

Two-Distance Vertex-Distinguishing Index of Sparse Subcubic Graphs

Loumngam Kamga Victor¹ · Juan Liu¹ · Weifan Wang¹

Received: 19 October 2018 / Revised: 12 November 2019 / Published online: 26 November 2019 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Abstract

The 2-distance vertex-distinguishing index $\chi'_{d2}(G)$ of a graph *G* is the minimum number of colors required for a proper edge coloring of *G* such that any pair of vertices at distance two have distinct sets of colors. It was conjectured that every subcubic graph G has $\chi'_{d2}(G) \leq 5$. In this paper, we confirm this conjecture for subcubic graphs with maximum average degree less than $\frac{8}{3}$.

Keywords Subcubic graph · Maximum average degree · Edge coloring · 2-Distance vertex-distinguishing index · AVD edge coloring

Mathematics Subject Classification 05C15

1 Introduction

All graphs considered in this paper are finite and simple. Let *G* be a graph with vertex set $V(G)$, edge set $E(G)$, maximum degree $\Delta(G)$, and minimum degree $\delta(G)$. Let $N_G(v)$ denote the set of neighbors of a vertex v in *G*, and let $d_G(v) = |N_G(v)|$ denote the degree of v in G . A vertex of degree k (at most k , at least k , resp.) is called a *k*-*vertex* (*k*−-*vertex*, *k*+*-vertex*, resp.). The *distance*, denoted by *d*(*u*, v) between two vertices u and v is the length of a shortest path connecting them. If no confusion arises, we abbreviate $\Delta(G)$ to Δ .

A *proper edge k-coloring* of a graph *G* is a mapping $\phi : E(G) \rightarrow \{1, 2, ..., k\}$ such that $\phi(e) \neq \phi(e')$ for any two adjacent edges *e* and *e'*. The *chromatic index*,

Communicated by Sandi Klavžar.

 \boxtimes Weifan Wang wwf@zjnu.cn

Research supported by NSFC (No. 11771402).

¹ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

denoted $\chi'(G)$, of a graph *G* is the smallest integer *k* such that *G* has a proper edge *k*-coloring. For a vertex $v \in V(G)$, let $C_{\phi}(v)$ denote the set of colors assigned to the edges incident to v , that is,

$$
C_{\phi}(v) = {\phi(uv)|uv \in E(G)}.
$$

The coloring ϕ is called 2-*distance vertex-distinguishing* (or a 2DVDE-coloring, in short) if $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of vertices *u* and *v* with $d(u, v) = 2$. Let $\chi'_{d2}(G)$ denote the *2-distance vertex-distinguishing index* of *G*, which is the smallest integer *k* such that *G* has a 2DVDE-coloring using *k* colors.

The 2-distance vertex-distinguishing edge coloring of graphs can be thought of as a special case of the *r*-strong edge coloring of graphs, see [\[1\]](#page-15-0). Let $r \geq 1$ be an integer. The *r*-*strong chromatic index* $\chi'_{s}(G,r)$ of a graph *G* is the minimum number of colors required for a proper edge coloring of *G* such that any two vertices *u* and *v* with $d(u, v) \leq r$ have $C_{\phi}(x) \neq C_{\phi}(y)$. In particular, when $r = 1$, we have $\chi'_{s}(G, 1) = \chi'_{a}(G)$, which is called the *neighbor-distinguishing index* of *G*. Zhang, Liu, and Wang [\[12](#page-16-0)] first investigated this parameter and proposed the following conjecture:

Conjecture 1 If G is a graph different from a 5-cycle, then $\chi'_a(G) \leq \Delta + 2$.

Balister et al. [\[2](#page-16-1)] confirmed Conjecture [1](#page-1-0) for bipartite graphs and subcubic graphs. Using a probabilistic analysis, Hatami [\[3](#page-16-2)] showed that every graph *G* with $\Delta > 10^{20}$ has $\chi'_{a}(G) \leq \Delta + 300$. Akbari et al. [\[1](#page-15-0)] proved that every graph *G* satisfies $\chi'_{a}(G) \leq$ 3 Δ . Zhang et al. [\[11](#page-16-3)] proved that every graph *G* has $\chi'_{\mathfrak{a}}(G) \leq 2.5(\Delta + 2)$. Wang et al. [\[9](#page-16-4)] improved these upper bounds to $\chi_a'(G) \leq 2.5\Delta$ if $\Delta \geq 7$, and to $\chi_a'(G) \leq 2\Delta$ if $\Delta \leq 6$. The currently best known upper bound that $\chi'_{\rm a}(G) \leq 2\Delta + 2$ for any graph *G* was obtained by Vučković [\[6\]](#page-16-5).

It follows from the definition that $\chi'_{d2}(G) \geq \chi'(G) \geq \Delta$, and moreover $\chi'_{d2}(G) \geq$ $\Delta + 1$ if *G* contains two vertices of maximum degree at distance 2. The 2-distance vertex-distinguishing index for special graphs such as cycles, paths, trees, complete graphs, complete bipartite graphs, and unicycle graphs has been determined in [\[8](#page-16-6)]. Using an algorithmic analysis, Wang et al. [\[7\]](#page-16-7) proved that every outerplanar graph *G* satisfies $\chi'_{d2}(G) \leq \Delta + 8$. Additionally, it was shown in [\[4\]](#page-16-8) that if *G* is a bipartite outerplanar graph, then $\chi'_{d2}(G) \leq \Delta + 2$.

A *cubic graph* is a 3-regular graph, and a *subcubic graph* is a graph of maximum degree at most 3. The *maximum average degree* of a graph *G* is defined as

$$
\mathrm{mad}(G) = \max\left\{\frac{2|E(H)|}{|V(H)|} \mid H \subseteq G\right\}.
$$

Very recently, Victor et al. [\[5\]](#page-16-9) showed that every subcubic graph *G* satisfies $\chi'_{d2}(G) \leq 6$, and raised the following conjecture:

Conjecture 2 *For a subcubic graph G,* $\chi'_{d2}(G) \leq 5$ *.*

Note that if Conjecture [2](#page-1-1) were true, then the upper bound 5 is tight. In this paper, we confirm partially this conjecture by showing the following result:

Theorem 1 *If H is a subcubic graph with* $\text{mad}(H) < \frac{8}{3}$, then $\chi'_{d2}(H) \leq 5$.

To prove Theorem [1,](#page-1-2) we need to apply repeatedly the following easy fact (see $[10]$):

Lemma 2 *Let G be a graph.*

(1) *If* v *is a leaf of G, then* mad($G - v$) \leq mad(G).

(2) *If e is an edge of G, then* mad($G - e$) \leq mad(G)*.*

Let *G* be a subcubic graph and v be a 3-vertex of *G*. For $0 \le i \le 3$, v is called a 3*i*-*vertex* if v is adjacent to exactly *i* 2-vertices. For a subgraph *H* of *G* and a 2DVDEcoloring ϕ of *H*, we say, in short, that ϕ is a *legal coloring* of *H*. Two vertices $u, v \in V(G)$ with $d(u, v) = 2$ are called *conflict* with respect to the coloring ϕ if $C_{\phi}(u) = C_{\phi}(v)$.

2 Proof of Theorem 1

The proof is by contradiction. Let H be a minimum counterexample that minimizes $|E(H)| + |V(H)|$. Then, $\Delta(H) \leq 3$, mad $(H) < \frac{8}{3}$, and $\chi'_{d2}(H) > 5$. It is easy to note that *H* is connected, for otherwise by the minimality of *H*, we can 5-2DVDEcolor independently each connected component of *H* using the same set of colors and consider the resulting coloring as a 5-2DVDE-coloring of *H*. Let *H*- denote the graph obtained by deleting all 1-vertices of *H*. Then, *H*^{\prime} is clearly connected, $\Delta(H') \leq 3$, and mad(H') \leq mad(H) $< \frac{8}{3}$ by Lemma [2.](#page-2-0) Moreover, by the minimality of *H*, any of its subgraph obtained by edge deletion can be legally colored with at most five colors. We first list some structural properties of H' . In the subsequent proofs, we routinely construct 5-2DVDE-colorings of *H* without verifying in detail that *H* is legally-5 colored since this can be supplied in a straightforward manner. In the following, we always let $C = \{1, 2, ..., 5\}$ denote a set of five colors. Given a 5-2DVDE-coloring ϕ of a subgraph *G* of *H* using the color set *C*, for a vertex $v \in V(G)$, we denote simply $C_{\phi}(v)$ by $C(v)$.

Claim 1 $\delta(H') \geq 2$.

Proof Suppose to the contrary that $\delta(H') \leq 1$. If $\delta(H') = 0$, then *H*^{\prime} is isomorphic to K_1 and so *H* is isomorphic to the star $K_{1,n-1}$ with $|V(H)| = n$. Obviously, we can color the edges of $K_{1,n-1}$ with distinct colors, so $\chi'_{d2}(H) = \Delta(H) \leq 3$, which contradicts the hypothesis on *H*. Assume that $\delta(H') = 1$, and let *u* be a 1-vertex of *H*^{\prime} adjacent to a vertex *v*. Then, $d_H(u) \in \{2, 3\}$, let u_1 be another neighbor of *u* different from *v* in *H*, and let $G = H - uu_1$. By the minimally of *H*, *G* has a 5-2DVDE-coloring ϕ using the color set *C*. Observe that $|C(u) \cup C(v)| \leq 4$ since $d_H(v) \leq 3$ and *v* is adjacent to *u*. Therefore, to extend ϕ to *H*, it suffices to color uu_1 with a color in $C - C(u) - C(v)$. This contradicts the choice of *H*. \Box

Claim 2 H' contains no two adjacent 2-vertices.

