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Abstract
An operator P is said to be reflective if P∗ = P and P2 = I . In this paper, we study
the spectral properties of reflection operators and obtain a matrix representation of
the reflection operator pair (P, Q). Some related properties of reflection operator pair
(P, Q) are given.

Keywords Reflection operator · Spectrum · Matrix representation · Unitary
equivalence
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1 Introduction and Preliminaries

LetH andK be separable, infinite dimensional, complexHilbert spaces.We denote the
set of all bounded linear operators fromH intoK byB(H,K) and byB(H)whenH =
K. The set of all the unitary operators onH is denoted by U(H). For A ∈ B(H,K), let
A∗, σP (A), σ(A), R(A) and N (A) be the adjoint, the point spectrum, the spectrum,
the range and the null space of A, respectively. An operator A ∈ B(H,K) is densely
defined if the domain of A is a dense subset of H and the range of A is contained
withinK. A is said to be positive if (Ax, x) ≥ 0 for all x ∈ H. IM denotes the identity
ontoM or I if there is no confusion. An operator P ∈ B(H) is said to be a reflection
operator if P∗ = P and P2 = I . Let P and Q be two reflection operators. Throughout
this paper, we assume that neither of P , Q is I or −I . The term “subspace” always
means a closed linear manifold.
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We say P ∈ B(H) is an orthogonal projection if P2 = P = P∗ and there are a
plenty of researches about two orthogonal projections [1–5,12]. The most primitive
representation of two orthogonal projections is usually referred to as Halmos’ two
projections theorem and sometimes also as the CS decomposition [9,10].

The reflection operators have much similarities with the orthogonal projections [6].
Furthermore, the reflection operators have some special properties different from the
orthogonal projections, which attracts our attention. In [13], the authors establish an
explicit characterization of the spectrum and spectral radius estimates for the reflection
operator acting on L p spaces on an infinite angle in two dimensions. The aim of this
paper is to study the spectral properties and the matrix representations of the reflection
operators on Hilbert spaces. Some related properties of reflection operator pair (P, Q)

are also given.
As we know, if there exists a U ∈ U(H) such that PU = UQ (U P = QU ), we

say U is an inner (outer) intertwining operator of P respect to Q and all the inner
(outer) intertwining operators of P respect to Q are denoted by innQ(P) (outQ(P)),

respectively. If there exists aU ∈ U(H) such that PU = UQ andU P = QU , we say
U is an intertwining operator of P respect to Q and P, Q are unitary equivalence. The
set of all the intertwining operators of P respect to Q is denoted by intQ(P) [4,8].
The related researches on unitary equivalence of two orthogonal projections can also
be found in [3,5,11–17]. Based on the matrix representation of reflection operators,
we study the unitary equivalence of two reflection operators. The general explicit
descriptions for intertwining operators of two reflection operators are established. The
paper mainly contains two parts. In Sect. 2, we investigate some spectral properties of
reflection operators. In Sect. 3, we present the block operator matrix representations
of the reflective operators and obtain some properties of the combinations of reflection
operators by using their matrix representations.

2 The Spectral Properties of Reflection Operators

First, we characterize the spectrum of reflection operators. If P2 = I , σ(P) ⊆ {e 2kπ
2 i :

k = 0, 1} = {1,−1} by the spectral mapping theorem [7]. Observing that if λ ∈ σ(P),
then λ2 = 1. This shows that each λ ∈ σ(P) is a simple root of the equation λ2 = 1.

Theorem 2.1 Let P ∈ B(H). Then P is a reflection operator (P∗ = P and P2 = I )
if and only if P = IM ⊕ −IM⊥ , where M = R(I + P).

Theorem 2.2 Let P and Q be the reflection operators.

(i) If λ ∈ C\{0, 2,−2}, then λ ∈ σ(P − Q) ⇐⇒ 3 − λ2 ∈ σ(P + Q + PQ).

(ii) σ [2(P − Q)2] ∪ {0} = σ [(I − P)(I + Q)(I − P)] ∪ σ [(I + P)(I − Q)(I +
P)] ∪ {0}.
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Proof (i) If λ ∈ C\{0, 2,−2}, then λ ± 1 �= 1 or −1. By Theorem 2.1, (λ − 1)I + P
and (λ + 1)I − Q are invertible. Note that

[(λ − 1)I + P][λI − (P − Q)][(λ + 1)I − Q]
= [(λ2 − λ − 1)I + P(I + Q) + (λ − 1)Q][(λ + 1)I − Q]
= λ[(λ2 − 3)I + P + Q + PQ].

We get that λI − (P − Q) is invertible if and only if (λ2 − 3)I + P + Q + PQ is
invertible. Hence, the result holds.

(ii) Since 2(P − Q)2 = (I − P)(I + Q)(I − P) + (I + P)(I − Q)(I + P), we
get that

λ[λI − 2(P − Q)2]
= λ2 I − 2λ(P − Q)2

= λ2 I − λ(I − P)(I + Q)(I − P) − λ(I + P)(I − Q)(I + P)

= [λI − (I − P)(I + Q)(I − P)][λI − (I + P)(I − Q)(I + P)].

Hence, the result holds. �
The following results are concerned with the commutator of two reflection opera-

tors.

Theorem 2.3 Let P and Q be the reflection operators.

(i) There exists λ ∈ C such that λ ∈ σ(PQ + QP) if and only if there exists
μ ∈ σ(P − Q) such that λ = 2 − μ2.

