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1 Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1}, and let A be the
subclass normalized by f (0) := 0, f ′(0) := 1, that is, functions of the form

f (z) =
∞∑

n=1

anz
n, a1 := 1, z ∈ D. (1)

Let S be the subclass of A of univalent functions.
In this paper, we estimate the Hermitian Toeplitz determinants for functions convex

in the direction of the imaginary axis and convex in the direction of the positive real
axis. Hermitian Toeplitz matrices play an important role in the applied mathematics as
well as in technical sciences, e.g., in the Szegö theory the stochastic filtering, the signal
processing, the biological information processing and other engineering problems.

Given q, n ∈ N, the Hermitian Toeplitz matrix Tq,n( f ) of f ∈ A of the form (1)
is defined by

Tq,n( f ) :=

⎡

⎢⎢⎢⎣

an an+1 · · · an+q−1
an+1 an · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an

⎤

⎥⎥⎥⎦ ,

where ak := ak . Let |Tq,n( f )| denote the determinant of Tq,n( f ).
Recently, Ali et al. [1] introduced the concept of the symmetric Toeplitz determinant

Tq(n) for f ∈ A in the following way:

Tq(n)[ f ] :=

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an

∣∣∣∣∣∣∣∣∣

,

They found a number of estimates for T2(n), T3(1), T3(2) and T2(3) over selected
subclasses of A.

In recent years, a lot of papers have been devoted to the estimation of determinants
built on coefficients of functions in the class A or its subclasses. Hankel matrices,
i.e., square matrices which have constant entries along the reverse diagonal and the
generalized Zalcman functional Jm,n( f ) := am+n−1 − aman, m, n ∈ N, are of
particular interest. From the large number of papers in this direction, we recall [2,3,5–
7,15,16,19–21,26–28,30,33], where the second- and third-order Hankel determinants
over selected subclasses ofA have been studied. Some of these papers andmany others
concern also the generalized Zalcman functional, particularly the functional J2,3( f ).

Being in interest in this research topic in [11], the study of the Hermitian Toeplitz
determinants on classes of analytic normalized functions has been initiated. In this
paper, we compute the second and third Toeplitz determinants over class of functions
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convex in the imaginary axis and the class of functions convex in the positive direction
of the real axis.

Let us recall some properties of the Toeplitz determinant |Tq,1( f )| (see [11]).
– For each θ ∈ R, |Tq,1( f )| = |Tq,1( fθ )|, where fθ (z) := e−iθ f (eiθ z), z ∈ D,

i.e., |Tq,1( f )| is rotation invariant.
– Since a1 = 1 is a real number, Tq,1( f ) is a Hermitian matrix, i.e., Tq,1( f )

= T T
q,1( f ) =: T ∗, where T T

q,1( f ) is the conjugate transpose matrix of Tq,1( f ).
– Since |Tq,1( f )| for f ∈ A is a determinant of Hermitian matrix, it is a real number.

Given a subclass F of A, let A2(F) := max{|a2| : f ∈ F} if exists. Since for
f ∈ A,

|T2,1( f )| = 1 − |a2|2,

we get the result below. The equality for the lower bound is attained by a function in
F which is extremal for A2(F). The identity makes equality for the upper bound.

Theorem 1 Let F be a subclass of A and A2(F) exists. If the identity is an element
of F , then

1 − A2
2(F) ≤ |T2,1( f )| ≤ 1.

Both inequalities are sharp.

By CV(i) and CV(1), we denote the subclasses of A of functions f which satisfy

Re{(1 − z2) f ′(z)} > 0, z ∈ D, (2)

and

Re{(1 − z)2 f ′(z)} > 0, z ∈ D, (3)

respectively. Both classes play an important role in the geometric function theory in
view of their geometrical properties. Each function f ∈ CV(i) maps univalently D

onto a domain f (D) convex in the direction of the imaginary axis, i.e., for w1, w2 ∈
f (D) such that Rew1 = Rew2 the line segment [w1, w2] lies in f (D), with the
additional property that there exist two points ω1, ω2 on the boundary of f (D) for
which {ω1 + it : t > 0} ⊂ C \ f (D) and {ω2 − it : t > 0} ⊂ C \ f (D) (see, e.g., [13,
p. 199]). In fact, the class CV(i) is the subclass of the class CV of functions convex
in the direction of the imaginary axis which was introduced by Robertson [31] in
1936. Robertson’s analytic condition for the class CV was shown by him under some
regularity of functions in CV on the unit circle. The proof of Robertson’s conjecture
for the whole class CV was finally completed by Hengartner and Schober [14] who
divided the class CV into three subclasses with the class CV(i) as one of them (see
also [13, pp. 193–206]).
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3146 B. Kowalczyk et al.

