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Abstract

In this study, as the domain of four-dimensional backward difference matrix in the
space L, (), we introduce the complete paranormed space BV(¢) of bounded variation
double sequences and examine some properties of that space. Also, we determine the
y-dual and S (¥%)-dual of the space BV (¢). Finally, we characterize the classes (BV(¢) :
M), (BV() : Cy) and (L,(¢) : w) with u € {BS,CSy, M, (A),Cy(A)}, where
M, (A) and Cy(A) denote the spaces of all double sequences whose A-transforms
are in the spaces M, and Cy, respectively.

Keywords Summability theory - Double sequences - Double series - Alpha, beta and
gamma duals - Matrix domain of four-dimensional matrices - Matrix transformations

Mathematics Subject Classification 46A45 - 40C05

1 Introduction

We denote the set of all real- or complex-valued double sequences by €2 which is a
vector space with coordinatewise addition and scalar multiplication. Any subspace of
Qs called as a double sequence space. We write M,,, C,,, Cpp and C, for the spaces of
bounded, convergent in the Pringsheim’s sense, both convergent in the Pringsheim’s
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sense and bounded, and regularly convergent double sequences, respectively. Here
and after, unless stated otherwise we assume that ¥ denotes any of the symbols p, bp
orr.

Let A be a space of double sequences, converging with respect to some linear
convergence rule ¢ —lim : A — C. The sum of a double series ) ; x with respect
tothisruleis definedby # — ", ; xy = & —limy p— o0 Z;:}":O x;. In short, throughout
the text the summations without limits run from 0 to oo, for example Zk’ ; Xkl Means
that Y25 _o Xz The a-dual A%, the B(9)-dual AP?) with respect to the ¥ -convergence
and the y-dual AV of a double sequence space A are, respectively, defined by

A% = {a = (an) € Q: Y lapx| < oo forall x = (xi) € A},

k.l
m,n
PRSI A (ar) € QL : Z ax Xkl € Cy forall x = (xp;) €Ay,
k.1=0 m,neN
m,n
A o={a=(ay) € Q: sup Z ar x| < ooforall x = (xg) € A
m,neN k.1=0

Itis easy to see for any two spaces A and 1 of double sequences that ;1 C A¢ whenever
A C . Also, A% € AP and A%  AY. Furthermore, A < A7 for & € {bp, r}.

Let A and p be two double sequence spaces, and A = (a;ni;) be any four-
dimensional complex infinite matrix. Then, we say that A defines a matrix mapping
from X into p and we write A : A — pu, if for every sequence x = (xg;) € A the
A-transform Ax = {(AX)mn}m.nen of x exists and is in p, where N = {0, 1,2, ...}
and

(AX)n = O — Zamnk,xk, for each m, n € N. (1.1)
k,l

We define the & -summability domain )»X?) of A in a space A of double sequences by

)\Ef) =3 x=(p) eR:Ax = |0 — Zamnklxkl exists and is in A
k.l m,neN
We say with the notation (1.1) that A maps the space A into the space p if A C /,LS?)
and we denote the set of all four-dimensional matrices, transforming the space A into
the space u, by (A : w). Thus, A = (@unki) € (A : w) if and only if the double
series on the right side of (1.1) converges in the sense of ¢ for each m,n € N, i.e.,
Amn € 2@ forall m,n € N and every x € A, and we have Ax € u forall x € A,
where Ay = (@mnki)k.1en for all m,n € N If in A and p there is some notion of
limit or sum, then we write (A : u; P) to denote the subset of (A : u) which preserves
the limit or sum with boundedness. That is, if {(Ax),,,} converges to the same limit
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L whenever x = (xi;) is convergent in the Pringsheim’s sense with the limit L and
bounded, then the transformation is said to be bounded regular or R H-regular. In this
paper, we only consider bp-summability domain.