Proof Suppose to the contrary that H' contains two adjacent 2-vertices u and v . Let $N_{H'}(u) = \{v, u_1\}$ and $N_{H'}(v) = \{u, v_1\}$. Then, $d_H(u), d_H(v) \in \{2, 3\}$. We discuss the following two cases by symmetry.

Case 1. $d_H(u) = d_H(v) = 2$.

Consider the graph $G = H - uv$. By the minimally of *H*, *G* has a 5-2DVDEcoloring ϕ using the color set *C*. We assume that *uv* cannot be colored with any color in *C*. Therefore, at least one of u_1 and v_1 is a 3-vertex; otherwise, we color *uv* with a color in $C - C(u_1) - C(v_1)$. Without loss of generality, assume that $d_G(u_1) = 3$, $N_G(u_1) = \{u, u_2, u_3\}$, and $C(u_1) = \{1, 2, 3\}$ such that $\phi(u_1) = 1$ and $\phi(u_1u_2) = 2$. We discuss two possibilities:

- Let $d_G(v_1) = 2$, say $N_G(v_1) = \{v, v_2\}$. If $d_G(v_2) = 2$, then the proof is reduced to the previous case by replacing *uv* with vv_1 . Otherwise, $d_G(v_2) = 3$, we may color *uv* with a color in $\{4, 5\} - \{\phi(vv_1)\}\$. This contradicts the assumption that *u*v cannot be colored.
- Let $d_G(v_1) = 3$, say $N_H(v_1) = \{v, v_2, v_3\}$. First assume that at least two of u_2, u_3, v_2, v_3 are 3-vertices. By symmetry, we have the following two possibilities. If $d_G(u_2) = d_G(u_3) = 3$, then we color *uv* with a color in ${2, 3, 4, 5} - C(v_1)$. If $d_G(u_2) = d_G(v_2) = 3$, then we color *uv* with a color in $\{2, 4, 5\} - \{\phi(vv_1), \phi(v_1v_3)\}\)$. Next assume that at most one of u_2, u_3, v_2, v_3 is of degree 3, say, $d_G(u_2) = d_G(u_3) = d_G(v_2) = 2$ and $2 \leq d_G(v_3) \leq 3$. It is easy to see that $\{4, 5\} \subset C(v_1)$ because *uv* can not be legally colored.

First suppose that $d_G(v_3) = 2$. If $\phi(v_1) = 2$, then $\phi(v_1v_2) = 4$ and $\phi(v_1v_3) = 5$. It follows that $C(u_2) = \{1, 2\}$, $C(u_3) = \{1, 3\}$, $C(v_2) = \{2, 4\}$, and $C(v_3) = \{2, 5\}$. It suffices to recolor vv_1 with 1 and color uv with 4. If $\phi(vv_1) \in \{1, 3\}$, we have a similar discussion. So assume that $\phi(vv_1) \in \{4, 5\}$, say $\phi(vv_1) = 4$. Then, $C(u_2) = \{1, 2\}$ and $C(u_3) = \{1, 3\}$. Without loss of generality, assume that $\phi(v_1v_3) = 5$ and so $\phi(v_1v_2) \in \{1, 2, 3\}$. Let *z* be the other neighbor of v_3 different from v_1 . Then, we must have $\phi(zv_3) = 4$. Now we recolor *uu*₁ with 4 and color *uv* with a color in $\{1, 2, 3\}$ such that v does not conflict with v_2 .

Next suppose that $d_G(v_3) = 3$. A similar and easier proof can be established. **Case 2.** $d_H(u) = 3$ and $d_H(v) \in \{2, 3\}.$

Let $N_H(u) = \{v, u_1, x\}$ with $d_H(x) = 1$. If $d_H(v) = 3$, then we furthermore assume that $N_H(v) = \{u, v_1, y\}$ with $d_H(y) = 1$. Consider the graph $G = H - ux$. By the minimality of *H*, *G* has a 5-2DVDE-coloring ϕ using the color set *C*. Assume that *ux* cannot be colored with any color in *C*. We have to consider two cases as follows.

Assume that u_1 is a 2-vertex of *G*. Then, $N_G(u_1) = \{u, u_2\}$. If u_2 is a 2-vertex, then we can color *ux* with a color in $C - C(u_1) - {\phi(uv)}$, $\phi(vv_1)$, which is a contradiction. Otherwise, u_2 is a 3-vertex. If $\phi(uv) \neq \phi(u_1u_2)$, then we color *ux* with a color in $C - C(u_1) - {\phi(uv), \phi(vv_1)}$. If $\phi(uv) = \phi(u_1u_2)$, then $C - C(u_1) - {\phi(uv), \phi(vv_1)}$ contains at least two colors, so that we can choose one of them to color *ux*.

Assume that $d_G(u_1) = 3$ and $N_G(u_1) = \{u, u_2, u_3\}$. If $d_G(v_1) = 2$, then we color *ux* with a color in $C - C(u_1) - {\phi(uv)}$. Thus, assume that $d_G(v_1) = 3$. Without loss of generality, we may assume that $\phi(uv) = 1$, $\phi(uu_1) = 2$, $C(u_2) = \{1, 2, 4\}$, $C(u_3) = \{1, 2, 3\}$, and $C(v_1) = \{1, 2, 5\}$. There are two possibilities to be handled.

• Let $d_H(v) = 2$. If $C(u_1) = \{2, 3, 4\}$, it suffices to recolor uu_1 with 5 and color *ux* with 4. So assume that $C(u_1) = \{1, 2, 4\}$, and hence, it suffices to recolor *uv* with 4 and color *ux* with 5.

• Let $d_H(v) = 3$. Then, $N_G(v) = \{u, y, v_1\}$. Let $N_G(v_1) = \{v, v_2, v_3\}$. If $C(u_1) =$ $\{2, 3, 4\}$, then we recolor *uu*₁ with 5 and color *ux* with 4. So assume that $C(u_1) =$ $\{1, 2, 4\}$ by symmetry. Note that $\phi(vv_1) \in \{2, 5\}$. If $\phi(vv_1) = 2$, then it follows immediately that $\phi(vy) \in \{3, 5\}$, we switch the colors of vy and vu and color ux with 4. Now suppose that $\phi(vv_1) = 5$, and furthermore, let $\phi(v_1v_2) = 2$. Then, $\phi(vy) \in \{2, 3, 4\}$. If $\phi(vy) = 2$, then we recolor vu with 3 or 4 such that v does not conflict with v_2 , and color *ux* with 5. If $\phi(vy) \in \{3, 4\}$, then after switching the colors of v*y* and v*u*, we color *ux* with 5. \Box

The proof of Claims [3–](#page-4-0)[5](#page-4-1) below will be given in the subsequent sections.

Claim 3 H' contains no 3₃-vertex.

Claim 4 H' contains no 2-vertex adjacent to two $3₂$ -vertices.

Claim 5 H' contains no 3₂-vertex.

We define an initial weight function $w(v) = d_{H'}(v)$ for every vertex $v \in V(H')$. Then, we redistribute weights according to the following rule:

(R) Every 3₁-vertex sends the weight of $\frac{1}{3}$ to the uniquely adjacent 2-vertex.

The sum of all charges is kept fixed when the discharging is in process. Once the discharging is finished, a new charge function w' is produced. Nevertheless, we can show that $w'(v) \ge \frac{8}{3}$ for all $v \in V(H')$. In fact, let $v \in V(H')$. By Claims [1](#page-2-1)[–5,](#page-4-1) v is either a 2-vertex or a 3₁-vertex or a 3₀-vertex. If v is a 3₀-vertex, then $w'(v) = 3$. If v is a 3₁-vertex, then $w'(v) = 3 - \frac{1}{3} = \frac{8}{3}$. If v is a 2-vertex, then $w'(v) = 2 + 2\cdot\frac{1}{3} = \frac{8}{3}$. This leads to the following obvious contradiction:

$$
\frac{8}{3} = \frac{\frac{8}{3}|V(H')|}{|V(H')|} \le \frac{\sum_{v \in V(H')} w'(v)}{|V(H')|} = \frac{\sum_{v \in V(H')} w(v)}{|V(H')|} = \frac{2|E(H')|}{|V(H')|} \le \text{mad}(H') < \frac{8}{3}.
$$

This completes the proof of Theorem 1.

$$
\Box
$$

3 Proof of Claim [3](#page-4-0)

Assume to the contrary that H' contains a 3-vertex x adjacent to three 2-vertices u, v, w (see Fig. [1\)](#page-5-0). Let $N_{H'}(u) = \{x, u_1\}, N_{H'}(v) = \{x, v_1\}, \text{ and } N_{H'}(w) =$ $\{x, w_1\}$ $\{x, w_1\}$ $\{x, w_1\}$. By Claims 1 and [2,](#page-2-2) $d_{H'}(u_1) = d_{H'}(v_1) = d_{H'}(w_1) = 3$. Note that *d_H*(*u*), *d_H*(*v*), *d_H*(*w*) ∈ {2, 3}. Setting *N_H*·(*u*₁) = {*u*, *u*₂, *u*₃}, we discuss two cases below.

Case 1. $d_H(u) = d_H(v) = d_H(w) = 2$.

Let $G = H - ux$, which admits a 5-2DVDE-coloring ϕ with $\phi(xv) = 1$ and $\phi(xw) = 2$. Assume that *xu* cannot be colored with any color in *C*. Let us deal with the following cases, depending on the color of *uu*1.

(1) $\phi(uu_1) \in \{1, 2\}$, say $\phi(uu_1) = 2$ by symmetry.

(1.1) Suppose that at least one of u_2 and u_3 is a 3-vertex in *G*, say $d_G(u_3) = 3$. By symmetry, the proof splits into two cases.

