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Abstract
In this paper, we investigate some topological properties of partial metric spaces (in
short PMS).We give some relationship between metric-like PMS, sequentially isosce-
les PMS and sequentially equilateral PMS. We also prove a type of Urysohn’s lemma
for metric-like PMS. By applying the construction of Hartman–Mycielski, we show
that every bounded PMS can be isometrically embedded into a pathwise connected
and locally pathwise connected PMS. In the end, we show that a partial metric space
is compact iff it is totally bounded and complete.

Keywords Partial metric spaces · Urysohn’s lemma · Isometric embedding ·
Compact space · Complete space

Mathematics Subject Classification Primary 54E35 · 54E50; Secondary 54D05 ·
54D30

1 Introduction and Preliminaries

In 1992, in order to model computation over a metric space, G.Matthews proposed the
concept of partial metric spaces on the basis of metric spaces [11,12]. This concept
is not only widely used in many branches of mathematics, but also used to calcu-
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late domains and semantics. At present, the research on partial metric space mainly
focuses on the topological properties [4,5,8,10], fixed point theory [1,2,9], theoret-
ical computing science and other aspects [10,13,14] . Most of these researches are
concentrated on the theory of fixed points. However, the research on the topological
properties of partial metric space is rather lacking. Ge et al. [5] presented the existence
and uniqueness of the completion of a partial metric space in classical sense. Han et
al. [7] showed that some familiar topological properties and principles are still true in
the partial metric space under certain conditions. Their approach includes axioms of
separation, compactness, countability, completeness and Ekeland’s variational prin-
ciple. At the same time, they also posed some open questions. In this paper, some
topological properties of partial metric spaces are further studied on the basis of [7].

The structure of this paper is arranged as follows: The first section is introduction
and preliminaries. In the second section, we give some relationship between metric-
like PMS, sequentially isosceles PMS and sequentially equilateral PMS. We also
prove a type of Urysohn’s lemma for metric-like PMS. In Section 3, we show that
every bounded partial metric space can be isometrically embedded into a connected
and locally connected partial metric space. In the fourth section, we show that a partial
metric space is compact if and only if it is complete and totally bounded.We also show
that the completion of a partial metric space X is in fact the complete reflection of X .

The following notion of partial metric space is given in [11,12].

Definition 1.1 ([11,12]) Let X be a nonempty set. The mapping p : X × X → [0,∞)

is said to be a partial metric on X if the following conditions hold:

(PM1) p(x, y) = p(y, x);
(PM2) if 0 ≤ p(x, x) = p(x, y) = p(y, y), then x = y;
(PM3) p(x, x) ≤ p(x, y);
(PM4) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).

for any x, y, z ∈ X . The pair (X , p) is then called a partial metric space (in short
PMS).

Let (X , p) be a PMS. Then, the function dp : X × X → [0,∞) defined by
dp(x, y) = 2p(x, y) − p(x, x) − p(y, y) is a metric on X . So, partial metric can
degenerate into ordinarymetric.But in general, partialmetric spaces are not necessarily
metric spaces. In fact, a partial metric on X is a metric if and only if p(x, x) = 0,∀x ∈
X . For convenience, we write p̃(x, y) = p(x, y) − p(x, x).

Example 1.2 (1) Let p(a, b) = max{a, b}, a, b ∈ R
+, then (R+, p) is a PMS.

(2) Let I be the set of all nonempty closed intervals of the real lineR, p([a, b], [c, d])
= max{b, d} − min{a, c}, then (I, p) is a PMS.

Remark 1.3 (1) Let (X , p) be a PMS and let x ∈ X , ε > 0. The subsets Bp(x, ε) =
{y ∈ X : p̃(x, y) < ε} and Bp(x, ε] = {y ∈ X : p̃(x, y) ≤ ε} are, respectively,
called the p-open and p-closed balls centred at x with radius ε with respect to
the partial metric p.

(2) Each partial metric p on X induces a topologyTp on X with the base consisting
of open p-balls Bp(x, ε) = {y ∈ X : p̃(x, y) < ε}. It is easily to verify that the
topology Tp is T0.
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(3) The difference between partial metric space and metric space mainly lies in the
following two aspects:

Firstly, p(x, x) is not necessarily zero ( p(x, x) ≥ 0), and secondly, y ∈ Bp(x, ε)
does not imply x ∈ Bp(y, ε). Thus, in general, Tp is an asymmetric topology on X .

Definition 1.4 ([11,12]) Let (X , p) be a PMS.

(1) A sequence {xn} in X converges to x ∈ X if and only if
limn→∞ p̃(x, xn) = 0. So a sequence {xn} converges to x in (X , p) if and only if
{xn} converges to x in (X ,Tp). Sometimes, we abbreviate limn→∞ p̃(x, xn) = 0
to lim xn = x .

(2) A sequence {xn} in X is called a Cauchy sequence if and only if limn,m→∞
p(xn, xm) exists (and finite). (That is, there is an a ∈ [0,∞), for each ε > 0
there exists N0 ∈ N such that for any positive integers n,m ≥ N0, we have that
|p(xn, xm) − a| < ε.)

(3) A PMS (X , p) is said to be complete if every Cauchy sequence {xn} in X con-
verges to a point x ∈ X such that limn,m→∞ p(xn, xm) = p(x, x).

