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Abstract
The strong geodetic number, sg(G), of a graph G is the smallest number of vertices
such that by fixing a suitable geodesic between each pair of selected vertices, all
vertices of the graph are covered. In this paper, the formula for sg(Kn,m) is given, as
well as a formula for the crown graphs S0n . Bounds on the strong geodetic number of
the hypercube Qn are also discussed.

Keywords Geodetic number · Strong geodetic number · Complete bipartite graph ·
Crown graph · Hypercube
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1 Introduction

The three mainly studied variations of covering vertices of a graph with shortest
paths (also called geodesics) are the geodetic problem [3,4,6,7,9,14,15,21,27,29], the
isometric path problem [8,10,11], and the strong geodetic problem. The latter aims to
determine the smallest number of vertices needed, such that by fixing one geodesic
between each pair of selected vertices, all vertices of a graph are covered. More
formally, the problem is introduced in [24] as follows.
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2758 V. Gledel, V. Iršič

LetG = (V , E) be a graph. Given a set S ⊆ V , for each pair of vertices {x, y} ⊆ S,
x �= y, let g̃(x, y) be a selected fixed shortest path between x and y. We set

˜I (S) = {g̃(x, y) : x, y ∈ S} ,

and V (˜I (S)) = ⋃

˜P∈˜I (S) V (˜P). If V (˜I (S)) = V for some ˜I (S), then the set S is
called a strong geodetic set. For a graph G with just one vertex, we consider the vertex
as its unique strong geodetic set. The strong geodetic problem is to find a minimum
strong geodetic set ofG. The cardinality of aminimum strong geodetic set is the strong
geodetic number of G and is denoted by sg(G). Such a set is also called an optimal
strong geodetic set.

In the first paper on the topic [24], the strong geodetic number of complete Apol-
lonian networks is determined and it is proved that the problem is NP-complete in
general. Also, some comparisons are made with the isometric path problem. The
problem has also been studied on grids and cylinders [22], and on Cartesian products
in general [18]. Additional results about the problem on Cartesian products, as well as
a notion of a strong geodetic core, have been recently studied in [12]. Along with the
strong geodetic problem, an edge version of the problem was also introduced in [25].

The strong geodetic problem appears to be difficult even on complete bipartite
graphs. Some initial investigation is done in [17], where the problem is presented as
an optimization problem and the solution is found for balanced complete bipartite
graphs. Some more results have been very recently presented in [19], where it is
proved that the problem is NP-complete on general bipartite graphs, but polynomial
on complete bipartite graphs. The asymptotic behavior of the strong geodetic problem
on them is also discussed.

In this paper, we continue the study on bipartite graphs, specifically on the complete
bipartite graphs, crown graphs, and hypercubes. In Sect. 2, we determine the explicit
formula for complete bipartite graphs. In Sect. 3, we discuss the strong geodetic
number of crown graphs. In the last section, an upper and lower bound for the strong
geodetic number of hypercubes are obtained.

To conclude this section, we state some basic definitions. Recall that a crown graph
S0n is a graph obtained from a complete bipartite graph Kn,n by deleting a perfect
matching. Recall also that a hypercube Qn is a graph on the vertex set {0, 1}n , where
two vertices are adjacent if and only if they differ in exactly one bit.

2 Complete Bipartite Graphs

For completeness, we first state some already known results.

Theorem 2.1 ([17], Theorem 2.1) If n ≥ 6, then

sg(Kn,n) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2

⌈

−1 + √
8n + 1

2

⌉

, 8n − 7 is not a perfect square,

2

⌈

−1 + √
8n + 1

2

⌉

− 1, 8n − 7 is a perfect square.
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Strong Geodetic Number of Complete Bipartite Graphs… 2759

Note also that sg(K1,m) = m for all positive integers m, as K1,m is a tree with m
leaves. Hence, in the following results, this case is omitted.

