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Abstract

Let P
(α,β)
n be the n-th monic Jacobi polynomial with α, β > −1. Given m numbers

ω1, . . . , ωm ∈ C \ [−1, 1], let Ωm = (ω1, . . . , ωm) andP(α,β)
n,m,Ωm

be the m-th iterated

integral of (n+m)!
n! P(α,β)

n normalized by the conditions

dk P
(α,β)
n,m,Ωm

dzk
(ωm−k) = 0, for k = 0, 1, . . . , m − 1.

The main purpose of the paper is to study the algebraic and asymptotic properties of
the sequence of monic polynomials {P(α,β)

n,m,Ωm
}n . In particular, we obtain the relative

asymptotic for the ratio of the sequences {P(α,β)
n,m,Ωm

}n and {P(α,β)
n }n . We prove that

the zeros of these polynomials accumulate on a suitable ellipse.
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1 Introduction

There is an extensive literature on the location of critical points of polynomials in terms
of their zeros ([19, Part I] and [21]), whose main pillars are Rolle’s theorem, Gauss–
Lucas Theorem, and their refinements. However, actual converses of these theorems
have not been found yet. It is obvious that given one of the zeros of a polynomial and
its critical points, the remaining zeros are uniquely determined. Nonetheless, there are
few results about zero location of polynomials in terms of their critical points and a
given zero, most of them contained in [19, §4.5]. In general, these follow from the
Schur–Szegő composition theorem [19, Th. 3.4.1d]. Perhaps, the most relevant results
in this sense are the theorems of Walsh [19, Th. 4.5.1] and Biernacki [19, Th. 4.5.2].

Let P(α,β)
n be the n-th monic Jacobi polynomial with parameters α, β ∈ R

P(α,β)
n (z) =

n∑

k=0

(
n + α

n − k

)(
n + β

k

)(
2n + α + β

n

)−1

(z − 1)k(z + 1)n−k, (1)

where 2n + α + β �= 0, 1, . . . , n − 1,
(a

b

) = �(a + 1)/ (�(a − b + 1)�(b + 1)) and
�(·) is the usual Gamma function (see [22, (4.21.6) and (4.3.2)] for more details).
These classical polynomials have been extensively used in mathematical analysis and
practical applications (cf. [20,22,23]). Nowadays, there has been renewed interest in
using the Jacobi polynomials in the numerical solution of differential equations. Some
of these methods require explicit expressions of the integral of such polynomials
and the localization of their zeros (e.g., see [4,5]). Another area that demands this
knowledge is the study of families of polynomials orthogonal in a non-standard sense,
particularly the Sobolev-type orthogonality and the orthogonality with respect to a
differential operator (e.g., [3,6,17] ).

It is well known that P(α,β)
n satisfies the following differentiation relation

dk P(α,β)
n

dzk
(z) = n!

(n − k)! P(α+k,β+k)
n−k (z), 0 ≤ k ≤ n, (2)

(see [22, (4.21.6)–(4.21.7)] for details). Additionally, if α, β > −1, the family of
polynomials {P(α,β)

n } is orthogonal in [−1, 1] with respect to the weight w(x) =
(1 − x)α(1 + x)β .

For a fixed m ∈ Z+, letP(α,β)
n,m be the monic polynomial of degree n + m given by

P(α,β)
n,m = P(α−m,β−m)

n+m .

Then,

dm P
(α,β)
n,m

dzm
(z) = (n + m)!

n! P(α,β)
n (z),
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and thusP(α,β)
n,m is the m-th iterated integral (or a primitive of order m) of (n+m)! P(α,β)

n
n! .

