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Abstract
In this study, as the domain of four-dimensional backward difference matrix in the
spaceLu(t), we introduce the complete paranormed spaceBV(t) of bounded variation
double sequences and examine some properties of that space. Also, we determine the
γ -dual and β(ϑ)-dual of the spaceBV(t). Finally, we characterize the classes (BV(t) :
Mu), (BV(t) : Cϑ) and (Lu(t) : μ) with μ ∈ {BS, CSϑ ,Mu(�), Cϑ(�)}, where
Mu(�) and Cϑ(�) denote the spaces of all double sequences whose �-transforms
are in the spaces Mu and Cϑ , respectively.

Keywords Summability theory · Double sequences · Double series · Alpha, beta and
gamma duals · Matrix domain of four-dimensional matrices · Matrix transformations

Mathematics Subject Classification 46A45 · 40C05

1 Introduction

We denote the set of all real- or complex-valued double sequences by � which is a
vector space with coordinatewise addition and scalar multiplication. Any subspace of
� is called as a double sequence space. We writeMu , Cp, Cbp and Cr for the spaces of
bounded, convergent in the Pringsheim’s sense, both convergent in the Pringsheim’s
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sense and bounded, and regularly convergent double sequences, respectively. Here
and after, unless stated otherwise we assume that ϑ denotes any of the symbols p, bp
or r .

Let λ be a space of double sequences, converging with respect to some linear
convergence rule ϑ − lim : λ → C. The sum of a double series

∑
k,l xkl with respect

to this rule is defined byϑ−∑
k,l xkl = ϑ−limm,n→∞

∑m,n
k,l=0 xkl . In short, throughout

the text the summations without limits run from 0 to ∞, for example
∑

k,l xkl means
that

∑∞
k,l=0 xkl . Theα-dual λα , theβ(ϑ)-dual λβ(ϑ) with respect to theϑ-convergence

and the γ -dual λγ of a double sequence space λ are, respectively, defined by

λα :=
{

a = (akl) ∈ � :
∑

k,l

|akl xkl | < ∞ for all x = (xkl) ∈ λ

}

,

λβ(ϑ) :=
⎧
⎨

⎩
a = (akl) ∈ � :

⎛

⎝
m,n∑

k,l=0

akl xkl

⎞

⎠

m,n∈N
∈ Cϑ for all x = (xkl) ∈ λ

⎫
⎬

⎭
,

λγ :=
⎧
⎨

⎩
a = (akl) ∈ � : sup

m,n∈N

∣
∣
∣
∣
∣
∣

m,n∑

k,l=0

akl xkl

∣
∣
∣
∣
∣
∣
< ∞ for all x = (xkl) ∈ λ

⎫
⎬

⎭
.

It is easy to see for any two spaces λ andμ of double sequences thatμζ ⊂ λζ whenever
λ ⊂ μ. Also, λα ⊂ λβ(ϑ) and λα ⊂ λγ . Furthermore, λβ(ϑ) ⊂ λγ for ϑ ∈ {bp, r}.

Let λ and μ be two double sequence spaces, and A = (amnkl) be any four-
dimensional complex infinite matrix. Then, we say that A defines a matrix mapping
from λ into μ and we write A : λ → μ, if for every sequence x = (xkl) ∈ λ the
A-transform Ax = {(Ax)mn}m,n∈N of x exists and is in μ, where N = {0, 1, 2, . . .}
and

(Ax)mn = ϑ −
∑

k,l

amnkl xkl for each m, n ∈ N. (1.1)

We define the ϑ-summability domain λ
(ϑ)
A of A in a space λ of double sequences by

λ
(ϑ)
A :=

⎧
⎨

⎩
x = (xkl) ∈ � : Ax =

⎛

⎝ϑ −
∑

k,l

amnkl xkl

⎞

⎠

m,n∈N
exists and is in λ

⎫
⎬

⎭
.