Definition 1.5 Let (X , p1) and (Y , p2) be PMS. A function f : X → Y is said
to be continuous at x0 ∈ X , if for every ε > 0, there exists some δ > 0 such
that p2( f (x0), f (x)) < p2( f (x0), f (x0)) + ε whenever x ∈ X and p1(x0, x) <

p1(x0, x0) + δ. Equivalently, p̃2( f (x0), f (x)) < ε whenever x ∈ X and p̃1(x0, x) <

δ. If f is continuous at every point of X , then it is said to be continuous on X .

By Definition 1.5, it is clear that a function f : (X , p1) → (Y , p2) between partial
metric spaces is continuous if and only if it is continuous with respect to the topologies
Tp1 and Tp2 induced by the partial metrics p1 and p2, respectively. So the following
result is straightforward.

Theorem 1.6 Let (X , p1) and (Y , p2) be PMS. Let f : X → Y be a mapping, x0 ∈ X.
Then, the following are equivalent:

(a) f is continuous at x0;
(b) For every neighbourhood V of f (x0) in Y , there exists a neighbourhood U of x0

in X such that f (U ) ⊂ V ;
(c) Let {xn} be any sequence in X. If limn→∞ xn = x0 in (X , p1), then

limn→∞ f (xn) = f (x0) in (Y , p2).

2 Convergence of Sequences and Urysohn’s Lemma

In [7], the authors introduced the notions of sequentially isosceles PMS, sequentially
equilateral PMS, sequentially symmetrical PMS and metric-like PMS and applied
them to study separation properties of PMS.

Definition 2.1 ([7]) Let (X , p) be a PMS.

(1) If for each x ∈ X and each sequence {xn} in X , limn→∞ p̃(x, xn) = 0 implies
∀y ∈ X , limn→∞ p(xn, y) = p(x, y), then (X , p) is sequentially isosceles.

123



3068 H. Lu et al.

(2) If for each x ∈ X and each pair of sequences {xn} and {yn} in X ,
limn→∞ p̃(x, xn) = 0 = limn→∞ p̃(yn, xn) implies limn→∞ p̃(x, yn) = 0,
then (X , p) is sequentially equilateral.

(3) If for each x ∈ X and each sequence {xn} in X , limn→∞ p̃(xn, x) = 0 implies
limn→∞ p̃(x, xn) = 0, then (X , p) is sequentially symmetric.

(4) If for each x ∈ X and each sequence {xn} in X , limn→∞ p̃(x, xn) = 0 implies
limn→∞ p̃(xn, x) = 0 (or equivalently, implies limn→∞ p(xn, xn) = p(x, x)) ,
then (X , p) is metric-like.

Let x ∈ X , {xn} be a sequence in X such that limn→∞ p̃(xn, x) = 0. Consider
a constant sequence {yn} with yn = x for each n. Then, we have limn→∞ p̃(x, yn)
= 0 = limn→∞ p̃(xn, yn). Hence, if X is sequentially equilateral, then X is sequen-
tially symmetric. In [7], the authors asked whether we can give more connections
between these special PMS defined above. We now show the following result.

Theorem 2.2 Let (X , p) be a PMS.

(1) If (X , p) is metric-like, then it is sequentially isosceles.
(2) If (X , p) is metric-like and sequentially symmetric, then (X , p) is sequentially

equilateral.

Proof (1) Suppose that (X , p) is metric-like. Let {xn} be a sequence in X , and x ∈ X
such that limn→∞ p̃(x, xn) = 0. For arbitrary y ∈ X , we have

p(xn, y) ≤ p(xn, x) + p(x, y) − p(x, x),

p(x, y) ≤ p(x, xn) + p(xn, y) − p(xn, xn).

Thus,

p(x, y) − p(x, xn) + p(xn, xn) ≤ p(xn, y) ≤ p(xn, x) + p(x, y) − p(x, x),

that is,

p(x, y) − p̃(xn, x) ≤ p(xn, y) ≤ p̃(x, xn) + p(x, y).

Since (X , p) is metric-like, limn→∞ p̃(x, xn) = 0 implies that limn→∞ p̃(xn, x)
= 0. We have that

p(x, y) ≤ lim
n→∞ p(xn, y) ≤ p(x, y).

It follows that limn→∞ p(xn, y) = p(x, y). Thus, (X , p) is sequentially isosceles.
(2) Let x ∈ X , {xn} and {yn} be a pair of sequences in X such that

limn→∞ p̃(x, xn) = 0 = limn→∞ p̃(yn, xn). Hence,

lim
n→∞ p(x, xn) = p(x, x), lim

n→∞ p(yn, xn) = lim
n→∞ p(yn, yn).

123



Some Remarks on Partial Metric Spaces 3069

Since (X , p) is metric-like, then

lim
n→∞ p̃(xn, x) = 0, that is

lim
n→∞ p(xn, x) = lim

n→∞ p(xn, xn).

Although we have

(x, yn) ≤ p(x, xn) + p(xn, yn) − p(xn, xn),

0 ≤ p(x, yn) − p(yn, yn) ≤ p(x, xn) − p(xn, xn) + p(xn, yn) − p(yn, yn).

Thus, limn→∞ p̃(yn, x) = 0. Therefore, limn→∞ p̃(x, yn) = 0 since (X , p) ismetric-
like. It follows that (X , p) is sequentially equilateral. 	


Let (X , p) be a partial metric space and A ⊂ X be a nonempty subset, x ∈ X . We
define a distance from x to A as:

p̃(x, A) = inf{ p̃(x, a) : a ∈ A}.

Lemma 2.3 Let (X , p) be aPMS, A ⊂ X , x ∈ X , y ∈ X. Then, | p̃(x, A)− p̃(y, A)| ≤
max{p(x, y) − p(x, x), p(x, y) − p(y, y)}.