In what follows, we shall refer toP(α,β)
n,m as the m-th fundamental iterated integral of

(n+m)!
n! P(α,β)

n .
Givenm complex numbersω1, . . . , ωm , letΩk = (ω1, . . . , ωk) for 1 ≤ k ≤ m, and

P
(α,β)
n,m,Ωm

be the m-th iterated integral of (n+m)!
n! P(α,β)

n normalized by the conditions

dk P
(α,β)
n,m,Ωm

dzk
(ωm−k) = 0, k = 0, 1, . . . , m − 1. (3)

It is well known that there exists a unique polynomial of degree at most m − 1,
An,m(z) = An,m(z;ω1, . . . , ωm), satisfying the conditions

dk An,m

dzk
(ωm−k) = dk P

(α,β)
n,m

dzk
(ωm−k), k = 0, 1, . . . , m − 1. (4)

The polynomial An,m is named the Abel–Goncharov interpolation polynomial, asso-
ciated with conditions (4). The existence and uniqueness of An,m are obvious if we
observe that (4) is a triangular system ofm equations andm unknowns (the coefficients
ofAn,m) whose determinant is equal to

∏m−1
k=0 k!. The Abel–Goncharov interpolation

polynomials are a generalization of Taylor’s polynomials, which correspond to the
case ωm = ωm−1 = · · · = ω1. In Sect. 3, you can see explicit expressions of Abel–
Goncharov polynomials and some of their properties; for more details, see [1,10,23].

Therefore, the polynomial P(α,β)
n,m,Ωm

can be written as

P
(α,β)
n,m,Ωm

(z) = P(α,β)
n,m (z) − An,m(z), (5)

and we can interpret the polynomialP(α,β)
n,m,Ωm

as the polynomial solution of the Abel–
Goncharov boundary value problem (see [1, §3.5])

⎧
⎨

⎩

dm Y
dzm (z) = (n+m)!

n! P(α,β)
n (z), n > m,

dk Y
dzk (ωm−k) = 0, k = 0, 1, . . . , m − 1.

Moreover, if α, β > −1, thenP(α,β)
n,m,Ωm

is the (n+m)-thmonic orthogonal polynomial
with respect to the discrete–continuous Sobolev bilinear form (see [2,3]) given by

〈 f , g〉S =
m−1∑

k=0

dk f

dzk
(ωm−k)

dk g

dzk
(ωm−k) +

∫ 1

−1

dm f

dzm
(x)

dm g

dzm
(x)(1 − x)α(1 + x)βdx .

Themain goal of this paper is to study the algebraic and asymptotic properties of the
family of monic polynomials {P(α,β)

n,m,Ωm
}n , for m ∈ Z+, {ω1, . . . , ωm} ⊂ C \ [−1, 1]

andα, β > −1. The caseα = β = ω1 = · · · = ωm = 0was early studied in [7],where
the authors wrote “It would be interesting to obtain results, analogous to Theorem
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2748 H. Pijeira-Cabrera, D. Rivero-Cartillo

[7, Th. 2], for these polynomials” referring to the Gegenbauer (or ultraspherical)
polynomials (α = β > −1). Our Theorem 4 is an extension of [7, Th. 2] for Jacobi
polynomials when all the constants of integration ωi are out of the interval [−1, 1].

In the next section we review some of the standard facts on Jacobi polynomials and
we give the proof of some auxiliary results. The third section is devoted to study the
Abel–Goncharov interpolation polynomial An,m(z) of the m-th fundamental iterated
integral of Jacobi polynomials. In the last section, our main results on asymptotic

behavior of the sequence of polynomials
{
P

(α,β)
n,m,Ωm

}

n
and its zeros are stated and

proved.

2 Fundamental Iterated Integrals of Jacobi Polynomials

Recall that, for a fixed m, n ∈ Z+, we denote byP(α,β)
n,m the Jacobi monic polynomial

of degree n + m given by P(α−m,β−m)
n+m . From [20, §135 (12) and §138 (14)–(15)], we

have the next lemma.

Lemma 1 For a fixed m ∈ Z+, let P(α,β)
n,m be the (n + m)-th fundamental primitive of

n-th monic Jacobi polynomial with parameters α, β ∈ R. Then

P(α,β)
n,m (z) = P

(α,β)
n+1,m−1(z) + a(α,β)

n,m P
(α,β)
n,m−1(z) + b(α,β)

n,m P
(α,β)
n−1,m−1(z);

where a(α,β)
n,m = 2(n + m)(α − β)

(2n + α + β + 2)(2n + α + β)
,

b(α,β)
n,m = −4(n + m)(n + m − 1)(n + α)(n + β)

(2n + α + β)2((2n + α + β)2 − 1)
and

P
(α,β)
n,0 (z) = P(α,β)

n (z). (6)

The asymptotic behavior of the sequence of polynomials {P(α,β)
n,m }n , stated in the

following lemma, is a direct consequence of [22, Th. 8.21.7 & Eqn. (4.21.6)].