(ii) There exists λ ∈ C such that λ ∈ σ(PQ − QP) if and only if there exists
μ ∈ σ(P − Q) such that λ2 = μ4 − 4μ2.

Proof Note that

PQ + QP = 2I − (P − Q)2, (PQ − QP)2 = (P − Q)4 − 4(P − Q)2.

Then there existsλ ∈ C such thatλ ∈ σ(PQ+QP) if andonly ifλ ∈ σ [2I−(P−Q)2]
if and only if there exists μ ∈ σ(P − Q) such that λ = 2 − μ2.

There exists λ ∈ C such that λ ∈ σ(PQ − QP) if and only if λ2 ∈ σ [(P − Q)4 −
4(P − Q)2] if and only if there exists μ ∈ σ(P − Q) such that λ2 = μ4 − 4μ2. �
Theorem 2.4 Let P and Q be the reflection operators and c1, c2 ∈ C\{0}. Then
λ ∈ σ [(P − Q)2] if and only if there exists μ ∈ C such that μ ∈ σ(c1P + c2Q) and
μ2 = (c1 + c2)2 − c1c2λ. If there exist α, β ∈ R such that σ [(P − Q)2] ⊆ [α, β],
then

|μ| ≤ max

{√
|(c1 + c2)2 − c1c2α|,

√
|(c1 + c2)2 − c1c2β|

}

for all μ ∈ σ(c1P + c2Q).
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Proof Note that

λI − (P − Q)2 = λI + PQ + QP − 2I

= c1c2(PQ+QP)+2c1c2 I
c1c2

− 4I + λI

= (c1P+c2Q)2−[(c1−c2)2−(λ−4)c1c2]I
c1c2

= (c1P+c2Q)2−[(c1+c2)2−c1c2λ]I
c1c2

.

Hence, λ ∈ σ [(P−Q)2] if and only if there existsμ ∈ C such thatμ ∈ σ(c1P+c2Q)

and μ2 = (c1 + c2)2 − c1c2λ.
Ifμ ∈ σ(c1P+c2Q) and λ ∈ σ [(P−Q)2] ⊆ [α, β], thenμ2 = (c1+c2)2−c1c2λ.

We get λ = (c1+c2)2−μ2

c1c2
∈ [α, β]. Note that f (x) = z1x + z2, ∀x ∈ R is a line in

complex plane for complex numbers z1, z2. We have μ2 is a segment in C with
boundary points (c1 + c2)2 − c1c2α and (c1 + c2)2 − c1c2β if λ ∈ [α, β]. Hence, for
all μ ∈ σ(c1P + c2Q),

|μ| ≤ max

{√
|(c1 + c2)2 − c1c2α|,

√
|(c1 + c2)2 − c1c2β|

}
.

�
Observing that σ [(P − Q)2] ⊆ [0, ‖P − Q‖2] ⊆ [0, 4] for reflection operators P

and Q, we derive the following results.

Corollary 2.1 Let P and Q be the reflection operators and c1, c2 ∈ C\{0}. Then

|μ| ≤ max
{
|c1 + c2|,

√
|(c1 + c2)2 − c1c2‖P − Q‖2|

}

for every μ ∈ σ(c1P + c2Q).

Corollary 2.2 Let P and Q be the reflection operators and c1, c2 ∈ C\{0}. Then

|μ| ≤ max{|c1 + c2|, |c1 − c2|}

for every μ ∈ σ(c1P + c2Q).

For convenience, we define a subset � of C2 by

� =
{
(c1, c2) ∈ C

2 : c1 �= 0, c2 �= 0 and c1 + c2 �= 0
}

.

Theorem 2.5 Let P and Q be the reflection operators and let (c1, c2) ∈ �. Then

dimN [(c1 + c2)I + c1P + c2Q] = dim {N [(I − P)(I + Q)] ∩ N (I + P)} .
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Proof If x ∈ N [(c1 + c2)I + c1P + c2Q], then

(I − P)(I + Q)(I − P)x

= c−1
1 (I − P)(I + Q)[(c1 + c2)I + c1 I + c2Q − (c1 + c2)I − c1P − c2Q]x

= c−1
1 (I − P)(I + Q)[(c1 + c2)I + c1 I + c2Q]x

= 2c−1
1 (I − P)[(c1 + c2)I + (c1 + c2)Q]x

= 2(c1 + c2)(c1c2)
−1(I − P)(c2 I + c2Q)x

= 2(c1 + c2)(c1c2)
−1(I − P)[(c1 + c2)I + c1P + c2Q]x

= 0.

Since (I − P)x ∈ N (I + P), we conclude that

(I − P)N [(c1 + c2)I + c1P + c2Q] ⊆ N [(I − P)(I + Q)] ∩ N (I + P).

If x ∈ N [(c1 + c2)I + c1P + c2Q] and (I − P)x = 0, then x = Px and

(c1 + c2)(I + Q)x = 1

2
(I + Q)[(c1 + c2)I + c1P + c2Q]x = 0.

So (I+Q)x = 0. It follows that [(c1+c2)I+c1P+c2Q]x = c1(I+P)x = 0. Hence,
x = 0 since x = −Px = Px . We get that I − P embedsN [(c1 + c2)I + c1P + c2Q]
injectively into N [(I − P)(I + Q)] ∩ N (I + P). Thus,

dimN [(c1 + c2)I + c1P + c2Q] ≤ dim {N [(I − P)(I + Q)] ∩ N (I + P)} .