To determine sg(Kn,m), we will need the following definitions and notation. We
will denote the extension of an integer-valued function ϕ to the real values by ϕ̃. Let
3 ≤ n ≤ m be integers. Define g(p) = m−(p

2

)

for p ∈ {0, . . . , n} and g̃(p) = m−(p
2

)

for p ∈ R as a continuous extension of g.
For p ∈ {0, 1, . . . , n} define f (p) = min{q ∈ Z : (q

2

) ≥ n− p} and its continuous
extension ˜f (p) = 1+√

1+8(n−p)
2 , the solution of

(q
2

) = n− p, where p, q ∈ R. Observe
that for p < n, f (p) = � ˜f (p)	, but 0 = f (n) �= � ˜f (n)	 = 1.

Define also F(k) = k + f (k), G(k) = k + g(k) and s(k) = max{F(k),G(k)}, for
all k ∈ {0, 1, . . . , n}. Note that whenever the functions defined above are used, the
integers n and m will be clear from the context.

Lemma 2.2 If 3 ≤ n ≤ m, then sg(Kn,m) = min{s(k) : 0 ≤ k ≤ n, k ∈ Z}.
Proof. Let (X ,Y ), |X | = n, |Y | = m, be the bipartition of Kn,m . Let Sk be a minimal
strong geodetic set of the graph, which has exactly k vertices in X . Denote l = |Sk∩Y |.
As Y must be covered, l ≥ m − (k

2

) = g(k) (vertices of Y are covered by being in a
strong geodetic set or by a geodesic of length two between two vertices in the strong
geodetic set in X ).

As X must also be covered, l must be such that
(l
2

) ≥ n − k. Thus, by definition of
f , l ≥ f (k).
If l ≥ g(k) and l ≥ f (k), then both X and Y are covered. Hence, by the minimality

of Sk , we have l = max{ f (k), g(k)}.
Thus

sg(Kn,m) = min{|Sk | : 0 ≤ k ≤ n}
= min{k + max{ f (k), g(k)} : 0 ≤ k ≤ n}
= min{s(k) : 0 ≤ k ≤ n}.

The main idea behind the following result is that sg(Kn,m) = min{s(k) : 0 ≤ k ≤
n, k ∈ Z} is close to the value of min{max{k + ˜f (k), k + g̃(k)} : 0 ≤ k ≤ n}. But
before we state the more general result, consider the case n = 2, which has already
been studied in [19, Corollary 2.3].

Proposition 2.3 If m ≥ 2, then sg(K2,m) =
{

3; m = 2,

m; m ≥ 3.

Theorem 2.4 If 3 ≤ n ≤ m, then

sg(Kn,m) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

m; n − 3 ≥ (m−3
2

)

,

m + n − (n
2

); m ≥ (n
2

)

,

n; (n
2

)

> m ≥ 3 + (n−3
2

)

,

min {G(�x∗	 − 1), F(�x∗	)} ; otherwise ,
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2760 V. Gledel, V. Iršič

where 3 ≤ x∗ ≤ n − 3 is a solution of m − (x
2

) = 1+√
1+8(n−x)
2 .

Observe that the first case simplifies to (n,m) ∈ {(3, 3), (3, 4), (4, 4), (4, 5),
(5, 5), (6, 6)} and that the “otherwise” case appears if and only if m ≥ n ≥ 7 and
m ≤ 3+(n−3

2

)

. Note that the second case is indeed a known result from [19, Corollary
2.3], but here we present a different proof for it.

As the proof consists of some rather technical details, we shall first prove some
useful lemmas.

Lemma 2.5 For 3 ≤ k ≤ n, the function G(k) is strictly decreasing. Moreover, we
have G(0) = G(3) = m and G(1) = G(2) = m + 1. The same holds for the function
g̃(k).

Proof It follows from the fact that k − (k
2

)

is strictly decreasing for k ≥ 3.

Lemma 2.6 For 0 ≤ k ≤ n−1, F(k) and ˜f (k) are increasing (not necessarily strictly).
Additionally,wehave F(n−1) = n+1and F(n) = n.Moreover, |F(k+1)−F(k)| ≤ 1
for all 0 ≤ k ≤ n − 1.