Lemma 2 If α, β ∈ R and m ∈ Z+, then

(1) (Outer strong asymptotic). Uniformly on compact subsets of C \ [−1, 1]

lim
n→∞

P
(α,β)
n,m (z)

ϕn(z)
= ψα,β,m(z)

√
ϕ(z), where (7)

ϕ(z) = 1

2

(
z +

√
z2 − 1

)
with

√
z2 − 1 > 0 when z > 1

and ψα,β,m(z) = 22m−α−β
(√

z − 1 + √
z + 1

)α+β−2m

4
√

(z − 1)2(α−m)+1 4
√

(z + 1)2(β−m)+1
. (8)

(2) (n-th root asymptotic behavior). Uniformly on compact subsets of C \ [−1, 1]

lim
n→∞

∣∣∣P(α,β)
n,m (z)

∣∣∣
1
n = |ϕ(z)| . (9)
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(3) (Comparative asymptotic behavior). Uniformly on compact subsets ofC\[−1, 1]

lim
n→∞

P
(α,β)
n,m (z)

P(α,β)
n (z)

=
(

1

ϕ′(z)

)m

. (10)

Note that 2ϕ(z) = z + √
z2 − 1 is the conformal mapping of C \ [−1, 1] onto the

exterior of the unit circle, where the ellipses |z + √
z2 − 1| = ρ, ρ > 0 are its level

curves.
Formula (9) of n-th root asymptotic behavior of the fundamental iterated integral

P
(α,β)
n,m (z) is the same for classical Jacobi polynomials since m is fixed.
The two lemmas listed below are deduced from the well-known Rouché’s theorem

(cf. [18, Th. 1.1.1]) and the Biernacki’s theorem (cf. [19, Th. 4.5.2]), respectively.

Lemma 3 Let f and g be polynomials, and γ a closed curve in the complex plane
without self-intersections. If | f (z)| < |g(z)| for all z ∈ γ , then f + g and g have the
same number of zeros in the interior of γ .

Lemma 4 Let f be a polynomial whose critical points lie in a compact subset K ⊂ C.
If there exists ζ ∈ C such that f (ζ ) = 0, then the zeros of f lie in the compact set
[K ]ζ = {z ∈ C : infw∈K |z − w| ≤ dKζ }, where dKζ is the diameter of the compact
set Kζ = K ∪ {ζ } (i.e., dKζ = supu,v∈Kζ

|u − v|).
Of course, for all ζ ∈ C we get K ⊂ Kζ ⊂ [K ]ζ .
We denote by Z(α,β)

n,m (A) the set of zeros of P(α,β)
n,m on the set A ⊂ C. In the next

theorem, we state some aspect of interest about the asymptotic behavior of the zeros
of the fundamental iterated integrals of Jacobi polynomials.

Theorem 1 Let α, β > −1, m ∈ N fixed and I = (−1, 1) , then

(1) For each n > 2m, at least (n − 2m) distinct zeros of P(α,β)
n,m lie in I .

(2) There exists a compact subset of the complex plane K , such that (−1, 1) ⊂ K
and

⋃

n≥1

Z(α,β)
k,m (C) ⊂ K .

(3) All the roots of P(α,β)
n,m accumulate at [−1, 1].

Proof (1) From (6), for consecutive values of m, we get that there exist (2m + 1)
constants a0, a1, . . . , a2m such that P(α,β)

n,m (z) = ∑2m
k=0 ak P(α,β)

n−m+k(z). Hence,

P
(α,β)
n,m is a quasi-orthogonal polynomial of order 2m with respect to the measure

(1 − x)α(1 + x)βdx on I . Hence, from [9, Th. 2] we have the first assertion of
the theorem.