(1.1.1) Let $\phi(ww_1) = 1$. Without loss of generality, assume that $C(v_1) = \{1, 2, 4\}$ and $C(w_1) = \{1, 2, 5\}$. It follows that $C(u_1) = \{1, 2, 3\}$, or $C(u_2) = \{2, 3\}$. Recolor *xw* with 4 and color *xu* with 5. If $\phi(vv_1) \neq 4$, we are done. Otherwise, we recolor *x*v with 3.

(1.1.2) Let $\phi(ww_1) \in \{3, 4, 5\}$, and assume $\phi(ww_1) = 5$ by symmetry. Similarly, we can assume that $C(v_1) = \{1, 2, 4\}$; and $C(u_1) = \{1, 2, 3\}$ or $C(u_2) = \{2, 3\}$. Recolor *xv* with 3 and color *ux* with 1 or 4 such that *x* does not conflict with u_1 .

(1.2) Suppose that $d_G(u_2) = d_G(u_3) = 2$. There are two subcases below by symmetry.

 $(1.2.1) \{C(u_2), C(u_3)\} = \{\{2, 3\}, \{2, 4\}\}.$

Assume that $C(v_1) = \{1, 2, 5\}$. If $C(w_1) \neq \{1, 2, 3\}$, then we first recolor uu_1 with 5 and color *xu* with 3. Otherwise, $C(w_1) = \{1, 2, 3\}$, recolor uu_1 with 5 and color *xu* with 3.

Assume $C(w_1) = \{1, 2, 5\}$, then a similar strategy as in the previous case is applied. Assume now that $C(v_1) \neq \{1, 2, 5\}$ and $C(w_1) \neq \{1, 2, 5\}$. If $\phi(ww_1) \neq 5$, then we color *xu* with 5. Otherwise, assume that $\phi(ww_1) = 5$. Recolor $uu_1 = 5$, color ux with 3 or 4 such that *x* does not conflict with v_1 .

(1.2.2) At most one of *C*(*u*₂) and *C*(*u*₃) is {2, *i*} for some *i* ∈ {3, 4, 5}, say *C*(*u*₂) = {2, 3} by symmetry.

Assume that $\phi(ww_1) \in \{4, 5\}$, say $\phi(ww_1) = 4$. Then, it is immediate to derive that $C(v_1) = \{1, 2, 5\}$. We first recolor *xv* with 3 and color *xu* with 5. If $C(u_1) \neq \{2, 3, 5\}$, we are done. Otherwise, we recolor *ux* with 1.

Assume that $\phi(ww_1) \notin \{4, 5\}$. Furthermore, suppose that $C(v_1) = \{1, 2, 5\}$ and $C(w_1) = \{1, 2, 4\}$. This implies that $\phi(ww_1) = 1$. Recolor *xv* with 3 and color *xu* with 4 or 5 such that *x* does not conflict with *u*1.

(2) $\phi(uu_1) \notin \{1, 2\}$, say $\phi(uu_1) = 3$ by symmetry.

We have to handle three possibilities by symmetry.

 $(2.1) d_G(u_2) = d_G(u_3) = 3$. Assume that $C(v_1) = \{1, 2, 4\}$ and $C(w_1) = \{1, 2, 5\}$. Recolor $x \omega$ with 4 and color $x \omega$ with 5. If ν does not conflict with ω , then we are done. Otherwise, we know that $\phi(ww_1) = 1$ and $\phi(v_1) = 4$. In this case, we keep $\phi(xw) = 2$, and then we recolor *xv* with 5 and *xu* with 4.

(2.2) $d_G(u_2) = 2$ and $d_G(u_3) = 3$.

If $C(u_2) \notin \{3, 4\}, \{3, 5\}\}\$, then the proof can be analogously given as in Case (2.1). Otherwise, without loss of generality, assume that $C(u_2) = \{3, 4\}$, and further $C(v_1) = \{1, 2, 5\}$. If $\phi(ww_1) \neq 4$, then we recolor *xv* with 4 and *ux* with 1 or 5 such that *x* does not conflict with w_1 . If $\phi(ww_1) = 4$, then we recolor *xv* with 3 and color *ux* with 1.

 $(2.3) d_G(u_2) = d_G(u_3) = 2.$

If $3 \notin C(u_2) \cup C(u_3)$, then the proof is similar to that of Case (2.1).

Assume that $3 \in C(u_2)$ and $3 \notin C(u_3)$ (if $3 \in C(u_3)$ and $3 \notin C(u_2)$, we have a similar proof). If $\phi(u_1u_2) \in \{1, 2\}$, say $\phi(u_1u_2) = 1$, then we assume that $C(v_1) =$ $\{1, 2, 5\}$ and $C(w_1) = \{1, 2, 4\}$. Recolor *xw* with 3 and color *xu* with 4 or 5, say 4, such that *x* does not conflict with u_1 . If $\phi(ww_1) \neq 4$, we are done. Otherwise, we recolor *xv* with 3 and *xw* with 5. If $\phi(u_1u_2) \in \{4, 5\}$, say $\phi(u_1u_2) = 4$, then at least one of v_1 and w_1 has color set $\{1,2,5\}$, say v_1 . Recolor xv with 4 and ux with 1 or 5 such that *x* does not conflict with w_1 . If $\phi(ww_1) \neq 4$ or $\phi(v_1) \neq 2$, we are done. Otherwise, $\phi(ww_1) = 4$ and $\phi(vv_1) = 2$, we recolor *xv* with 3, and color *ux* with 1.

Assume that $3 \in C(u_2) \cap C(u_3)$. If $C(u_1) = \{1, 2, 3\}$, then we may assume that $C(v_1) = \{1, 2, 4\}$ and $C(w_1) = \{1, 2, 5\}$. Recolor *xw* with 4 and color *xu* with 5. If v and w are not conflicting, we are done. Otherwise, $\phi(vv_1) = 4$ and $\phi(ww_1) = 1$, it suffices to recolor *xv* with 3. If $C(u_1) \neq \{1, 2, 3\}$, say $1 \notin C(u_1)$, we recolor uu_1 with 1 and return to a case similar to $(1.2.2)$.

Case 2. At least one of *u*, *v*, *w* is a 3-vertex in *H*, say $d_H(u) = 3$.

Let $N_H(u) = \{x, u_1, u_4\}$. Let $G = H - uu_4$, which admits a 5-2DVDE-coloring ϕ such that $\phi(xu) = 1$ and $\phi(uu_1) = 2$. In view of the number of 2-vertices in the set $\{v, w, u_2, u_3\}$ in G, we need to consider four cases by symmetry.

(1) $d_G(u_2) = d_G(w) = 2$. We color *uu*₄ with a color in {3, 4, 5} such that *u* does not conflict with u_3 and v .

 $(2) d_G(u_2) = d_G(u_3) = 2$. We color *uu*₄ with a color in {3, 4, 5} such that *u* does not conflict with w and v .

(3) $d_G(u_2) = 2$ and $d_G(u_3) = d_G(v) = d_G(w) = 3$. Let $N_G(v) = \{x, v_1, v_2\}$ with $d_G(v_2) = 1$ and $N_G(w) = \{x, w_1, w_2\}$ with $d_G(w_2) = 1$. By Claim [2,](#page-2-2) $d_G(v_1) =$ $d_G(w_1) = 3$. Hence we assume that $C(u_3) = \{1, 2, 3\}$, $C(v) = \{1, 2, 5\}$, and $C(w) =$ $\{1, 2, 4\}$. If $C(x) = \{1, 4, 5\}$, we recolor *ux* with 3 and color *uu*₄ with 5. Otherwise, assume that $C(x) = \{1, 2, 4\}$ by symmetry. Then, $\phi(vv_1) \in \{1, 5\}$, if $\phi(vv_1) = 1$, exchange the color of vv_2 and vx , then recolor ux with 3 and color uu_4 with 4. Now if $\phi(vv_1) = 5$, observe that $\phi(ww_1) \in \{1, 2\}$. So if $\phi(ww_1) = 1$, we recolor *ux* with 3 and color uu_4 with 5. Otherwise, $\phi(ww_1) = 2$, exchange the color of vv_2 and vx , then recolor *ux* with 3 and color *uu*⁴ with 5.

(4) $d_G(v) = d_G(w) = d_G(u_2) = d_G(u_3) = 3$. Let us consider two possibilities below.

(4.1) $C(v) \notin \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}\}\)$. Assume by symmetry that $C(w)$ = $\{1, 2, 3\}, C(u_2) = \{1, 2, 4\}, \text{ and } C(u_3) = \{1, 2, 5\}.$ If $C(u_1) = \{2, 4, 5\}$, then we recolor uu_1 with 3 and color uu_4 with 4 or 5 such that *u* does not conflict with *v*. So assume that $C(u_1) = \{1, 2, 4\}$ by symmetry. This implies that $\phi(u_1u_2) = 4$ and $\phi(u_1u_3) = 1$. Noting that $\phi(xw) \in \{2, 3\}$, we have to handle two situations as follows. • Let $\phi(xw) = 2$. Then, $\phi(vx) \in \{3, 4, 5\}$.

First suppose that $\phi(vx) = 3$. If we can recolor *ux* with 4 and color *uu*₄ with 5, or recolor *ux* with 5 and *uu*⁴ with 4, we are done. Otherwise, we assume that $C(v_1) = \{2, 3, 4\}$ and $C(w_1) = \{2, 3, 5\}$, then we recolor ww₂ with 2, wx with 1, ux with 5, and color *uu*⁴ with 4.

Next suppose that $\phi(vx) \in \{4, 5\}$, say $\phi(vx) = 4$ by symmetry. If we can recolor *ux* with 3 and uu_4 with 5, or recolor *ux* with 5 and uu_4 with 3, we are done. Otherwise, assume that $C(v_1) = \{2, 4, 5\}$ and $C(w_1) = \{2, 3, 4\}$, then we recolor ww_2 with 2, wx with 1, ux with 5, and color uu_4 with 3.