(1)

On the other hand, if x ∈ N [(I − P)(I + Q)] ∩N (I + P), then x + Px = 0 and
x + Qx = Px + PQx . Note that

[(c1 + c2)I + c1P + c2Q]
(
2c1c

−1
2 I + I − Q

)
x

= [c1(I + P) + c2(I + Q)]
(
2c1c

−1
2 I + I − Q

)
x

= 2c21c
−1
2 (I + P)x + 2c1(I + Q)x + c1(I + P)(I − Q)x

= 2c1(I + Q)x + 2c1(P − Q)x

= 2c1(I + P)x

= 0.

We get

(
2c1c

−1
2 I + I − Q

)
{N [(I − P)(I + Q)] ∩ N (I + P)}

⊆ N [(c1 + c2)I + c1P + c2Q].
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If x ∈ N [(I−P)(I+Q)]∩N (I+P) and (2c1c
−1
2 I+ I−Q)x = 0, then (I+P)x = 0,

(I − P)(I + Q)x = 0 and (I + Q)x = 2(c1c
−1
2 I + I )x . From (I − P)(I + Q)x = 0,

we get (I + P)(I + Q)x = 2(I + Q)x . Hence,

2
(
c1c

−1
2 I + I

)
x = (I + Q)x = 1

2
(I + P)(I + Q)x =

(
c1c

−1
2 I + I

)
(I + P)x = 0.

We get x = 0 and thus 2c1c
−1
2 I + I − Q embeds N [(I − P)(I + Q)] ∩ N (I + P)

injectively into N [(c1 + c2)I + c1P + c2Q]. Hence,
dimN [(c1 + c2)I + c1P + c2Q] ≥ dim {N [(I − P)(I + Q)] ∩ N (I + P)} .

(2)

By (1) and (2), we get that

dimN [(c1 + c2)I + c1P + c2Q] = dim {N [(I − P)(I + Q)] ∩ N (I + P)} . �

3 Representations of reflection operators

As we know, if A ∈ B(H ⊕ K) has the operator matrix form A =
(
A11 A12
A21 A22

)
, then

A ≥ 0 if and only if Aii ≥ 0, i = 1, 2, A21 = A∗
12 and there exists a contraction

operator D from K into H such that A12 = A1/2
11 DA1/2

22 , where A1/2
i i is the positive

square root of Aii , i = 1, 2 [9]. Recently, Moslehian, Kian and Xu used the Douglas
theorem on equivalence of factorization, range inclusion andmajorization of operators
to characterize the positivity of 2× 2 block operator matrices [14]. In this section, we
will give detailed block operator matrices representations of reflection operators.

Let P and Q be two reflection operators. Since we assume that neither of P , Q is
I or −I , by Theorem 2.1, M = R(I + P), M⊥ = R(I − P), N = R(I + Q) and
N⊥ = R(I − Q) are non-degenerate subspaces. Therefore, the reflection operator P
as an operator onM⊕M⊥, and the reflection operator Q as an operator onN ⊕N⊥,
have the diagonal matrix forms

P = IM ⊕ −IM⊥ and Q = IN ⊕ −IN⊥ , (3)

respectively. Denote

H1 = M ∩ N , H3 = M⊥ ∩ N , H5 = M ∩ [H � (⊕4
i=1Hi )],

H2 = M ∩ N⊥, H4 = M⊥ ∩ N⊥, H6 = H � (⊕5
i=1Hi ). (4)

It is clear that Hi ⊥ H j , j �= i and 1 ≤ i, j ≤ 6. The pair (M,N ) of subspaces M
and N is said to be regular if Hi = {0}, i = 1, 2, 3, 4. Clearly, (M,N ) is regular if
and only if (M⊥,N⊥) is.We say (P, Q) is a reflective regular pair whenever (M,N )

is a non-trivial regular pair. First, we study the matrix structures of a reflective regular
pair (P, Q).
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Theorem 3.1 Let (P, Q) be a reflective regular pair with M = R(I + P) and N =
R(I + Q). Then there exist a selfadjoint contraction A ∈ B(M) with 1,−1 /∈ σP (A)

and a unitary operator D ∈ B(M⊥,M) such that P and Q have the operator matrix
forms

P =
(
I 0
0 −I

)
and Q =

(
A (I − A2)1/2D

D∗(I − A2)1/2 −D∗AD

)
(5)

with respect to the space decomposition H = M ⊕ M⊥, respectively.

Proof By Theorem 2.1, the reflection operator P , as an operator on H = M ⊕ M⊥,
has the operator matrix form P = I ⊕−I . Let Q have the corresponding matrix form

Q =
(

A B
B∗ C

)

with respect to the same space decomposition, where A and C are selfadjoint contrac-
tions on M and M⊥, respectively. Denote P̃ = 1

2 (I + P) and Q̃ = 1
2 (I + Q). It is

easy to see that R(P̃) = M, N (P̃) = M⊥, R(Q̃) = N and N (Q̃) = N⊥ by (3).
From Q̃2 = 1

2 (I + Q) = Q̃, one gets that

1

4

(
(I + A)2 + BB∗ (I + A)B + B(I + C)

B∗(I + A) + (I + C)B∗ (I + C)2 + B∗B

)
= 1

2

(
I + A B
B∗ I + C

)
.