Proof For every a ∈ A, we have

p(x, a) ≤ p(x, y) + p(y, a) − p(y, y), thus

p̃(x, A) ≤ p(a, y) + p(x, y) − p(x, x) − p(y, y).

This implies that

p̃(x, A) ≤ p̃(y, A) + p(x, y) − p(x, x).

Hence,

p̃(x, A) − p̃(y, A) ≤ p(x, y) − p(x, x).

Similarly, we have

p̃(y, A) − p̃(x, A) ≤ p(x, y) − p(y, y).

Therefore, | p̃(x, A) − p̃(y, A)| ≤ max{p(x, y) − p(x, x), p(x, y) − p(y, y)}. 	


Lemma 2.4 Suppose that (X , p) is a metric-like PMS and A ⊂ X. For any x ∈ X, let
g(x) = p̃(x, A), then g : X → R is a continuous mapping.
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Proof Let x ∈ X and {xn} be a sequence in X such that limn→∞ xn = x ;
equivalently, limn→∞ p̃(x, xn) = 0. Since (X , p) is a metric-like PMS, we have
limn→∞ p̃(xn, x) = 0. By lemma 2.3, we have

|g(xn) − g(x)| = | p̃(x, A) − p̃(xn, A)|
≤ max{p(x, xn) − p(x, x), p(x, xn) − p(xn, xn)}
= max{ p̃(x, xn), p̃(xn, x)}.

It implies that limn→∞ g(xn) = g(x). Thus, g is continuous at x . 	

Theorem 2.5 (Urysohn’s lemma)Let (X , p)beametric-likePMS, A, B be twodisjoint
closed sets in X. Then, there is a continuous map f : X −→ [0, 1] such that f (A) ⊂
{0} and f (B) ⊂ {1}.
Proof If A = ∅ or B = ∅, then it is clear. Now assume that A, B are both nonempty.
Define f : X −→ [0, 1] as follows:

f (x) = p̃(x, A)

p̃(x, A) + p̃(x, B)
, x ∈ X .

By Theorem 2.2, (X , p) is sequentially isosceles since it is metric-like. Hence,
(X ,Tp) is a Hausdorff space which follows from [7, Theorem 2.2].

For every x ∈ X , since A ∩ B = ∅, without losing generality, we may assume
that x does not belong to A. By [7, Theorem 2.1], there exists a positive real number
r such that p̃(x, a) ≥ r for each a ∈ A. Hence, p̃(x, A) > 0. This means that f
is well defined. By Lemma 2.4, f is continuous. Clearly, we have f (A) ⊂ {0} and
f (B) ⊂ {1}. 	

Corollary 2.6 Every metric-like PMS is a normal space.

Let (X , p) be a PMS and A ⊂ X . We write Bp(A, r) = {x ∈ X : p̃(x, A) < r}.
Corollary 2.7 Let (X , p) be a metric-like PMS. For every compact set A ⊂ X and any
open set U containing A, there exists r > 0 such that Bp(A, r) ⊂ U.

Proof The function f : X → R, defined by f (x) = p̃(x, X \ U ), is positive on the
set A. By Lemma 2.4, f (x) = p̃(x, X \ U ) is continuous. Since every metric-like
PMS is a Hausdorff space, p(x, y) − p(x, x) > 0. Thus, f (x) = p̃(x, X \ U ) > 0.
Hence, by the compactness of A, there exists an r > 0 such that f (x) ≥ r for every
x ∈ A, clearly Bp(A, r) ⊂ U . 	


The following question is posed in the literature [7].

Question 2.8 Let Y ⊂ X, p is a partial metric on Y , then there always exists a partial
metric P on X, such that P|Y = p.

Let Y = {a}, P is defined as follows:

P(x, y) =
{

p(a, a), if x = y;
p(a, a) + 1, if x �= y.
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If p(a, a) = 0, then P is a discrete metric.
If |Y | ≥ 2, let α = sup{p(y, y) : y ∈ Y }, P is defined as follows:

P(x, y) =
⎧

⎨

⎩

0, if x = y, x /∈ Y ;
p(x, y), if x, y ∈ Y ;
α + 1, if x /∈ Y .

The question is whether topological properties hold in (Y , p) still hold in (X , P)?
If not, what can we do to make them hold?

We note that if the cardinal of Y is infinite, then P is not necessary a partial metric
on Y . For example, let p(x, y) = max{x, y}, Y = R+, then α = sup{p(y, y) : y ∈
Y } = ∞; thus, for any x /∈ Y , P(x, y) = ∞.

Generally, properties of (Y , p) cannot be “extended” to (X , P). For example, the
compactness of (Y , p) does not imply the compactness of (X , P) even when p is a
metric on Y . It is also clear that for every x ∈ X \ Y , the single point set {x} is open
and closed in X ; hence, X is always disconnected.

Proposition 2.9 If Y is a finite set that contains at least two elements, then the prop-
erties of T0, T1, T2 of (Y , p) imply, respectively, T0, T1, T2 properties of (X , P).

Proof We only consider T0 property; the proof of the properties of T1 and T2 is similar.
For any x, y ∈ X and x �= y, consider the following two cases:
Case 1: x, y /∈ Y . Then, P(x, y) = P(x, x) = α + 1. Consider the open balls

BP (x, α+1
2 ) = {y ∈ X : P̃(x, y) < α+1

2 } = {x}, and BP (y, α+1
2 ) = {z ∈ X :

P̃(y, z) < α+1
2 } = {y}. Then, it is obvious that {x} ⋂{y} = ∅.