Forall m, n, k,l € N, we say that A = (auni1) is a triangular matrix if aypy = 0
for k > m orl > n or both [1]. Following Adams [1], we also say that a triangular
matrix A = (amukr) is called a triangle if a;pmn 7 0 for all m, n € N.

Tiirkmenoglu (Gokhan) [34] characterized the classes (Cp,(t) : Cp(1); P) and
(L, () : My) of four-dimensional matrices. Zeltser [44] essentially studied both
the theory of topological double sequence spaces and the theory of summability of
double sequences in her PhD thesis. Gokhan and Colak [12—14] defined the spaces
Mu(1),Cp(t),Cop(t),Cpp(t) and L, (¢), where t = (t;) is a double sequence of strictly
positive real numbers f; and

Lo(t) = 1x = () € Q: ) pw|™ < 00
k.l

Altay and Bagar [2] defined the spaces BS, BS(t), CSy and BV of double series
whose sequence of partial sums are in the spaces M,, M, (), Cy and L,, respec-
tively, and also examined some properties of those spaces. Here and after, by t = (#x;)
and 1" = (t;;), we denote the double sequence of strictly positive real numbers
and any bounded sequence of strictly positive real numbers, respectively, such that
Iy 4 t,il_l = 1 for all k,/ € N. Bagar and Sever [4] introduced the Banach space
L, of absolutely g-summable double sequences corresponding to the well-known
space £, of absolutely g-summable single sequences and studied some properties
of the space £, with 1 < g < oo. Gokhan et al. [15] characterized the matrix
classes (Cop(t) = Cip)s (Cop(t) = Cip; P), (Crpo(t) = Cpo(t), Crp(t) = Cpo(t')),
(My(t) : Cpo(t')). Mursaleen and Basar [16] have introduced the spaces M, Cy
and L of double sequences whose Cesaro transforms are in the spaces M, Cy and
L, respectively. Quite recently, Demiriz and Duyar [11] have introduced the spaces
My (A), Cp(A), Cop(A), Cpp(A), Cr(A) and L4 (A) of double sequences whose dif-
ference transforms are bounded, convergent in the Pringsheim’s sense, null in the
Pringsheim’s sense, both convergent in the Pringsheim’s sense and bounded, and
regularly convergent and absolutely g-summable, respectively, and also, they have
examined some inclusion relations concerning with those sequence spaces. Quite
recently, Yesilkayagil and Basar [35—43], Basar and Capan [5,6], Capan and Basar
[7-10] and Tug [31-33] have worked on the normed/paranormed spaces of double
sequences and domain of triangle matrices in these spaces, and matrix transforma-
tions. Patterson has studied the characterization of the classes of four-dimensional
matrices, in [18-25]. We should note that by using functional analysis techniques
Talebi has recently obtained various properties of linear operators represented by
four-dimensional triangle matrices between certain spaces of double sequences, in
[26-30]. The reader can refer to the textbooks Basar [3] and Mursaleen and Mohiud-
dine [17] for relevant terminology and required details on the double sequences and
related topics.
The four-dimensional backward difference matrix A = (d;,;nx;) is defined by
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g eyt — <k <m o n—1<1<n,
mkl =1 ), otherwise

for all m, n, k,l € N. Therefore, the A-transform of a double sequence x = (x;,5,) i
given by

X005 m,n =0,
X0n — X0,n—15 m=0,n2zl,
= (Ax = ’ 12
Ymn = (AX)mn Xm0 — Xm—1.0, m>1,n= O’( )

Xm—1n—1 — Xm—1,n — Xmn—1 + Xmn, m,n = 1

for all m,n € N. Additionally, a direct calculation gives the inverse A~! = § =
(Smnki) of the triangle matrix A as follows:

1, 0<k<m,0<I<n,

Smnkl == {O, otherwise (1.3)

forallk, I, m, n € N. Here, we can redefine the relation between the double sequences
x = (x;n) and y = (yg7) by summation matrix S as follows:

m,n

Xon = (SY)mn = ), Y (1.4)

k,1=0

for all m,n € N. Throughout the paper, we suppose that the terms of the double
sequences X = (X,,,,) and y = (y,,,) are connected with the relation (1.2), and we use
the convention that any term with negative subscript is equal to zero.