• Let $\phi(xw) = 3$. Then, $\phi(vx) \in \{2, 4, 5\}$. If $\phi(vx) = 2$, then we use the same strategy as in the previous case to color uu_4 . So assume that $\phi(vx) = 4$, say. If $C(v_1) \neq \{3, 4, 5\}$, then we recolor *ux* with 5 and color *uu*₄ with 3. If $C(v_1) = \{3, 4, 5\}$, then we exchange the color of ww_2 and xw . Then, we color ux with 5, and color uu_4 with 4.

(4.2) $C(v) \in \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}\}\$, say $C(v) = \{1, 2, 3\}$. We need to discuss two subcases.

(4.2.1) $C(w) \notin \{ \{1, 2, 4\}, \{1, 2, 5\} \}$. Then, we may assume that $C(u_2) = \{1, 2, 4\}$ and $C(u_3) = \{1, 2, 5\}$. If $C(u_1) = \{2, 4, 5\}$, then we recolor uu_1 with 3 and color uu_4 with 4 or 5 such that *u* does not conflict with w. So assume that $C(u_1) = \{1, 2, 4\}$ by symmetry. Since $\phi(xv) \in \{2, 3\}$, we have two possibilities.

• Let $\phi(vx) = 2$. Then, $\phi(wx) \in \{3, 4, 5\}$. First assume that $\phi(wx) = 3$. If we can legally recolor *ux* with 4 and *uu*⁴ with 5, or recolor *ux* with 5 and *uu*⁴ with 4, we are done. Otherwise, it is easy to see that $C(v_1) = \{2, 3, 4\}$ and $C(w_1) = \{2, 3, 5\}$ (up to symmetry). It suffices to recolor vv_2 with 2, vx with 1, ux with 5, and color uu_4 with 4. Next assume that $\phi(wx) \in \{4, 5\}$, say $\phi(wx) = 4$. If we can legally recolor *ux* with 3 and color *uu₄* with 5, or recolor *ux* with 5 and color *uu₄* with 3, we are done. Otherwise, we derive that $C(v_1) = \{2, 3, 4\}$ and $(w_1) = \{2, 4, 5\}$ (up to symmetry). It suffices to recolor vv_2 with 2, vx with 1, ux with 5, and color uu_4 with 3.

• Let $\phi(vx) = 3$. Then, $\phi(wx) \in \{2, 4, 5\}$. First assume that $\phi(wx) = 2$. If we can legally recolor *ux* with 5 and color *uu*⁴ with 3 or 4 such that *u* does not conflict with w, or recolor *ux* with 4 and color *uu*⁴ with 3 or 5 such that *u* does not conflict with w, we are done. Otherwise, it follows that $C(v_1) = \{2, 3, 4\}$ and $C(w_1) = \{2, 3, 5\}$, say. It suffices to recolor *vx* with 5, *ux* with 4 and uu_4 with 3 or 5 such that *u* does not conflict with w. Next, assume that $\phi(wx) \in \{4, 5\}$, say $\phi(wx) = 4$. If we can legally recolor *ux* with 5 and color *uu*⁴ with 3, we are done. Otherwise, we derive that $C(w_1) = \{3, 4, 5\}$. When $\phi(v_2) = 1$, we recolor vv_2 with 3, vx with 1, ux with 3, and color *uu*₃ with 5. When $\phi(vv_2) = 2$, we recolor vv_2 with 3, *vx* with 2, *ux* with 5, and color uu_4 with 3.

(4.2.2) $C(w)$ ∈ {{1, 2, 4}, {1, 2, 5}}, say $C(w) = \{1, 2, 4\}$. Without loss of generality, we suppose that $C(u_2) = \{1, 2, 5\}$. Since $\phi(vx) \in \{2, 3\}$, we need to discuss two subcases.

• Let $\phi(vx) = 2$. Then, $\phi(wx) = 4$. If we can legally recolor *ux* with 3 and color *uu*₄ with 4 or 5 such that *u* does not conflict with u_3 , or recolor *ux* with 5 and color uu_4 with 3 or 4 such that *u* does not conflict with u_3 , we are done. Otherwise, we may assume that $C(v_1) = \{2, 3, 4\}$ and $C(w_1) = \{2, 4, 5\}$, then we recolor ww_2 with 4, *xw* with 1, *ux* with 4, and color uu_4 with 3 or 5 such that *u* does not conflict with u_3 .

• Let $\phi(vx) = 3$. Then, $\phi(wx) \in \{2, 4\}$. If $\phi(wx) = 4$, then we recolor *ux* with 5 and color uu_4 with 3 or 4 such that *u* does not conflict with u_3 . So assume that $\phi(wx) = 2$. If we can legally recolor *ux* with 4 and color *uu*₄ with 3 or 5 such that *u*

does not conflict with u_3 , or recolor ux with 5 and color uu_4 with 3 or 4 such that u does not conflict with u_3 , we are done. Otherwise, $C(v_1) = \{2, 3, 5\}$ and $C(w_1) = \{2, 3, 4\}$, say. Now it suffices to recolor vv_2 with 3, vx with 1, ux with 3, and color uu_4 with 4 or 5 such that *u* does not conflict with *u*3. \Box

4 Proof of Claim [4](#page-4-2)

Assume to the contrary that H' contains a 2-vertex *x* adjacent to two $3₂$ -vertices *u* and v (see Fig. [2\)](#page-8-0). Let $N_{H'}(u) = \{x, y, u_1\}$ with $d_{H'}(y) = 2$, $N_{H'}(v) = \{x, z, v_1\}$ with $d_{H'}(z) = 2$, $N_{H'}(y) = \{u, y_1\}$ $N_{H'}(y) = \{u, y_1\}$ $N_{H'}(y) = \{u, y_1\}$, and $N_{H'}(z) = \{v, z_1\}$. By Claims 1 and [2,](#page-2-2) $d_{H'}(u_1) = d_{H'}(v_1) = d_{H'}(y_1) = d_{H'}(z_1) = 3$. Let $N_{H'}(u_1) = \{u, u_2, u_3\}$, $N_{H'}(v_1) = \{v, v_2, v_3\}, N_{H'}(y_1) = \{y, y_2, y_3\}, \text{and } N_{H'}(z_1) = \{z, z_2, z_3\}.$ By Claim [3,](#page-4-0) at most one of *y*² and *y*³ has degree two; and at most one of *z*² and *z*³ has degree two. So assume, without loss of generality, that $d_{H'}(y_3) = d_{H'}(z_3) = 3$. We discuss two cases, depending on the degree of *x*, *y*,*z* in *H*.

Case 1. $d_H(x) = d_H(y) = d_H(z) = 2$.

Consider the graph $G = H - xu$, which has a 5-2DVDE-coloring ϕ using the color set *C*. We assume that *xu* cannot be colored with any color in *C*. Let $\phi(uu_1) = 1$ and $\phi(uy) = 2$. We discuss three possibilities according to the degree of u_2 and u_3 in *G*.

(1) $d_G(u_2) = d_G(u_3) = 2$. Without loss of generality, we assume that $\phi(vx) =$ $\phi(zz_1) = 3, \phi(yz) = 5$, and $C(y_1) = \{1, 2, 4\}$. Then, it suffices to recolor *uy* with 5 and color *ux* with 4.

(2) $d_G(u_2) = 3$ and $d_G(u_3) = 2$. If $\{1, 2\} \subset C(v)$, say $C(v) = \{1, 2, 3\}$, then we may assume that $C(u_2) = \{1, 2, 4\}$, and $C_{\phi}(y) = \{2, 5\}$ with $\phi(xv) = 2$ or $C(y_1) = \{1, 2, 5\}$. If $C(y_1) = \{1, 2, 5\}$, recolor *uy* with 3 and color *ux* with 4. Next suppose $C(y) = \{2, 5\}$ and $\phi(xy) = 2$, if $C(y_2) \neq \{3, 5\}$, we proceed as in the previous case. Otherwise $C(y_1) = \{3, 5\}$, then we recolor *uy* with 4, color *ux* with 3 or 5, such that *x* does not conflict with *z*.

Now suppose that $\{1, 2\} \not\subset C(v)$. We have to consider two subcases as follows.

 $(2.1)\phi(vx) \in \{1, 2\}$, say $\phi(vx) = 2$ (if $\phi(vx) = 1$, our discussion is similar). Then, it follows that $1 \notin {\phi(vz), \phi(vv_1)}$, and we may assume that $\phi(zz_1) = 2, \phi(vz) = 3$, $C(u_2) = \{1, 2, 4\}$, and $C(y) = \{2, 5\}$ or $C(y_1) = \{1, 2, 5\}$. If $C(y_1) = \{1, 2, 5\}$, recolor *uy* with 3 and color *ux* with 4. Next suppose $C(y) = \{2, 5\}$, if $C(y_2) \neq \{3, 5\}$, we proceed as in the previous case. Otherwise $C(y_1) = \{3, 5\}$, then recolor *uy* with 4, color *ux* with 5.

(2.2) $\phi(vx) \in \{3, 4, 5\}$, say $\phi(vx) = 3$ by symmetry. If $C(z) \notin \{\{3, 4\}, \{3, 5\}\}\$, then we may assume that $C(u_2) = \{1, 2, 4\}$, and $C(y_1) = \{1, 2, 5\}$. It suffices to recolor *uy* with 3, color *ux* with 4 or 5 such that *u* does not conflict with v. So assume that *C*(*z*) ∈ {{3, 4}, {3, 5}}, say *C*(*z*) = {3, 4} by symmetry. Then, at least one of *u*₂ and y_1 has color set {1, 2, 5}. If $C(y_1) = \{1, 2, 5\}$, we first suppose $C(u_2) \neq \{1, 2, 3\}$, then we recolor *uy* with 3 and color *ux* with 2. If $C(u_2) = \{1, 2, 3\}$, then we recolor *uy* with 4, and color *ux* with 2.