Case 2: y ∈ Y , but x /∈ Y . Then, {x} is an open ball of x , y /∈ {x}.
Thus, X is a T0 space. 	


3 Embedding into Connected, Locally Connected Partial Metric
Spaces

In this section, we will show that every bounded partial metric space can be isomet-
rically embedded into a pathwise connected and locally pathwise connected partial
metric space. If (X , p) is a PMS, x ∈ X , we will write N (x) the neighbourhood
system of x with respect to induced topology Tp on X .

Definition 3.1 Let (X , p) be a PMS. Each continuousmap f : I → X from I = [0, 1]
to X is called a path in X . f (0) and f (1) are called the start and end of the path,
respectively. When f (0) = f (1), the path is called a closed path or a circle. If there
is a path f : I → X for any two points x, y in X satisfying f (0) = x and f (1) = y,
then X is called a pathwise connected partial metric space.

Definition 3.2 Let (X , p) be a PMS, x0 ∈ X . If for any U ∈ N (x0), there exists a
pathwise connected V ∈ N (x0), such that V ⊂ U , then X is called locally pathwise
connected at point x0. If (X , p) is locally pathwise connected at every point, then X
is called a locally pathwise connected partial metric space.
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Definition 3.3 Let (X , p1) and (Y , p2) be PMS, f : X → Y be an injective mapping.
If p1(x, y) = p2( f (x), f (y)) for any two elements x, y ∈ X , we call f : X → Y an
isometric embedding.

If f : X → Y is an isometric embedding, then it is clear that f must be a topological
embedding.

Definition 3.4 Let (X , p) be a PMS. Denote X• the set of all functions f on I = [0, 1)
with values in X such that, for some sequence 0 = a0 < a1 < · · · < an = 1, the
function f is constant on [ak, ak+1) for each k = 0, · · · , n − 1. The elements of X•
are called step functions.

Let f , g ∈ X•. Then, there exist two partitions 0 = a0 < a1 < · · · < an = 1
and 0 = b0 < b1 < · · · < bm = 1, such that f is constant on [ak, ak+1) for each
k = 0, · · · , n − 1 and g is constant on [bk, bk+1) for each k = 0, · · · ,m − 1. We will
call the partition of the common refinement of {ai } and {b j } the join partition.
Lemma 3.5 For arbitrary f , g ∈ X•, let 0 = a0 < a1 < · · · < an = 1 be the join
partition of the partitions with respect to f and g. Define

p•( f , g) =
n−1
∑

i=0

(ai+1 − ai )p( f (ai ), g(ai )).

Then, (X•, p•) is a PMS.

Proof Obviously, the function p• satisfies the (PM1) and (PM3) of definition 1.1. Next
we verify that p• satisfies conditions (PM2) and (PM4) in Definition 1.1.

First, we verify that p• satisfies condition (PM2). If p•( f , g) = p•( f , f ), then

p•( f , g) − p•( f , f )

=
n−1
∑

i=0

(ai+1 − ai )p( f (ai ), g(ai )) −
n−1
∑

i=0

(ai+1 − ai )p( f (ai ), f (ai ))

=
n−1
∑

i=0

(ai+1 − ai )[p( f (ai ), g(ai )) − p( f (ai ), f (ai ))] = 0.

Thus, p( f (ai ), g(ai )) = p( f (ai ), f (ai )). By the same reason, we have
p( f (ai ), g(ai )) = p(g(ai ), g(ai )), since p•( f , g) = p•(g, g). Because p is a

partial metric, f (ai ) = g(ai ). Then, f = g.
Second, we verify that p• satisfies condition (PM4).
∀ f , g, h ∈ X•,
p( f (ai ), g(ai )) ≤ p( f (ai ), h(ai )) + p(h(ai ), g(ai )) − p(h(ai ), h(ai )). Thus,

n−1
∑

i=0

(ai+1 − ai )p( f (ai ), g(ai )) ≤
n−1
∑

i=0

(ai+1 − ai )p( f (ai ), h(ai ))
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+
n−1
∑

i=0

(ai+1 − ai )p(h(ai ), g(ai )) −
n−1
∑

i=0

(ai+1 − ai )p(h(ai ), h(ai )),

that is, p•( f , g) ≤ p•( f , h) + p•(h, g) − p•(h, h).
Hence, (p•, X•) is a PMS. 	


Theorem 3.6 If (X , p) is a bounded PMS, then (X•, p•) is both pathwise connected
and locally pathwise connected.

Proof We first show that (X , p) is locally pathwise connected.
For every f ∈ X•, take m ∈ N

+. Let g ∈ Bp( f ,
1
m ). By the definition of step

function, there exists a nonnegative integer n and a sequence 0 = a0 < a1 < · · · <

an = 1, such that f |[ai ,ai+1) ≡ xi , g|[ai ,ai+1) ≡ yi , i = 0, 1, 2, · · · , n − 1.
For each t ∈ [0, 1], let bi,t = ai + t(ai+1 − ai ). If t = 0, then bi,0 = ai ; if t = 1,

then bi,1 = ai+1.
Define ft : [0, 1) → X as follows:

ft (r) =
{

yi , if r ∈ [ai , bi,t );
xi , if r ∈ [bi,t , ai+1).