In the present paper, we introduce the new paranormed space BV (¢) of bounded
variation double sequences; that is, 5)(¢) is defined by

BY(@) ={x = m) € 2:Ax € L,(1)}.

2 The Space BV (t) of Double Sequences
This section is devoted to certain algebraic and topological properties of the para-
normed space BV(t) of bounded variation double sequences.

Theorem 2.1 Let 0 < tyyy < H = sup,, ,entmn < 00 and M = max{1, H}. Then, the
set BV (t) is a linear space with the coordinatewise addition and scalar multiplication
and is a complete linear metric space paranormed by g defined by

1M

gr)=| Y 1(Ax)pnl™

m,neN

which is linearly isomorphic to the spaces L,(t).
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Proof One can easily show the first part of the theorem by a routine verification. So,
we omit the detail.

Consider the transformation 7 defined from BV () to L,(t) by x > y = Tx =
{(Ax)mn}, where the sequences x and y are connected with the relation (1.2). It is
trivial that 7 is linear and injective.

Lety = (ymn) € L, (t) and define the sequence x = (xi;) via y by (1.4). Therefore,
by taking into account the hypothesis y € £, (¢) one can derive the following equality

1,
z :|(Ax)mn| "= E |ymn | < 00
m,n m,n

which gives that x € BY(¢). Therefore, T is surjective.
This step concludes the proof. O

Theorem 2.2 Neither of the spaces L, (t) and BV (t) includes the other one.

Proof Define the double sequences t = (t,,,,) and x = (x,,,) by

1/n, m =1andn is odd,

N 1, m e Nandn is even,
m 0, otherwise

2, meNandnisodd M x’"":{

for all m, n € N, respectively. Then, it is obvious that
1

Z |xmn|tmn = Z T <%,
o . 2k+1)

that is, x € £, (¢). But

o0 o0 o0
1
tmn tll t —_— —
m2n|(Ax)mn| > E [(Ax) 1] > E [(AXx)1 2k42] 1%+ = E Hr1=

n=0 k=0 k=0

ie.,x ¢ BV(t).
Now, choose the sequence y = (V) defined by y,,, = 1 for all m,n € N.
Obviously, y € BV(¢). Nevertheless, since

1,
> Yl = o0
m,n

forallm,n e N,y & L, (t).
This completes the proof. O

A double sequence space A is said to be solid (cf. [4, p. 153]) if and only if

o= {(ug) € Q2 :3A(xg;) € A such that |uy| < |xg| forallk,l € N} C X.
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A double sequence space A is said to be monotone if xu = (xyjug;) € A for every
x = (xx) € rand u = (ug) € {0, NN where {0, 1}N*N denotes the set of all
double sequences consisting of Os and 1s. If A is monotone, then A% = A#() [44, p.
36], and A is monotone whenever A is solid.

Theorem 2.3 The double sequence space BV (t) is not monotone.

Proof Let us consider the double sequence x = (x,,,) defined by

I 1, m=0,neN,
M1 0, otherwise

for all m, n € N. Thus, we have

I t
3 1A l™ = Lx0l® + [xo0]™ = 2,

m,n

that is, x € BV (t). Now, we consider the double sequence u = (u;,,,) € {0, 1NN
defined by

1, m+niseven,
Umn = .
mn 0, otherwise

and let z = (z;un) = (Xmnltmn ). Hence,

Z |(Az)mn|t”m = Z |_Z0,n—l+ZOn |t0n+ Z |ZO,n—l _ZOn|tln: Z 1+ Z 1=00,
n n n

m,n n

that is, z ¢ BV(t).
This step completes the proof. O

As a natural consequence of Theorem 2.3, we have.

Corollary 2.4 The space BV (t) is not solid.