Otherwise, $C(u_2) = \{1, 2, 5\}$, we have $\phi(vv_1) \in \{1, 2, 5\}$. First assume that $\phi(vv_1) = 1$. If we can recolor *vx* with 2 and color *ux* with 3 or 4 such that *u* does not conflict with *y*1, and *x* does not conflict with *y*, or recolor v*x* with 5 and color *ux* with 3 or 4 such that *u* does not conflict with *y*1, we are done. Otherwise, we may assume that $C(v_2) = \{1, 2, 4\}$ and $C(v_3) = \{1, 4, 5\}$. When $C(z_2) = \{3, 5\}$, we recolor v*z* with 2 and v*x* with 5 and color *ux* with 3 or 4 such that *u* does not conflict with y_1 . When $C(z_2) \neq \{3, 5\}$, we recolor vz with 5 and vx with 2 and color ux with 3 or 4 such that *u* does not conflict with *y*¹ and *x* does not conflict with *y*.

If $\phi(vv_1) = 2$ or $\phi(vv_1) = 5$, we have a similar argument.

(3) $d_G(u_2) = d_G(u_3) = 3$. We discuss two possibilities according to the color set of v.

(3.1) {1, 2} ⊂ $C(v)$, say $C(v) = \{1, 2, 3\}$. We discuss the following subcases:

• Assume that $C(y) = \{2, 5\}$. Since *ux* cannot be colored, we assume $C(u_2) =$ ${1, 2, 4}.$

If $C(y_2) = \{3, 5\}$ and $C(z) \neq \{2, 3\}$, then we recolor *uy* with 4 and color *ux* with 3 or 5 such that *u* does not conflict with *u*₃. Now, suppose $C(y_2) = \{3, 5\}$ and $C(z) = \{2, 3\}$; if $C(u_3) \neq \{1, 2, 3\}$ we color *ux* with 3 and if we can recolor *vx* with 4 or 5, we are done. If v*x* cannot be recolor with 4 or 5, then we may assume that $C(v_2) = \{1, 3, 4\}$ and $C(v_3) = \{1, 3, 5\}$; in this case, if $C(z_3) = \{2, 4\}$, recolor v*z* with 5, v*x* with 4 and color *ux* with 3. If $C(z_3) \neq \{2, 4\}$, recolor *vz* with 4, *vx* with 5 and color *ux* with 3. We next suppose $C(u_3) = \{1, 2, 3\}$, then recolor *uy* with 4 and color *ux* with 5.

If $C(y_2) \neq \{3, 5\}$, then we recolor *uy* with 3 and color *ux* with 4 or 5 such that *u* does not conflict with *u*3.

• Assume that $C(y_1) \in \{ \{1, 2, 4\}, \{1, 2, 5\} \}$, say $C(y_1) = \{1, 2, 5\}$, and $C(y) \neq$ $\{2, 5\}$. Then, at least one of u_2 and u_3 , say u_2 , has color set $\{1, 2, 4\}$. If $C(u_3)$ = $\{1, 4, 5\}$, then we recolor *uy* with 3 and color *ux* with 4. If $C(u_3) \neq \{1, 4, 5\}$, then we recolor *uy* with 4 and color *ux* with 5.

• Assume now that $C(y_1) \notin \{ \{1, 2, 4\}, \{1, 2, 5\} \}$ and $C(y) \neq \{2, 5\}$. Then, it is easy to see that $C(u_2) = \{1, 2, 4\}$ and $C(u_3) = \{1, 2, 5\}$ by symmetry. If $C(y_1) \neq \{3, 4, 5\}$, say $3 \notin C(y_1)$, then we recolor *uy* with 3 and *ux* with 4. If $C(y_1) = \{3, 4, 5\}$, say $\phi(yy_1) = 3$ and $\phi(y_2y_2) = 4$; if $C(y_2) = \{3, 4\}$, then we recolor *uy* with 5 and color *uy* with 4; otherwise, we recolor *uy* with 4 and color *uy* with 5.

(3.2) {1, 2} $\not\subset C(v)$. In view of the color of *xv*, we consider three subcases.

(3.2.1) $\phi(vx) = 1$. If $1 \notin C(z)$ or $C(z) = \{1, 2\}$, then we may assume that $C(u_2) = \{1, 2, 3\}, C(u_3) = \{1, 2, 4\}, \text{ and } C(y_1) = \{1, 2, 5\}.$ Recolor *uy* with 4 and color *ux* with 3 or 5 such that *u* does not conflict with *v*. Otherwise, let $C(z) = \{1, 5\}$. Then, $\{1, 2, 3\}$ and $\{1, 2, 4\}$ are the color sets of at least two of u_2, u_3, y_1 . Assume that $C(y_1) \in \{\{1, 2, 3\}, \{1, 2, 4\}\}\$, say $C(y_1) = \{1, 2, 3\}$, and moreover, $C(u_2) = \{1, 2, 4\}$. If $C(u_3) = \{1, 3, 4\}$, then we recolor *uy* with 5 and color *ux* with 3 or 4 such that *u* does not conflict with v. If $C(u_3) \neq \{1, 3, 4\}$, then we recolor *uy* with 4 and color *ux*

with 3. If $C(y_1) \notin \{ \{1, 2, 3\}, \{1, 2, 4\} \}$, then $C(u_2) = \{1, 2, 4\}$ and $C(u_3) = \{1, 2, 3\}$. If $C(y_1) \neq \{3, 4, 5\}$, say $4 \notin C(y_1)$, then we recolor *uy* with 4 and color *ux* with 3. So suppose that $C(y_1) = \{3, 4, 5\}$, say $\phi(y_1) = 3$ and $\phi(y_1 y_2) = 4$. When $C(y_2) = \{3, 4\}$, we recolor *uy* with 5 and color *ux* with 3 or 4 such that *u* does not conflict with v. When $C(y_2) \neq \{3, 4\}$, we recolor *uy* with 4 and color *ux* with 3 or 5 such that *u* does not conflict with v.

(3.2.2) $\phi(vx) = 2$. If $2 \notin C(z)$ or $C(z) = \{1, 2\}$, then we may assume that $C(u_2) = \{1, 2, 3\}, C(u_3) = \{1, 2, 4\}, \text{ and } C(y) = \{2, 5\} \text{ or } C(y_1) = \{1, 2, 5\}.$ First if $C(y_1) = \{1, 2, 5\}$, recolor *uy* with 4 and color *ux* with 3. Next suppose $C(y) = \{2, 5\}$, then if $C(y_2) \neq \{4, 5\}$, recolor *uy* with 4 and color *ux* with 3. Otherwise, $C(y_2) = \{4, 5\}$ and we recolor *uy* with 3 and color *ux* with 4.

So assume that $2 \in C(z)$; furthermore, let $C(z) = \{2, 5\}$. Note that $\phi(vv_1) \in \{3, 4\}$ since $\{1, 2\} \not\subset C(v)$. By symmetry, we may assume that $\phi(vv_1) = 3$. We discuss the following subcases:

• Suppose that $C(y) \in \{\{2, 3\}, \{2, 4\}\}\$, say $C(y) = \{2, 3\}$ by symmetry. Then, we may assume that $C(u_2) = \{1, 2, 4\}.$

If $C(y_2) = \{3, 5\}$, we first suppose $C(u_3) \neq \{1, 3, 4\}$; then we recolor *uy* with 4 and color *ux* with 3. Next assume $C(u_3) = \{1, 3, 4\}$; then, we assign color 5 to *ux*, and so if we can recolor v*x* with 1 or 4 we are done. Otherwise, we may assume $C(v_2) = \{1, 3, 5\}$ and $C(v_3) = \{3, 4, 5\}$. In the latter case, when $C(z_2) \neq \{2, 4\}$, recolor *vz* with 4 and *vx* with 1. Otherwise, if $C(z_2) = \{2, 4\}$, recolor *vz* with 1 and v*x* with 4.

Now if $C(y_2) \neq \{3, 5\}$, suppose $C(y_1) \neq \{1, 3, 5\}$, then we recolor *uy* with 5 and color *ux* with 3 or 4 such that *u* does not conflict with u_3 . If $C(y_1) = \{1, 3, 5\}$ and $C(u_3) \neq \{1, 4, 5\}$, then we recolor *uy* with 5 and color *ux* 4. Finally, assume that $C(y_1) = \{1, 3, 5\}$ and $C(u_3) = \{1, 4, 5\}$. If we can recolor *xv* with 1 and color *ux* with 5, or recolor $x \nu$ with 4 and color ux with 5, we are done. Otherwise, it follows that $C(v_2) = \{1, 3, 5\}$ and $C(v_3) = \{3, 4, 5\}$ (up to symmetry), and henceforth when $C(z_2) \neq \{2, 4\}$, recolor *vz* with 4, *vx* with 1 and color *ux* with 5. Otherwise, if $C(z_2) = \{2, 4\}$, recolor *vz* with 1, *vx* with 4 and color *ux* with 5.

• Suppose that $C(y) \notin \{ \{2, 3\}, \{2, 4\} \}$, and $C(y_1) \in \{ \{1, 2, 3\}, \{1, 2, 4\} \}$, say $C(y_1) = \{1, 2, 3\}$ by symmetry. Then, we may assume that $C(u_2) = \{1, 2, 4\}$. If $C(u_3) = \{1, 3, 4\}$, then we recolor *uy* with 5 and color *ux* with 3. If $C(u_3) \neq \{1, 3, 4\}$, then we recolor *uy* with 4 and color *ux* with 3.