We say with the notation (1.1) that A maps the space λ into the space μ if λ ⊂ μ
(ϑ)
A

and we denote the set of all four-dimensional matrices, transforming the space λ into
the space μ, by (λ : μ). Thus, A = (amnkl) ∈ (λ : μ) if and only if the double
series on the right side of (1.1) converges in the sense of ϑ for each m, n ∈ N, i.e.,
Amn ∈ λβ(ϑ) for all m, n ∈ N and every x ∈ λ, and we have Ax ∈ μ for all x ∈ λ,
where Amn = (amnkl)k,l∈N for all m, n ∈ N. If in λ and μ there is some notion of
limit or sum, then we write (λ : μ; P) to denote the subset of (λ : μ) which preserves
the limit or sum with boundedness. That is, if {(Ax)mn} converges to the same limit
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L whenever x = (xkl) is convergent in the Pringsheim’s sense with the limit L and
bounded, then the transformation is said to be bounded regular or RH -regular. In this
paper, we only consider bp-summability domain.

For all m, n, k, l ∈ N, we say that A = (amnkl) is a triangular matrix if amnkl = 0
for k > m or l > n or both [1]. Following Adams [1], we also say that a triangular
matrix A = (amnkl) is called a triangle if amnmn �= 0 for all m, n ∈ N.

Türkmenoǧlu (Gökhan) [34] characterized the classes (Cbp(t) : Cp(t); P) and
(Lu(t) : Mu) of four-dimensional matrices. Zeltser [44] essentially studied both
the theory of topological double sequence spaces and the theory of summability of
double sequences in her PhD thesis. Gökhan and Çolak [12–14] defined the spaces
Mu(t), Cp(t), C0p(t), Cbp(t) andLu(t), where t = (tkl) is a double sequence of strictly
positive real numbers tkl and

Lu(t) :=
⎧
⎨

⎩
x = (xkl) ∈ � :

∑

k,l

|xkl |tkl < ∞
⎫
⎬

⎭
.

Altay and Başar [2] defined the spaces BS, BS(t), CSϑ and BV of double series
whose sequence of partial sums are in the spaces Mu , Mu(t), Cϑ and Lu , respec-
tively, and also examined some properties of those spaces. Here and after, by t = (tkl)
and t ′ = (t ′kl), we denote the double sequence of strictly positive real numbers
and any bounded sequence of strictly positive real numbers, respectively, such that
t−1
kl + t ′−1

kl = 1 for all k, l ∈ N. Başar and Sever [4] introduced the Banach space
Lq of absolutely q-summable double sequences corresponding to the well-known
space 
q of absolutely q-summable single sequences and studied some properties
of the space Lq with 1 ≤ q < ∞. Gökhan et al. [15] characterized the matrix
classes (Cbp(t) : Cbp), (Cbp(t) : Cbp; P), (Cbp0(t) : Cp0(t ′)), (Cbp(t) : Cp0(t ′)),
(Mu(t) : Cp0(t ′)). Mursaleen and Başar [16] have introduced the spaces M̃u , C̃ϑ

and L̃s of double sequences whose Cesàro transforms are in the spaces Mu , Cϑ and
Ls , respectively. Quite recently, Demiriz and Duyar [11] have introduced the spaces
Mu(�), Cp(�), C0p(�), Cbp(�), Cr (�) and Lq(�) of double sequences whose dif-
ference transforms are bounded, convergent in the Pringsheim’s sense, null in the
Pringsheim’s sense, both convergent in the Pringsheim’s sense and bounded, and
regularly convergent and absolutely q-summable, respectively, and also, they have
examined some inclusion relations concerning with those sequence spaces. Quite
recently, Yeşilkayagil and Başar [35–43], Başar and Çapan [5,6], Çapan and Başar
[7–10] and Tuǧ [31–33] have worked on the normed/paranormed spaces of double
sequences and domain of triangle matrices in these spaces, and matrix transforma-
tions. Patterson has studied the characterization of the classes of four-dimensional
matrices, in [18–25]. We should note that by using functional analysis techniques
Talebi has recently obtained various properties of linear operators represented by
four-dimensional triangle matrices between certain spaces of double sequences, in
[26–30]. The reader can refer to the textbooks Başar [3] and Mursaleen and Mohiud-
dine [17] for relevant terminology and required details on the double sequences and
related topics.