Each function in the class CV(1) maps univalently D onto a domain f (D) called
convex in the positive direction of the real axis, i.e., {w + i t : t ≥ 0} ⊂ f (D) for
every w ∈ f (D) [4,8–10,12,24,25].

The condition (3) was generalized by replacing the polynomial 1− z2 by quadratic
polynomials [22,23] and by any polynomials having their roots in C \ D [17,18].

In this paper, we compute sharp lower and upper bounds for

|T3,1( f )| =
∣∣∣∣∣∣

1 a2 a3
a2 1 a2
a3 a2 1

∣∣∣∣∣∣
= 2Re

(
a22a3

)
− 2|a2|2 − |a3|2 + 1. (4)

over the classes CV(i) and CV(1).
Let P be the class of all p ∈ H of the form

p(z) = 1 +
∞∑

n=1

cnz
n, z ∈ D, (5)

having a positive real part in D.

In the proof of the main result, we will use the following lemma which contains
the well-known formula for c2 (see, e.g., [29, p. 166]) and further remarks in [7]).

Lemma 1 If p ∈ P is of the form (5), then

c1 = 2ζ1 (6)

and

c2 = 2ζ 2
1 + 2(1 − |ζ1|2)ζ2 (7)

for some ζi ∈ D, i = 1, 2.
For ζ1 ∈ T, there is a unique function p ∈ P with c1 as in (6), namely

p(z) = 1 + ζ1z

1 − ζ1z
, z ∈ D.

For ζ1 ∈ D and ζ2 ∈ T, there is a unique function p ∈ P with c1 and c2 as in (6) and
(7), namely

p(z) = 1 + (ζ 1ζ2 + ζ1)z + ζ2z2

1 + (ζ 1ζ2 − ζ1)z − ζ2z2
, z ∈ D. (8)
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2 Functions Convex in the Direction of the Imaginary Axis

Since A2(CV(i)) = 1 ([14], see also [13, Vol. I, pp. 200–201]) with the extremal
function

f (z) = z

1 − z
, z ∈ D,

and since the identity belongs to CV(i), by Theorem 1, we have

Theorem 2 Let α ∈ [0, 1). If f ∈ CV(i), then

0 ≤ |T2,1( f )| ≤ 1.

Both inequalities are sharp.

Now, we will compute the bounds of |T3,1( f )|.
Theorem 3 If f ∈ CV(i), then

|T3,1( f )| ≤ 1. (9)

The inequality is sharp.

Proof Let f ∈ CV(i) be the form (1). Since |a2| ≤ 1, |a3| ≤ 1 ([14], see also [13,
Vol. I, pp. 200–201]) and Re

(
a22a3

) ≤ |a22a3|, from (4), we get

|T3,1( f )| ≤ F(|a2|, |a3|), (10)

where

F(x, y) := 2x2y − 2x2 − y2 + 1, (x, y) ∈ [0, 1] × [0, 1].

We have

∂F

∂x
= −4x(1 − y) ≤ 0, (x, y) ∈ [0, 1] × [0, 1].

Thus,

F(x, y) ≤ F(0, y) = 1 − y2 ≤ 1, (x, y) ∈ [0, 1] × [0, 1],

which in view of (10) shows (9).
Clearly, the identity makes the inequality (9) sharp. 	


Theorem 4 If f ∈ CV(i), then

|T3,1( f )| ≥ −1

2
. (11)

The inequality is sharp.
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3148 B. Kowalczyk et al.

Proof By (2), there exists p ∈ P of the form (5) such that

(1 − z2) f ′(z) = p(z), z ∈ D. (12)

Putting the series (1) and (5) into (12) by equating the coefficients, we get

a2 = 1

2
c1, a3 = 1

3
(c2 + 1). (13)

By (13), (6) and (7), we have

a2 = ζ1, a3 = 1

3

(
1 + 2ζ 2

1 + 2(1 − |ζ1|2)ζ2
)

with ζi ∈ D, i = 1, 2. Therefore, from (4), we get

|T3,1( f )| = 1

9
(Ψ1 + Ψ2), (14)

where

Ψ1 := 8 − 18|ζ1|2 + 8|ζ1|4 − 4(1 − |ζ1|2)2|ζ2|2

and

Ψ2 := 2Re ζ 2
1 − 4(1 − |ζ1|2)Re ζ2 + 4(1 − |ζ1|2)Re(ζ 2

1 ζ 2).

