) ≥

� + 1 if G contains two vertices of maximum degree at distance 2. The 2-distance
vertex-distinguishing index for special graphs such as cycles, paths, trees, complete
graphs, complete bipartite graphs, and unicycle graphs has been determined in [8].
Using an algorithmic analysis, Wang et al. [7] proved that every outerplanar graph G
satisfies χ ′

d2(G) ≤ � + 8. Additionally, it was shown in [4] that if G is a bipartite
outerplanar graph, then χ ′

d2(G) ≤ � + 2.
A cubic graph is a 3-regular graph, and a subcubic graph is a graph of maximum

degree at most 3. The maximum average degree of a graph G is defined as

mad(G) = max

{
2|E(H)|
|V (H)| | H ⊆ G

}
.

Very recently, Victor et al. [5] showed that every subcubic graph G satisfies
χ ′
d2(G) ≤ 6, and raised the following conjecture:

Conjecture 2 For a subcubic graph G, χ ′
d2(G) ≤ 5.

Note that if Conjecture 2 were true, then the upper bound 5 is tight. In this paper,
we confirm partially this conjecture by showing the following result:
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Theorem 1 If H is a subcubic graph with mad(H) < 8
3 , then χ ′

d2(H) ≤ 5.

To prove Theorem 1, we need to apply repeatedly the following easy fact (see [10]):

Lemma 2 Let G be a graph.

(1) If v is a leaf of G, then mad(G − v) ≤mad(G).
(2) If e is an edge of G, then mad(G − e) ≤mad(G).

Let G be a subcubic graph and v be a 3-vertex of G. For 0 ≤ i ≤ 3, v is called a
3i -vertex if v is adjacent to exactly i 2-vertices. For a subgraph H of G and a 2DVDE-
coloring φ of H , we say, in short, that φ is a legal coloring of H . Two vertices
u, v ∈ V (G) with d(u, v) = 2 are called conflict with respect to the coloring φ if
Cφ(u) = Cφ(v).

2 Proof of Theorem 1

The proof is by contradiction. Let H be a minimum counterexample that minimizes
|E(H)| + |V (H)|. Then, �(H) ≤ 3, mad(H) < 8

3 , and χ ′
d2(H) > 5. It is easy to

note that H is connected, for otherwise by the minimality of H , we can 5-2DVDE-
color independently each connected component of H using the same set of colors and
consider the resulting coloring as a 5-2DVDE-coloring of H . Let H ′ denote the graph
obtained by deleting all 1-vertices of H . Then, H ′ is clearly connected, �(H ′) ≤ 3,
and mad(H ′) ≤ mad(H) < 8

3 by Lemma 2. Moreover, by the minimality of H , any of
its subgraph obtained by edge deletion can be legally colored with at most five colors.
We first list some structural properties of H ′. In the subsequent proofs, we routinely
construct 5-2DVDE-colorings of H without verifying in detail that H is legally-5-
colored since this can be supplied in a straightforward manner. In the following, we
always let C = {1, 2, . . . , 5} denote a set of five colors. Given a 5-2DVDE-coloring φ

of a subgraph G of H using the color set C , for a vertex v ∈ V (G), we denote simply
Cφ(v) by C(v).

Claim 1 δ(H ′) ≥ 2.

Proof Suppose to the contrary that δ(H ′) ≤ 1. If δ(H ′) = 0, then H ′ is isomorphic
to K1 and so H is isomorphic to the star K1,n−1 with |V (H)| = n. Obviously, we
can color the edges of K1,n−1 with distinct colors, so χ ′

d2(H) = �(H) ≤ 3, which
contradicts the hypothesis on H . Assume that δ(H ′) = 1, and let u be a 1-vertex
of H ′ adjacent to a vertex v. Then, dH (u) ∈ {2, 3}, let u1 be another neighbor of
u different from v in H , and let G = H − uu1. By the minimally of H , G has a
5-2DVDE-coloring φ using the color set C . Observe that |C(u) ∪ C(v)| ≤ 4 since
dH (v) ≤ 3 and v is adjacent to u. Therefore, to extend φ to H , it suffices to color uu1
with a color in C − C(u) − C(v). This contradicts the choice of H . 
�
Claim 2 H ′ contains no two adjacent 2-vertices.

Proof Suppose to the contrary that H ′ contains two adjacent 2-vertices u and v. Let
NH ′(u) = {v, u1} and NH ′(v) = {u, v1}. Then, dH (u), dH (v) ∈ {2, 3}. We discuss
the following two cases by symmetry.
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Case 1. dH (u) = dH (v) = 2.
Consider the graph G = H − uv. By the minimally of H , G has a 5-2DVDE-

coloring φ using the color set C . We assume that uv cannot be colored with any color
in C . Therefore, at least one of u1 and v1 is a 3-vertex; otherwise, we color uv with
a color in C − C(u1) − C(v1). Without loss of generality, assume that dG(u1) = 3,
NG(u1) = {u, u2, u3}, andC(u1) = {1, 2, 3} such that φ(uu1) = 1 and φ(u1u2) = 2.
We discuss two possibilities:

• Let dG(v1) = 2, say NG(v1) = {v, v2}. If dG(v2) = 2, then the proof is reduced
to the previous case by replacing uv with vv1. Otherwise, dG(v2) = 3, we may
color uv with a color in {4, 5} − {φ(vv1)}. This contradicts the assumption that
uv cannot be colored.

• Let dG(v1) = 3, say NH (v1) = {v, v2, v3}. First assume that at least two
of u2, u3, v2, v3 are 3-vertices. By symmetry, we have the following two pos-
sibilities. If dG(u2) = dG(u3) = 3, then we color uv with a color in
{2, 3, 4, 5} − C(v1). If dG(u2) = dG(v2) = 3, then we color uv with a color
in {2, 4, 5} − {φ(vv1), φ(v1v3)}. Next assume that at most one of u2, u3, v2, v3 is
of degree 3, say, dG(u2) = dG(u3) = dG(v2) = 2 and 2 ≤ dG(v3) ≤ 3. It is easy
to see that {4, 5} ⊂ C(v1) because uv can not be legally colored.

First suppose that dG(v3) = 2. If φ(vv1) = 2, then φ(v1v2) = 4 and φ(v1v3) = 5.
It follows thatC(u2) = {1, 2},C(u3) = {1, 3},C(v2) = {2, 4}, andC(v3) = {2, 5}. It
suffices to recolor vv1 with 1 and color uv with 4. If φ(vv1) ∈ {1, 3}, we have a similar
discussion. So assume that φ(vv1) ∈ {4, 5}, say φ(vv1) = 4. Then, C(u2) = {1, 2}
and C(u3) = {1, 3}. Without loss of generality, assume that φ(v1v3) = 5 and so
φ(v1v2) ∈ {1, 2, 3}. Let z be the other neighbor of v3 different from v1. Then, we
must have φ(zv3) = 4. Now we recolor uu1 with 4 and color uv with a color in
{1, 2, 3} such that v does not conflict with v2.

Next suppose that dG(v3) = 3. A similar and easier proof can be established.
Case 2. dH (u) = 3 and dH (v) ∈ {2, 3}.

Let NH (u) = {v, u1, x} with dH (x) = 1. If dH (v) = 3, then we furthermore
assume that NH (v) = {u, v1, y} with dH (y) = 1. Consider the graph G = H − ux .
By the minimality of H , G has a 5-2DVDE-coloring φ using the color set C . Assume
that ux cannot be colored with any color in C . We have to consider two cases as
follows.