• Suppose that $C(y) \notin \{(2, 3), (2, 4)\}$ and $C(y_1) \notin \{(1, 2, 3), (1, 2, 4)\}$. Then, *C*(*u*₂) = {1, 2, 4} and *C*(*u*₃) = {1, 2, 3}. If *C*(*y*₁) ≠ {3, 4, 5}, say 4 ∉ *C*(*y*₁), then we recolor *uy* with 4 and color *ux* with 3. Otherwise, $C(y_1) = \{3, 4, 5\}$, say $\phi(yy_1) = 3$ and $\phi(y_1y_2) = 4$. When $C(y_2) = \{3, 4\}$, we recolor *uy* with 5 and color *ux* with 3. When $C(y_2) \neq \{3, 4\}$, we recolor *uy* with 4 and color *ux* with 3.

(3.2.3) $\phi(vx) \in \{3, 4, 5\}$, say $\phi(vx) = 3$ by symmetry. We first observe that if $3 \notin C(y_1)$, then it suffices to recolor *uy* with 3 and reduce the proof to Case (3.2.2). So, assume that $3 \in C(y_1)$ and let us discuss the following two cases.

• 3 $\notin C(z)$ or $C(z) \in \{\{1, 3\}, \{2, 3\}\}\.$ Without loss of generality, assume that $C(u_2) = \{1, 2, 4\}$ and $C(u_3) = \{1, 2, 5\}$. If $C(y_1) \neq \{3, 4, 5\}$, say $4 \notin C(y_1)$, then we recolor *uy* with 4 and color *ux* with 5. Otherwise, $C(y_1) = \{3, 4, 5\}$, say

 $\phi(yy_1) = 3$ and $\phi(y_1y_2) = 4$. When $C(y_2) = \{3, 4\}$, we recolor *uy* with 5 and color *ux* with 4. When $C(y_2) \neq \{3, 4\}$, we recolor *uy* with 4 and color *ux* with 5.

• $3 \in C(z)$ and $C(z) \notin \{\{1, 3\}, \{2, 3\}\}\$, say $C(z) = \{3, 5\}$. Then, at least one of *u*₂ and *u*₃, say *u*₂, has color set {1, 2, 4}. Since $\phi(vv_1) \in \{1, 2, 4\}$, we have some subcases below.

Assume that $\phi(vv_1) = 1$ (if $\phi(vv_1) = 2$, we have a similar discussion). If we can recolor v*x* with 4 and color *ux* with 3 or 5, we are done. If v*x* can be recolored with 4, but neither 3 nor 5 can assign to *ux*, then this implies that $C(u_3) = \{1, 2, 5\}$ and $C(y_1) = \{1, 2, 3\}$, say. It suffices to recolor *uy* with 5 and color *ux* with 3. If *vx* cannot be recolored with 4, then at least one of v_2 and v_3 , say v_3 , has color set $\{1, 4, 5\}$. If $C(v_2) \neq \{1, 2, 5\}$, then we recolor vx with 2 and then reduce to Case (3.2.2). So assume that $C(v_2) = \{1, 2, 5\}$. If $C(z_2) \neq \{2, 3\}$, then we recolor *zv* with 2 and reduce to the previous case. If $C(z_2) = \{2, 3\}$, then we recolor zv with 4 and v*x* with 2 and then reduce to Case (3.2.2).

Assume that $\phi(vv_1) = 4$. If we can recolor *vx* with 1 or 2, then the proof is reduced to Cases (3.2.1) and (3.2.2). Otherwise, we may assume that $C(v_2) = \{1, 4, 5\}$ and $C(v_3) = \{2, 4, 5\}$. If $C(z_2) = \{2, 3\}$, then we recolor zv with 1 and reduce to the previous case. If $C(z_2) \neq \{2, 3\}$, then we recolor *zv* with 2 and reduce the previous cases.

Case 2. At least one of *x*, *y*, and *z* is a 3-vertex in *H*.

All notations in Case 1 are kept in the following discussion. Since $2 \le d_H(x) \le 3$, we need to consider two subcases.

(1) Assume that $d_H(x) = 2$. Then, at least one of y and z, say z, is a 3-vertex in *H*. Let $N_H(z) = \{v, z_1, z_4\}$ with $d_H(z_4) = 1$. Consider the graph $G = H - zz_4$, which has a 5-2DVDE-coloring ϕ using the color set *C* such that $\phi(zz_1) = 1$ and $\phi(zv) = 2$. Assume that *zz*⁴ cannot be colored with any color in *C*. If *z*² is a 2-vertex, then *zz*⁴ can be colored with a color in $\{3, 4, 5\} - \{\phi(vv_1), \phi(z_1z_3)\}\$ such that *z* does not conflict with any of v_1 and z_3 . So, z_2 and z_3 must be 3-vertices in G , and we may assume that $C(v_1) = \{1, 2, 3\}, C(z_2) = \{1, 2, 4\}, \text{ and } C(z_3) = \{1, 2, 5\}.$ If $C(z_1) = \{1, 4, 5\},\$ then we recolor *zz*₁ with 3 and color *zz*₄ with 5. If $C(z_1) \in \{ \{1, 2, 4\}, \{1, 2, 5\} \}$, say $C(z_1) = \{1, 2, 4\}$, then $\phi(v_1) \in \{1, 3\}$, we deal with two possibilities according to the color of vv_1 .

• $\phi(vv_1) = 1$. Let $\phi(v_1v_3) = 3$, so $\phi(vx) \in \{3, 4, 5\}$. If $\phi(vx) = 3$, then we can recolor v*z* with 4 or 5, and then color *zz*⁴ with 3. Otherwise, it is easy to derive that $C(v_3) = \{1, 3, 4\}$ and $C(u) = \{1, 3, 5\}$, say. It suffices to recolor *xv* with 2, vz with 3, and color *zz*⁴ with 4.

If $\phi(vx) = 4$ or 5, we have a similar proof.

• $\phi(vv_1) = 3$. Then, $\phi(vx) \in \{1, 4, 5\}$. First assume that $\phi(vx) = 1$. If we can recolor v*z* with 4 or 5, and color *zz*⁴ with 3, we are done. Otherwise, it follows that $C(v_3) = \{1, 3, 4\}$ and $C(u) = \{1, 3, 5\}$, say. Recolor *xv* with 4, v*z* with 5, and color *zz*₄ with 3. Next assume that $\phi(vx) \in \{4, 5\}$, say $\phi(vx) = 4$. If we can recolor v*z* with 5, then 3 is assigned to *zz*₄. Otherwise, we have $C(u) = \{3, 4, 5\}$. It suffices to exchange the colors of v*x* and v*z* and color *zz*⁴ with 5.

(2) Assume that $d_H(x) = 3$. Let $N_H(x) = \{u, v, x_1\}$ with $d_H(x_1) = 1$. Let $G = H - x x_1$, which has a 5-2DVDE-coloring ϕ with $\phi(xv) = 1$ and $\phi(xu) = 2$. Assume that *xx*₁ cannot be colored with any color in *C*. If $d_G(y) = d_G(z) = 2$, then

we color xx_1 with a color in {3, 4, 5} such that *x* does not conflict with u_1 and v_1 . So suppose that $d_G(z) = 3$. Without loss of generality, assume that $C(z) = \{1, 2, 3\}$ and $C(v_1) = \{1, 2, 4\}$. Note that either *y* or *u*₁ has color set $\{1, 2, 5\}$, say $C(y) = \{1, 2, 5\}$ by symmetry.

If $C(v) = \{1, 3, 4\}$, then we recolor *xv* with 5 and color *xx*₁ with 3 or 4 such that *x* does not conflict with u_1 . Otherwise, suppose that $C(v) = \{1, 2, 4\}$ with $\phi(v_1v_2) = 1$ by symmetry. If *vx* can be recolored with 3, then we color xx_1 with 4 or 5 such that *x* does not conflict with u_1 . Similarly, if vx can be recolored with 5, then we color xx_1 with 3 or 4 such that *x* does not conflict with u_1 . Otherwise, we may assume that $C(z_1) = \{2, 3, 4\}$ and $C(v_3) = \{2, 4, 5\}$. If $C(v_2) = \{1, 3, 4\}$, then we exchange the colors of zz_1 and zz_4 , recolor v*x* with 5, and color xx_1 with 3 or 4 such that *x* does not conflict with u_1 . If $C(v_2) \neq \{1, 3, 4\}$, then we exchange the colors of zz_1 and zz_4 , recolor *vx* with 3, and color xx_1 with 4 or 5 such that *x* does not conflict with u_1 . \Box

5 Proof of Claim [5](#page-4-1)

Assume to the contrary that H' contains a 3₂-vertex *x* adjacent to two 2-vertices *u* and v (see Fig. [3\)](#page-12-0). Let $N_{H'}(x) = \{u, v, w\}$, $N_{H'}(w) = \{x, w_1, w_2\}$, $N_{H'}(u) = \{x, u_1\}$ and $N_{H'}(v) = \{x, v_1\}$ $N_{H'}(v) = \{x, v_1\}$ $N_{H'}(v) = \{x, v_1\}$. By Claims 1 and [2,](#page-2-2) $d_{H'}(u_1) = d_{H'}(v_1) = 3$. Furthermore, let $N_{H'}(u_1) = \{u, u_2, u_3\}$ $N_{H'}(u_1) = \{u, u_2, u_3\}$ $N_{H'}(u_1) = \{u, u_2, u_3\}$ and $N_{H'}(v_1) = \{v, v_3, v_4\}$. By Claims 3 and [4,](#page-4-2) $d_{H'}(u_2) =$ $d_{H'}(u_3) = d_{H'}(v_3) = d_{H'}(v_4) = 3$. We deal with three cases depending on the degree of u and v in H .

Case 1. $d_H(u) = d_H(v) = 2$.

Let $G = H - xu$, which admits a 5-2DVDE-coloring ϕ using the color set C with $\phi(xv) = 2$ and $\phi(xw) = 1$. Assume that *ux* cannot be colored with any color in *C*. If $d_G(w_1) = d_G(w_2) = 2$, then we can color *ux* with a color in {3, 4, 5} − ${\phi(vv_1), \phi(uu_1)}$ such that *x* does not conflict with v_1 . This is impossible. Thus, $d_G(w_2) = 3$. We discuss three possibilities depending on the color of uu_1 .