3 The Gamma and Beta Duals of the New Space of Double Sequences

In this section, we determine the y-dual and 8(¢})-dual of the sequence space BV (¢).

Lemma 3.1 [34, Theorem 2] Let A = (amnk1) be any four-dimensional matrix. Then,
the following statements hold:

(1) LetO < infy jenty; < tiy < 1forallk,l € N.Then, A = (amnr1) € (Lu(t) : M,,)
if and only if

sup  amurt|™ < o0. (3.1)
m,n,k,leN

@ Springer



On the Paranormed Space of Bounded Variation Double. .. 2707

(i) Let 1 < tiy < supy ente = H < oo forall k,1 € N. Then, A = (amuk1) €
(L, () : M) if and only if there exists an integer B > 1 such that

t/
Y < . (3.2)

-1
sup Z ’amnle
k,l

m,neN

Lemma 3.2 [8, Theorem 3.1] Let A = (aunki) be any four-dimensional matrix. Then,
the following statements hold:

(1) Let O < infy jentii < try < 1 forall k,l € N. Then, A = (amnk1) € (Lyu(t) : Cp)
if and only if the condition (3.1) holds and

day; € C such that 9 — lim  aupg = axg exists forall k, 1 € N. (3.3)
m,n— 00
(i) Let 1 < tiy < supy ente = H < oo forall k,1 € N. Then, A = (amux1) €
(L, (@) : Cy) if and only if the conditions (3.1)—(3.3) hold.

Lemma 3.3 [14, Theorem 10] Let 1 < 1y for all k, 1 € N. Define the set M»(t) by

M) = | {x = (o) e Qi) louli B~/ < oo
B>1 k.l

Then, {L,(1)}* = (L, (DY) = (L, ()} = Ma(1).

Lemma 3.4 [14, Theorem 11] Let 0 < infy jentis < try < 1 for all k,l € N. Then,
{Lu)* = {LaOYD) = (L)) = Mu(1).

Theorem 3.5 Define the sets Dy, D>, D3 and Djy, as follows:

2]
m,n

a=(ay) € 2: sup Zaij <00,
m,n.,k,leN i) j=k.l

Dll

m,n

Dy:={a=(ay) €eQ: o) €Q3bp— lim Y aj=auy,
m,n— 00
i =kl
’
mon Tk
D3:=U a = (ay) € Q: sup Z Z aijB_l < 00
B>1 mneN i =kl

Then, the following statements hold:
1) If0 < infyjentuy < tu < 1 for all k,1 € N, then {BV(t)}Y = D; and
(BV(1)}f®P) = D, N D,.
() If 1 <ty < H = supy ey < o0 forall k,1 € N, then {BV(1)} = D3 and
{BV(I)}ﬂ(bp) =D NDyN Ds.
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Proof (i) Let 0 < infyjentiy < tiy < 1forall k,] € Nand x = (xx1) € BV().
Then, from Theorem 2.1 there exists a double sequence y = (yx) € L,(¢) via x
by (1.2). Define the double sequence z = (z,,,) With respect to the double sequence
a = (ax) € {BV()}” such that z,,, = 221,2’1:0 ayx;. Then, we easily derive with
(1.4) that

m,n m,n m,n
Zmn = Z ar Xy = Z Z aij | yki = (BY)mn 3.4
k=0 k=0 \i.j=k.I

for all m, n € N, where the four-dimensional matrix B = (by,;ux;) is defined by

m,n -
Zi‘j=k‘la”’ 0<k<m, 0<l<n

3.5
0, otherwise 3.5)

bmnkl = {

forallm, n, k,l € N. Thus, we see that ax = (a;unXmn) € BS whenever x = (x,,,,) €
BV(¢) if and only if z = (z,n) € M,, whenever y = (y,) € L, (¢). This leads us to
the fact that B € (£,(t) : M,). Therefore, we obtain from Part (i) of Lemma 3.1 that
{BV(@)}Y = Dy.