Comparing the two sides of the above equation, we have

⎧⎨
⎩

(I + A)2 + BB∗ = 2(I + A),

(I + A)B + B(I + C) = 2B,

(I + C)2 + B∗B = 2(I + C).

(6)

The regularity of (M,N ) implies that I±A and I±C are injective. Q̃ ≥ 0 implies that
there exists a contraction D fromM⊥ intoM such that B = (I + A)1/2D(I +C)1/2.
From the system of equations (6), we get

D(I + C)D∗ = I − A, AD = −DC, D∗(I + A)D = I − C .

It follows that

C = −D∗AD, B = (I − A2)1/2D, D∗D = IM⊥ and DD∗ = IM,

where I ± A are injective, i.e., 1 and −1 /∈ σP (A). �
Remark 3.1 If (P, Q) is a reflective regular pair, then

dimM = dimM⊥ = 1

2
dimH and dimN = dimN⊥ = 1

2
dimH
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since the operator D in Theorem 3.1 is a unitary operator from M⊥ onto M.

It is well known that if T =
(
A B
C D

)
and A is invertible, then the inverse of T is

T−1 =
(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
(7)

whenever the Schur complement S = D − CA−1B of A in T is invertible. The
expression (7) is called the Banachiewicz–Schur form of operator T and can be found
in standard textbooks on linear algebra.

Corollary 3.1 If (P, Q) is a reflective regular pair having the matrix representations
(5), then the following statements hold:

(i) R(P + Q) is dense inH;
(ii) ‖P + Q‖ = √

2‖I + A‖1/2;
(iii) R(P+Q) is closed if and only if P+Q is invertible if and only if−1 /∈ σ(A).

In this case,

(P + Q)−1 = 1

2

(
I (I + A)−1/2(I − A)1/2D

D∗(I + A)−1/2(I − A)1/2 I

)
.

Proof (i)R(P+Q) is not dense if and only if 0 ∈ σP (P+Q) since P+Q is selfadjoint.
Suppose that there exists a unit vector x = (x1, x2) ∈ H such that (P + Q)x = 0. By
(5), one has

(P + Q)x =
(

I + A (I − A2)1/2D
D∗(I − A2)1/2 −D∗(I + A)D

) (
x1
x2

)
= 0.

Then,

{
(I + A)x1 + (I − A2)1/2Dx2 = 0,
D∗(I − A2)1/2x1 − D∗(I + A)Dx2 = 0.

Observing that I ± A are injective and D is unitary, we get

{
(I + A)x1 + (I − A2)1/2Dx2 = 0,
(I − A)x1 − (I − A2)1/2Dx2 = 0.

Solving the above equations, we obtain that x1 = 0 and x2 = 0.Hence, 0 /∈ σP (P+Q)

and thus R(P + Q) is dense.
(ii) By (5), (P+Q)2 = 2(I+A)⊕2D∗(I+A)D. So, ‖P+Q‖ = ‖(P+Q)2‖1/2 =√
2‖I + A‖1/2.
(iii) By items (i) and (ii), we know that P+Q is invertible if and only ifR(P+Q) is

closed if and only if −1 /∈ σ(A). The inverse (P + Q)−1 can be obtained by applying
the representation (7). �
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If P and Q are two general reflection operators, by Theorem 3.1, we obtain the
following useful representations.

Corollary 3.2 Let P and Q be two reflection operators andHi , i = 1, . . . , 6 be defined
by (4). Then P and Q have the following operator matrix forms

P = I1 ⊕ I2 ⊕ −I3 ⊕ −I4 ⊕
(

I5 0
0 −I6

)
,

Q = I1 ⊕ −I2 ⊕ I3 ⊕ −I4 ⊕
(

A (I5−A2)1/2D
D∗(I5−A2)1/2 −D∗AD

) (8)

with respect to the space decomposition H = ⊕6
i=1Hi , respectively, where A is a

selfadjoint contraction onH5 with that 1,−1 /∈ σP (A), D is a unitary operator from
H6 onto H5, and Ii is the identity onto Hi , i = 1, . . . , 6.

Note that dimH5 = dimH6 since D is a unitary operator from H6 onto H5.

Corollary 3.3 Let P and Q be two reflection operators andHi , i = 1, . . . , 6 be defined
by (4). Then PQ = QP if and only if dimH5 = dimH6 = 0.

Proof By Corollary 3.2,

PQ − QP = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕
(

0 2(I5−A2)1/2D
−2D∗(I5−A2)1/2 0

)
. (9)

Since I5 ± A are injective and D is a unitary operator, PQ = QP if and only if
dimH5 = dimH6 = 0. �

Also by Corollary 3.2, we have PQ + QP = 2I1 ⊕ −2I2 ⊕ −2I3 ⊕ 2I4 ⊕ 2A ⊕
2D∗AD.

Theorem 3.2 Let P and Q be two reflection operators onH having the matrix repre-
sentations (8) and Hi , i = 1, . . . , 6 be defined by (4). Then the following statements
hold.

(i) � = c1P + c2Q, where c1, c2 ∈ C\{0}, is invertible if and only if c1 + c2 �= 0
whenever H1 or H4 �= {0}, c1 − c2 �= 0 whenever H2 or H3 �= {0} and

− c21+c22
2c1c2

/∈ σ(A);
(ii) If |c1| �= |c2|, then � = c1P + c2Q is invertible for every c1, c2 ∈ C.