 (1) $\phi(uu_1) = 1$. Suppose that $2 \notin C(u_1)$, then $d_G(w_1) = 3$, otherwise we color *ux* with a color in $\{3, 4, 5\} - {\phi(vv_1), \phi(ww_2)}$ such that *x* does not conflict with v_1 or w_2 . Without loss of generality, assume that $C(w_1) = \{1, 2, 3\}$, $C(w_2) = \{1, 2, 4\}$, and $C(v_1) = \{1, 2, 5\}$. We recolor *vx* with 4 and color *ux* with 3 or 5 such that *x* does not conflict with u_1 . If $2 \in C(u_1)$, then we suppose by symmetry that $C(u_1) = \{1, 2, 3\}$. We first assume that $C(v_1) \notin \{ \{1, 2, 4\}, \{1, 2, 5\} \}$, then $C(w_1) = \{1, 2, 4\}$ and $C(w_2) = \{1, 2, 5\}$. Since $d_{H'}(v_3) = d_{H'}(v_4) = 3$, if $C(v_1) \neq \{1, 3, 4\}$, say $3 \notin C(v_1)$, then recolor *vx* with 3 and color *ux* with 4. Otherwise, $C(v_1) = \{1, 3, 4\}$, recolor *vx* with 5 and color *ux* with 4. we recolor *vx* with a color $c \in \{3, 4, 5\} - \{\phi(vv_1)\}\,$

 u_1 u x v v_1

w

 $\frac{1}{2}$

 $w₂$

and color *ux* with a color in $\{3, 4, 5\} - \{c\}$. Now if $C(v_1) \in \{\{1, 2, 4\}, \{1, 2, 5\}\}$, say $C(v_1) = \{1, 2, 4\}$, then $C(w_2) = \{1, 2, 5\}$, recolor *vx* with 5 and color *ux* with 3 or 4 such that *x* does not conflict with w_1 .

(2) $\phi(uu_1) = 2$. If $1 \notin C(u_1)$, then $d_G(w_1) = 3$, otherwise we color *ux* with a color in $\{3, 4, 5\} - \{\phi(vv_1), \phi(ww_2)\}\$ such that *x* does not conflict with v_1 or w_2 . Without loss of generality, assume that $C(w_1) = \{1, 2, 3\}$, $C(w_2) = \{1, 2, 4\}$, and either $C(v_1) = \{1, 2, 5\}$ or $\phi(v_1) = 5$. We recolor *vx* with 4 and color *ux* with 3. If 1 ∈ $C(u_1)$, we proceed in a similar way as for the previous case when $2 \in C(u_1)$.

(3) $\phi(uu_1) \in \{3, 4, 5\}$, say $\phi(uu_1) = 3$ by symmetry. If $\phi(vv_1) \neq 3$, it suffices to recolor *vx* with 3 an obtain a situation similar to (2). Thus, suppose that $\phi(vv_1) = 3$, then $d_G(w_1) = 3$, otherwise we color *ux* with a color in {4, 5} – { $\phi(ww_2)$ } such that *x* does not conflict with w₂. Furthermore, $C(w_1) = \{1, 2, 4\}$ and $C(w_2) = \{1, 2, 5\}$. It suffices to recolor v*x* with 4 and color *ux* with 5.

Case 2. $d_H(u) = 3$ and $d_H(v) = 2$.

Set $N_H(u) = \{x, u_1, u_4\}$ with $d_H(u_4) = 1$. Let $G = H - u_4$, which admits a 5-2DVDE-coloring ϕ using the color set *C* such that $\phi(ux) = 1$ and $\phi(uu_1) = 2$. Assume that *uu*⁴ cannot be colored with any color in *C*. By symmetry, we suppose that $C(w) = \{1, 2, 3\}, C(u_2) = \{1, 2, 4\}, \text{ and } C(u_3) = \{1, 2, 5\}.$ If $C(u_1) = \{2, 4, 5\},\$ then we recolor uu_1 with 3 and color uu_4 with 4. Otherwise, we assume that $C(u_1)$ = $\{1, 2, 5\}$ by symmetry. Since $\phi(xw) \in \{2, 3\}$, we need to consider two possibilities as follows.

- $\phi(xw) = 2$. Note that $\phi(vx) \in \{3, 4, 5\}$, say $\phi(vx) = 3$ (if $\phi(vx) \in \{4, 5\}$, we will have a similar proof). If we can legally recolor *ux* with 4 and color *uu*⁴ with 5, or recolor *ux* with 5 and color *uu*⁴ with 4, we are done. Otherwise, we may assume that $C(v_1) = \{2, 3, 5\}$ and $C(w_1) = \{2, 3, 4\}$. It suffice to recolor v*x* with 4, *ux* with 5 and color *uu*⁴ with 3.
- $\phi(xw) = 3$. Then, $\phi(vx) \in \{2, 4, 5\}$. First suppose that $\phi(vx) = 2$. If we can legally recolor *ux* with 4 and color *uu*⁴ with 5, or recolor *ux* with 5 and color *uu*⁴ with 4, we are done. Otherwise, it is easy to see that at least one of w_1 and w_2 is of degree 3, say $d_G(w_1) = 3$, and $C(w_1) = \{2, 3, 4\}$ and $C(v_1) = \{2, 3, 5\}$. We recolor *vx* with 4, *ux* with 5 and color *uu*₄ with 3. If $\phi(vx) \in \{4, 5\}$, we assume that $\phi(vx) = 4$ by symmetry. If possible, we recolor *ux* with 5 and color *uu*₄ with 4. Otherwise, assume that $C(v_1) = \{3, 4, 5\}$, recolor v*x* with 1, *ux* with 4, and color *uu*⁴ with 5.

Case 3. $d_H(u) = d_H(v) = 3$.

We continue to use notations in Case 2 and let $N_H(v) = \{x, v_1, v_2\}$ with $d_H(v_2) =$ 1. Then, $G = H - u_4$ has a 5-2DVDE-coloring ϕ such that $\phi(ux) = 1$ and $\phi(uu_1) = 2$. Assume that *uu*⁴ cannot be colored with any color in *C*. We discuss the following possibilities according to the color set of v .

 $(1) C(v) \notin \{ \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\} \}.$ Assume that $C(u_2) = \{1, 2, 4\}, C(u_3) =$ $\{1, 2, 5\}$, and $C(w) = \{1, 2, 3\}$. If $C(u_1) = \{2, 4, 5\}$, we recolor uu_1 with 3 and colors *uu*⁴ with 4 or 5 such that *u* does not conflict with v. Otherwise, assume that $C(u_1) = \{1, 2, 5\}$ by symmetry. Noting that $\phi(xw) \in \{2, 3\}$, we discuss two subcases below.

(1.1) Assume that $\phi(xw) = 2$, then $\phi(vx) \in \{3, 4, 5\}$. First suppose that $\phi(vx) =$ 3. If possible, we recolor *ux* with 4 and color *uu*⁴ with 5, or recolor *ux* with 5 and color *uu*₄ with 4. Otherwise, we assume that $C(v_1) = \{2, 3, 4\}$ and $C(w_1) = \{2, 3, 5\}.$ There are two possibilities to be considered.

- $\phi(vv_1) = 4$. Then, $\phi(vv_2) \in \{1, 2, 5\}$. If $\phi(vv_2) = 1$, then we recolor *vx* with 5, *ux* with 4, and color *uu*₄ with 3. If $\phi(vv_2) = 2$, then we recolor vv_2 with 5, vx with 1, ux with 3, and color uu_4 with 5. If $\phi(vv_2) = 5$, then we recolor vx with 1, *ux* with 3, and color *uu*⁴ with 5.
- $\phi(vv_1) = 2$. Then, $\phi(vv_2) \in \{4, 5\}$. If $\phi(vv_2) = 4$, then we recolor vv_2 with 3, *vx* with 4, *ux* with 5, and color *uu*₄ with 3. If $\phi(vv_2) = 5$, then we recolor *vv*₂ with 3, *vx* with 5, *ux* with 4, and color *uu*₄ with 3. The cases $\phi(vx) = 4$ and $\phi(vx) = 5$ are symmetric and are solve in a similar way as the one of $\phi(vx) = 3$.

(1.2) Assume that $\phi(xw) = 3$. Since $\phi(vx) \in \{2, 4, 5\}$, we investigate two situations as follows.

(1.2.1) $\phi(vx) = 2$. If we can legally recolor *ux* with 4 and color *uu*₄ with 5, or recolor *ux* with 5 and color *uu*⁴ with 4, we are done. Otherwise, it follows that $C(v_1) = \{2, 3, 5\}$ and $C(w_2) = \{2, 3, 4\}$, say. Note that $\phi(v_1) \in \{3, 5\}$.

- $\phi(vv_1) = 5$. Then, $\phi(vv_2) \in \{1, 3, 4\}$. If $\phi(vv_2) = 1$, then we recolor vx with 4, *ux* with 5, and color *uu*₄ with 3. If $\phi(vv_2) = 3$, then we recolor *vv*₂ with 1, *vx* with 4, *ux* with 5, and color *uu*₄ with 3. If $\phi(vv_2) = 4$, then we recolor vv_2 with 2, v*x* with 4, *ux* with 5, and color *uu*⁴ with 3.
- $\phi(vv_1) = 3$. Then, $\phi(vv_2) \in \{4, 5\}$. If $\phi(vv_2) = 4$, then we recolor vv_2 with 2, *vx* with 4, *ux* with 5, and color *uu*₄ with 4. If $\phi(vv_2) = 5$, then we recolor vv_2 with 2, vx with 5, ux with 4, and color uu_4 with 3.