For determining the B(bp)-dual of the space BV(t), take any a = (ay) €
(BV()}P®P) 1t is easily seen from (3.4) that ax = (@muXmn) € CSpp wWhenever
X = (xXpp) € BV() if and only if z = (zun) € Cpp Whenever y = (ypn) € Ly(2).
Therefore, we derive from Part (i) of Lemma 3.2 that {BV(1)}#®P) = D N D;.

(i1) This is easily obtained by proceeding as in the proof of Part (i), above by using
Parts (ii) of Lemmas 3.1 and 3.2, respectively. So, we omit the detail. O

Corollary 3.6 Define the sets D4 and Ds as

m,n

Dy=1{a=(ay) € Q:ay) e 2> p— Ilim E ajj =l ( »
mn—oo i~
L, ]J=K,

m,n
Ds=13a=1(ay) € L:3ay) € 2>r — lim E aij = ay
mn—oo i~
1, ]=K,

Then, we have the following statements:

() If0 < infyjentiy < ty < L forallk,l € N, then {BV(t)}f?) = D; N Dy and
{BV(I)}/S(r) = D1 N Ds.

(i) If1 <ty < H = supy ;o < 0o forallk,l € N, then {BV(1)}FY) = DN D3N
Dy and {BY(1)}f") = D; N D3 N Ds.

Remark 3.7 Since the class (L, (¢) : L£,) of four-dimensional matrices is not yet char-
acterized, the a-dual of the new space was not given.
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4 Characterization of Some Matrix Classes

In this section, we characterize the classes of four-dimensional matrix transformations
from the spaces £,,(t) and BV (¢) to any of the spaces Cy,CSy, BS, M, (A) and Cy (A).

Let A = (amnxi) be any four-dimensional matrix and F = (f,,k) be a four-
dimensional triangle matrix such that f,,,x; = Ofork > mand/ > nforallk,/,m,n €
N with the inverse F~! = (hmnk1). We define the four-dimensional matrices £ =
(emnki) and G = (gmnki) via A and F by

E=AF"" and G = FA, 4.1)

where A and E are the four-dimensional usual dual summability matrices introduced
by Yesilkayagil and Basar [35]. It is immediate that (4.1) is equivalent to the following
relations

o m,n
emnkl = Amnijhijrn and  guukr = Smnijaijk 4.2)
jhij i,
i\ =kl i,j=0

for all k,1,m,n € N. In the rest of the text, we suppose that the elements of the
matrices A, E and G are connected with the relations given in (4.2). For simplicity in
the notation, we write that

m,n m,n
am.n kD)= aju. dmnk = > (=) g
i,j=0 i,j=m—1,n—1

o
b(mv n, kal) = Z amnij
i, j=k,l

forall k,l,m,n € N.

Theorem 4.1 Let A and |v be any given two double sequence spaces. Then, A € (Af :
w) if and only if Ay € Ag(ﬁ) forallm,n e Nand E € (A : ).

Proof Suppose that (4.2) holds and let A € (Ap : w), and take any u € A, where
u = Fuvforveip.Since EF = AF~'F = A, EF exists and A, € )»f},(ﬁ) for
each m,n € N. Hence, Eu = EFv = Av which leads us to the consequence that
Ee(:w).

Conversely, assume that A,,, € )Jf,(ﬁ) for each fixed m,n € Nand E € (A : u),
letv € A and let Fv = u € A. Since Eu = EFv = Av and by the hypothesis, Av
exists and is in w. This shows that A € (AF : w).

This completes the proof. O

Now, we can give the following lemma.

Lemma 4.2 [42, Theorem 4.7] Let A and p be any two given double sequence spaces.
Then, A € (A : ur)ifandonly if G € (A : ).
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It is trivial that Theorem 4.1 and Lemma 4.2 enable the characterization of the
classes of linear transformations on/into the domain of several four-dimensional tri-
angle matrices in certain spaces of double sequences. In other words, since the double
sequence spaces n and up are linearly isomorphic, Theorem 4.1 and Lemma 4.2
have several consequences depending on the choice of the spaces A and p, and a
four-dimensional triangle matrix F = (fyunk)- Indeed, if we choose A = L, (1),
w € {My,Cpp} and F € {S, A}, then we obtain the following results from Theo-
rem 4.1 and Lemmas 3.1, 3.2 and 4.2, respectively.