Claim 1 ft ∈ Bp( f ,
1
m )

If t = 0, then f0 = f ; if t = 1, then f1 = g
∀s, t ∈ [0, 1], without losing generality, we suppose s ≤ t . Then, by the definition

of partial metric space X•, we have

p•( ft , fs) =
n−1
∑

i=0

(bi,s − ai )p( fs(ai ), ft (ai ))

+
n−1
∑

i=0

(bi,t − bi,s)p( fs(bi,s), ft (bi,s))

+
n−1
∑

i=0

(ai+1 − bi,t )p( fs(bi,t ), ft (bi,t ))

=
n−1
∑

i=0

s(ai+1 − ai )p(yi , yi ) +
n−1
∑

i=0

(t − s)(ai+1 − ai )p(xi , yi )

+
n−1
∑

i=0

(1 − t)(ai+1 − ai )p(xi , xi ) = sp•(g, g)

+ (t − s)p•(g, f ) + (1 − t)p•( f , f )

· · · · · · · · · (�).

Let s = 0, then fs = f0 = f . The above formula becomes:

p•( f , ft ) = p•( f0, ft ) = tp•(g, f ) + (1 − t)p•( f , f ).
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Thus,

p•( f , ft ) − p•( f , f ) = t(p•(g, f ) − p•( f , f )).

Since g ∈ Bp( f ,
1
m ),

p•(g, f ) − p•( f , f ) <
1

m
.

It follows that

p•( ft , f ) − p•( f , f ) <
t

m
≤ 1

m
, that is ft ∈ Bp( f ,

1

m
).

Claim 2 Let ϕ(t) = ft , then ϕ : [0, 1] → Bp( f ,
1
m ) is continuous, and ϕ(0)

= f0 = f , ϕ(1) = f1 = g.
Clearly, we have ϕ(0) = f0 = f , ϕ(1) = f1 = g by the definition of ϕ(t) and ft .
Let t0 ∈ [0, 1], ε > 0. Consider the neighbourhood Bp( ft0 , ε) ∩ Bp( f ,

1
m ) of ft0 .

If t0 ≥ s, by (�), we have

p•( fs, ft0) − p•( ft0 , ft0)

= sp•(g, g) + (t0 − s)p•(g, f ) + (1 − t0)p
•( f , f ) − t0 p

•(g, g)
−(1 − t0)p

•( f , f ) = (t0 − s)[p•(g, f ) − p•(g, g)].

If t0 ≤ s, by (�), we have

p•( fs, ft0) − p•( ft0 , ft0) = (s − t0)[p•(g, f ) − p•( f , f )].

Since the partial metric p• is bounded, we can suppose p•(g, f ) − p•(g, g) < M .
If t0 ≥ s, by (�), we have

p•( fs, ft0) − p•( ft0 , ft0) = sp•(g, g) + (t0 − s)p•(g, f ) + (1 − t0)p
•( f , f )

− t0 p
•(g, g) − (1 − t0)p

•( f , f ) = (t0 − s)[p•(g, f ) − p•(g, g)].

If t0 ≤ s, by (�), we have

p•( fs, ft0) − p•( ft0 , ft0) = (s − t0)[p•(g, f ) − p•( f , f )].

Since the partial metric p• is bounded, we can suppose max{ p̃•(g, f ), p̃•( f , g)}
< M .

Take δ < ε
M . When s ∈ (t0 − δ, t0 + δ), we have p•( fs, ft0) − p•( ft0 , ft0)

< ε
M × M = ε. Thus, ϕ(s) = fs ∈ Bp( ft0 , ε), that is, ϕ((t0 − δ, t0 + δ)) ⊂

Bp( ft0 , ε) ∩ Bp( f ,
1
m ). It follows that ϕ : [0, 1] → Bp( f ,

1
m ) is continuous.

Claim 3 Bp( f ,
1
m ) is pathwise connected.
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Suppose g, h ∈ Bp( f ,
1
m ). By Claim 2, we know that there are two continuous

functions,
ϕ1 : [0, 1] → Bp( f ,

1
m ), ϕ2 : [0, 1] → Bp( f ,

1
m )

and ϕ1(0) = g, ϕ1(1) = f ; ϕ2(0) = f , ϕ2(1) = h.
Let

ϕ(t) =
{

ϕ1(2t), if t ∈ [0, 1
2 ];

ϕ2(2t − 1), if t ∈ [ 12 , 1].

It’s easy to verify that ϕ(t) is continuous, ϕ(0) = g, ϕ(1) = h.
Thus, Bp( f ,

1
m ) is pathwise connected.

Since Bp( f ,
1
m ) is a neighbourhood of f in X•, X• is locally pathwise connected.

Similarly, we can show that (X•, p•) is pathwise connected. 	

Theorem 3.7 Each bounded partial metric space (X , p) can be isometrically embed-
ded into a pathwise connected and locally pathwise connected partial metric space
(X•, p•). If X is a Hausdorff space, then the embedding is a closed embedding.

Proof We assign to each x ∈ X the element x• of X• defined by x•(r) = x for all
r ∈ [0, 1). Since

p•(x•, y•) =
n−1
∑

i=0

(ai+1 − ai )p(x
•(ai ), y•(ai )) =

n−1
∑

i=0

(ai+1 − ai )p(x, y) = p(x, y),

the function i : X → X•, where i(x) = x• for each x ∈ X , is an injective
mapping and p•(i(x), i(y)) = p(x, y). Then, the function i : X → X• is an isometric
embedding of X into X•, and the partial metric spaces X• is pathwise connected and
locally pathwise connected by Theorem 3.6.

If X is a Hausdorff space, then ∀x, y ∈ X , x �= y, inf z∈X { p̃(x, z) + p̃(y, z)} �= 0
([7] Theorem 2.1). For convenience, write b = inf z∈X p̃(x, z)+ p̃(y, z)}, then b > 0.