Assume that u1 is a 2-vertex ofG. Then, NG(u1) = {u, u2}. If u2 is a 2-vertex, then
we can color ux with a color inC−C(u1)−{φ(uv), φ(vv1)}, which is a contradiction.
Otherwise, u2 is a 3-vertex. If φ(uv) �= φ(u1u2), then we color ux with a color in
C−C(u1)−{φ(uv), φ(vv1)}. Ifφ(uv) = φ(u1u2), thenC−C(u1)−{φ(uv), φ(vv1)}
contains at least two colors, so that we can choose one of them to color ux .

Assume that dG(u1) = 3 and NG(u1) = {u, u2, u3}. If dG(v1) = 2, then we color
ux with a color in C − C(u1) − {φ(uv)}. Thus, assume that dG(v1) = 3. Without
loss of generality, we may assume that φ(uv) = 1, φ(uu1) = 2, C(u2) = {1, 2, 4},
C(u3) = {1, 2, 3}, and C(v1) = {1, 2, 5}. There are two possibilities to be handled.
• Let dH (v) = 2. If C(u1) = {2, 3, 4}, it suffices to recolor uu1 with 5 and color
ux with 4. So assume that C(u1) = {1, 2, 4}, and hence, it suffices to recolor uv

with 4 and color ux with 5.
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• Let dH (v) = 3. Then, NG(v) = {u, y, v1}. Let NG(v1) = {v, v2, v3}. If C(u1) =
{2, 3, 4}, then we recolor uu1 with 5 and color ux with 4. So assume that C(u1) =
{1, 2, 4} by symmetry. Note that φ(vv1) ∈ {2, 5}. If φ(vv1) = 2, then it follows
immediately that φ(vy) ∈ {3, 5}, we switch the colors of vy and vu and color ux
with 4. Now suppose that φ(vv1) = 5, and furthermore, let φ(v1v2) = 2. Then,
φ(vy) ∈ {2, 3, 4}. If φ(vy) = 2, then we recolor vu with 3 or 4 such that v does
not conflict with v2, and color ux with 5. If φ(vy) ∈ {3, 4}, then after switching
the colors of vy and vu, we color ux with 5. 
�
The proof of Claims 3–5 below will be given in the subsequent sections.

Claim 3 H ′ contains no 33-vertex.

Claim 4 H ′ contains no 2-vertex adjacent to two 32-vertices.

Claim 5 H ′ contains no 32-vertex.

We define an initial weight function w(v) = dH ′(v) for every vertex v ∈ V (H ′).
Then, we redistribute weights according to the following rule:
(R) Every 31-vertex sends the weight of 1

3 to the uniquely adjacent 2-vertex.
The sum of all charges is kept fixed when the discharging is in process. Once the

discharging is finished, a new charge function w′ is produced. Nevertheless, we can
show that w′(v) ≥ 8

3 for all v ∈ V (H ′). In fact, let v ∈ V (H ′). By Claims 1–5, v is
either a 2-vertex or a 31-vertex or a 30-vertex. If v is a 30-vertex, then w′(v) = 3. If v

is a 31-vertex, then w′(v) = 3− 1
3 = 8

3 . If v is a 2-vertex, then w′(v) = 2+ 2. 13 = 8
3 .

This leads to the following obvious contradiction:

8

3
=

8
3 |V (H ′)|
|V (H ′)| ≤

∑
v∈V (H ′) w′(v)

|V (H ′)| =
∑

v∈V (H ′) w(v)

|V (H ′)| = 2|E(H ′)|
|V (H ′)| ≤ mad(H ′) <

8

3
.

This completes the proof of Theorem 1. 
�

3 Proof of Claim 3

Assume to the contrary that H ′ contains a 3-vertex x adjacent to three 2-vertices
u, v, w (see Fig. 1). Let NH ′(u) = {x, u1}, NH ′(v) = {x, v1}, and NH ′(w) =
{x, w1}. By Claims 1 and 2, dH ′(u1) = dH ′(v1) = dH ′(w1) = 3. Note that
dH (u), dH (v), dH (w) ∈ {2, 3}. Setting NH ′(u1) = {u, u2, u3}, we discuss two cases
below.
Case 1. dH (u) = dH (v) = dH (w) = 2.

Let G = H − ux , which admits a 5-2DVDE-coloring φ with φ(xv) = 1 and
φ(xw) = 2. Assume that xu cannot be colored with any color in C . Let us deal with
the following cases, depending on the color of uu1.

(1) φ(uu1) ∈ {1, 2}, say φ(uu1) = 2 by symmetry.
(1.1) Suppose that at least one of u2 and u3 is a 3-vertex in G, say dG(u3) = 3. By

symmetry, the proof splits into two cases.
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Fig. 1 The configurations in the
proof of Claim 3

1w

w

x
u

1u
v

1v

(1.1.1) Let φ(ww1) = 1. Without loss of generality, assume that C(v1) = {1, 2, 4}
and C(w1) = {1, 2, 5}. It follows that C(u1) = {1, 2, 3}, or C(u2) = {2, 3}. Recolor
xw with 4 and color xu with 5. If φ(vv1) �= 4, we are done. Otherwise, we recolor
xv with 3.

(1.1.2) Let φ(ww1) ∈ {3, 4, 5}, and assume φ(ww1) = 5 by symmetry. Similarly,
we can assume that C(v1) = {1, 2, 4}; and C(u1) = {1, 2, 3} or C(u2) = {2, 3}.
Recolor xv with 3 and color ux with 1 or 4 such that x does not conflict with u1.

(1.2) Suppose that dG(u2) = dG(u3) = 2. There are two subcases below by
symmetry.

(1.2.1) {C(u2),C(u3)} = {{2, 3}, {2, 4}}.
Assume thatC(v1) = {1, 2, 5}. IfC(w1) �= {1, 2, 3}, then we first recolor uu1 with

5 and color xu with 3. Otherwise, C(w1) = {1, 2, 3}, recolor uu1 with 5 and color xu
with 3.

AssumeC(w1) = {1, 2, 5}, then a similar strategy as in the previous case is applied.
Assume now that C(v1) �= {1, 2, 5} and C(w1) �= {1, 2, 5}. If φ(ww1) �= 5, then

we color xu with 5. Otherwise, assume that φ(ww1) = 5. Recolor uu1 = 5, color ux
with 3 or 4 such that x does not conflict with v1.

(1.2.2)Atmost one ofC(u2) andC(u3) is {2, i} for some i ∈ {3, 4, 5}, sayC(u2) =
{2, 3} by symmetry.

Assume thatφ(ww1) ∈ {4, 5}, sayφ(ww1) = 4. Then, it is immediate to derive that
C(v1) = {1, 2, 5}. We first recolor xv with 3 and color xu with 5. IfC(u1) �= {2, 3, 5},
we are done. Otherwise, we recolor ux with 1.

Assume that φ(ww1) /∈ {4, 5}. Furthermore, suppose that C(v1) = {1, 2, 5} and
C(w1) = {1, 2, 4}. This implies that φ(ww1) = 1. Recolor xv with 3 and color xu
with 4 or 5 such that x does not conflict with u1.

(2) φ(uu1) /∈ {1, 2}, say φ(uu1) = 3 by symmetry.
We have to handle three possibilities by symmetry.
(2.1) dG(u2) = dG(u3) = 3.Assume thatC(v1) = {1, 2, 4} andC(w1) = {1, 2, 5}.