Corollary 4.3 Let A = (amnk1) be any four-dimensional matrix. Then, the following
statements hold:

(1) Let 0 < infy jentis < tiy < 1 forall k,l € N. Then, A = (amni1) € (BV(¢) :
M,) if and only if (3.1) holds with b(m, n, k, 1) instead of aympi; and Ay, €
(BVOYPD) forallm,n € N.

(i) Let 1 < txy < supy jente = H < oo forall k,1 € N. Then, A = (amux1) €
BV(t) : My) if and only if (3.2) holds with b(m, n, k, 1) instead of ani1, and
Amn € (BVOYD) forallm,n e N.

Corollary 4.4 Let A = (amnki) be any four-dimensional matrix. Then, the following
statements hold:

(1) LetO < infy jentys <ty < lforallk,l € N. Then, A = (aunr1) € (BV(t) : Cp)
if and only if (3.1) and (3.3) hold with b(m, n, k, l) instead of amnki, and Ay €
(BV()YYD) forallm,n e N.

(i) Let 1 < tiy < supy ente = H < oo forall k,1 € N. Then, A = (amuk1) €
(BV(t) : Cy) if and only if (3.1)—~(3.3) hold with b(m, n, k, ) instead of amnki,
and App € {BV@OYYD) forallm,n € N.

Corollary 4.5 Let A = (amnk1) be any four-dimensional matrix. Then, the following
statements hold:

(1) LetO < infy jentrs < tiy < 1 forallk,l € N. Then, A = (amnk1) € (Lyu(t) : BS)
if and only if (3.1) holds with a(m, n, k, ) instead of amnki-

(i) Let 1 < tiy < supy jente = H < oo forall k,1 € N. Then, A = (amux1) €
(L, () : BS) if and only if (3.2) holds with a(m, n, k, 1) instead of ayni.

Corollary 4.6 Let A = (amnk1) be any four-dimensional matrix. Then, the following
statements hold:

(1) Let 0 < infy jenti; < try < 1 forall k,l € N. Then, A = (amni1) € (Lu(t) :
CSy) if and only if the conditions (3.1) and (3.3) hold with a(m, n, k, 1) instead
of @mnkl-

(i) Let 1 < fyy < supy jentit = H < oo forall k,1 € N. Then, A = (amni1) €
(L) : CSy) if and only if the conditions (3.1)—(3.3) hold with a(m,n, k,[)
instead of amnki-

Corollary 4.7 Let A = (amnk1) be any four-dimensional matrix. Then, the following
statements hold:
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(1) Let 0 < infy jenti; < try < 1 for all k,l € N. Then, A = (amnk1) € (Lu(t) :

My (D)) if and only if (3.1) holds with d(m, n, k, 1) instead of amnk.

(i) Let 1 < tiy < supy jente = H < oo forall k,1 € N. Then, A = (amux1) €

(L, (@) : My (A)) if and only if (3.2) holds with d(m, n, k, 1) instead of apmnki-

Corollary 4.8 Let A = (amnki) be any four-dimensional matrix. Then, the following
statements hold:

(1) Let 0 < infy jenti; < try < 1 for all k,l € N. Then, A = (amnk1) € (Lu(t) :

Cy (A)) if and only if the conditions (3.1) and (3.3) hold withd (m, n, k, l) instead
of tmnki-

(1) Let1 < ty < SUpy jentkl = H < oo for all k,1 € N. Then, A = (amni1) €

(L, (@) : Cy(A)) if and only if the conditions (3.1)—(3.3) hold with d(m, n, k, )
instead of amnki-
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