If f ∈ X• and f /∈ i(X), then ∃k, j , such that f |[ak ,ak+1) ≡ x, f |[a j ,a j+1) ≡
y, and x �= y. Let 0 = a0 ≤ ak < ak+1 ≤ a j < a j+1 ≤ an = 1. Suppose
a = min{ak+1 − ak, a j+1 − a j }. Since ab > 0, there exists a positive integer n,
such that 0 < 1

n < ab. Take the neighbourhood Bp( f ,
1
n ) of f , we will prove that

Bp( f ,
1
n ) ∩ i(X) = ∅.

∀z ∈ X , we have i(z) = z• ∈ X•. Hence,

p•( f , z•) − p•( f , f )

=
n

∑

i=1

(ai+1 − ai )(p( f (ai ), z
•(ai )) −

n
∑

i=1

(ai+1 − ai )(p( f (ai ), f (ai ))

=
n

∑

i=1

(ai+1 − ai )(p( f (ai ), z
•(ai )) − p( f (ai ), f (ai ))

≥ (ak+1 − ak)(p(x, z) − p(x, x)) + (a j+1 − a j )(p(y, z) − p(y, y))
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≥ a(p(x, z) − p(x, x) + p(y, z) − p(y, y)) = a( p̃(x, z) + p̃(y, z)) ≥ ab >
1

n
.

Thus, z• /∈ Bp( f ,
1
n ). Then, Bp( f ,

1
n ) ∩ i(X) = ∅. Therefore, i(X) is a closed set

in X•. 	

Lemma 3.8 [7] Every partialmetric on X is equivalent to some bounded partialmetric
on X.

Corollary 3.9 Every partial metric space can be topologically embedded into a path-
wise connected and locally pathwise connected partial metric space.

4 Compactness and Completions in Partial Metric Spaces

Definition 4.1 Let (X , p1) and (Y , p1) be two PMS and f : X → Y be a mapping. If
for any ε > 0, there is a δ > 0, such that, for arbitrary x, y ∈ X , p̃1(x, y) < δ implies
that p̃2( f (x), f (y)) < ε, we call f a uniform continuous mapping from (X , p1) to
(Y , p1).

Definition 4.2 ([7]) If (X , p) is a PMS and (X ,Tp) is compact, then we call (X , p)
a compact partial metric spaces.

Theorem 4.3 ([7]) (Lebesgue covering lemma) Let {Ui : 1 ≤ i ≤ k} be a finite open
cover of a compact partial metric spaces(X , p). Then, there is some δ > 0 such that
for any A ⊂ X with diam(A) < δ, we have A ⊂ Ui for some 1 ≤ i ≤ k.

Theorem 4.4 Let f : (X , p1) → (Y , p2) be a continuous mapping from a compact
partial metric space(X , p1) to a partial metric space (Y , p2), then f is uniform
continuous.

Proof For arbitrary ε > 0, we consider the open cover V = {Bp2(y,
ε
2 ) : y ∈ Y }

of (Y , p2). Then, U = { f −1(Bp2(y,
ε
2 )) : y ∈ Y } is an open cover of (X , p1), by

Lebesgue number lemma (note that the finiteness of the open cover plays no role in the
proof of the Lebesgue covering lemma in [7]);U has a Lebesgue number δ > 0. Thus,
for any A ⊂ X , if diam p1 A < δ, then there is a y ∈ Y , such that A ⊂ f −1(Bp2(y,

ε
2 )),

that is, f (A) ⊂ Bp2(y,
ε
2 ). Then, diam p2 f (A) ≤ diam p2Bp2(y,

ε
2 ) ≤ ε. It implies

that for any x1, x2 ∈ X , if p̃1(x1, x2) < δ, then diam p1{x1, x2} < δ. Thus,
p̃2( f (x1), f (x2)) = diam p2 f ({x1, x2}) ≤ ε. This shows that f : (X , p1) → (Y , p2)
is uniform continuous.

Theorem 4.5 Any continuous function f from a compact partial metric space (X , p1)
to a partial metric space (Y , p2) is bounded, that is, f (X) is a bounded subset of Y .

Proof Take y ∈ Y . For each n ∈ N, the set Bp(y, n) is an open set in Y , and hence,
Un := f −1(Bp(y, n)) = {x ∈ X : p̃2( f (x), y) < n} is open. Note also that Un ⊂
Un+1. The collection {Un : n ∈ N} is an open cover of X . By the compactness of X ,
there exists UN such that X = UN . It follows that f (X) ⊂ Bp(y, N ). Hence, f (X)

is bounded. 	
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Definition 4.6 Let (X , p) be a PMS, ε > 0, A ⊂ X be a finite set. If
⋃

a∈A Bp(a, ε) =
X , we call A an ε-net of (X , p). If for any ε > 0, (X , p) has an ε−net, we call (X , p)
totally bounded.

Proposition 4.7 Let (X , p) be a PMS. If for some ε > 0, there is an ε-net of (X , p),
then (X , p) is bounded.

Proof Suppose that for ε > 0, there exists an ε−net for X , say A. Since A is a finite
set, p(A) = sup{p(a, b) : a, b ∈ A} < ∞. Now, let x1 and x2 be any two points of
X . There exist points a and b in A such that x1 ∈ Bp(a, ε), x2 ∈ Bp(b, ε) . It is clear
that p̃(a, x1) < ε and p̃(b, x2) < ε.

It follows, using the triangle inequality, that

p(x1, b) ≤ p(x1, a) + p(a, b) − p(a, a).