Proof The claim follows from the fact that if 0 ≤ p ≤ n − 1 and f (p) = q, then
f (p + 1) ∈ {q, q − 1} by definition of f .

Lemma 2.7 If n − 3 <
(m−3

2

)

, m − 3 ≤ (n−3
2

)

and n ≥ 3, then the functions ˜f and g̃
intersect exactly once on [3, n − 3]. The condition is equivalent to (n,m) ∈ {(n,m) :
n ≥ 7, n ≤ m ≤ 3 + (n−3

2

)}.
Proof The simplification of the conditions can be checked by a simple calculation.

Moreover, the first condition implies ˜f (3) ≤ g̃(3), and the second implies ˜f (n −
3) ≥ g̃(n−3). As ˜f is increasing and g̃ is strictly decreasing on [3, n−3] (and n ≥ 7),
it follows that ˜f and g̃ intersect exactly once on [3, n − 3].
Lemma 2.8 Form ≥ n ≥ 7 andm ≤ 3+(n−3

2

)

, let ˜f and g̃ intersect in x∗ ∈ [3, n−3].
Then, it holds:

(i) F(�x∗	) ≥ G(�x∗	),
(ii) G(�x∗	 − 1) ≥ F(�x∗	 − 1).

Proof As we are on the interval [3, n − 3], it suffices to prove both properties for ˜f
and g̃ instead of F and G, as f (�x	) = ˜f (�x	) for x ∈ [3, n − 3] and similarly for g
and g̃.

(i) As ˜f is increasing, g̃ is strictly decreasing, ˜f (x∗) = g̃(x∗), and x∗ ≤ �x∗	, it
follows that ˜f (�x∗	) ≥ g̃(�x∗	).

(ii) As ˜f is increasing, g̃ is strictly decreasing, ˜f (x∗) = g̃(x∗), and �x∗	 − 1 ≤ x∗,
it follows that ˜f (�x∗	 − 1) ≤ ˜f (x∗) = g̃(x∗) < g̃(�x∗	 − 1).

Proof of Theorem 2.4. Recall that by Lemma 2.2, sg(Kn,m) = min{s(k) : 0 ≤ k ≤
n, k ∈ Z} = min{max{F(k),G(k)} : 0 ≤ k ≤ n, k ∈ Z}.
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Strong Geodetic Number of Complete Bipartite Graphs… 2761

Case 1: Let n − 3 ≥ (m−3
2

)

. The only possibilities are (n,m) ∈ {(3, 3), (3, 4),
(4, 4), (4, 5), (5, 5), (6, 6)}. For all of them, we can easily check that the optimal
value is m.
Case 2: Let m ≥ (n

2

)

. Thus, G(n) ≥ F(n). As n ≥ 3 and G is strictly decreasing,
it also holds G(n − 1) ≥ F(n − 1). If n = 3, then f (0) = f (3) = 3 and
f (4) = f (5) = 4. Thus, the minimum is attained in either k = 0 or k = n, but
the value is the same in both cases and equals m + n − (n

2

) = m. If n ≥ 4, then
G(k) ≥ F(k) for all 0 ≤ k ≤ n (by the properties of F and G) and the minimum
is attained in k = n, hence the value is m + n − (n

2

)

.

Case 3: Let
(n
2

)

> m ≥ 3+ (n−3
2

)

. Thus, G(n) < F(n) and G(n−3) ≥ F(n−3).
Hence, by the properties of G and F , the minimum is attained in k = n, hence the
value is F(n) = n.
Case 4: Lastly, we study the “otherwise” case, i.e., the case when m ≥ n ≥ 7
and m ≤ 3 + (n−3

2

)