Recolor xw with 4 and color xu with 5. If v does not conflict with w, then we are
done. Otherwise, we know that φ(ww1) = 1 and φ(vv1) = 4. In this case, we keep
φ(xw) = 2, and then we recolor xv with 5 and xu with 4.

(2.2) dG(u2) = 2 and dG(u3) = 3.
If C(u2) /∈ {{3, 4}, {3, 5}}, then the proof can be analogously given as in Case

(2.1). Otherwise, without loss of generality, assume that C(u2) = {3, 4}, and further
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C(v1) = {1, 2, 5}. If φ(ww1) �= 4, then we recolor xv with 4 and ux with 1 or 5 such
that x does not conflict with w1. If φ(ww1) = 4, then we recolor xv with 3 and color
ux with 1.

(2.3) dG(u2) = dG(u3) = 2.
If 3 /∈ C(u2) ∪ C(u3), then the proof is similar to that of Case (2.1).
Assume that 3 ∈ C(u2) and 3 /∈ C(u3) (if 3 ∈ C(u3) and 3 /∈ C(u2), we have a

similar proof). If φ(u1u2) ∈ {1, 2}, say φ(u1u2) = 1, then we assume that C(v1) =
{1, 2, 5} and C(w1) = {1, 2, 4}. Recolor xw with 3 and color xu with 4 or 5, say 4,
such that x does not conflict with u1. If φ(ww1) �= 4, we are done. Otherwise, we
recolor xv with 3 and xw with 5. If φ(u1u2) ∈ {4, 5}, say φ(u1u2) = 4, then at least
one of v1 and w1 has color set {1,2,5}, say v1. Recolor xv with 4 and ux with 1 or 5
such that x does not conflict with w1. If φ(ww1) �= 4 or φ(vv1) �= 2, we are done.
Otherwise, φ(ww1) = 4 and φ(vv1) = 2, we recolor xv with 3, and color ux with 1.

Assume that 3 ∈ C(u2) ∩ C(u3). If C(u1) = {1, 2, 3}, then we may assume that
C(v1) = {1, 2, 4} and C(w1) = {1, 2, 5}. Recolor xw with 4 and color xu with 5. If
v and w are not conflicting, we are done. Otherwise, φ(vv1) = 4 and φ(ww1) = 1,
it suffices to recolor xv with 3. If C(u1) �= {1, 2, 3}, say 1 /∈ C(u1), we recolor uu1
with 1 and return to a case similar to (1.2.2).
Case 2. At least one of u, v, w is a 3-vertex in H , say dH (u) = 3.

Let NH (u) = {x, u1, u4}. Let G = H − uu4, which admits a 5-2DVDE-coloring
φ such that φ(xu) = 1 and φ(uu1) = 2. In view of the number of 2-vertices in the set
{v,w, u2, u3} in G, we need to consider four cases by symmetry.

(1) dG(u2) = dG(w) = 2. We color uu4 with a color in {3, 4, 5} such that u does
not conflict with u3 and v.

(2) dG(u2) = dG(u3) = 2. We color uu4 with a color in {3, 4, 5} such that u does
not conflict with w and v.

(3) dG(u2) = 2 and dG(u3) = dG(v) = dG(w) = 3. Let NG(v) = {x, v1, v2} with
dG(v2) = 1 and NG(w) = {x, w1, w2} with dG(w2) = 1. By Claim 2, dG(v1) =
dG(w1) = 3. Hence we assume thatC(u3) = {1, 2, 3},C(v) = {1, 2, 5}, andC(w) =
{1, 2, 4}. If C(x) = {1, 4, 5}, we recolor ux with 3 and color uu4 with 5. Otherwise,
assume that C(x) = {1, 2, 4} by symmetry. Then, φ(vv1) ∈ {1, 5}, if φ(vv1) = 1,
exchange the color of vv2 and vx , then recolor ux with 3 and color uu4 with 4. Now
if φ(vv1) = 5, observe that φ(ww1) ∈ {1, 2}. So if φ(ww1) = 1, we recolor ux with
3 and color uu4 with 5. Otherwise, φ(ww1) = 2, exchange the color of vv2 and vx ,
then recolor ux with 3 and color uu4 with 5.

(4) dG(v) = dG(w) = dG(u2) = dG(u3) = 3. Let us consider two possibilities
below.

(4.1) C(v) /∈ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}. Assume by symmetry that C(w) =
{1, 2, 3}, C(u2) = {1, 2, 4}, and C(u3) = {1, 2, 5}. If C(u1) = {2, 4, 5}, then we
recolor uu1 with 3 and color uu4 with 4 or 5 such that u does not conflict with v.
So assume that C(u1) = {1, 2, 4} by symmetry. This implies that φ(u1u2) = 4 and
φ(u1u3) = 1. Noting thatφ(xw) ∈ {2, 3}, we have to handle two situations as follows.

• Let φ(xw) = 2. Then, φ(vx) ∈ {3, 4, 5}.
First suppose that φ(vx) = 3. If we can recolor ux with 4 and color uu4 with

5, or recolor ux with 5 and uu4 with 4, we are done. Otherwise, we assume that
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C(v1) = {2, 3, 4} and C(w1) = {2, 3, 5}, then we recolor ww2 with 2, wx with 1, ux
with 5, and color uu4 with 4.

Next suppose that φ(vx) ∈ {4, 5}, say φ(vx) = 4 by symmetry. If we can recolor
ux with 3 and uu4 with 5, or recolor ux with 5 and uu4 with 3, we are done. Otherwise,
assume that C(v1) = {2, 4, 5} and C(w1) = {2, 3, 4}, then we recolor ww2 with 2,
wx with 1, ux with 5, and color uu4 with 3.

• Let φ(xw) = 3. Then, φ(vx) ∈ {2, 4, 5}. If φ(vx) = 2, then we use the same
strategy as in the previous case to color uu4. So assume that φ(vx) = 4, say. If
C(v1) �= {3, 4, 5}, thenwe recolor ux with 5 and color uu4 with 3. IfC(v1) = {3, 4, 5},
then we exchange the color of ww2 and xw. Then, we color ux with 5, and color uu4
with 4.

(4.2) C(v) ∈ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}, say C(v) = {1, 2, 3}. We need to dis-
cuss two subcases.

(4.2.1) C(w) /∈ {{1, 2, 4}, {1, 2, 5}}. Then, we may assume that C(u2) = {1, 2, 4}
and C(u3) = {1, 2, 5}. If C(u1) = {2, 4, 5}, then we recolor uu1 with 3 and color uu4
with 4 or 5 such that u does not conflict with w. So assume that C(u1) = {1, 2, 4} by
symmetry. Since φ(xv) ∈ {2, 3}, we have two possibilities.

• Let φ(vx) = 2. Then, φ(wx) ∈ {3, 4, 5}. First assume that φ(wx) = 3. If we can
legally recolor ux with 4 and uu4 with 5, or recolor ux with 5 and uu4 with 4, we are
done. Otherwise, it is easy to see that C(v1) = {2, 3, 4} and C(w1) = {2, 3, 5} (up to
symmetry). It suffices to recolor vv2 with 2, vx with 1, ux with 5, and color uu4 with
4. Next assume that φ(wx) ∈ {4, 5}, say φ(wx) = 4. If we can legally recolor ux
with 3 and color uu4 with 5, or recolor ux with 5 and color uu4 with 3, we are done.
Otherwise, we derive that C(v1) = {2, 3, 4} and (w1) = {2, 4, 5} (up to symmetry).
It suffices to recolor vv2 with 2, vx with 1, ux with 5, and color uu4 with 3.