(2) If m = 1, all the critical points ofP(α,β)
n,1 lie in (−1, 1) and by the first sentence

of the theorem at least n − 2 of its zeros are on I = [−1, 1]. Let x0 ∈ I such
that P(α,β)

n,1 (x0) = 0. Then, according to the notations in Lemma 4, we get that

Ix0 = I and dIx0
= 2. Hence, from Lemma 4 we get

(⋃
n≥1 Z

(α,β)
k,1 (C)

)
⊂ [I ]x0 .

Suppose that for a fixed m ∈ N, there exists a compact set K (α,β)
m such that
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(⋃
n≥1 Z

(α,β)
k,m (C)

)
⊂ K (α,β)

m . As the zeros of P(α,β)
n,m are the critical points of

P
(α,β)
n,m+1, from Theorem 1-1) and Lemma 4 we get the desired statement.

(3) For a fixed m ∈ N, from Theorem 1-2) we know that the set of all zeros of
{P(α,β)

n,m } are uniformly bounded.

Note that for all n ∈ Z+ the functions P(α,β)
n,m (z)

P(α,β)
n (z)

and
(

1
ϕ′(z)

)m =
(√

z2−1
ϕ(z)

)m
are

analytic on C \ [−1, 1], where ϕ is given by (8). Furthermore,
(√

z2−1
ϕ(z)

)m �= 0 if

z ∈ C \ [−1, 1], and hence, the sentence 3 is a consequence of (10). ��
In the classical Szegő’s book [22, §6.72], the reader can find a full description of the

distribution of the zeros of P(α−m,β−m)
n+m , i.e., P(α,β)

n,m , when α, β ∈ R and n, m ∈ Z+
are fixed. In this sense, it is convenient to cite [12], where this analysis is embedded
in a more general framework, using non-standard versions of orthogonality like the
so-called quasi-orthogonality.

Additionally, there is a broad literature about zero location and asymptotic behav-
ior of classical orthogonal polynomials with varying parameters. In particular, in the
case of Jacobi polynomials (α = αn and β = βn), the reader can see [8,11,14–
16] and references therein. The case considered in the current paper is different,
because the parameters in the fundamental iterated integrals of Jacobi polynomials are
constant.

3 Abel–Goncharov Interpolation Polynomials

Given m complex numbers ω1, . . . , ωm , and Ωk for 1 ≤ k ≤ m, as in (3). As we show
in the first section, there exists a unique polynomial An,m of degree at most m − 1,
such that equations (4) are satisfied. This polynomial is given by

An,m(z) = P(α,β)
n,m (ωm) +

m−1∑

k=1

1

k!
dkP

(α,β)
n,m

dzk
(ωm−k) Gk,m(z) (11)

where Gk,m(z) = Gk,m(z;ωm, ωm−1, . . . , ωm−k) is the monic polynomial of degree k
, generate by the k-th iterated integral

Gk,m(z) = k!
∫ z

ωm

∫ sm−1

ωm−1

. . .

∫ sm−(k−1)

ωm−(k−1)

dsm−1 dsm−2 . . . dsm−k, (12)

see [23, §4.1.4 (15)–(16)] for more details. The polynomial Gk,m is called the k-th
Goncharov’s polynomial associated with {ω1, . . . , ωm}.
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Example 1 (Abel’s polynomials) If ω1, . . . , ωm form an arithmetic progression, i.e.,
ωm−k = ω + kϑ , where ω, ϑ ∈ C are fixed and k = 0, 1, . . . , m − 1, it is well known
that in this case the k-th Goncharov polynomials

Gk,m(z) = (z − ω)(z − ω − (m − k)ϑ)k−1, (13)

are the so-called k-th Abel’s polynomial.
If ϑ = 0, we have the special case Gk,m(z) = (z −ω)k (Taylor’s case), and then, the

m-th Abel–Goncharov interpolation polynomial (11) becomes the Taylor’s expansion
of P(α,β)

n,m in ω , as we mentioned in Introduction.