. By Lemma 2.7, there exists an x∗ ∈ [3, n − 3] such that
˜f (x∗) = g̃(x∗). Clearly, minmax{ ˜f , g̃} on [0, n] is attained in x∗. But as x∗ is
not necessarily an integer, we must further investigate the properties of F and G
on integer values close to x∗. By Lemma 2.8(i), F(�x∗	) ≥ G(�x∗	), thus also
F(k) ≥ G(k) for all k ≥ �x∗	. By Lemma 2.8(ii), G(�x∗	 − 1) ≥ F(�x∗	 − 1),
thus G(k) ≥ F(k) for all k ≤ �x∗	 − 1. Hence,

min{max{F(k),G(k)} : 0 ≤ k ≤ n, k ∈ Z} = min
{

G(�x∗	 − 1), F(�x∗	)} .

As already mentioned, asymptotic behavior of sg(Kn,m) is presented in [19, The-
orem 2.5]. Two special cases of this behavior are a direct consequence of the second
and third case in the above Theorem 2.4, but determining the asymptotic behavior for
a general case is not trivial even with the result of Theorem 2.4.

3 Crown Graphs

In the following we determine sg(S0n ), using similar techniques as in the proof of
Theorem 2.1 [17].

Lemma 3.1 Let T = T1 ∪ T2 be a strong geodetic set of S0n , n ≥ 2, with bipartition
(X ,Y ), where T1 ⊆ X, T2 ⊆ Y and ti = |Ti | for all i ∈ {1, 2}. If |t1 − t2| ≥ 2, then
there exists a strong geodetic set T ′ = T ′

1 ∪ T ′
2, T

′
1 ⊆ X, T ′

2 ⊆ Y , such that |T ′| = |T |
and |t ′1 − t ′2| < |t1 − t2|, where t ′i = |T ′

i | for i ∈ {1, 2}.
Proof Let X = {x1, . . . , xn}, Y = {y1, . . . , yn} and xi ∼ yi for i ∈ [n] be a removed
perfectmatching.Without loss of generality, we assume t1 ≥ t2 and let t1−t2 = k ≥ 2,
T1 = {x1, . . . , xt2+k} and T2 = {y1, . . . , yt2}. Note that geodesics between xt2+k and
T2 are just edges. Actually, the only geodesics between T1 and T2 that cover a vertex
in (T1 ∪T2)C are between vertices xi , yi . Thus, if T2 consisted of t2 other vertices (not
necessarily those with indices in [t1]), then the geodesics between vertices in T1 ∪ T2
would cover fewer vertices. This is of course not true for a general bipartite graph, but
holds for a crown graph.
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2762 V. Gledel, V. Iršič

First consider the case t2 = 0. As T is a strong geodetic set, t1 = n. Consider
T ′ = (X − {xn}) ∪ {y1}. Clearly, |T ′| = |T | and n − 2 = |t ′1 − t ′2| < |t1 − t2| = n. To
see that T ′ is a strong geodetic set, fix the following geodesics: x1 ∼ y2 ∼ xn ∼ y1
and x1 ∼ yi+1 ∼ xi for all 2 ≤ i ≤ n − 1.

Next, consider the case t2 = min{t1, t2} ≥ 1. Define T ′ = T ′
1 ∪ T ′

2 where
T ′
1 = T1 − {xt2+k} and T ′

2 = T2 ∪ {yt2+1}. As t2 ≥ 1, we have 0 ≤ t ′i ≤ n. Clearly,
|T ′| = |T | and |t ′1 − t ′2| < |t1 − t2|. In the following, we prove that T ′ is a strong
geodetic set. First, cover xt2+k by a geodesic y1 ∼ xt2+k ∼ yt2+1 (as t2 ≥ 1 and k ≥ 2).
Next, fix the following geodesics: xi ∼ yt2+k+i ∼ xt2+k+i+1 ∼ yi for i ∈ [t2 −1] and
xt2 ∼ yt2+k+t2 ∼ xt2+k+1 ∼ yt2 , and

(t2
2

)

geodesics between vertices in {x1, . . . , xt2}
and also between {y1, . . . , yt2} to cover vertices {xt2+k+t2+1, . . . , xt2+k+t2+(t22)