• Let φ(vx) = 3. Then, φ(wx) ∈ {2, 4, 5}. First assume that φ(wx) = 2. If we can
legally recolor ux with 5 and color uu4 with 3 or 4 such that u does not conflict with
w, or recolor ux with 4 and color uu4 with 3 or 5 such that u does not conflict with
w, we are done. Otherwise, it follows that C(v1) = {2, 3, 4} and C(w1) = {2, 3, 5},
say. It suffices to recolor vx with 5, ux with 4 and uu4 with 3 or 5 such that u does
not conflict with w. Next, assume that φ(wx) ∈ {4, 5}, say φ(wx) = 4. If we can
legally recolor ux with 5 and color uu4 with 3, we are done. Otherwise, we derive that
C(w1) = {3, 4, 5}. When φ(vv2) = 1, we recolor vv2 with 3, vx with 1, ux with 3,
and color uu3 with 5. When φ(vv2) = 2, we recolor vv2 with 3, vx with 2, ux with
5, and color uu4 with 3.

(4.2.2) C(w) ∈ {{1, 2, 4}, {1, 2, 5}}, say C(w) = {1, 2, 4}. Without loss of gener-
ality, we suppose that C(u2) = {1, 2, 5}. Since φ(vx) ∈ {2, 3}, we need to discuss
two subcases.

• Let φ(vx) = 2. Then, φ(wx) = 4. If we can legally recolor ux with 3 and color
uu4 with 4 or 5 such that u does not conflict with u3, or recolor ux with 5 and color
uu4 with 3 or 4 such that u does not conflict with u3, we are done. Otherwise, we may
assume that C(v1) = {2, 3, 4} and C(w1) = {2, 4, 5}, then we recolor ww2 with 4,
xw with 1, ux with 4, and color uu4 with 3 or 5 such that u does not conflict with u3.

• Let φ(vx) = 3. Then, φ(wx) ∈ {2, 4}. If φ(wx) = 4, then we recolor ux with
5 and color uu4 with 3 or 4 such that u does not conflict with u3. So assume that
φ(wx) = 2. If we can legally recolor ux with 4 and color uu4 with 3 or 5 such that u
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Fig. 2 The configuration in the
proof of Claim 4
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does not conflict with u3, or recolor ux with 5 and color uu4 with 3 or 4 such that u does
not conflict with u3, we are done. Otherwise,C(v1) = {2, 3, 5} andC(w1) = {2, 3, 4},
say. Now it suffices to recolor vv2 with 3, vx with 1, ux with 3, and color uu4 with 4
or 5 such that u does not conflict with u3. 
�

4 Proof of Claim 4

Assume to the contrary that H ′ contains a 2-vertex x adjacent to two 32-vertices u
and v (see Fig. 2). Let NH ′(u) = {x, y, u1} with dH ′(y) = 2, NH ′(v) = {x, z, v1}
with dH ′(z) = 2, NH ′(y) = {u, y1}, and NH ′(z) = {v, z1}. By Claims 1 and
2, dH ′(u1) = dH ′(v1) = dH ′(y1) = dH ′(z1) = 3. Let NH ′(u1) = {u, u2, u3},
NH ′(v1) = {v, v2, v3}, NH ′(y1) = {y, y2, y3}, and NH ′(z1) = {z, z2, z3}. ByClaim 3,
at most one of y2 and y3 has degree two; and at most one of z2 and z3 has degree two.
So assume, without loss of generality, that dH ′(y3) = dH ′(z3) = 3. We discuss two
cases, depending on the degree of x, y, z in H .
Case 1. dH (x) = dH (y) = dH (z) = 2.

Consider the graphG = H − xu, which has a 5-2DVDE-coloring φ using the color
set C . We assume that xu cannot be colored with any color in C . Let φ(uu1) = 1 and
φ(uy) = 2. We discuss three possibilities according to the degree of u2 and u3 in G.

(1) dG(u2) = dG(u3) = 2. Without loss of generality, we assume that φ(vx) =
φ(zz1) = 3, φ(vz) = 5, and C(y1) = {1, 2, 4}. Then, it suffices to recolor uy with 5
and color ux with 4.

(2) dG(u2) = 3 and dG(u3) = 2. If {1, 2} ⊂ C(v), say C(v) = {1, 2, 3}, then
we may assume that C(u2) = {1, 2, 4}, and Cφ(y) = {2, 5} with φ(xv) = 2 or
C(y1) = {1, 2, 5}. If C(y1) = {1, 2, 5}, recolor uy with 3 and color ux with 4. Next
suppose C(y) = {2, 5} and φ(xv) = 2, if C(y2) �= {3, 5}, we proceed as in the
previous case. Otherwise C(y1) = {3, 5}, then we recolor uy with 4, color ux with 3
or 5, such that x does not conflict with z.

Now suppose that {1, 2} �⊂ C(v). We have to consider two subcases as follows.
(2.1)φ(vx) ∈ {1, 2}, sayφ(vx) = 2 (ifφ(vx) = 1, our discussion is similar). Then,

it follows that 1 /∈ {φ(vz), φ(vv1)}, and we may assume that φ(zz1) = 2, φ(vz) = 3,
C(u2) = {1, 2, 4}, and C(y) = {2, 5} or C(y1) = {1, 2, 5}. If C(y1) = {1, 2, 5},
recolor uy with 3 and color ux with 4. Next supposeC(y) = {2, 5}, ifC(y2) �= {3, 5},
we proceed as in the previous case. Otherwise C(y1) = {3, 5}, then recolor uy with
4, color ux with 5.

(2.2) φ(vx) ∈ {3, 4, 5}, say φ(vx) = 3 by symmetry. If C(z) /∈ {{3, 4}, {3, 5}},
then we may assume that C(u2) = {1, 2, 4}, and C(y1) = {1, 2, 5}. It suffices to
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recolor uy with 3, color ux with 4 or 5 such that u does not conflict with v. So assume
that C(z) ∈ {{3, 4}, {3, 5}}, say C(z) = {3, 4} by symmetry. Then, at least one of u2
and y1 has color set {1, 2, 5}. If C(y1) = {1, 2, 5}, we first suppose C(u2) �= {1, 2, 3},
then we recolor uy with 3 and color ux with 2. If C(u2) = {1, 2, 3}, then we recolor
uy with 4, and color ux with 2.

Otherwise, C(u2) = {1, 2, 5}, we have φ(vv1) ∈ {1, 2, 5}. First assume that
φ(vv1) = 1. If we can recolor vx with 2 and color ux with 3 or 4 such that u
does not conflict with y1, and x does not conflict with y, or recolor vx with 5 and
color ux with 3 or 4 such that u does not conflict with y1, we are done. Otherwise, we
may assume that C(v2) = {1, 2, 4} and C(v3) = {1, 4, 5}. When C(z2) = {3, 5}, we
recolor vz with 2 and vx with 5 and color ux with 3 or 4 such that u does not conflict
with y1. When C(z2) �= {3, 5}, we recolor vz with 5 and vx with 2 and color ux with
3 or 4 such that u does not conflict with y1 and x does not conflict with y.