Proof (i) By Corollary 3.2, one has

�2 = (c1P + c2Q)2

= (
c21 + c22

)
I + c1c2(PQ + QP)

= (c1 + c2)2 I1 ⊕ (c1 − c2)2 I2 ⊕ (c1 − c2)2 I3 ⊕ (c1 + c2)2 I4
⊕ [(

c21 + c22
)
I5 + 2c1c2A

] ⊕ D∗ [
(c21 + c22)I5 + 2c1c2A

]
D.

(10)

� is invertible if and only if �2 is invertible if and only if c1 + c2 �= 0 whenever H1

orH4 �= {0}, c1 − c2 �= 0 wheneverH2 orH3 �= {0} and − c21+c22
2c1c2

/∈ σ(A) ⊆ [−1, 1].
(ii) If |c1| �= |c2| and c1c2 = 0, then � = c1P + c2Q is obviously invertible by

(10).
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If c1c2 �= 0, let c1 = r1eiθ1 �= 0 and c2 = r2eiθ2 �= 0, where ri and θi denote
the module and argument of complex numbers ci , i = 1, 2, respectively. By direct
computation,

c21 + c22
2c1c2

=
(
r21 + r22

)
cos(θ1 − θ2) + i

(
r21 − r22

)
sin(θ1 − θ2)

2r1r2
.

Since |c1| �= |c2|, then c1 ± c2 �= 0 and r1 �= r2, obviously.

(a) If r1 �= r2, θ1 = θ2 + kπ, k ∈ Z, then 1 < | c21+c22
2c1c2

| /∈ σ(A) ⊆ [−1, 1].
(b) If r1 �= r2, θ1 �= θ2 + kπ, k ∈ Z, then − c21+c22

2c1c2
/∈ R.

As a result, we get c1 ± c2 �= 0 and − c21+c22
2c1c2

/∈ σ(A). By (10), we obtain that � =
c1P + c2Q is invertible for every c1, c2 ∈ C\{0} with |c1| �= |c2|. �

We have discussed the invertibility of operator P + Q if (P, Q) is a reflective
regular pair having matrix representations (5) in Corollary 3.1. In the following, we
will talk about the invertibility of P − Q and P + Q − I for the general reflection
operators P and Q.

Theorem 3.3 Let P and Q be two reflection operators andHi , i = 1, . . . , 6 be defined
by (4).

(i) P − Q is invertible if and only if dimH1 = dimH4 = 0 and 1 /∈ σ(A).
(ii) P + Q − I is invertible if and only if 3I − (P − Q)2 is invertible if and only

if − 1
2 /∈ σ(A). In this case,

(P + Q − I )−1

=
[
3I − (P − Q)2

]−1
(I + P + Q)

= (I + P + Q)
[
3I − (P − Q)2

]−1

= I1 ⊕ −I2 ⊕ −I3 ⊕ −1

3
I4 ⊕

(
(2I5+A)(I5+2A)−1 (I5+2A)−1(I5−A2)1/2D

D∗(I5+2A)−1(I5−A2)1/2 −D∗A(I5+2A)−1D

)
.

Proof (i) By Corollary 3.2,

(P − Q)2 = 0 ⊕ 4I2 ⊕ 4I3 ⊕ 0 ⊕ 2(I5 − A) ⊕ 2D∗(I5 − A)D.

We get that P − Q is invertible if and only if dimH1 = dimH4 = 0 and 1 /∈ σ(A).
(ii) By Corollary 3.2,

P + Q − I = I1 ⊕ −I2 ⊕ −I3 ⊕ −3I4 ⊕
(

A (I5−A2)1/2D
D∗(I5−A2)1/2 −D∗(2I5+A)D

)
.

ByTheorem3.1, 2I5+A is invertible since A is a contraction operator.By (7), P+Q−I

is invertible if and only if the Schur complement S = A + (I5 − A2)1/2DD∗(2I5
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+ A)−1DD∗(I5 − A2)1/2 = (2I5 + A)−1(I5 +2A) is invertible if and only if I5 +2A
is invertible if and only if − 1

2 /∈ σ(A). Applying the formula in (7), we get that

(P + Q − I )−1

= I1 ⊕ −I2 ⊕ −I3 ⊕ −1

3
I4 ⊕

(
(2I5+A)(I5+2A)−1 (I5+2A)−1(I5−A2)1/2D

D∗(I5+2A)−1(I5−A2)1/2 −D∗A(I5+2A)−1D

)
.

Note that (P − Q)2 = 0 ⊕ 4I2 ⊕ 4I3 ⊕ 0 ⊕ 2(I5 − A) ⊕ 2D∗(I5 − A)D,

3I − (P − Q)2 = 3I1 ⊕ −I2 ⊕ −I3 ⊕ 3I4 ⊕ (I5 + 2A) ⊕ D∗(I5 + 2A)D

and

3I − (P − Q)2 = (P + Q − I )(I + P + Q) = (I + P + Q)(P + Q − I ).