} ∪
{yt2+k+t2+1, . . . , yt2+k+t2+(t22 )

}. If n < t2 + k + t2 + (t2
2

)

, fix geodesics in a similar

manner (but in this case not all are needed). On the other hand, t2 + k + (t2
2

) + t2 ≥ n
as T1 ∪ T2 is a strong geodetic set and thus covers X . The only uncovered vertices are
then {yt2+2, . . . , yt2+k}, hence k − 1 vertices in Y . They can be covered by the (not
yet used) geodesics x1 ∼ yi+1 ∼ xi for i ∈ {t2 + 1, . . . , t2 + k − 1}.
Theorem 3.2 If n ≥ 2, then

sg(S0n ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2

⌈−3 + √
8(n + 1) + 1

2

⌉

, 8n + 1 is not a perfect square,

2

⌈

−3 + √
8n + 1

2

⌉

+ 1, 8n + 1 is a perfect square.

For an optimal strong geodetic set S = S1 ∪ S2 it holds |S1| = |S2| =
⌈−3+√

8n+9
2

⌉

,

if 8n + 1 is not a perfect square, otherwise |S1| =
⌈−3+√

8n+1
2

⌉

and |S2| = |S1| + 1.

Proof Let S = S1 ∪ S2 be a strong geodetic set of S0n where |S| = sg(S0n ) and S1,
S2 each lie in one part of the bipartition. Let p = |S1| and q = |S2|. Without loss of
generality, p ≤ q.

As S is a strong geodetic set and the geodesics in S0n are either edges (between a
vertex in S1 and a vertex in S2), paths of length 2 (between two vertices in Si ) or paths
of length 3 (between unconnected vertices in S1 and S2), it holds:

n ≤ p +
(

q

2

)

+ p ,

n ≤ q +
(

p

2

)

+ p .

From Lemma 3.1, it follows that we can assume |p − q| ≤ 1. Hence, we distinguish
two cases.

Case 1: Let p = q. The inequalities simplify to n ≤ 2p+(p
2

)

for 0 ≤ p ≤ n, which

is equivalent to p ≥ −3+√
8n+9

2 . Hence, the optimal value is p = q =
⌈−3+√

8n+9
2

⌉

and |S| = 2p.
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Case 2: Let q = p + 1. The inequalities simplify to n ≤ 2p + (p+1
2

) = 3p + (p
2

)

and n ≤ 2p + 1 + (p
2

)

. As n ≥ 2, we have p ≥ 1, so the second inequality gives a

stronger constraint. Hence, p ≥ −3+√
8n+1

2 . The optimal value is p =
⌈−3+√

8n+1
2

⌉

,

q = p + 1 and |S| = 2p + 1.
Next, we determine the strong geodetic number of S0n , i.e., determine which case

gives rise to a smaller value of p + q. Let a =
⌈−3+√

8n+9
2

⌉

, b =
⌈−3+√

8n+1
2

⌉

,

sga = 2a and sgb = 2b + 1. We distinguish two cases: 8n + 1 is a perfect square or
not.

Case 1: If 8n+1 is a perfect square, there exists an integerm such thatm2 = 8n+1.
Thus, m is odd and m ≥ 5 (as n ≥ 2). Hence,

⌈−3+m
2

⌉ = m−3
2 and sgb = m − 2.

On the other hand, m2 < 8n + 9 ≤ (m + 1)2, thus a ≤ ⌈−3+m+1
2

⌉ = m−1
2 and

sga = m − 1. In this case sgb < sga .
Case 2: If 8n + 1 is not a perfect square, there exists an integer m such that

m2 < 8n + 1 < (m + 1)2. Notice that m ≥ 4 as n ≥ 2. Thus,

b =
⌈−3 + m + 1

2

⌉

=
{

m−1
2 , m odd,

m−2
2 , m even,

and

sgb =
{

m, m odd,

m − 1, m even.