If φ(vv1) = 2 or φ(vv1) = 5, we have a similar argument.
(3) dG(u2) = dG(u3) = 3. We discuss two possibilities according to the color set

of v.
(3.1) {1, 2} ⊂ C(v), say C(v) = {1, 2, 3}. We discuss the following subcases:
• Assume that C(y) = {2, 5}. Since ux cannot be colored, we assume C(u2) =

{1, 2, 4}.
If C(y2) = {3, 5} and C(z) �= {2, 3}, then we recolor uy with 4 and color ux

with 3 or 5 such that u does not conflict with u3. Now, suppose C(y2) = {3, 5} and
C(z) = {2, 3}; if C(u3) �= {1, 2, 3} we color ux with 3 and if we can recolor vx with
4 or 5, we are done. If vx cannot be recolor with 4 or 5, then we may assume that
C(v2) = {1, 3, 4} and C(v3) = {1, 3, 5}; in this case, if C(z3) = {2, 4}, recolor vz
with 5, vx with 4 and color ux with 3. If C(z3) �= {2, 4}, recolor vz with 4, vx with 5
and color ux with 3. We next suppose C(u3) = {1, 2, 3}, then recolor uy with 4 and
color ux with 5.

If C(y2) �= {3, 5}, then we recolor uy with 3 and color ux with 4 or 5 such that u
does not conflict with u3.

• Assume that C(y1) ∈ {{1, 2, 4}, {1, 2, 5}}, say C(y1) = {1, 2, 5}, and C(y) �=
{2, 5}. Then, at least one of u2 and u3, say u2, has color set {1, 2, 4}. If C(u3) =
{1, 4, 5}, then we recolor uy with 3 and color ux with 4. If C(u3) �= {1, 4, 5}, then we
recolor uy with 4 and color ux with 5.

•Assume now thatC(y1) /∈ {{1, 2, 4}, {1, 2, 5}} andC(y) �= {2, 5}. Then, it is easy
to see thatC(u2) = {1, 2, 4} andC(u3) = {1, 2, 5} by symmetry. IfC(y1) �= {3, 4, 5},
say 3 /∈ C(y1), then we recolor uy with 3 and ux with 4. If C(y1) = {3, 4, 5}, say
φ(yy1) = 3 and φ(y2y2) = 4; if C(y2) = {3, 4}, then we recolor uy with 5 and color
uy with 4; otherwise, we recolor uy with 4 and color uy with 5.

(3.2) {1, 2} �⊂ C(v). In view of the color of xv, we consider three subcases.
(3.2.1) φ(vx) = 1. If 1 /∈ C(z) or C(z) = {1, 2}, then we may assume that

C(u2) = {1, 2, 3}, C(u3) = {1, 2, 4}, and C(y1) = {1, 2, 5}. Recolor uy with 4 and
color ux with 3 or 5 such that u does not conflict with v. Otherwise, let C(z) = {1, 5}.
Then, {1, 2, 3} and {1, 2, 4} are the color sets of at least two of u2, u3, y1. Assume that
C(y1) ∈ {{1, 2, 3}, {1, 2, 4}}, sayC(y1) = {1, 2, 3}, andmoreover,C(u2) = {1, 2, 4}.
If C(u3) = {1, 3, 4}, then we recolor uy with 5 and color ux with 3 or 4 such that u
does not conflict with v. If C(u3) �= {1, 3, 4}, then we recolor uy with 4 and color ux
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with 3. If C(y1) /∈ {{1, 2, 3}, {1, 2, 4}}, then C(u2) = {1, 2, 4} and C(u3) = {1, 2, 3}.
If C(y1) �= {3, 4, 5}, say 4 /∈ C(y1), then we recolor uy with 4 and color ux with
3. So suppose that C(y1) = {3, 4, 5}, say φ(yy1) = 3 and φ(y1y2) = 4. When
C(y2) = {3, 4}, we recolor uy with 5 and color ux with 3 or 4 such that u does not
conflict with v. When C(y2) �= {3, 4}, we recolor uy with 4 and color ux with 3 or 5
such that u does not conflict with v.

(3.2.2) φ(vx) = 2. If 2 /∈ C(z) or C(z) = {1, 2} , then we may assume that
C(u2) = {1, 2, 3}, C(u3) = {1, 2, 4}, and C(y) = {2, 5} or C(y1) = {1, 2, 5}.
First if C(y1) = {1, 2, 5}, recolor uy with 4 and color ux with 3. Next suppose
C(y) = {2, 5}, then if C(y2) �= {4, 5}, recolor uy with 4 and color ux with 3.
Otherwise, C(y2) = {4, 5} and we recolor uy with 3 and color ux with 4.

So assume that 2 ∈ C(z); furthermore, letC(z) = {2, 5}. Note that φ(vv1) ∈ {3, 4}
since {1, 2} �⊂ C(v). By symmetry, we may assume that φ(vv1) = 3. We discuss the
following subcases:

• Suppose that C(y) ∈ {{2, 3}, {2, 4}}, say C(y) = {2, 3} by symmetry. Then, we
may assume that C(u2) = {1, 2, 4}.

If C(y2) = {3, 5}, we first suppose C(u3) �= {1, 3, 4}; then we recolor uy with
4 and color ux with 3. Next assume C(u3) = {1, 3, 4}; then, we assign color 5 to
ux , and so if we can recolor vx with 1 or 4 we are done. Otherwise, we may assume
C(v2) = {1, 3, 5} and C(v3) = {3, 4, 5}. In the latter case, when C(z2) �= {2, 4},
recolor vz with 4 and vx with 1. Otherwise, if C(z2) = {2, 4}, recolor vz with 1 and
vx with 4.

Now if C(y2) �= {3, 5}, suppose C(y1) �= {1, 3, 5}, then we recolor uy with 5 and
color ux with 3 or 4 such that u does not conflict with u3. If C(y1) = {1, 3, 5} and
C(u3) �= {1, 4, 5}, then we recolor uy with 5 and color ux 4. Finally, assume that
C(y1) = {1, 3, 5} and C(u3) = {1, 4, 5}. If we can recolor xv with 1 and color ux
with 5, or recolor xv with 4 and color ux with 5, we are done. Otherwise, it follows
that C(v2) = {1, 3, 5} and C(v3) = {3, 4, 5} (up to symmetry), and henceforth when
C(z2) �= {2, 4}, recolor vz with 4, vx with 1 and color ux with 5. Otherwise, if
C(z2) = {2, 4}, recolor vz with 1, vx with 4 and color ux with 5.

• Suppose that C(y) /∈ {{2, 3}, {2, 4}}, and C(y1) ∈ {{1, 2, 3}, {1, 2, 4}}, say
C(y1) = {1, 2, 3} by symmetry. Then, we may assume that C(u2) = {1, 2, 4}. If
C(u3) = {1, 3, 4}, then we recolor uy with 5 and color ux with 3. IfC(u3) �= {1, 3, 4},
then we recolor uy with 4 and color ux with 3.

• Suppose that C(y) /∈ {{2, 3}, {2, 4}} and C(y1) /∈ {{1, 2, 3}, {1, 2, 4}}. Then,
C(u2) = {1, 2, 4} and C(u3) = {1, 2, 3}. If C(y1) �= {3, 4, 5}, say 4 /∈ C(y1),
then we recolor uy with 4 and color ux with 3. Otherwise, C(y1) = {3, 4, 5}, say
φ(yy1) = 3 and φ(y1y2) = 4. When C(y2) = {3, 4}, we recolor uy with 5 and color
ux with 3. When C(y2) �= {3, 4}, we recolor uy with 4 and color ux with 3.