We also get 3I − (P − Q)2 is invertible if and only if − 1
2 /∈ σ(A) if and only if

P + Q − I is invertible. In this case,

(P + Q − I )−1 =
[
3I − (P − Q)2

]−1
(I + P + Q)

= (I + P + Q)
[
3I − (P − Q)2

]−1
. �

Let P and Q be the reflection operators on H. According to (9), we observe that
N (PQ − QP) andN (PQ − QP)⊥ are invariant subspaces of P and Q. Therefore,
P and Q as operators on H = N (PQ − QP) ⊕ N (PQ − QP)⊥ have the operator
matrix representations

P = P1 ⊕ P2 and Q = Q1 ⊕ Q2,

respectively, where the restrictions Pi and Qi , i = 1, 2 have the following properties:

(1). P1Q1 = Q1P1; (2). N (P2Q2 − Q2P2) = {0}.

Besides, N (PQ − QP) admits the orthogonal decomposition N (PQ − QP) =⊕4
i=1Hi . Therefore, (P, Q) is a regular pair if and only ifN (PQ− QP) = {0}. For

orthogonal projections cases, Halmos presented a nice and tractable characterization
of the regular pair in [10, Theorem 2].

Theorem 3.4 Let � = c1P + c2Q, where c1, c2 ∈ R\{0} and P, Q are two reflection
operators on H with P �= ±Q. Then � is a reflection operator if and only if the
following conditions hold:

123



2810 W. Liang, C. Deng

(i) (P, Q) is the reflective regular pair;

(ii) | 1−c21−c22
2c1c2

| < 1;

(iii) P and Q, as operators onto H = R(I + P) ⊕ R(I − P), have the operator
matrix forms

P =
(
I 0
0 −I

)
and Q =

(
A (I − A2)1/2D

D∗(I − A2)1/2 −D∗AD

)
,

where A = 1−c21−c22
2c1c2

I and D is aunitary operator fromR(I−P)ontoR(I+P).

Proof The sufficiency is clear, so it is enough to prove the necessity. Let P and Q have
the matrix representations in (8). Consequently, PQ + QP = 2I1 ⊕ −2I2 ⊕ −2I3 ⊕
2I4 ⊕ 2A ⊕ 2D∗AD. If � is a reflection operator, then

�2 = (c1P + c2Q)2 =
(
c21 + c22

)
I + c1c2(PQ + QP) = I .

Hence,

PQ + QP = 2I1 ⊕ −2I2 ⊕ −2I3 ⊕ 2I4 ⊕ 2A ⊕ 2D∗AD = 1 − c21 − c22
c1c2

I .

Now, in view of the equations above, we consider the cases as follows:

If
1−c21−c22

c1c2
= 2, then dimHi = 0, i = 2, 3, 5, 6 since A is a contraction with

1,−1 /∈ σP (A). In this case,

P = I1 ⊕ −I4 and Q = I1 ⊕ −I4,

which contradicts to P �= Q. Similarly, if
1−c21−c22

c1c2
= −2, then dimHi = 0, i =

1, 4, 5, 6. In this case,

P = I2 ⊕ −I3 and Q = −I2 ⊕ I3,

which is a contradiction to P �= −Q. Also, if
1−c21−c22

c1c2
�= ±2, then dimHi = 0, i =

1, 2, 3, 4. In this case,

P = I5 ⊕ −I6 and Q =
(

A (I5 − A2)1/2D
D∗(I5 − A2)1/2 −D∗AD

)
,

where A = 1−c21−c22
2c1c2

I5 and D is a unitary operator from R(I − P) onto R(I + P).

Hence, (P, Q) is the reflective regular pair and | 1−c21−c22
2c1c2

| < 1. �
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In the following, we will investigate the unitary equivalence of the reflection oper-
ators P and Q, which is similar to that of two orthogonal projections (see [4, Theorem
3.1]).

Let the reflective regular pair (P, Q) have the matrix representations (5). It is easy
to check that the unitary operator

W0 =
√
2

2

(
(I + A)1/2 (I − A)1/2D

D∗(I − A)1/2 −D∗(I + A)1/2D

)
(11)

satisfies W0P = QW0 and PW0 = W0Q. Moreover, we observe that the unitary
U ∈ innQ(P) if and only if U∗ ∈ outQ(P). In the following, we obtain the general
expressions for all the intertwining operators of P respect to Q when (P, Q) is a
reflective regular pair.

Theorem 3.5 Let (P, Q) be a reflective regular pair and W0 be defined by (11). Then

outQ(P) = {W0U : U P = PU ,U ∈ U(H)},
intQ(P) = {W0U : U P = PU ,UQ = QU ,U ∈ U(H)}.

Moreover, if U ∈ U(H) such that U P = PU, then W0U = UW0 if and only if
QU = UQ.

Proof Clearly, {W0U : U P = PU ,U ∈ U(H)} ⊆ outQ(P). On the other hand, if
there exists a unitary operator W such that WP = QW , then U = W ∗

0W is a unitary
operator and U P = W ∗

0WP = W ∗
0 QW = PW ∗

0W = PU . Thus, W = W0U , where
U ∈ U(H) satisfies U P = PU , i.e., outQ(P) ⊆ {W0U : U P = PU ,U ∈ U(H)}.
Therefore, we obtain that

outQ(P) = {W0U : U P = PU ,U ∈ U(H)}.

Clearly, intQ(P) ⊇ {W0U : U P = PU ,UQ = QU ,U ∈ U(H)}. On the other
hand, if T ∈ intQ(P) = outQ(P)∩ innQ(P), then T ∈ outQ(P). Hence, there exists
a U ∈ U(H) such that U P = PU and T = W0U . Since T = W0U ∈ innQ(P), we
have PW0U = W0UQ. Since PW0 = W0Q and W0 is invertible, we getUQ = QU
and

intQ(P) ⊆ {W0U : U P = PU ,UQ = QU ,U ∈ U(H)}.