On the other hand, 8n + 9 < (m + 1)2 + 8 < (m + 2)2 as m ≥ 4. Thus,

a ≤
⌈−3 + m + 2

2

⌉

=
{

m−1
2 , m odd,

m
2 , m even,

and

sga ≤
{

m − 1, m odd,

m, m even.

Hence, if m is odd, sga < sgb. But if m is even, then m + 1 is odd and by [17, Lemma
2.2], there exists an integer k such that (m+1)2 = 8k+1.Clearly, 8n+9 ≤ (m+1)2+7,
but due to the congruences modulo 8, we conclude that 8n + 9 ≤ (m + 1)2. Thus,
a ≤ ⌈−3+m+1

2

⌉ = m−2
2 and sga = m−2. Hence, in this case we also have sga < sgb,

which concludes the proof.

A very special case of a complete bipartite graph without a perfect matching is a
cube Q3 ∼= S04 . By Theorem 3.2, sg(Q3) = 4. In the next section, we study hypercubes
more thoroughly.
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2764 V. Gledel, V. Iršič

4 Hypercubes

In the last section,wediscuss the stronggeodetic problemon another family of bipartite
graphs, namely hypercubes. Recall that a hypercube Qn has 2n vertices and diameter
n. First, we consider some small hypercubes.

Clearly, sg(Q0) = 1, sg(Q1) = 2 and sg(Q2) = 3.We already know that sg(Q3) =
4. Using a computer program, we can also check that sg(Q4) = 5. For an example of
the smallest strong geodetic sets, see Fig. 1.

We can use the result from [17, Theorem 3.1] to attain a lower bound for sg(Qn).
The result states that if G is a graph with n = n(G) and d = diam(G) ≥ 2, then

sg(G) ≥
⌈

d − 3 + √

(d − 3)2 + 8n(d − 1)

2(d − 1)

⌉

.

Using this, we obtain

Corollary 4.1 If n ≥ 2, then

sg(Qn) ≥
⌈

1√
n − 1

· 2 n+1
2

⌉

.

Proof Using [17, Theorem 3.1], we get

sg(Qn) ≥
⌈

n − 3 + √

(n − 3)2 + 2n+3(n − 1)

2(n − 1)

⌉

≥
⌈

1√
n − 1

· 2 n+1
2

⌉

,

which concludes the proof.

On the other hand, we present a non-trivial upper bound, stating that approximately
a square root of the number of vertices is enough to form a strong geodetic set.

Theorem 4.2 If n ≥ 1, then

sg(Qn) ≤
{

3
2 · 2 n

2 , n is even,

2
n+1
2 , n is odd.

Fig. 1 Hypercubes Q3 and Q4 with their strong geodetic sets
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Strong Geodetic Number of Complete Bipartite Graphs… 2765

Proof First, we prove the intermediate result that for all n0, n ≥ n0 ≥ 1, it holds that
sg(Qn) ≤ 2n−n0 + 2n0−1.

Let n0 be an integer, n ≥ n0 ≥ 1. Denote 0k as a string of k zeros and 1k as a string
of k ones. A hypercube Qn consists of 2 · 2n−n0 copies of hypercubes Qn0−1. These
copies are labeled as Qb

n0−1, where b ∈ {0, 1}n−n0+1 and the vertices of the graph Qn

are of the form bc, b ∈ {0, 1}n−n0+1, c ∈ {0, 1}n0−1.
Let P = {b00n0−1 : b ∈ {0, 1}n−n0}, Q = {1n−n01c : c ∈ {0, 1}n0−1} =

V (Q1n−n0+1

n0−1 ), and S = P ∪ Q. Notice that |S| = 2n−n0 + 2n0−1. Next, we prove that
S is a strong geodetic set of Qn .

For each pair of vertices b00n0−1 ∈ P and 1n−n01c ∈ Q, we fix the following
geodesic (where � denotes some shortest path between given vertices):

b00n0−1 � b0c ∼ b1c � 1n−n01c .