The four-dimensional backward difference matrix � = (dmnkl) is defined by
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dmnkl :=
{

(−1)m+n−(k+l), m − 1 ≤ k ≤ m, n − 1 ≤ l ≤ n,

0, otherwise

for all m, n, k, l ∈ N. Therefore, the �-transform of a double sequence x = (xmn) is
given by

ymn = (�x)mn :=

⎧
⎪⎪⎨

⎪⎪⎩

x00, m, n = 0,
x0n − x0,n−1, m = 0, n ≥ 1,
xm0 − xm−1,0, m ≥ 1, n = 0,
xm−1,n−1 − xm−1,n − xm,n−1 + xmn, m, n ≥ 1

(1.2)

for all m, n ∈ N. Additionally, a direct calculation gives the inverse �−1 = S =
(smnkl) of the triangle matrix � as follows:

smnkl :=
{
1, 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0, otherwise
(1.3)

for all k, l,m, n ∈ N. Here, we can redefine the relation between the double sequences
x = (xmn) and y = (ykl) by summation matrix S as follows:

xmn = (Sy)mn =
m,n∑

k,l=0

ykl (1.4)

for all m, n ∈ N. Throughout the paper, we suppose that the terms of the double
sequences x = (xmn) and y = (ymn) are connected with the relation (1.2), and we use
the convention that any term with negative subscript is equal to zero.

In the present paper, we introduce the new paranormed space BV(t) of bounded
variation double sequences; that is, BV(t) is defined by

BV(t) := {x = (xmn) ∈ � : �x ∈ Lu(t)} .

2 The SpaceBV(t) of Double Sequences

This section is devoted to certain algebraic and topological properties of the para-
normed space BV(t) of bounded variation double sequences.

Theorem 2.1 Let 0 < tmn ≤ H = supm,n∈Ntmn < ∞ and M = max{1, H}. Then, the
set BV(t) is a linear space with the coordinatewise addition and scalar multiplication
and is a complete linear metric space paranormed by g defined by

g(x) =
⎡

⎣
∑

m,n∈N
|(�x)mn|tmn

⎤

⎦

1/M

which is linearly isomorphic to the spaces Lu(t).
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Proof One can easily show the first part of the theorem by a routine verification. So,
we omit the detail.

Consider the transformation T defined from BV(t) to Lu(t) by x 
→ y = T x =
{(�x)mn}, where the sequences x and y are connected with the relation (1.2). It is
trivial that T is linear and injective.

Let y = (ymn) ∈ Lu(t) and define the sequence x = (xkl) via y by (1.4). Therefore,
by taking into account the hypothesis y ∈ Lu(t) one can derive the following equality

∑

m,n

∣
∣(�x)mn

∣
∣tmn =

∑

m,n

|ymn|tmn < ∞

which gives that x ∈ BV(t). Therefore, T is surjective.
This step concludes the proof. ��

Theorem 2.2 Neither of the spaces Lu(t) and BV(t) includes the other one.

Proof Define the double sequences t = (tmn) and x = (xmn) by

tmn :=
{
1, m ∈ N and n is even,
2, m ∈ N and n is odd

and xmn :=
{
1/n, m = 1 and n is odd,
0, otherwise

for all m, n ∈ N, respectively. Then, it is obvious that

∑

m,n

|xmn|tmn =
∑

k

1

(2k + 1)2
< ∞,

that is, x ∈ Lu(t). But

∑

m,n

|(�x)mn|tmn ≥
∞∑

n=0

|(�x)1n|t1n ≥
∞∑

k=0

|(�x)1,2k+2|t1,2k+2 =
∞∑

k=0

1

2k + 1
= ∞,

i.e., x /∈ BV(t).
Now, choose the sequence y = (ymn) defined by ymn = 1 for all m, n ∈ N.