Thus,

p(x1, b) + p(b, x2) − p(b, b) ≤ p(x1, a) + p(a, b) + p(b, x2) − p(b, b) − p(a, a).

So,

p(x1, x2) ≤ p(x1, b) + p(b, x2) − p(b, b)

≤ p̃(a, x1) + p(a, b) + p̃(b, x2) ≤ p(A) + 2ε.

It implies that p(X) = sup{p(x1, x2) : x1, x2 ∈ X} ≤ p(A) + 2ε. Hence, X is
bounded. 	

Corollary 4.8 Every totally bounded PMS is bounded.

Theorem 4.9 APMS (X , p) is compact if and only if it is complete and totally bounded.

Proof Let us first prove that a compact PMS is totally bounded. Let (X , p) be a
compact partial metric space . For any given ε > 0, the collection of all open balls
{Bp(x, ε) : x ∈ X} is an open cover of X . The compactness of X implies that it
contains a finite subcover. Hence, X is covered by a finite number of open balls of
radius ε, i.e. the centres of the balls in the finite subcover form a finite ε-net for X .
So, X is totally bounded.

Now we prove that a compact PMS is complete.
Suppose that (X , p) is a compact partial metric space which is not complete. Then,

there exists a Cauchy sequence {xn}n∈N in (X , p) that does not have a limit in X .
Let y ∈ X , since {xn}n∈N does not converge to y, there exists an ε0 > 0 such that
p̃(y, xn) ≥ 3ε0 for infinitely many of n. Since {xn}n∈N is a Cauchy sequence, there
is an M ∈ [0,∞), for ε0 > 0 there exists n0 ∈ N such that for any positive integers
n,m ≥ n0, we have that |p(xn, xm) − M | < ε0. Put k > n0 such that p̃(y, xk) ≥ 3ε0.
Then, p(y, xk) ≤ p(y, xm) + p(xm, xk) − p(xm, xm), which implies that

p(y, xm) ≥ p(y, xk) + p(xm, xm) − p(xm, xk).
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So

p(y, xm) − p(y, y) ≥ p(y, xk) + p(xm, xm) − p(xm, xk) − p(y, y).

By |p(xm, xk) − M | < ε0 and |p(xm, xm) − M | < ε0, we conclude that

0 ≤ p(xm, xk) − p(xm, xm) ≤ |p(xm, xk) − M + M − p(xm, xm)|
≤ |p(xm, xk) − M | + |p(xm, xm) − M | ≤ 2ε0.

Hence,
p̃(y, xm) ≥ p̃(y, xk)− (p(xm, xk)− p(xm, xm)) ≥ 3ε0 −2ε0 = ε0 for allm ≥ n0.

So, the open ball Bp(y, ε0) contains only finite numbers of xn . In this manner, we can
associate with each y ∈ X an open ball Bp(y, ε0(y)), where ε0(y) is a positive real
number that depends on y, and the open ball Bp(y, ε0(y)) contains only finite numbers
of xn . Observe that X = ⋃{Bp(y, ε0(y)) : y ∈ X}, since X is compact, there exists
a finite subcover {Bp(yi , ε0(yi )) : yi ∈ X} of X . Since each open ball contains only
finite numbers of xn , also X must contain only finite numbers of xn . This, however, is
impossible. Hence, (X , p) must be a complete partial metric space.

Finally, we show that a totally bounded and complete PMS is compact.
Suppose that (X , p) is totally bounded and complete which is not compact. Then,

there exists an open covering {Gλ}λ∈� of X that does not admit a finite subcover.
Since (X , p) is totally bounded, it is bounded. Hence, for some real number r > 0

and some x0 ∈ X , we have X ⊆ Bp(x0, r). Observe that X ⊆ Bp(x0, r) implies
X = Bp(x0, r). Let εn = r

2n . We know that X , being totally bounded, can be covered
by finitely many open balls of radius ε1. By our hypothesis, at least one of these balls,
say Bp(x1, ε1), cannot be covered by a finite number of open sets of {Gλ} . Since
Bp(x1, ε1) is itself totally bounded (any nonempty subset of a totally bounded set is
totally bounded, as shown above), we can find an x2 ∈ Bp(x1, ε1) such that Bp(x2, ε2)
cannot be covered by a finite number of open sets of {Gλ}. In this way, a sequence
{xn}n∈N can be defined with the property that for each n, Bp(xn, εn) cannot be covered
by a finite number of open sets of {Gλ} and xn+1 ∈ B(xn, εn). We next show that the
sequence {xn}n∈N is convergent.

Since xn+1 ∈ Bp(xn, εn), it follows that p̃(xn, xn+1) < εn , and hence,

p̃(xn, xn+m) ≤ p̃(xn, xn+1) + p̃(xn+1, xn+2) + . . . + p̃(xn+m−1, xn+m)

≤ εn + εn+1 + . . . + εn+m−1 ≤ r

2n−1 .

This implies that limn,n+m→∞ p(xn, xn+m) = limn→∞ p(xn, xn). Since (X , p) is
bounded, we have

lim
n,n+m→∞ p(xn, xn+m) < ∞.