A.When ζ1 = 0, then

|T3,1( f )| = 1

9

(
8 − 4|ζ2|2 − 4Re(ζ2)

)
≥ 1

9

(
8 − 4|ζ2|2 − 4|ζ2|

)
≥ 0.

When ζ2 = 0, then

|T3,1( f )| = 1

9

(
8 − 18|ζ1|2 + 8|ζ1|4 + 2Re(ζ 2

1 )
)

≥ 4

9

(
2 − 5|ζ1|2 + 2|ζ2|4

)
≥ −4

9
.

B. Suppose that ζ1, ζ2 ∈ D \ {0}. Then, there exist unique θ and ψ in [0, 2π) such
that ζ1 = reiθ and ζ2 = seiψ, where r := |ζ1| ∈ (0, 1] and s := |ζ2| ∈ (0, 1]. Thus,

Ψ2 = 2r2 cos 2θ − 4s(1 − r2) cosψ + 4r2s(1 − r2) cos(2θ − ψ)

= 2r2 sin(2θ + α)

√
1 + 4s2(1 − r2)2 + 4s(1 − r2) cosψ − 4s(1 − r2) cosψ,

(15)
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where α ∈ [0, 2π) is a unique quantity satisfying

cosα = κ1√
κ2
1 + κ2

2

, sin α = κ2√
κ2
1 + κ2

2

(16)

with

κ1 := 2s(1 − r2) sinψ, κ2 := 1 + 2s(1 − r2) cosψ.

From (15), we have

−Ψ2 ≤ 2r2
√
1 + 4s2(1 − r2)2 + 4s(1 − r2) cosψ + 4s(1 − r2) cosψ

≤ 2r2 − 4sr4 + 4s.
(17)

Therefore, by (14) and (17), we obtain

9|T3,1( f )| = Ψ1 + Ψ2 ≥ F(r , s), (18)

where

F(x, y) := 4(2 − 5x2 + 2x4) − 4(1 − x4)y − 4(1 − x2)2y2, x, y ∈ (0, 1].

Since

∂F

∂ y
= −4(1 − x2)

(
1 + x2 + 2(1 − x2)y

)
≤ 0, x, y ∈ (0, 1],

we see that

F(x, y) ≥ F(x, 1) = 4x2(−3 + 2x2) ≥ −9

2
, x, y ∈ (0, 1].

Hence, by (18) and part A, it follows that the inequality (11) is true.
The inequality is sharp with the equality attained by the function

f (z) =
∫ z

0

1 + t2

(1 − t2)(1 − i
√
3t − t2)

dt, z ∈ D,

which belongs to CV(i) and for which a2 = i
√
3/2 and a3 = 0. 	


3 Functions Convex in the Positive Direction of the Real Axis

Since A2(CV(1)) = 2 [10] with the Koebe function

k(z) := z

(1 − z)2
, z ∈ D, (19)
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as the extremal, and the identity belongs to CV(1), by Theorem 1, we have

Theorem 5 If f ∈ CV(1), then

−3 ≤ |T2,1( f )| ≤ 1.

Both inequalities are sharp.

Now, we will compute the bounds of |T3,1( f )|.
Theorem 6 If f ∈ CV(1), then

|T3,1( f )| ≤ 8. (20)

The inequality is sharp.

Proof Let f ∈ CV(1) be the form (1). Since |a2| ≤ 2, |a3| ≤ 3 [10] and Re
(
a22a3

)

≤ |a22a3|, from (4), we get

T3,1( f ) ≤ F(|a2|, |a3|), (21)

where

F(x, y) := 2x2y − 2x2 − y2 + 1, (x, y) ∈ [0, 2] × [0, 3].

Solving the system of equations ∂F/∂x = 0 = ∂F/∂ y, we see that (1, 1) is the
unique critical point in (0, 2) × (0, 3). Since

(
∂2F

∂x2
· ∂2F

∂ y2
− ∂2F

∂x∂ y

)
(1, 1) = −4 < 0,

F has a saddle point at (1, 1). On the boundary of [0, 2] × [0, 3], we have
(1) F(0, y) = 1 − y2 ≤ 1, y ∈ [0, 3];
(2) F(2, y) = −7 + 8y − y2 ≤ 8, y ∈ [0, 3];
(3) F(x, 0) = 1 − 2x2 ≤ 1, x ∈ [0, 2];
(4) F(x, 3) = −8 + 4x2 ≤ 8, x ∈ [0, 2].
Hence and from (21), the inequality (20) follows.