According to (2), it follows that 1
k!

dkP(α,β)
n,m

dzk (ωm−k) = (n+m
k

)
P

(α,β)
n,m−k(ωm−k), and

replacing this formula in (11), we get

An,m(z) = P(α,β)
n,m (ωm) +

m−1∑

k=1

(
n + m

k

)
P

(α,β)
n,m−k(ωm−k) Gk,m(z). (14)

Theorem 2 Given m > 0 and ω1, . . . , ωm ∈ C \ [−1, 1] fixed, let An,m(z) be the
Abel–Goncharov polynomial of interpolation associated with conditions (4),

σm = max
0≤k≤m−1

|ϕ(ωm−k)|, U = {k : |ϕ(ωm−k)| = σm} and k̂ = max
k∈U

|k|. (15)

Then, uniformly on compact subsets of C

lim
n→∞

An,m(z)

nk̂ P
(α,β)

n,m−k̂
(ωm−k̂)

= Gk̂,m(z)

k̂! , (16)

lim
n→∞ |An,m(z)| 1n = σm . (17)

The branch of the square root in (8) is chosen so that |ϕ(ωm−k)| > 1, for each
0 ≤ k ≤ m − 1.

Proof Let V = {k : |ϕ(ωm−k)| < σm}. Obviously U ∩ V = ∅ and U ∪ V =
{1, 2, . . . , m}. From (14), we get

(
(n + m − k̂)!

(n + m)!

)
An,m(z)

P
(α,β)

n,m−k̂
(ωm−k̂)

= Gk̂,m(z)

k̂! +
∑

k∈U\{k̂}
An,m,k

Gk,m(z)

k!

+
∑

k∈V

An,m,k
Gk,m(z)

k! , (18)

where An,m,k = (n + m − k̂)!
(n + m − k)!

P
(α,β)
n,m−k(ωm−k)

P
(α,β)

n,m−k̂
(ωm−k̂)

.
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Firstly, we will prove that for all k ∈ (U ∪ V ) \ {k̂}

lim
n→∞ An,m,k = 0. (19)

If k ∈ V , then |ϕ(ωm−k)| < |ϕ(ωm−k̂)|,

An,m,k = (n + m − k̂)!
(n + m − k)!

(
ϕ(ωm−k)

ϕ(ωm−k̂)

)n
P

(α,β)
n,m−k(ωm−k)

ϕn(ωm−k)

ϕn(ωm−k̂)

P
(α,β)

n,m−k̂
(ωm−k̂)

and from (7), we can assert that for k ∈ V we get (19).
If k ∈ U \ {k̂}, then k < k̂ and |ϕ(ωm−k)| = |ϕ(ωm−k̂)|. Writing ϕ(ωm−k)

= |ϕ(ωm−k̂)|eiθ and ϕ(ωm−k̂) = |ϕ(ωm−k̂)|ei θ̂ , with θ, θ̂ ∈ [0.2π), we get

An,m,k =
(

(n + m − k̂)!
(n + m − k)!

)
en(θ−θ̂ ) i

(
P

(α,β)
n,m−k(ωm−k)

ϕn(ωm−k)

) ⎛

⎝ ϕn(ωm−k̂)

P
(α,β)

n,m−k̂
(ωm−k̂)

⎞

⎠

and as in the previous reasoning, from (7), we can assert that if k ∈ U \ {k̂} we have
(19).

Now, according to (18)–(19), we get (16). Finally, (17) is a consequence of (16)
and (9). ��

4 General Primitive of Jacobi Polynomials and Its Zeros

For ρ ∈ R+, let Eρ be the ellipse |z − 1| + |z + 1| = ρ + ρ−1. Obviously, Eρ divides
the complex plane into the following two disjoint regions

Eρ =
{

z ∈ C : |z − 1| + |z + 1| > ρ + ρ−1
}

,

Eρ =
{

z ∈ C : |z − 1| + |z + 1| ≤ ρ + ρ−1
}

.

Analogously to the notations introduced in Theorem 1, we denote

Z(α,β)
n,m,Ωm

=
{

z ∈ C : P(α,β)
n,m,Ωm

(z) = 0
}

( i.e., the set of (n + m) zeros of P(α,β)
n,m,Ωm

) and by Z(α,β)
m,Ωm

the set of accumulation

points of zeros of {P(α,β)
n,m,Ω }.