So {xn}n∈N is a Cauchy sequence in X , and since X is complete, it converges to
y ∈ X . Since y ∈ X , there exists λ0 ∈ � such that y ∈ Gλ0 . Because Gλ0 is open,
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it contains Bp(y, δ) for some δ > 0. Choose n large enough such that p̃(y, xn) < δ
2

and εn < δ
2 . Then, for any x ∈ X such that p̃(xn, x) < δ

2 (namely x ∈ Bp(xn, εn)),
we have

p̃(y, x) ≤ p̃(y, xn) + p̃(xn, x) <
δ

2
+ δ

2
= δ,

so that x ∈ Bp(y, δ), namely Bp(xn, εn) ⊆ Bp(y, δ). Therefore, Bp(xn, εn) admits
a finite subcover, namely by the open set Gλ0 . This contradicts the fact that each
Bp(xn, εn) cannot be covered by finite many elements of {Gλ}). Hence, (X , p) is
compact. 	


In [5], the authors first introduce a stronger convergence of sequences in partial
metric spaces, that is, a sequence {xn} in X converges in (X , p) if there is x ∈ X such
that p(x, x) = limn→∞ p(x, xn) = limn→∞ p(xn, xn). Then, with this definition, the
authors obtained for every partial metric space (X , p), a complete partial metric space
(X∗, p∗) and an isometric embedding f : X → X∗. The complete partial metric
space X∗ is called the completion of X . In the end of this section, we will show that
the completions of partial metric spaces defined in [5] are in fact complete reflections
of partial metric spaces in categorical sense.

Definition 4.10 ([5]) Let (X , p) be a PMS and Y be a subset of X . Y is called to be
symmetrically dense in X if for any x ∈ X and any ε > 0, there is y ∈ Y such that
y ∈ Bp(x, ε) and x ∈ Bp(y, ε).

Theorem 4.11 The assignment X �→ X∗ defines a functor which is in fact a reflective
functor from the category of partial metric spaces and uniform continuous mappings
to the category of complete partial metric spaces and uniform continuous mappings.

Proof Let (X , p) be a partial metric space, and let f : X → X∗ be the completion
of X . It suffices to show that for every complete partial metric space Y and a uniform
continuous function g : X → Y , there exists a unique uniform continuous mapping
h : X∗ → Y such that g = h ◦ f .

X
f

g

X∗

h

Y

Following [5], we know that f (X) is symmetrically dense subset of X∗. By defini-
tion of symmetrically dense, for any x∗ ∈ X∗, ∀n ∈ N, there is f (xn) ∈ f (X), such
that f (xn) ∈ Bp(x∗, 1

n ) and x∗ ∈ Bp( f (xn),
1
n ). Thus, { f (xn)} is a Cauchy sequence

in X∗, and f (xn) → x∗. Since f is an isometric embedding and g is uniform continu-
ous, hence preserving Cauchy sequences, it follows that {g(xn)} is a Cauchy sequence
in Y . By completeness of Y , we define h(x∗) = limn→∞ g(xn).

Claim 1 h is well defined.
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If there is another sequence {x ′
n} in X such that f (x ′

n) is a Cauchy sequence,
f (x ′

n) → x∗. To show the uniqueness of the limit, let y′ = limn→∞ g(x ′
n).

Since g is uniform continuous, then for any ε > 0, there exists an δ > 0, such
that p̃Y (g(xn), g(x ′

n)) < ε whenever p̃X (xn, x ′
n) < δ . For this δ > 0, since

f (xn) → x∗, f (x ′
n) → x∗, there is an N ∈ N, such that p̃X∗( f (xn), f (x ′

n)) < δ

when n > N . Thus, p̃X (xn, x ′
n) < δ since f is an isometric embedding mapping.

Write y = limn→∞ g(xn). Then, p̃Y (y, y′) ≤ p̃Y (y, g(xn)) + p̃Y (g(xn), g(x ′
n)) +

p̃Y (g(x ′
n), y

′) ≤ 3ε. It follows that p̃Y (y, y′) = 0; hence, pY (y, y′) = p(y, y).
Similarly, we have pY (y, y′) = p(y′, y′). Therefore, y = y′.

Claim 2 h is uniform continuous.
Let a, b ∈ X∗ and ε > 0. Since g(x) is uniform continuous, then for the above ε,

there is a δ > 0, such that p̃Y (g(x), g(y)) < ε whenever p̃X (x, y) < δ. Let f (xn) →
a ∈ X∗, f (yn) → b ∈ X∗. If p̃X∗(a, b) < δ, then there is an N ∈ N, such that
p̃X (xn, yn) = p̃X∗( f (xn), f (yn)) ≤ p̃X∗( f (xn), a) + p̃X∗(a, b) + p̃X∗(b, f (yn)) <

δ. Since h(x∗) = limn→∞ g(xn) and g is uniform continuous, we have

p̃Y (h(a), h(b)) ≤ p̃Y (h(a), g(xn)) + p̃Y (g(xn), g(yn)) + p̃Y (g(yn), h(b))

≤ ε + ε + ε ≤ 3ε.

Claim 3 g = h ◦ f , and h is unique.
Otherwise, we suppose that there is an h′ : X∗ → Y , such that g = h ◦

f = h′ ◦ f . Then, for any x∗ ∈ X∗, there is an xn ∈ X , such that f (xn) → x∗. Thus,
limn→∞ g(xn) = h(limn→∞ f (xn)) = h′(limn→∞ f (xn)). Hence, h(x∗) = h′(x∗).

	

Corollary 4.12 Let X ,Y be two PMS, f1 : X → X∗ and f2 : Y → Y ∗ be the
completions of X and Y , respectively. If g : X → Y is an uniform continuousmapping,
then f can be uniquely extended to an unform continuous mapping g∗ : X∗ → Y ∗
such that the following diagram commutes.

X
f1

g

X∗

g∗

Y
f2

Y ∗
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