(3.2.3) φ(vx) ∈ {3, 4, 5}, say φ(vx) = 3 by symmetry. We first observe that if
3 /∈ C(y1), then it suffices to recolor uy with 3 and reduce the proof to Case (3.2.2).
So, assume that 3 ∈ C(y1) and let us discuss the following two cases.

• 3 /∈ C(z) or C(z) ∈ {{1, 3}, {2, 3}}. Without loss of generality, assume that
C(u2) = {1, 2, 4} and C(u3) = {1, 2, 5}. If C(y1) �= {3, 4, 5}, say 4 /∈ C(y1),
then we recolor uy with 4 and color ux with 5. Otherwise, C(y1) = {3, 4, 5}, say
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φ(yy1) = 3 and φ(y1y2) = 4. When C(y2) = {3, 4}, we recolor uy with 5 and color
ux with 4. When C(y2) �= {3, 4}, we recolor uy with 4 and color ux with 5.

• 3 ∈ C(z) and C(z) /∈ {{1, 3}, {2, 3}}, say C(z) = {3, 5}. Then, at least one of
u2 and u3, say u2, has color set {1, 2, 4}. Since φ(vv1) ∈ {1, 2, 4}, we have some
subcases below.

Assume that φ(vv1) = 1 (if φ(vv1) = 2, we have a similar discussion). If we
can recolor vx with 4 and color ux with 3 or 5, we are done. If vx can be recolored
with 4, but neither 3 nor 5 can assign to ux , then this implies that C(u3) = {1, 2, 5}
and C(y1) = {1, 2, 3}, say. It suffices to recolor uy with 5 and color ux with 3. If
vx cannot be recolored with 4, then at least one of v2 and v3, say v3, has color set
{1, 4, 5}. If C(v2) �= {1, 2, 5}, then we recolor vx with 2 and then reduce to Case
(3.2.2). So assume that C(v2) = {1, 2, 5}. If C(z2) �= {2, 3}, then we recolor zv with
2 and reduce to the previous case. If C(z2) = {2, 3}, then we recolor zv with 4 and
vx with 2 and then reduce to Case (3.2.2).

Assume that φ(vv1) = 4. If we can recolor vx with 1 or 2, then the proof is reduced
to Cases (3.2.1) and (3.2.2). Otherwise, we may assume that C(v2) = {1, 4, 5} and
C(v3) = {2, 4, 5}. If C(z2) = {2, 3}, then we recolor zv with 1 and reduce to the
previous case. If C(z2) �= {2, 3}, then we recolor zv with 2 and reduce the previous
cases.
Case 2. At least one of x , y, and z is a 3-vertex in H .

All notations in Case 1 are kept in the following discussion. Since 2 ≤ dH (x) ≤ 3,
we need to consider two subcases.

(1) Assume that dH (x) = 2. Then, at least one of y and z, say z, is a 3-vertex in H .
Let NH (z) = {v, z1, z4} with dH (z4) = 1. Consider the graph G = H − zz4, which
has a 5-2DVDE-coloring φ using the color setC such that φ(zz1) = 1 and φ(zv) = 2.
Assume that zz4 cannot be colored with any color inC . If z2 is a 2-vertex, then zz4 can
be colored with a color in {3, 4, 5} − {φ(vv1), φ(z1z3)} such that z does not conflict
with any of v1 and z3. So, z2 and z3 must be 3-vertices in G, and we may assume
that C(v1) = {1, 2, 3}, C(z2) = {1, 2, 4}, and C(z3) = {1, 2, 5}. If C(z1) = {1, 4, 5},
then we recolor zz1 with 3 and color zz4 with 5. If C(z1) ∈ {{1, 2, 4}, {1, 2, 5}}, say
C(z1) = {1, 2, 4}, then φ(vv1) ∈ {1, 3}, we deal with two possibilities according to
the color of vv1.

• φ(vv1) = 1. Let φ(v1v3) = 3, so φ(vx) ∈ {3, 4, 5}. If φ(vx) = 3, then we can
recolor vz with 4 or 5, and then color zz4 with 3. Otherwise, it is easy to derive that
C(v3) = {1, 3, 4} and C(u) = {1, 3, 5}, say. It suffices to recolor xv with 2, vz with
3, and color zz4 with 4.

If φ(vx) = 4 or 5, we have a similar proof.
• φ(vv1) = 3. Then, φ(vx) ∈ {1, 4, 5}. First assume that φ(vx) = 1. If we can

recolor vz with 4 or 5, and color zz4 with 3, we are done. Otherwise, it follows that
C(v3) = {1, 3, 4} and C(u) = {1, 3, 5}, say. Recolor xv with 4, vz with 5, and color
zz4 with 3. Next assume that φ(vx) ∈ {4, 5}, say φ(vx) = 4. If we can recolor vz
with 5, then 3 is assigned to zz4. Otherwise, we have C(u) = {3, 4, 5}. It suffices to
exchange the colors of vx and vz and color zz4 with 5.

(2) Assume that dH (x) = 3. Let NH (x) = {u, v, x1} with dH (x1) = 1. Let
G = H − xx1, which has a 5-2DVDE-coloring φ with φ(xv) = 1 and φ(xu) = 2.
Assume that xx1 cannot be colored with any color in C . If dG(y) = dG(z) = 2, then
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Fig. 3 The configuration in the
proof of Claim 5
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we color xx1 with a color in {3, 4, 5} such that x does not conflict with u1 and v1. So
suppose that dG(z) = 3. Without loss of generality, assume that C(z) = {1, 2, 3} and
C(v1) = {1, 2, 4}. Note that either y or u1 has color set {1, 2, 5}, say C(y) = {1, 2, 5}
by symmetry.

If C(v) = {1, 3, 4}, then we recolor xv with 5 and color xx1 with 3 or 4 such that x
does not conflict with u1. Otherwise, suppose that C(v) = {1, 2, 4} with φ(v1v2) = 1
by symmetry. If vx can be recolored with 3, then we color xx1 with 4 or 5 such that
x does not conflict with u1. Similarly, if vx can be recolored with 5, then we color
xx1 with 3 or 4 such that x does not conflict with u1. Otherwise, we may assume that
C(z1) = {2, 3, 4} and C(v3) = {2, 4, 5}. If C(v2) = {1, 3, 4}, then we exchange the
colors of zz1 and zz4, recolor vx with 5, and color xx1 with 3 or 4 such that x does
not conflict with u1. If C(v2) �= {1, 3, 4}, then we exchange the colors of zz1 and zz4,
recolor vx with 3, and color xx1 with 4 or 5 such that x does not conflict with u1. 
�

5 Proof of Claim 5

Assume to the contrary that H ′ contains a 32-vertex x adjacent to two 2-vertices u and
v (see Fig. 3). Let NH ′(x) = {u, v, w}, NH ′(w) = {x, w1, w2}, NH ′(u) = {x, u1}
and NH ′(v) = {x, v1}. By Claims 1 and 2, dH ′(u1) = dH ′(v1) = 3. Furthermore,
let NH ′(u1) = {u, u2, u3} and NH ′(v1) = {v, v3, v4}. By Claims 3 and 4, dH ′(u2) =
dH ′(u3) = dH ′(v3) = dH ′(v4) = 3. We deal with three cases depending on the degree
of u and v in H .
Case 1. dH (u) = dH (v) = 2.