Therefore, we obtain that

intQ(P) = {W0U : U P = PU ,UQ = QU ,U ∈ U(H)}.
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By (5), P = I ⊕ −I . The relationU P = PU implies thatU = U11 ⊕U22, where
U11 and U22 are unitary operators. If W0U = UW0, then

(
(I + A)1/2U11 (I − A)1/2DU22

D∗(I − A)1/2U11 −D∗(I + A)1/2DU22

)

=
(

U11(I + A)1/2 U11(I − A)1/2D
U22D∗(I − A)1/2 −U22D∗(I + A)1/2D

)
.

It follows that

{
U11(I + A)1/2 = (I + A)1/2U11,

U11(I − A)1/2D = (I − A)1/2DU22.

Theorem 3.1�⇒
{

U11A = AU11,

U22 = D∗U11D.
�⇒ QU = UQ.

Similarly, if QU = UQ, we can derive that W0U = UW0. �

Remark 3.2 Let the reflective regular pair (P, Q) have the matrix representations (5)
and W0 be defined by (11). Let B0 = P − Q and M0 = I + PQ + QP .

(i) Theorem 3.5 shows that if there exists a unitary operator W ∈ U(H) such that
PW = WQ and WP = QW , then

W = W0U =
√
2

2

(
(I + A)1/2 (I − A)1/2D

D∗(I − A)1/2 −D∗(I + A)1/2D

) (
U11 0
0 D∗U11D

)
,

(12)

where U11 ∈ U(M) satisfies U11A = AU11.
(ii) Note that A is a contraction on M with that neither 1 nor −1 belongs to the

point spectrum of A and D is a unitary operator from M⊥ onto M. It is easy
to get that

B0 =
(

I − A −(I − A2)1/2D
−D∗(I − A2)1/2 −D∗(I − A)D

)
,

2I − B0 =
(

I + A (I − A2)1/2D
D∗(I − A2)1/2 D∗(3I − A)D

)

and

2I + B0 =
(

3I − A −(I − A2)1/2D
−D∗(I − A2)1/2 D∗(I + A)D

)

are three injective selfadjoint operators.
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(iii) If − 1
2 ,

1
2 /∈ σP (A), then M0 = (I + 2A) ⊕ D∗(I + 2A)D,

M0B0 =
(

(I − A)(I + 2A) −(I − A2)1/2(I + 2A)D
−D∗(I − A2)1/2(I + 2A) −D∗(I − A)(I + 2A)D

)
,

2I − M0B0 =
(

I − A + 2A2 (I + 2A)(I − A2)1/2D
D∗(I + 2A)(I − A2)1/2 D∗(3I + A − 2A2)D

)

and

2I + M0B0 =
(

3I + A − 2A2 −(I − A2)1/2(I + 2A)D
−D∗(I − A2)1/2(I + 2A) D∗(I − A + 2A2)D

)

are injective selfadjoint operators.
(iv) As one example, we only prove that M0B0 is injective if − 1

2 /∈ σP (A). In fact,

if there exists (x, y) ∈ H such that M0B0

(
x
y

)
= 0, then

(
(I − A)(I + 2A) −(I − A2)1/2(I + 2A)D

−D∗(I − A2)1/2(I + 2A) −D∗(I − A)(I + 2A)D

)(
x
y

)
= 0.

That is,

{
(I − A)(I + 2A)x − (I − A2)1/2(I + 2A)Dy = 0,
D∗(I − A2)1/2(I + 2A)x + D∗(I − A)(I + 2A)Dy = 0.

Then,

{
(I − A)(I + 2A)x − (I − A2)1/2(I + 2A)Dy = 0,
(I + A)(I + 2A)x + (I − A2)1/2(I + 2A)Dy = 0.

Adding the two equations, we can get 2(I + 2A)x = 0. Then x = 0 since
− 1

2 /∈ σP (A) and y = 0 since D is a unitary operator. Hence,M0B0 is injective.

Similarly, we can obtain that B0, 2I − B0 and 2I + B0 are injective. Moreover,
2I − M0B0 and 2I + M0B0 are injective if − 1

2 ,
1
2 /∈ σP (A).

Let (P, Q) be a pair of reflection operators andHi , i = 1, . . . , 6 be defined by (4).
If there exists a U ∈ U(H) such that PU = UQ and U P = QU , then

U (P − Q) = −(P − Q)U .