Equality in (20) holds for the Koebe function k given by (19) for which a2 = 2 and
a3 = 3. 	

Theorem 7 If f ∈ CV(1), then

|T3,1( f )| ≥ − 1

225

(
−558 + 286

√
5 + 19

√
54 + 14

√
5 − 5

√
270 + 70

√
5

)

≈ −0.68328.

(22)

The inequality is sharp.

123



The Third-Order Hermitian Toeplitz Determinant for Classes… 3151

Proof By (3), there exists p ∈ P of the form (5) such that

(1 − z)2 f ′(z) = p(z), z ∈ D. (23)

Putting the series (1) and (5) into (23) by equating the coefficients, we get

a2 = 1

2
(2 + c1), a3 = 1

3
(3 + 2c1 + c2). (24)

Substituting (6) and (7) into the equalities (24), we get

a2 = 1 + ζ1, a3 = 1

3
(3 + 4ζ1 + 2ζ 2

1 + 2(1 − |ζ1|2)ζ2)

for some ζi ∈ D, i = 1, 2. Furthermore, from (4), we obtain

|T3,1( f )| = 1

9
(Ψ1 + Ψ2), (25)

where

Ψ1 := 14|ζ1|2 + 8|ζ1|4 − 4(1 − |ζ1|2)2|ζ2|2 (26)

and

Ψ2 := 18Re ζ 2
1 + 32|ζ1|2 Re ζ1 + 8(1 − |ζ1|2)Re(ζ1ζ 2)

+ 4(1 − |ζ1|2)Re(ζ 2
1 ζ 2).

(27)

A. Suppose that ζ1, ζ2 ∈ D \ {0}. Then, there exist unique θ and ψ in [0, 2π) such
that ζ1 = reiθ and ζ2 = seiψ, where r := |ζ1| ∈ (0, 1] and s := |ζ2| ∈ (0, 1]. From
(26) and (27), we, respectively, have

Ψ1 ≥ 14r2 + 8r4 − 4(1 − r2)2 = 4r4 + 22r2 − 4 (28)

and

Ψ2 = 18r2 cos 2θ + 32r3 cos θ + 4(1 − r2)rs
√

κ2
1 + κ2

2 sin(ψ + α),

where α ∈ [0, 2π) is a unique quantity satisfying (16) with

κ1 := 2 sin θ + r sin 2θ, κ2 := 2 cos θ + r cos 2θ. (29)

Hence,

Ψ2 ≥ 18r2 cos 2θ + 32r3 cos θ − 4(1 − r2)r
√
4 + 4r cos θ + r2. (30)
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Let Ω := (0, 1] × [−1, 1]. From (25), (28) and (30), it follows that

|T3,1( f )| ≥ −4

9
F(r , cos θ), (31)

where

F(x, y) := 1 − x2 − x4 − 9x2y2 − 8x3y + x(1 − x2)
√
g(x, y), (x, y) ∈ Ω,

with

g(x, y) := 4 + 4xy + x2, (x, y) ∈ Ω.

Let

Θ := 1

100

(
−558 + 286

√
5 + 19

√
54 + 14

√
5 − 5

√
270 + 70

√
5

)
= 1.53738 · · · .

Now, we will show that

max{F(x, y) : (x, y) ∈ Ω} = Θ. (32)

(A1) For this, we first find the critical points of F in the interior of Ω , i.e., in
(0, 1) × (−1, 1). Note that in IntΩ , the equation

∂F

∂ y
= −18x2y − 8x3 + 2x2(1 − x2)g(x, y)−1/2 = 0,

is equivalent to

g(x, y)−1/2 = 9y + 4x

1 − x2
. (33)

Furthermore, note that

9y + 4x ≥ 0 (34)

holds, since g(x, y)1/2 ≥ 0 and 1 − x2 > 0. Under the condition (34), Eq. (33) can
be written as

324xy3 + (369x2 + 324)y2 + (136x3 + 288x)y + 15x4 + 66x2 − 1 = 0. (35)

The equation

∂F

∂x
= − 2x − 4x3 − 18xy2 − 24x2y + (1 − 3x2)g(x, y)1/2

+ x(1 − x2)(2y + x)g(x, y)−1/2 = 0,
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is equivalent to

63x2y2 + 2(9x + 14x3)y − (1 − 12x2 + 3x4) = 0. (36)

Note that Δ = Δ(x) := 144 − 504x2 + 385x4 ≥ 0 iff x ∈ (0, x1] ∪ [x2, 1), where

x1 = 2√
55

√

9 − 6

√
2

7
≈ 0.64908, x2 = 2√

55

√

9 + 6

√
2

7
≈ 0.94223.