Obviously, y ∈ BV(t). Nevertheless, since

∑

m,n

|ymn|tmn = ∞

for all m, n ∈ N, y /∈ Lu(t).
This completes the proof. ��

A double sequence space λ is said to be solid (cf. [4, p. 153]) if and only if

λ̃ := {(ukl) ∈ � : ∃(xkl) ∈ λ such that |ukl | ≤ |xkl | for all k, l ∈ N} ⊂ λ.
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A double sequence space λ is said to be monotone if xu = (xklukl) ∈ λ for every
x = (xkl) ∈ λ and u = (ukl) ∈ {0, 1}N×N, where {0, 1}N×N denotes the set of all
double sequences consisting of 0s and 1s. If λ is monotone, then λα = λβ(ϑ) [44, p.
36], and λ is monotone whenever λ is solid.

Theorem 2.3 The double sequence space BV(t) is not monotone.

Proof Let us consider the double sequence x = (xmn) defined by

xmn :=
{
1, m = 0, n ∈ N,

0, otherwise

for all m, n ∈ N. Thus, we have

∑

m,n

|(�x)mn|tmn = |x00|t00 + |x00|t10 = 2,

that is, x ∈ BV(t). Now, we consider the double sequence u = (umn) ∈ {0, 1}N×N

defined by

umn :=
{
1, m + n is even,
0, otherwise

and let z = (zmn) = (xmnumn). Hence,

∑

m,n

|(�z)mn|tmn =
∑

n

|−z0,n−1+z0n|t0n+
∑

n

|z0,n−1−z0n|t1n=
∑

n

1+
∑

n

1=∞,

that is, z /∈ BV(t).
This step completes the proof. ��
As a natural consequence of Theorem 2.3, we have.

Corollary 2.4 The space BV(t) is not solid.

3 The Gamma and Beta Duals of the New Space of Double Sequences

In this section, we determine the γ -dual and β(ϑ)-dual of the sequence space BV(t).

Lemma 3.1 [34, Theorem 2] Let A = (amnkl) be any four-dimensional matrix. Then,
the following statements hold:

(i) Let0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then, A = (amnkl) ∈ (Lu(t) : Mu)

if and only if

sup
m,n,k,l∈N

|amnkl |tkl < ∞. (3.1)
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(ii) Let 1 < tkl ≤ supk,l∈Ntkl = H < ∞ for all k, l ∈ N. Then, A = (amnkl) ∈
(Lu(t) : Mu) if and only if there exists an integer B > 1 such that

sup
m,n∈N

∑

k,l

∣
∣
∣amnkl B

−1
∣
∣
∣
t ′kl

< ∞. (3.2)

Lemma 3.2 [8, Theorem 3.1] Let A = (amnkl) be any four-dimensional matrix. Then,
the following statements hold:

(i) Let 0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then, A = (amnkl) ∈ (Lu(t) : Cϑ)

if and only if the condition (3.1) holds and

∃αkl ∈ C such that ϑ − lim
m,n→∞ amnkl = αkl exists for all k, l ∈ N. (3.3)

(ii) Let 1 < tkl ≤ supk,l∈Ntkl = H < ∞ for all k, l ∈ N. Then, A = (amnkl) ∈
(Lu(t) : Cϑ) if and only if the conditions (3.1)–(3.3) hold.

Lemma 3.3 [14, Theorem 10] Let 1 < tkl for all k, l ∈ N. Define the set M2(t) by

M2(t) :=
⋃

B>1

⎧
⎨

⎩
x = (xkl) ∈ � :

∑

k,l

|xkl |t ′kl B−t ′kl/tkl < ∞
⎫
⎬

⎭
.

Then, {Lu(t)}α = {Lu(t)}β(ϑ) = {Lu(t)}γ = M2(t).

Lemma 3.4 [14, Theorem 11] Let 0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then,
{Lu(t)}α = {Lu(t)}β(ϑ) = {Lu(t)}γ = Mu(t).