Denote B := P − Q = 0 ⊕ 2I2 ⊕ −2I3 ⊕ 0 ⊕ B0. Clearly, N (B) = H1 ⊕ H4,
N (B − 2I ) = H2 and N (B + 2I ) = H3 are reduced subspaces of B. Let H0 =
H5⊕H6, then B, as an operator onH = (H1⊕H4)⊕H2⊕H3⊕H0, has the operator
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matrix form B = 0⊕ 2I2 ⊕ −2I3 ⊕ B0. Let U = (U 0
i j )1≤i, j≤4. By UB = −BU , we

have
(
U 0
11 E
F U2

) (
0 0
0 B0

)
= −

(
0 0
0 B0

) (
U 0
11 E
F U2

)
, (13)

where E = (U 0
12, U

0
13, U

0
14), F = (U 0

21,U
0
31,U

0
41)

�, B0 = 2I2 ⊕ −2I3 ⊕ B0 is
injective and U2 = (U 0

i j )2≤i, j≤4. The equations in (13) imply that E = 0, F = 0

and U2B0 = −B0U2. Thus, U 0
12, U

0
13, U

0
14, U

0
21, U

0
31 and U

0
41 are zero operators. By

U2B0 = −B0U2, we have

⎛
⎜⎝
2U 0

22 −2U 0
23 U 0

24B0

2U 0
32 −2U 0

33 U 0
34B0

2U 0
42 −2U 0

43 U 0
44B0

⎞
⎟⎠ =

⎛
⎜⎝

−2U 0
22 −2U 0

23 −2U 0
24

2U 0
32 2U 0

33 2U 0
34

−B0U 0
42 −B0U 0

43 −B0U 0
44

⎞
⎟⎠ .

Since 2I − B0 and 2I + B0 are injective and dense, thenU 0
22,U

0
24,U

0
33,U

0
34,U

0
42 and

U 0
43 are zero operators. Hence,

U = U 0
11 ⊕

(
0 U 0

23
U 0
32 0

)
⊕U 0

44.

Since P|N (B) = Q|N (B) = I1⊕−I4, themulti-commutativity of P|N (B),Q|N (B) and

U 0
11 implies thatU 0

11 = U11 ⊕U44 ∈ B(H1 ⊕H4). Moreover,

(
0 U 0

23
U 0
32 0

)
is a uni-

tary operator if and only ifU 0
23 andU

0
32 are unitaries if and only if dimH2 = dimH3.

By Remark 3.2 (i), we get thatU 0
44 has the representation (12). As a consequence, we

present the following corollary.

Corollary 3.4 Let (P, Q) be a pair of reflection operators and Hi , i = 1, . . . , 6 be
defined by (4). Then P and Q are unitary equivalence if and only if dimH2 = dimH3.

In addition, if P and Q are denoted by (8) and W0 is denoted by (11), then U ∈ U(H)

with U P = QU and PU = UQ has the representation

U = U11 ⊕
(

0 U23
U32 0

)
⊕U44 ⊕ W0

(
U55 0
0 D∗U55D

)
,

where Ui j are unitary operators fromH j onto Hi , U55A = AU55.

At last, we talk about the unitary equivalence of products PQP and QPQ.

Theorem 3.6 Let (P, Q) be a pair of reflection operators and Hi , i = 1, . . . , 6 be
defined by (4). If ± 1

2 /∈ σP (A), then PQP and QPQ are unitary equivalence if and
only if dimH2 = dimH3.

Proof Sufficiency. If dimH2 = dimH3, then there is a U ∈ U(H) such that
PU = UQ and U P = QU by Corollary 3.4. It follows that PQPU = UQPQ
and U PQP = QPQU .
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Necessity. If there is a U ∈ U(H) such that U PQP = QPQU and PQPU =
UQPQ, then we have

U (PQP − QPQ) = −(PQP − QPQ)U .

Let B̃ := PQP − QPQ, B := P − Q and M := I + PQ + QP. Clearly, B̃ = MB.

LetH0 = H5⊕H6.Moreover, B andM as operators onH = H1⊕H2⊕H3⊕H4⊕H0
have the matrix forms

B = 0 ⊕ 2I2 ⊕ −2I3 ⊕ 0 ⊕ B0 and M = 3I1 ⊕ −I2 ⊕ −I3 ⊕ 3I4 ⊕ M0,

respectively, where B0 = B|H0 and M0 = M |H0 . Clearly, N (B) = H1 ⊕ H4.
Furthermore, B and M as operators onH = (H1 ⊕H4)⊕H2 ⊕H3 ⊕H0 have matrix
forms

B = 0 ⊕ 2I2 ⊕ −2I3 ⊕ B0 and M = 3IN (B) ⊕ −I2 ⊕ −I3 ⊕ M0.

Thus,

B̃ = MB = 0 ⊕ −2I2 ⊕ 2I3 ⊕ M0B0.

ByRemark 3.2 (iii) and (iv),M0B0 and 2I±M0B0 are injective. LetU = (Ui j )1≤i, j≤4.

From U B̃ = −B̃U , one has

⎛
⎜⎜⎝
0 −2U12 2U13 U14M0B0
0 −2U22 2U23 U24M0B0
0 −2U32 2U33 U34M0B0
0 −2U42 2U43 U44M0B0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 0 0 0
2U21 2U22 2U23 2U24

−2U31 −2U32 −2U33 −2U34
−M0B0U41 −M0B0U42 −M0B0U43 −M0B0U44

⎞
⎟⎟⎠ .

It is easy to see thatU12,U13,U21,U31,U22 andU33 are zero operators. Besides,U14
and U41 are zero operators since M0B0 is injective and dense. U24 and U42 are zero
operators since 2I − M0B0 is injective and dense. U34 and U43 are zero operators

since 2I + M0B0 is injective and dense. Hence, U = U11 ⊕
(

0 U23
U32 0

)
⊕ U44,

where U11 ∈ B(N (B)), U44 ∈ B(H0), U23 ∈ B(H3,H2) and U32 ∈ B(H2,H3) are
unitary operators. Therefore, dimH2 = dimH3. �
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