SinceΔ(x1) = 0, Eq. (36) has a unique root y′
0 = −(9+14x21 )/(63x1) ≈ − 0.36433.

Analogously, Δ(x2) = 0, so Eq. (36) has a unique root y′′
0 = −(9+ 14x22 )/(63x2) ≈

− 0.36100. As easy to check, the polynomial in (35) does not vanish for x = x1, y =
y′
0 and for x = x2, y = y′′

0 .

Let now x ∈ (0, x1) ∪ (x2, 1). Thus, there are two roots y1 and y2 of (36), namely

y j = − (9 + 14x2) + (−1) j
√
144 − 504x2 + 385x4

63x
, j = 1, 2. (37)

(1) Consider the case y = y1. Note that y1 > −1 is equivalent to

− 9 + 63x − 14x2 >
√
144 − 504x2 + 385x4. (38)

We have −9 + 63x − 14x2 > 0 iff x ∈ (x3, 1), where x3 = (63 − √
3465)/28

≈ 0.14771. Thus, for x ∈ (x3, x1)∪ (x2, 1) by squaring the both sides of (38), we get
the inequality

189x4 + 1764x3 − 4725x2 + 1134x + 63 < 0

which is true for x ∈ (x4, x1) ∪ (x2, 1), where x4 ≈ 0.32137. Moreover, y1 < 1 is
equivalent to the inequality

− 9 − 63x − 14x2 <
√
144 − 504x2 + 385x4,

which is clearly true for x ∈ (x4, x1) ∪ (x2, 1).
Substituting y = y1 into Eq. (35), we get

Q1(x)
√
144 − 504x2 + 385x4 = Q2(x), (39)

where

Q1(x) := 242028 − 234738x2 − 204120x4,

Q2(x) := − 3096792 + 9103752x2 − 3419010x4 − 3572100x6.
(40)

Since Q1(x) > 0 for x ∈ (x4, x1), Q1(x) < 0 for x ∈ (x2, 1), Q2(x) < 0 for
x ∈ (x4, x1) and Q2(x) > 0 for x ∈ (x2, 1), Eq. (39) has no solution.
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(2) Consider now the case y = y2. Note that y2 > −1 is equivalent to

√
144 − 504x2 + 385x4 > 9 − 63x + 14x2. (41)

Since 9 − 63x + 14x2 < 0 for x ∈ (x5, 1), where

x5 = 3

4

(
3 −

√
55

7

)
≈ 0.14771,

let us consider x ∈ (0, x5]. By squaring both sides of (41) and grouping, we get the
inequality

189x4 + 1764x3 − 4725x2 + 1134x + 63 ≥ 0,

which is true for x ∈ (0, x5]. Thus, y2 > −1 holds for all x ∈ (0, x1) ∪ (x2, 1).
Moreover, y2 < 1 is equivalent to the inequality

√
144 − 504x2 + 385x4 < 9 + 63x + 14x2.

Since the right hand of the above inequality is positive, by squaring both sides and
grouping, we get the inequality

189x4 − 1764x3 − 4725x2 − 1134x + 63 > 0,

which is true for x ∈ (x6, x1) ∪ (x2, 1), where x6 ≈ 0.04624. Thus, we now consider
x ∈ (x6, x1) ∪ (x2, 1).

Substituting y = y2 into Eq. (35), we get

Q1(x)
√
144 − 504x2 + 385x4 = −Q2(x), (42)

where Q1 and Q2 are given by (40). Since Q1(x)Q2(x) > 0 for x ∈ (x6, x1)∪(x2, 1),
by squaring both sides of (42) and grouping, we equivalently get the equation

26248933872(x2 − 2)(x2 − 1)(5x2 − 2)(25x4 + 45x2 − 11) = 0

which has two roots

x̃1 =
√
2

5
≈ 0.63246, x̃2 =

√

− 9

10
+

√
5

2
≈ 0.46694. (43)

Substituting x = x̃1 into y1 given by (37), we get ỹ1 = −1/
√
10 ≈ −0.31623. But

9ỹ1 + 4x̃1 < 0 which contradicts (34). Therefore, (x̃1, ỹ1) is not a critical point of F
in IntΩ .
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Substituting x = x̃2 into y1 given by (37), we get

ỹ2 = − 1

220

(
15

√
2(−9 + 5

√
5) +

√
10(−9 + 5

√
5)

)
= − 0.163604 · · · (44)

Since

9ỹ2 + 4x̃2 = 1

220
(−135

√
2 + 79

√
10)

√
−9 + 5

√
5 = 0.395333 · · · > 0,

(x̃2, ỹ2) satisfies (34), and thus, it is a unique critical point of F .
Denote

λ1 := Fxx (x̃2, ỹ2), λ2 := Fxy(x̃2, ỹ2), λ3 := Fyy(x̃2, ỹ2).