Lemma 5 Let α, β > −1, m ∈ N and Ωm = (ω1, . . . , ωm) ∈ C
m fixed. Then, there

exists a compact subset K ⊂ C, such that (−1, 1) ⊂ K and Z(α,β)
n,m,Ωm

⊂ K for all n.
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Proof We proceed analogously to the proof of Theorem 1. If m = 1, for all n ≥ 1 the
critical points ofP(α,β)

n,1,ω1
are on I = [−1, 1]. Then, from Lemma 4, we get Z(α,β)

n,1,Ω1
is

a subset of the compact set [I ]ω1 , which was defined in Lemma 4.
Suppose that for a fixed m ∈ N there exists a compact subset Km−1 such that

Z(α,β)

n,m−1,Ωm−1
⊂ Km−1.As the zeros ofP

(α,β)
n,m−1,Ωm−1

are the critical points ofP(α,β)
n,m,Ωm

,

from Lemma 4 we get Z(α,β)
n,m,Ωm

⊂ [Km−1]ωm . ��
Theorem 3 Given m > 0 and ω1, . . . , ωm ∈ C \ [−1, 1] fixed, let ρm = 2σm, where
σm is given by (15). Then, uniformly on compact subsets of Eρm

lim
n→∞

P
(α,β)
n,m,Ωm

(z)

P(α,β)
n (z)

=
(

1

ϕ′(z)

)m

. (20)

Furthermore, Z(α,β)
m,Ωm

⊂ Eρm
.

Proof From (5), we know that

P
(α,β)
n,m,Ωm

(z)

P(α,β)
n (z)

= P
(α,β)
n,m (z)

P(α,β)
n (z)

− An,m(z)

P(α,β)
n (z)

.

The uniform limit of the first quotient in the right side is given by (10). Hence, to proof
(20) it is sufficient to proof that

lim
n→∞

An,m(z)

P(α,β)
n (z)

= 0, uniformly on compact subsets of Eρm . (21)

From (14), we have

An,m(z)

P(α,β)
n (z)

=
m−1∑

k=0

P
(α,β)
n,m−k(ωm−k)

P(α,β)
n (ωm−k)

(
(n + m)!

(n + m − k)!
P(α,β)

n (ωm−k)

P(α,β)
n (z)

)
Gk,m(z)

k! ,

where Gm(z) ≡ 1. For k = 0, 1, . . . , m − 1, we get

(n + m)!
(n + m − k)!

P(α,β)
n (ωm−k)

P(α,β)
n (z)

= (n + m)!
(n + m − k)!

(
ϕ(ωm−k)

ϕ(z)

)n P(α,β)
n (ωm−k)

ϕn(ωm−k)

· ϕn(z)

P(α,β)
n (z)

.

As |ϕ(ωm−k)| < |ϕ(z)| for all z ∈ Eρ∗ , from (10) it follows (21).

Finally, the assertion Z(α,β)
m,Ωm

⊂ Eρm
is a consequence of (20) and Lemma 5, using

analogous argument as in the proof of 3) in Theorem 1. ��
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Theorem 4 Assume that m > 0, ω1, . . . , ωm ∈ C \ [−1, 1] and k̂ = m − 1 . Then the
accumulation points of zeros of {P(α,β)

n,m,Ωm
} are located on the union of the interval

[−1, 1] and the ellipse

Eρm =
{

z ∈ C : |z − 1| + |z + 1| = ρm + ρ−1
m

}
, (22)

where k̂ is defined in (15), ρm is as in Theorem 3, and the branch of the square root in
(8) is chosen so that |ϕ(ωk)| > 1, for each 1 ≤ k ≤ m (see Fig. 1).

Proof From (5), the zeros of the polynomial P(α,β)
n,m,Ωm

satisfy the equation

∣∣∣P(α,β)
n,m (z)

∣∣∣
1
n = ∣∣An,m(z)

∣∣ 1n . (23)

Taking the limit as n → ∞ on both sides of (23), from (17) and (9), we have that
Z(α,β)

m,Ωm
⊂ Eρm where

Eρm =
{

z ∈ C : |z +
√

z2 − 1| = ρm

}
.