Let G = H − xu, which admits a 5-2DVDE-coloring φ using the color set C
with φ(xv) = 2 and φ(xw) = 1. Assume that ux cannot be colored with any color
in C . If dG(w1) = dG(w2) = 2, then we can color ux with a color in {3, 4, 5} −
{φ(vv1), φ(uu1)} such that x does not conflict with v1. This is impossible. Thus,
dG(w2) = 3. We discuss three possibilities depending on the color of uu1.

(1) φ(uu1) = 1. Suppose that 2 /∈ C(u1), then dG(w1) = 3, otherwise we color ux
with a color in {3, 4, 5} − {φ(vv1), φ(ww2)} such that x does not conflict with v1 or
w2. Without loss of generality, assume thatC(w1) = {1, 2, 3},C(w2) = {1, 2, 4}, and
C(v1) = {1, 2, 5}. We recolor vx with 4 and color ux with 3 or 5 such that x does not
conflict with u1. If 2 ∈ C(u1), then we suppose by symmetry that C(u1) = {1, 2, 3}.
We first assume that C(v1) /∈ {{1, 2, 4}, {1, 2, 5}}, then C(w1) = {1, 2, 4} and
C(w2) = {1, 2, 5}. Since dH ′(v3) = dH ′(v4) = 3, ifC(v1) �= {1, 3, 4}, say 3 /∈ C(v1),
then recolor vx with 3 and color ux with 4. Otherwise, C(v1) = {1, 3, 4}, recolor vx
with 5 and color ux with 4. we recolor vx with a color c ∈ {3, 4, 5} − {φ(vv1)},
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and color ux with a color in {3, 4, 5} − {c}. Now if C(v1) ∈ {{1, 2, 4}, {1, 2, 5}}, say
C(v1) = {1, 2, 4}, then C(w2) = {1, 2, 5}, recolor vx with 5 and color ux with 3 or
4 such that x does not conflict with w1.

(2) φ(uu1) = 2. If 1 /∈ C(u1), then dG(w1) = 3, otherwise we color ux with a
color in {3, 4, 5} − {φ(vv1), φ(ww2)} such that x does not conflict with v1 or w2.
Without loss of generality, assume that C(w1) = {1, 2, 3}, C(w2) = {1, 2, 4}, and
either C(v1) = {1, 2, 5} or φ(vv1) = 5. We recolor vx with 4 and color ux with 3. If
1 ∈ C(u1), we proceed in a similar way as for the previous case when 2 ∈ C(u1).

(3) φ(uu1) ∈ {3, 4, 5}, say φ(uu1) = 3 by symmetry. If φ(vv1) �= 3, it suffices to
recolor vx with 3 an obtain a situation similar to (2). Thus, suppose that φ(vv1) = 3,
then dG(w1) = 3, otherwise we color ux with a color in {4, 5} − {φ(ww2)} such that
x does not conflict with w2. Furthermore, C(w1) = {1, 2, 4} and C(w2) = {1, 2, 5}.
It suffices to recolor vx with 4 and color ux with 5.
Case 2. dH (u) = 3 and dH (v) = 2.

Set NH (u) = {x, u1, u4} with dH (u4) = 1. Let G = H − u4, which admits a
5-2DVDE-coloring φ using the color set C such that φ(ux) = 1 and φ(uu1) = 2.
Assume that uu4 cannot be colored with any color in C . By symmetry, we suppose
that C(w) = {1, 2, 3}, C(u2) = {1, 2, 4}, and C(u3) = {1, 2, 5}. If C(u1) = {2, 4, 5},
then we recolor uu1 with 3 and color uu4 with 4. Otherwise, we assume that C(u1) =
{1, 2, 5} by symmetry. Since φ(xw) ∈ {2, 3}, we need to consider two possibilities as
follows.

• φ(xw) = 2. Note that φ(vx) ∈ {3, 4, 5}, say φ(vx) = 3 (if φ(vx) ∈ {4, 5}, we
will have a similar proof). If we can legally recolor ux with 4 and color uu4 with
5, or recolor ux with 5 and color uu4 with 4, we are done. Otherwise, we may
assume that C(v1) = {2, 3, 5} and C(w1) = {2, 3, 4}. It suffice to recolor vx with
4, ux with 5 and color uu4 with 3.

• φ(xw) = 3. Then, φ(vx) ∈ {2, 4, 5}. First suppose that φ(vx) = 2. If we can
legally recolor ux with 4 and color uu4 with 5, or recolor ux with 5 and color uu4
with 4, we are done. Otherwise, it is easy to see that at least one of w1 and w2 is
of degree 3, say dG(w1) = 3, and C(w1) = {2, 3, 4} and C(v1) = {2, 3, 5}. We
recolor vx with 4, ux with 5 and color uu4 with 3. If φ(vx) ∈ {4, 5}, we assume
that φ(vx) = 4 by symmetry. If possible, we recolor ux with 5 and color uu4 with
4. Otherwise, assume that C(v1) = {3, 4, 5}, recolor vx with 1, ux with 4, and
color uu4 with 5.

Case 3. dH (u) = dH (v) = 3.
We continue to use notations in Case 2 and let NH (v) = {x, v1, v2} with dH (v2) =

1. Then,G = H−u4 has a 5-2DVDE-coloringφ such thatφ(ux) = 1 andφ(uu1) = 2.
Assume that uu4 cannot be colored with any color in C . We discuss the following
possibilities according to the color set of v.

(1) C(v) /∈ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}. Assume that C(u2) = {1, 2, 4}, C(u3) =
{1, 2, 5}, and C(w) = {1, 2, 3}. If C(u1) = {2, 4, 5}, we recolor uu1 with 3 and
colors uu4 with 4 or 5 such that u does not conflict with v. Otherwise, assume that
C(u1) = {1, 2, 5} by symmetry. Noting that φ(xw) ∈ {2, 3}, we discuss two subcases
below.

123



Two-Distance Vertex-Distinguishing Index of Sparse Subcubic… 3197

(1.1) Assume that φ(xw) = 2, then φ(vx) ∈ {3, 4, 5}. First suppose that φ(vx) =
3. If possible, we recolor ux with 4 and color uu4 with 5, or recolor ux with 5 and
color uu4 with 4. Otherwise, we assume thatC(v1) = {2, 3, 4} andC(w1) = {2, 3, 5}.
There are two possibilities to be considered.

• φ(vv1) = 4. Then, φ(vv2) ∈ {1, 2, 5}. If φ(vv2) = 1, then we recolor vx with 5,
ux with 4, and color uu4 with 3. If φ(vv2) = 2, then we recolor vv2 with 5, vx
with 1, ux with 3, and color uu4 with 5. If φ(vv2) = 5, then we recolor vx with
1, ux with 3, and color uu4 with 5.

• φ(vv1) = 2. Then, φ(vv2) ∈ {4, 5}. If φ(vv2) = 4, then we recolor vv2 with 3,
vx with 4, ux with 5, and color uu4 with 3. If φ(vv2) = 5, then we recolor vv2
with 3, vx with 5, ux with 4, and color uu4 with 3. The cases φ(vx) = 4 and
φ(vx) = 5 are symmetric and are solve in a similar way as the one of φ(vx) = 3.

(1.2) Assume that φ(xw) = 3. Since φ(vx) ∈ {2, 4, 5}, we investigate two situa-
tions as follows.