Numerical calculations yield

λ1 = − 6.74042 · · · < 0, λ1λ3 − λ22 = 22.9037 · · · > 0.

Thus, F has a local maximum at (x̃2, ỹ2) with

F(x̃2, ỹ2) = Θ.

(A2) It remains to consider F in the boundary of Ω .

(1) On the side x = 0, we have F(0, y) ≡ 1 < Θ, y ∈ [−1, 1].
(2) On the side x = 1, we have

F(1, y) = −1 − 8y − 9y2 ≤ F

(
1,−4

9

)
= 7

9
< Θ, y ∈ [−1, 1].

(3) On the side y = −1, we have

F(x,−1) ≤ F

(
1

18
(11 − √

85),−1

)

= 1

486
(−251 + 85

√
85) = 1.09601 · · · < Θ, x ∈ [0, 1].

(4) On the side y = 1, we have

F(x, 1) = 1 + 2x − 9x2 − 10x3 − 2x4, x ∈ [0, 1].

It is easy to see that

F(x, 1) ≤ γ (x) ≤ γ (x7) = 1 + 3

2
x7 = 1.43153 · · · < Θ, x ∈ [0, 1],
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where x7 = 42−1/3 ≈ 0.28769 and

γ (x) := 1 + 2x − 21x4, x ∈ [0, 1].

B.When ζ1 = 0, then

T3,1( f ) = −4

9
|ζ2|2 ≥ −4

9
.

C. Let ζ2 = 0 and ζ1 �= 0. Then,

Ψ1 := 14|ζ1|2 + 8|ζ1|4, Ψ2 = 18Re ζ 2
1 + 32|ζ1|2 Re ζ1.

Thus, taking ζ1 = reiθ , where r ∈ [0, 1] and θ ∈ [0, 2π), we have

Ψ1 = 14r2 + 8r4, Ψ2 = 18r2 cos 2θ + 32r3 cos θ.

Since the inequalities (28) and (30) hold, further argumentation of part A remains
valid.

Summarizing from parts A–C, it follows that F(x, y) ≤ Θ holds for all (x, y)
∈ [0, 1] × [−1, 1]. This together with (31) proves (22).

Now, we discuss the sharpness of (22). From (25), (28) and (30), that |T3,1( f )|
= − (4/9)Θ holds when the following conditions are satisfied:

x = x̃2, cos θ = ỹ2, s = 1, sin(ψ + α) = − 1, (45)

where x̃2 and ỹ2 are given by (43) and (44), andwhere α is determined by the condition
(16) with κ1 and κ2 given in (29). Set θ = Arccos(ỹ2) so that it satisfies the second
condition in (45). Then, we have κ1 = 1.82232 · · · > 0 and κ2 = − 0.76915 · · · < 0.
Thus, (16) is satisfied if we take α by

α = −Arccos

⎛

⎝ κ1√
κ2
1 + κ2

2

⎞

⎠ = −Arccos

⎛

⎝ 2 sin θ + x2 sin 2θ√
4 + 4x2 cos θ + x22

⎞

⎠ .

Thus, if we put

ψ = 3π

2
− α = 3π

2
+ Arccos

⎛

⎝ 2 sin θ + x̃2 sin 2θ√
4 + 4x̃2 cos θ + x̃22

⎞

⎠ = 5.11178 · · · ,

then ψ satisfies the fourth condition in (45).
Now, let us consider a function p̃ which has the form (8) with ζ1 = x̃2eiθ and

ζ2 = eiψ . Since ζ1 ∈ D and ζ2 ∈ T, in view of Lemma 1, we see that p̃ belongs to the
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class P . Finally, let

f̃ (z) :=
∫ z

0

p̃(ζ )

(1 − ζ )2
dζ, z ∈ D.

Clearly, f̃ ∈ CV(1) and |T3,1( f̃ )| = −(4/9)Θ . Thus, the proof of the theorem is
completed. 	
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