Theorem 3.5 Define the sets D1, D2, D3 and D4, as follows:

D1 :=
⎧
⎨

⎩
a = (akl) ∈ � : sup

m,n,k,l∈N

∣
∣
∣
∣
∣
∣

m,n∑

i, j=k,l

ai j

∣
∣
∣
∣
∣
∣

tkl

< ∞
⎫
⎬

⎭
,

D2 :=
⎧
⎨

⎩
a = (akl) ∈ � : ∃(αkl) ∈ � � bp − lim

m,n→∞

m,n∑

i, j=k,l

ai j = αkl

⎫
⎬

⎭
,

D3 :=
⋃

B>1

⎧
⎪⎨

⎪⎩
a = (akl) ∈ � : sup

m,n∈N

∑

k,l

∣
∣
∣
∣
∣
∣

m,n∑

i, j=k,l

ai j B
−1

∣
∣
∣
∣
∣
∣

t ′kl

< ∞

⎫
⎪⎬

⎪⎭
.

Then, the following statements hold:

(i) If 0 < infk,l∈N tkl < tkl ≤ 1 for all k, l ∈ N, then {BV(t)}γ = D1 and
{BV(t)}β(bp) = D1 ∩ D2.

(ii) If 1 < tkl ≤ H = supk,l∈N < ∞ for all k, l ∈ N, then {BV(t)}γ = D3 and
{BV(t)}β(bp) = D1 ∩ D2 ∩ D3.
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Proof (i) Let 0 < infk,l∈N tkl < tkl ≤ 1 for all k, l ∈ N and x = (xkl) ∈ BV(t).
Then, from Theorem 2.1 there exists a double sequence y = (ykl) ∈ Lu(t) via x
by (1.2). Define the double sequence z = (zmn) with respect to the double sequence
a = (akl) ∈ {BV(t)}γ such that zmn = ∑m,n

k,l=0 akl xkl . Then, we easily derive with
(1.4) that

zmn =
m,n∑

k,l=0

akl xkl =
m,n∑

k,l=0

⎛

⎝
m,n∑

i, j=k,l

ai j

⎞

⎠ ykl = (By)mn (3.4)

for all m, n ∈ N, where the four-dimensional matrix B = (bmnkl) is defined by

bmnkl =
{∑m,n

i, j=k,l ai j , 0 ≤ k ≤ m, 0 ≤ l ≤ n
0, otherwise

(3.5)

for allm, n, k, l ∈ N. Thus, we see that ax = (amnxmn) ∈ BS whenever x = (xmn) ∈
BV(t) if and only if z = (zmn) ∈ Mu whenever y = (ymn) ∈ Lu(t). This leads us to
the fact that B ∈ (Lu(t) : Mu). Therefore, we obtain from Part (i) of Lemma 3.1 that
{BV(t)}γ = D1.

For determining the β(bp)-dual of the space BV(t), take any a = (akl) ∈
{BV(t)}β(bp). It is easily seen from (3.4) that ax = (amnxmn) ∈ CSbp whenever
x = (xmn) ∈ BV(t) if and only if z = (zmn) ∈ Cbp whenever y = (ymn) ∈ Lu(t).
Therefore, we derive from Part (i) of Lemma 3.2 that {BV(t)}β(bp) = D1 ∩ D2.

(ii) This is easily obtained by proceeding as in the proof of Part (i), above by using
Parts (ii) of Lemmas 3.1 and 3.2, respectively. So, we omit the detail. ��

Corollary 3.6 Define the sets D4 and D5 as

D4 =
⎧
⎨

⎩
a = (akl) ∈ � : ∃(αkl) ∈ � � p − lim

m,n→∞

m,n∑

i, j=k,l

ai j = αkl

⎫
⎬

⎭
,

D5 =
⎧
⎨

⎩
a = (akl) ∈ � : ∃(αkl) ∈ � � r − lim

m,n→∞

m,n∑

i, j=k,l

ai j = αkl

⎫
⎬

⎭
.

Then, we have the following statements:

(i) If 0 < infk,l∈N tkl < tkl ≤ 1 for all k, l ∈ N, then {BV(t)}β(p) = D1 ∩ D4 and
{BV(t)}β(r) = D1 ∩ D5.