(1.2.1) φ(vx) = 2. If we can legally recolor ux with 4 and color uu4 with 5,
or recolor ux with 5 and color uu4 with 4, we are done. Otherwise, it follows that
C(v1) = {2, 3, 5} and C(w2) = {2, 3, 4}, say. Note that φ(vv1) ∈ {3, 5}.
• φ(vv1) = 5. Then, φ(vv2) ∈ {1, 3, 4}. If φ(vv2) = 1, then we recolor vx with 4,
ux with 5, and color uu4 with 3. If φ(vv2) = 3, then we recolor vv2 with 1, vx
with 4, ux with 5, and color uu4 with 3. If φ(vv2) = 4, then we recolor vv2 with
2, vx with 4, ux with 5, and color uu4 with 3.

• φ(vv1) = 3. Then, φ(vv2) ∈ {4, 5}. If φ(vv2) = 4, then we recolor vv2 with 2,
vx with 4, ux with 5, and color uu4 with 4. If φ(vv2) = 5, then we recolor vv2
with 2, vx with 5, ux with 4, and color uu4 with 3.

(1.2.2) φ(vx) ∈ {4, 5}, say φ(vx) = 4. If we can legally recolor ux with 5 and
color uu4 with 3, we are done. Otherwise, assume that C(v1) = {3, 4, 5}. Note that
φ(vv1) ∈ {3, 5}. Suppose that φ(vv1) = 3, then φ(vv2) ∈ {1, 2, 5}. If φ(vv2) = 1,
then we recolor vv2 with 4, vx with 1, ux with 4, and color uu4 with 5. If φ(vv2) = 2,
then we recolor vx with 1, ux with 4, and color uu4 with 5. If φ(vv2) = 5, then we
recolor vv2 with 2, vx with 1, ux with 4, and color uu4 with 5. The case φ(vv1) = 5
is solved using a similar recoloring strategy.

(2) C(v) ∈ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}, say C(v) = {1, 2, 3}. The proof is split
into the following two subcases, depending on the color set of w.

(2.1)C(w) /∈ {{1, 2, 4}, {1, 2, 5}}. Then, we can assume thatC(u2) = {1, 2, 4} and
C(u3) = {1, 2, 5}. Since φ(vx) ∈ {2, 3}, we have two possibilities.

(2.1.1) φ(vx) = 2. It is straightforward to see that φ(wx) ∈ {3, 4, 5}.
• φ(wx) = 3. If we can legally recolor ux with 4 and color uu4 with 5, or recolor

ux with 5 and color uu4 with 4, we are done. Otherwise, we have two possibilities as
follows:

Suppose that C(v1) ∈ {{2, 3, 4}, {2, 3, 5}}, say C(v1) = {2, 3, 4}. Let C(w2) =
{2, 3, 5}. If C(w1) �= {3, 4, 5}, then we recolor vv2 with 1, vx with 5, ux with 4, and
color uu4 with 5. If C(w1) = {3, 4, 5}, then we recolor vv2 with 5, vx with 1, ux with
5, and color uu4 with 4.

Suppose that C(v1) /∈ {{2, 3, 4}, {2, 3, 5}}, then C(w1) = {2, 3, 4} and C(w2) =
{2, 3, 5}. If C(v1) �= {1, 3, 4}, then we recolor vv2 with 2, vx with 1, ux with 4, and
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color uu4 with 5. If C(v1) = {1, 3, 4}, then we recolor vv2 with 2, vx with 5, ux with
4, and color uu4 with 3 or 5 such that u does not conflict with v.

• φ(wx) ∈ {4, 5}, say φ(wx) = 4. If we can legally recolor ux with 3 and color
uu4 with 5, or recolor ux with 5 and color uu4 with 3, we are done. Otherwise, we
have two possibilities: (i) C(v1) �= {2, 3, 4}. We may assume that C(w1) = {2, 4, 5}
and C(w2) = {2, 3, 4}. It suffices to exchange the colors of vv2 and vx , recolor ux
with 5, and color uu4 with 3. (ii)C(v1) = {2, 3, 4}, then C(w2) = {2, 4, 5}. It suffices
to exchange the colors of vv2 and vx , recolor ux with 3 or 5 such that x does not
conflict with w1, and color uu4 with 4.

(2.1.2) φ(vx) = 3. Then, φ(wx) ∈ {2, 4, 5}.
First assume thatφ(wx) = 2. If we can legally recolor ux with 5, and color uu4 with

3 or 4 such that u does not conflict withw, or recolor ux with 4 and color uu4 with 3 or 5
such that u does not conflict withw, we are done. Otherwise, we have two possibilities:
If C(v1) ∈ {{2, 3, 4}, {2, 3, 5}}, say C(v1) = {2, 3, 4}, then we may assume that
C(w1) = {2, 3, 5}. Now, if C(w2) �= {2, 4, 5}, then we recolor vx with 5, ux with 4,
and color uu4 with 3 or 5 such that u does not conflict with w. If C(w2) = {2, 4, 5},
then we exchange the colors of vv2 and vx , recolor ux with 4, and color uu4 with 3 or
5 such that u does not conflict with w. So suppose that C(v1) /∈ {{2, 3, 4}, {2, 3, 5}}.
We may assume that C(w1) = {2, 3, 5} and C(w2) = {2, 3, 4}. Recolor vv2 with 3,
vx with 1, ux with 3 and color uu4 with 4 or 5 such that u does not conflict with w.

Next assume that φ(wx) ∈ {4, 5}, say φ(wx) = 4. If possible, we recolor ux with 5
and color uu4 with 3. Otherwise, we may assume that C(w1) = {3, 4, 5}, and further-
more φ(vv2) = 1 (if φ(vv2) = 2, we have a similar discussion). IfC(w2) �= {1, 3, 4},
then we recolor vv2 with 3, vx with 1, ux with 3, and color uu4 with 5. If C(w2) =
{1, 3, 4}, then we recolor vv2 with 3, vx with 1, ux with 5, and color uu4 with 3.

(2.2) C(w) ∈ {{1, 2, 4}, {1, 2, 5}}, say C(w) = {1, 2, 4}. Then, we may suppose
that C(u2) = {1, 2, 5}. Note that φ(vx) ∈ {2, 3}.

(2.2.1) Let φ(vx) = 2. Then, φ(wx) = 4. If we can recolor ux with 3 and color
uu4 with 4 or 5 such that u does not conflict with u3, or recolor ux with 5 and color
uu4 with 3 or 4 such that u does not conflict with u3, we are done. Otherwise, we may
assume that C(v1) = {2, 3, 4} and C(w2) = {2, 4, 5}. When C(w1) = {1, 4, 5}, we
recolor vv2 with 2, vx with 1, ux with 3, and color uu4 with 4 or 5 such that u does
not conflict with u3. When C(w2) �= {1, 4, 5}, we recolor vv2 with 2, vx with 1, ux
with 5, and color uu4 with 3 or 4 such that u does not conflict with u3.

(2.2.2) Let φ(vx) = 3. Then, φ(wx) ∈ {2, 4}. If φ(wx) = 4, then we recolor ux
with 5 and color uu4 with 3 or 4 such that u does not conflict with u3. So assume that
φ(wx) = 2. If we can legally recolor ux with 4 and color uu4 with 3 or 5 such that u
does not conflict with u3, or recolor ux with 5 and color uu4 with 3 or 4 such that u does
not conflict with u3, we are done. Otherwise, we may assume that C(v1) = {2, 3, 5}
and C(w2) = {2, 3, 4}. Recolor vv2 with 3, vx with 1, ux with 3, and color uu4 with
4 or 5 such that u does not conflict with u3. 
�
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