As b and c can be any strings of zeros and ones of the appropriate length, all vertices
of the hypercube Qn are covered. Hence, for all n0, n ≥ n0 ≥ 1,

sg(Qn) ≤ 2n−n0 + 2n0−1 .

Therefore, sg(Qn) ≤ min{2n−n0 + 2n0−1 : n0 ∈ N, n ≥ n0 ≥ 1}. The minimum
of this function for n0 ∈ R is attained in n0 = n+1

2 . Thus, the minimum of the integer-
valued function is in n+1

2 if n is odd, and in either � n+1
2 � or � n+1

2 	 if n is even. If n is

odd, then the minimal value is 2
n+1
2 = √

2 · 2 n
2 . If n is even, the value in both cases is

3
2 · 2 n

2 , and thus, this is the minimal value.

By being more careful when selecting the geodesics, we can improve the bound as
follows.

Theorem 4.3 If n ≥ 2, then

sg(Qn) ≤
{

3
2 · 2 n

2 − (� n+1
2 	 − 2

) (� n+1
2 	 − 3

) +1, n is even,

2
n+1
2 − (n−3)(n−5)

4 +1, n is odd.

Proof Using the notation from the proof of Theorem 4.2, the main step is to prove that
for all n0, n ≥ n0 ≥ 4,

sg(Qn) ≤ 2n−n0 + 2n0−1 − (n0 − 2)(n0 − 3)+1 .

From this, it follows that by using n0 = � n+1
2 	, the result is obtained and the bound

from Theorem 4.2 is improved if � n+1
2 	 ≥ 4, i.e., n ≥ 6.

Let v, u ∈ V (Q1n−n0+1

n0−1 ) be some vertices at distance n0 − 1. Without loss of

generality, we take v = 1n−n0+10n0−1 and u = 1n . There are n0−1 internally disjoint
shortest paths from v to u, set P as the set of vertices they cover. Let x1, . . . , xn0−1
be the neighbors of u on these paths and y1, . . . , yn0−1 the other neighbors of xi ’s on
these paths. Let F = P − {u, v, x1, . . . , xn0−1, y2, . . . , yn0−1}.
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Table 1 The lower and both upper bounds on sg(Qn) given by Corollary 4.1, Theorems 4.3 and 4.2

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sg(Qn) ≥ 3 3 4 4 6 7 9 12 16 21 28 37 51 69

sg(Qn) ≤ 11 15 19 27 37 53 77 109 163 227

sg(Qn) ≤ 2 3 4 6 8 12 16 24 32 48 64 96 128 192 256

Now let P = {b00n0−1 : b ∈ {0, 1}n−n0}, Q = {1n−n01c : c ∈ {0, 1}n0−1}−F =
V (Q1n−n0+1

n0−1 ) − F , and S = P ∪ Q. Clearly, |S| = 2n−n0 + 2n0−1 − (n0 − 3) − (n0 −
4)(n0 − 2) = 2n−n0 + 2n0−1 − (n0 − 2)(n0 − 3)+1. Next, we prove that S is a strong
geodetic set of Qn .

For each pair of vertices b00n0−1 ∈ P and 1n−n01c ∈ Q, we fix the following
geodesic (where � denotes some shortest path between given vertices, and this path
follows P if the endpoints are appropriate):

b00n0−1 � b0c ∼ b1c � 1n−n01c, 1n−n01c ∈ Q − {x1, y2, . . . , yn0−1},
b00n0−1 � 1n−n010n0−1 � 1n−n01c, 1n−n01c ∈ {x1, y2, . . . , yn0−1}.

As shortest paths in P get covered with the above geodesics, and other vertices are
clearly covered, S is a strong geodetic set.

Some values given by the Theorem are presented in Table 1. Note that asymptoti-
cally, the ratio between the lower and upper bound is of order 1√

n
.

It would be interesting to have an explicit formula for sg(Qn) or at least know the
complexity of determining the strong geodetic number of Qn .
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