(ii) If 1 < tkl ≤ H = supk,l∈N < ∞ for all k, l ∈ N, then {BV(t)}β(p) = D1 ∩ D3 ∩
D4 and {BV(t)}β(r) = D1 ∩ D3 ∩ D5.

Remark 3.7 Since the class (Lu(t) : Lu) of four-dimensional matrices is not yet char-
acterized, the α-dual of the new space was not given.
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4 Characterization of SomeMatrix Classes

In this section, we characterize the classes of four-dimensional matrix transformations
from the spacesLu(t) andBV(t) to any of the spacesCϑ ,CSϑ ,BS,Mu(�) andCϑ(�).

Let A = (amnkl) be any four-dimensional matrix and F = ( fmnkl) be a four-
dimensional trianglematrix such that fmnkl = 0 for k > m and l > n for all k, l,m, n ∈
N with the inverse F−1 = (hmnkl). We define the four-dimensional matrices E =
(emnkl) and G = (gmnkl) via A and F by

E = AF−1 and G = FA, (4.1)

where A and E are the four-dimensional usual dual summability matrices introduced
by Yeşilkayagil and Başar [35]. It is immediate that (4.1) is equivalent to the following
relations

emnkl =
∞∑

i, j=k,l

amni j hi jkl and gmnkl =
m,n∑

i, j=0

fmni j ai jkl (4.2)

for all k, l,m, n ∈ N. In the rest of the text, we suppose that the elements of the
matrices A, E and G are connected with the relations given in (4.2). For simplicity in
the notation, we write that

a(m, n, k, l) =
m,n∑

i, j=0

ai jkl , d(m, n, k, l) =
m,n∑

i, j=m−1,n−1

(−1)m+n−(i+ j)ai jkl ,

b(m, n, k, l) =
∞∑

i, j=k,l

amni j

for all k, l,m, n ∈ N.

Theorem 4.1 Let λ and μ be any given two double sequence spaces. Then, A ∈ (λF :
μ) if and only if Amn ∈ λ

β(ϑ)
F for all m, n ∈ N and E ∈ (λ : μ).

Proof Suppose that (4.2) holds and let A ∈ (λF : μ), and take any u ∈ λ, where
u = Fv for v ∈ λF . Since EF = AF−1F = A, EF exists and Amn ∈ λ

β(ϑ)
F for

each m, n ∈ N. Hence, Eu = EFv = Av which leads us to the consequence that
E ∈ (λ : μ).

Conversely, assume that Amn ∈ λ
β(ϑ)
F for each fixed m, n ∈ N and E ∈ (λ : μ),

let v ∈ λF and let Fv = u ∈ λ. Since Eu = EFv = Av and by the hypothesis, Av

exists and is in μ. This shows that A ∈ (λF : μ).
This completes the proof. ��
Now, we can give the following lemma.

Lemma 4.2 [42, Theorem 4.7] Let λ and μ be any two given double sequence spaces.
Then, A ∈ (λ : μF ) if and only if G ∈ (λ : μ).
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It is trivial that Theorem 4.1 and Lemma 4.2 enable the characterization of the
classes of linear transformations on/into the domain of several four-dimensional tri-
angle matrices in certain spaces of double sequences. In other words, since the double
sequence spaces μ and μF are linearly isomorphic, Theorem 4.1 and Lemma 4.2
have several consequences depending on the choice of the spaces λ and μ, and a
four-dimensional triangle matrix F = ( fmnkl). Indeed, if we choose λ = Lu(t),
μ ∈ {Mu, Cbp} and F ∈ {S,�}, then we obtain the following results from Theo-
rem 4.1 and Lemmas 3.1, 3.2 and 4.2, respectively.

Corollary 4.3 Let A = (amnkl) be any four-dimensional matrix. Then, the following
statements hold:

(i) Let 0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then, A = (amnkl) ∈ (BV(t) :
Mu) if and only if (3.1) holds with b(m, n, k, l) instead of amnkl and Amn ∈
{BV(t)}β(ϑ) for all m, n ∈ N.