(1.2.2) $\phi(vx) \in \{4, 5\}$, say $\phi(vx) = 4$. If we can legally recolor *ux* with 5 and color *uu*₄ with 3, we are done. Otherwise, assume that $C(v_1) = \{3, 4, 5\}$. Note that $\phi(vv_1) \in \{3, 5\}$. Suppose that $\phi(vv_1) = 3$, then $\phi(vv_2) \in \{1, 2, 5\}$. If $\phi(vv_2) = 1$, then we recolor vv_2 with 4, vx with 1, ux with 4, and color uu_4 with 5. If $\phi(vv_2) = 2$, then we recolor *vx* with 1, *ux* with 4, and color *uu*₄ with 5. If $\phi(vv_2) = 5$, then we recolor vv_2 with 2, vx with 1, ux with 4, and color uu_4 with 5. The case $\phi(v_1) = 5$ is solved using a similar recoloring strategy.

(2) *C*(v) ∈ {{1, 2, 3},{1, 2, 4},{1, 2, 5}}, say *C*(v) = {1, 2, 3}. The proof is split into the following two subcases, depending on the color set of w.

(2.1) $C(w) \notin \{ \{1, 2, 4\}, \{1, 2, 5\} \}$. Then, we can assume that $C(u_2) = \{1, 2, 4\}$ and $C(u_3) = \{1, 2, 5\}$. Since $\phi(vx) \in \{2, 3\}$, we have two possibilities.

(2.1.1) $\phi(vx) = 2$. It is straightforward to see that $\phi(wx) \in \{3, 4, 5\}$.

• $\phi(wx) = 3$. If we can legally recolor *ux* with 4 and color *uu*₄ with 5, or recolor ux with 5 and color uu_4 with 4, we are done. Otherwise, we have two possibilities as follows:

Suppose that $C(v_1) \in \{\{2, 3, 4\}, \{2, 3, 5\}\}\$, say $C(v_1) = \{2, 3, 4\}$. Let $C(w_2) =$ $\{2, 3, 5\}$. If $C(w_1) \neq \{3, 4, 5\}$, then we recolor vv_2 with 1, vx with 5, ux with 4, and color uu_4 with 5. If $C(w_1) = \{3, 4, 5\}$, then we recolor vv_2 with 5, vx with 1, ux with 5, and color uu_4 with 4.

Suppose that $C(v_1) \notin \{ \{2, 3, 4\}, \{2, 3, 5\} \}$, then $C(w_1) = \{2, 3, 4\}$ and $C(w_2)$ $\{2, 3, 5\}$. If $C(v_1) \neq \{1, 3, 4\}$, then we recolor vv_2 with 2, vx with 1, ux with 4, and color uu_4 with 5. If $C(v_1) = \{1, 3, 4\}$, then we recolor vv_2 with 2, vx with 5, ux with 4, and color *uu*⁴ with 3 or 5 such that *u* does not conflict with v.

• $\phi(wx) \in \{4, 5\}$, say $\phi(wx) = 4$. If we can legally recolor *ux* with 3 and color *uu*⁴ with 5, or recolor *ux* with 5 and color *uu*⁴ with 3, we are done. Otherwise, we have two possibilities: (i) $C(v_1) \neq \{2, 3, 4\}$. We may assume that $C(w_1) = \{2, 4, 5\}$ and $C(w_2) = \{2, 3, 4\}$. It suffices to exchange the colors of vv_2 and vx , recolor ux with 5, and color uu_4 with 3. (ii) $C(v_1) = \{2, 3, 4\}$, then $C(w_2) = \{2, 4, 5\}$. It suffices to exchange the colors of vv_2 and vx , recolor ux with 3 or 5 such that x does not conflict with w_1 , and color uu_4 with 4.

(2.1.2) $\phi(vx) = 3$. Then, $\phi(wx) \in \{2, 4, 5\}$.

First assume that $\phi(wx) = 2$. If we can legally recolor *ux* with 5, and color *uu*₄ with 3 or 4 such that *u* does not conflict with w, or recolor *ux* with 4 and color *uu*⁴ with 3 or 5 such that u does not conflict with w , we are done. Otherwise, we have two possibilities: If $C(v_1)$ ∈ {{2, 3, 4}, {2, 3, 5}}, say $C(v_1) = \{2, 3, 4\}$, then we may assume that $C(w_1) = \{2, 3, 5\}$. Now, if $C(w_2) \neq \{2, 4, 5\}$, then we recolor v*x* with 5, *ux* with 4, and color *uu*₄ with 3 or 5 such that *u* does not conflict with w. If $C(w_2) = \{2, 4, 5\}$, then we exchange the colors of vv_2 and vx , recolor ux with 4, and color uu_4 with 3 or 5 such that *u* does not conflict with w. So suppose that $C(v_1) \notin \{2, 3, 4\}, \{2, 3, 5\}\}.$ We may assume that $C(w_1) = \{2, 3, 5\}$ and $C(w_2) = \{2, 3, 4\}$. Recolor vv_2 with 3, *vx* with 1, *ux* with 3 and color uu_4 with 4 or 5 such that *u* does not conflict with w.

Next assume that $\phi(wx) \in \{4, 5\}$, say $\phi(wx) = 4$. If possible, we recolor *ux* with 5 and color *uu*₄ with 3. Otherwise, we may assume that $C(w_1) = \{3, 4, 5\}$, and furthermore $\phi(vv_2) = 1$ (if $\phi(vv_2) = 2$, we have a similar discussion). If $C(w_2) \neq \{1, 3, 4\}$, then we recolor vv_2 with 3, vx with 1, ux with 3, and color uu_4 with 5. If $C(w_2)$ = $\{1, 3, 4\}$, then we recolor vv_2 with 3, vx with 1, ux with 5, and color uu_4 with 3.

(2.2) $C(w)$ ∈ {{1, 2, 4}, {1, 2, 5}}, say $C(w) = \{1, 2, 4\}$. Then, we may suppose that $C(u_2) = \{1, 2, 5\}$. Note that $\phi(vx) \in \{2, 3\}$.

(2.2.1) Let $\phi(vx) = 2$. Then, $\phi(wx) = 4$. If we can recolor *ux* with 3 and color *uu*₄ with 4 or 5 such that *u* does not conflict with *u*₃, or recolor *ux* with 5 and color uu_4 with 3 or 4 such that *u* does not conflict with u_3 , we are done. Otherwise, we may assume that $C(v_1) = \{2, 3, 4\}$ and $C(w_2) = \{2, 4, 5\}$. When $C(w_1) = \{1, 4, 5\}$, we recolor vv_2 with 2, vx with 1, ux with 3, and color uu_4 with 4 or 5 such that u does not conflict with u_3 . When $C(w_2) \neq \{1, 4, 5\}$, we recolor vv_2 with 2, vx with 1, ux with 5, and color *uu*₄ with 3 or 4 such that *u* does not conflict with *u*₃.

(2.2.2) Let $\phi(vx) = 3$. Then, $\phi(wx) \in \{2, 4\}$. If $\phi(wx) = 4$, then we recolor *ux* with 5 and color uu_4 with 3 or 4 such that *u* does not conflict with u_3 . So assume that $\phi(wx) = 2$. If we can legally recolor *ux* with 4 and color *uu*₄ with 3 or 5 such that *u* does not conflict with u_3 , or recolor ux with 5 and color uu_4 with 3 or 4 such that u does not conflict with u_3 , we are done. Otherwise, we may assume that $C(v_1) = \{2, 3, 5\}$ and $C(w_2) = \{2, 3, 4\}$. Recolor *vv*₂ with 3, *vx* with 1, *ux* with 3, and color *uu*₄ with 4 or 5 such that *u* does not conflict with *u*3. \Box

References

1. Akbari, S., Bidkhori, H., Nosrati, N.: *r*-Strong edge colorings of graphs. Discrete Math. **306**, 3005– 3010 (2006)

- 2. Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Adjacent vertex distinguishing edge-colorings. SIAM J. Discrete Math. **21**, 237–250 (2007)
- 3. Hatami, H.: $\Delta + 300$ is a bound on the adjacent vertex distinguishing edge chromatic number. J. Combin. Theory Ser. B **95**, 246–256 (2005)
- 4. Huang, D., Lih, K.-W., Wang, W.: Legally $(\Delta + 2)$ -coloring bipartite outerplanar graphs in cubic time. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.Z. (eds.) Combinatorial Optimization and Applications. Lecture Notes in Comput Sci, vol. 9486, pp. 617–632. Springer, Cham (2015)
- 5. Victor, L.K.,Wang,W.,Wang, Y., Chen, M.: 2-Distance vertex-distinguishing index of subcubic graphs. J. Combin. Optim. **36**, 108–120 (2018)
- 6. Vuˇckovi´c, B.: Edge-partitions of graphs and their neighbor-distinguishing index. Discrete Math. **340**, 3092–3096 (2017)
- 7. Wang, W., Huang, D., Wang, Y., Wang, Y., Du, D.Z.: A polynomial-time nearly-optimal algorithm for an edge coloring problem in outerplanar graphs. J. Global Optim. **65**, 351–367 (2016)
- 8. Wang, W., Wang, Y., Huang, D., Wang Y.: 2-Distance vertex-distinguishing edge coloring of graphs. Preprint (2016)
- 9. Wang, Y., Wang, W., Huo, J.: Some bounds on the neighbor-distinguishing index of graphs. Discrete Math. **338**, 2006–2013 (2015)
- 10. Wang, W., Wang, Y.: Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree. J. Combin. Optim. **19**, 471–485 (2010)
- 11. Zhang, L., Wang, W., Lih, K.-W.: An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph. Discrete Appl. Math. **162**, 348–354 (2014)
- 12. Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. **15**, 623–626 (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.