Let k̃ be an index, 1 ≤ k̃ ≤ m, such that ϕ(ωk̃) = ρmei θ̃ , 0 ≤ θ̃ < 2π . Hence, we

have that z + √
z2 − 1 = ρm ei θ̃ , z − √

z2 − 1 = ρ−1
m e−i θ̃ , and taking the difference

between both we get
√

z2 − 1 = (ρmei θ̃ + ρ−1
m e−i θ̃ )/2. Thus,

|z − 1| + |z + 1| = |ρmei θ̃ − 1|2 + |ρmei θ̃ + 1|2
2ρm

,

which is equivalent to the equation of the ellipse in (22). As the limit that we have
taken is uniform on compact subsets of C \ [−1, 1], the theorem is proved. ��

In example 1, if for each 0 ≤ k ≤ m − 1 it holds that (ω + kϑ) /∈ [−1, 1], then
all the zeros of the Abel’s polynomials (13) are out to the interval [−1, 1]. What is
interesting for the following corollary.

Corollary 1 Under the assumptions of Theorems 2 and 4, if the zeros of the Goncharov
polynomial Gk̂,m are outside to the interval [−1, 1] then the accumulation points of

zeros of {P(α,β)
n,m,Ωm

} are located on the ellipse Eρm .

Proof Obviously, from Theorem 4 it is sufficient to prove that there does not exist an
accumulation point of zeros of {P(α,β)

n,m,Ωm
} located on the interval [−1, 1].

Let ε ∈ R such that ω1, . . . , ωm and the zeros of Gk̂,m are on the exterior of the
ellipse E1+ε. Thus, ifw ∈ E1+ε, from (7) and (16) we get, for sufficiently large values
of n,

An,m(w) ≈
(

n + m

k̂

)
ψ

α,β,m−k̂(ωm−k̂) ϕn+ 1
2 (ωm−k̂) Gk̂,m(w), (24)
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Fig. 1 Zeros ofP(−1/2,1/2)
60,2,Ω2

andP(0,0)
60,3,Ω3

, where Ω2 = (4+ i,−2) and Ω3 = (4i,−i, 2). In each case,
the ellipse is given by (22)

P(α,β)
n,m (w) ≈ ψα,β,m(w) ϕn+ 1

2 (w). (25)

As the zeros of the Goncharov polynomial Gk̂,m are on the exterior of the ellipseE1+ε,
then from (24), there exists N1 ∈ Z+ such that for n > N1 the zeros of the polynomial
An,m are on the exterior of the ellipse E1+ε too. From (24)–(25)

∣∣An,m(w)
∣∣ ≈

(
n + m

k̂

) ∣∣∣∣∣
Gk̂,m(w) ψ

α,β,m−k̂(ωm−k̂)

ψα,β,m(w)

∣∣∣∣∣

∣∣∣∣
ϕ(ωm−k̂)

ϕ(w)

∣∣∣∣
n+ 1

2

·
∣∣∣ψα,β,m(w) ϕn+ 1

2 (w)

∣∣∣

≥
∣∣∣∣
Gk̂,m(w) ψα,β,m(ωm−k̂)

ψα,β,m(w)

∣∣∣∣

∣∣∣∣
ϕ(ωm−k̂)

ϕ(w)

∣∣∣∣
n+ 1

2 ∣∣∣P(α,β)
n,m (w)

∣∣∣ (26)

As it is well know from classical complex analysis (cf. [13, §51]), ϕ(z) maps the
ellipse |z − 1| + |z + 1| = r + 1

r , with r > 0, onto the circumference |z| = r .
Hence, as each ωk is on the exterior of the ellipse E1+ε and w ∈ E1+ε, we get that
|ϕ(ωm−k̂)| > |ϕ(w)|. Thus, from (26) there exists N2 ∈ Z+ such that if n > N2, then∣∣An,m(w)

∣∣ >

∣∣∣P(α,β)
n,m (w)

∣∣∣.
Finally, from Lemma 3 and Theorem 4, the corollary is proven. ��
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