(ii) Let 1 < tkl ≤ supk,l∈Ntkl = H < ∞ for all k, l ∈ N. Then, A = (amnkl) ∈
(BV(t) : Mu) if and only if (3.2) holds with b(m, n, k, l) instead of amnkl , and
Amn ∈ {BV(t)}β(ϑ) for all m, n ∈ N.

Corollary 4.4 Let A = (amnkl) be any four-dimensional matrix. Then, the following
statements hold:

(i) Let 0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then, A = (amnkl) ∈ (BV(t) : Cϑ)

if and only if (3.1) and (3.3) hold with b(m, n, k, l) instead of amnkl , and Amn ∈
{BV(t)}β(ϑ) for all m, n ∈ N.

(ii) Let 1 < tkl ≤ supk,l∈Ntkl = H < ∞ for all k, l ∈ N. Then, A = (amnkl) ∈
(BV(t) : Cϑ) if and only if (3.1)–(3.3) hold with b(m, n, k, l) instead of amnkl ,
and Amn ∈ {BV(t)}β(ϑ) for all m, n ∈ N.

Corollary 4.5 Let A = (amnkl) be any four-dimensional matrix. Then, the following
statements hold:

(i) Let 0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then, A = (amnkl) ∈ (Lu(t) : BS)

if and only if (3.1) holds with a(m, n, k, l) instead of amnkl .
(ii) Let 1 < tkl ≤ supk,l∈Ntkl = H < ∞ for all k, l ∈ N. Then, A = (amnkl) ∈

(Lu(t) : BS) if and only if (3.2) holds with a(m, n, k, l) instead of amnkl .

Corollary 4.6 Let A = (amnkl) be any four-dimensional matrix. Then, the following
statements hold:

(i) Let 0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then, A = (amnkl) ∈ (Lu(t) :
CSϑ) if and only if the conditions (3.1) and (3.3) hold with a(m, n, k, l) instead
of amnkl .

(ii) Let 1 < tkl ≤ supk,l∈Ntkl = H < ∞ for all k, l ∈ N. Then, A = (amnkl) ∈
(Lu(t) : CSϑ) if and only if the conditions (3.1)–(3.3) hold with a(m, n, k, l)
instead of amnkl .

Corollary 4.7 Let A = (amnkl) be any four-dimensional matrix. Then, the following
statements hold:
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(i) Let 0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then, A = (amnkl) ∈ (Lu(t) :
Mu(�)) if and only if (3.1) holds with d(m, n, k, l) instead of amnkl .

(ii) Let 1 < tkl ≤ supk,l∈Ntkl = H < ∞ for all k, l ∈ N. Then, A = (amnkl) ∈
(Lu(t) : Mu(�)) if and only if (3.2) holds with d(m, n, k, l) instead of amnkl .

Corollary 4.8 Let A = (amnkl) be any four-dimensional matrix. Then, the following
statements hold:

(i) Let 0 < infk,l∈Ntkl ≤ tkl ≤ 1 for all k, l ∈ N. Then, A = (amnkl) ∈ (Lu(t) :
Cϑ(�)) if and only if the conditions (3.1) and (3.3) hold with d(m, n, k, l) instead
of amnkl .

(ii) Let 1 < tkl ≤ supk,l∈Ntkl = H < ∞ for all k, l ∈ N. Then, A = (amnkl) ∈
(Lu(t) : Cϑ(�)) if and only if the conditions (3.1)–(3.3) hold with d(m, n, k, l)
instead of amnkl .
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16. Mursaleen, M., Başar, F.: Domain of Cesàro mean of order one in some spaces of double sequences.

Stud. Sci. Math. Hung. 51(3), 335–356 (2014)
17. Mursaleen, M., Mohiuddine, S.A.: Convergence Methods for Double Sequences and Applications.

Springer, New Delhi, Heidelberg, New York, Dordrecht, London (2014)

123
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