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Abstract
Existing works on approximate controllability often assume that the nonlinear item
is uniformly bounded and the corresponding fractional linear system is approximate
controllable, which is, however, too constrained. In this paper, we omit these two
assumptions and investigate the approximate controllability of fractional stochastic
differential equations driven by fractional Brownian motion. We also demonstrate that
our results can be extended to fractional stochastic differential equations with bounded
delay.
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1 Introduction

The fractional differential equations (FDEs) have more andmore applications in many
areas such as electromagnetic,mechanics, physics and chemistry (see [1,2]). In the past
few years, FDEs in infinite-dimensional spaces have been studied extensively since
they are abstract formulations for many problems arising from areas of economics,
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mechanics and physics. For more results of FDEs in infinite-dimensional spaces, see
[3–9] and the references therein.

On the other hand, the deterministic models often fluctuate due to noise or stochas-
tic perturbation. Generally, the noise or perturbation of a system is typically modeled
by a Brownian motion (Wiener process). There have been much efforts of fractional
stochastic differential equations (FSDEs) with Brownian motion in recent years [10–
16]. However, as many researchers have found [17,18], it is insufficient to use standard
Brownian motion to model many phenomena which have long memory, such as
telecommunication and asset prices. As an extension of Brownian motion, fractional
Brownian motion (fBm) is a family of Gaussian processes, which was introduced by
Kolmogorov [19]. It is desirable to replace Brownian motion by fBm to model the
practical problems better.

Controllability is one of the most fundamental but significant concepts in math-
ematical control theory, which can be categorized into two kinds: exact (complete)
controllability and approximate controllability. Exact controllability means that under
some admissible control input, a system can be steered from an arbitrary given initial
state to an arbitrary desired final state, while approximate controllability can steer the
system to arbitrary small neighborhood of final state. The study of latter for control
systems is more appropriate since the conditions of former are usually too strong in
infinite-dimensional spaces [20,21]. Recently, many efforts focused on the approx-
imate controllability of FSDEs with Brownian motion; see [22–29]. However, few
work is known about the approximate controllability of FSDEs with fBm, which is
still a bottleneck.

Motivated by the above considerations, in this paper, we study the approximate
controllability of FSDEs with fBm of the form

{
C Dαx(t) = Ax(t) + Bu(t) + f (t, x(t)) + σ(t) dB

H (t)
dt , t ∈ J := [0, b],

x(0) = x0,
(1.1)

where α ∈ ( 12 , 1], C Dα denotes the Caputo fractional derivative and A is the infinitesi-
mal generator of a strongly continuous semigroup {S(t)}t≥0 in a real separable Hilbert
space Y . BH is a fBm on a real separable Hilbert space V withHurst index H ∈ ( 12 , 1).
x0 is an F0-measurable random variable independent of BH with finite second
moment. B : L2

F (J ,U ) → L2(J ,Y ) is a bounded linear operator. f : J × Y → Y
and σ : J → L0

Q(V ,Y ) are appropriate functions satisfying some assumptions.
Our aim is to study the approximate controllability of system (1.1) and investigate

its generalizations to other systems. Note that in [22–29], the authors discussed the
approximate controllability results under the assumptions that the nonlinear item is
uniformly bounded and the associated fractional linear system is approximate con-
trollable, which is too constrained. In this paper, we omit these two assumptions and
use the method similar to [30] with suitable modifications so as to be compatible
with our researched equations. Further, we attempt to extend the results to study the
approximate controllability of FSDEs with bounded delay.

An outline of this paper is given as follows: Section 2 introduces some preliminary
facts. The existence and uniqueness of mild solutions for system (1.1) are established
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in Sect. 3. In Sect. 4, we prove the approximate controllability of system (1.1) and
extend the results to FSDEs with bounded delay. Section 5 presents an example.

2 Preliminaries

Some preliminary facts are presented in this section which is necessary for this paper.
For more details, see [6,31–33].

Assume that Y ,U and V are three real separable Hilbert spaces. Let (�,F , P) be
a complete probability space with a normal filtration {Ft }t∈[0,b] satisfying the usual
conditions and Fb = F . The control function u ∈ L2

F (J ,U ), where L2
F (J ,U ) is

the closed subspace of L2(J ×�,U ) consisting of allFt -adapted,U -valued process.
Throughout this paper, let M := sup

t∈[0,+∞)

‖S(t)‖ < ∞. We introduce the following

Banach spaces:

L(V , Y ) := {x : V → Y |x is a bounded linear operator},
L2(�, Y ) := {x : � → Y | x is an F−measurable square integrable random variable} ,

C(J , L2(�, Y )) := {x : J → L2(�, Y ) | x is an Ft -adapted stochastic process, which

is a continuous mapping such that sup
t∈J

E‖x(t)‖2 < ∞
}

.

Let C := C(J , L2(�, Y )). The space C equipped with the norm ‖x‖C =(
sup
t∈J

E‖x(t)‖2
) 1

2

is a Banach space.

Definition 2.1 [31,32]A real-valued one-dimensional fBmβH = {βH (t), t ∈ J }with
Hurst index H ∈ (0, 1) is a continuous and centered Gaussian process with covariance
function

RH (t, s) = E[βH (t)βH (s)] = 1

2
(t2H + s2H − |t − s|2H ), t, s ∈ J .

In the rest of this paper, we assume H ∈ ( 12 , 1). β
H can be represented by

βH (t) =
∫ t

0
K H (t, s)dβ(s),

where β = {β(t), t ∈ J } is a one-dimensional Wiener process and

K H (t, s) = cH

(
H − 1

2

)
s
1
2−H

∫ t

s
(u − s)H− 3

2 uH− 1
2 du.
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Let h ∈ L2(0, b) be a deterministic function, the Wiener integral of h with respect
to βH is given by

∫ b

0
h(s)dβH (s) =

∫ b

0
(K ∗

b h)(s)dβ(s),

where

(K ∗
τ h)(s) =

∫ τ

s
h(z)

∂K H (z, s)

∂z
dz, τ ∈ [0, b].

Then, the definition of infinite-dimensional fBmand its stochastic integral are given.
Let Q ∈ L(V , V ) be a nonnegative self-adjoint trace class operator such that

Qen = λnen with tr Q = ∑∞
n=1 λn < ∞, where λn ≥ 0(n = 1, 2, . . .) and {en}(n =

1, 2, . . .) is a complete orthonormal basis in V . The V -valued Q-cylindrical fBm on
(�,F , P) with covariance operator Q is defined as

BH (t) =
∞∑
n=1

Q
1
2 enβ

H
n (t) =

∞∑
n=1

√
λnenβ

H
n (t),

where βH
n are real, independent one-dimensional fBm.

Let L0
Q(V ,Y ) be the space of all Q-Hilbert–Schmidt operator ξ : V → Y . Note

that if ξ ∈ L(V ,Y ) and

‖ξ‖2
L0
Q(V ,Y )

:=
∞∑
n=1

‖√λnξen‖2 < ∞,

then ξ is called a Q-Hilbert–Schmidt operator.

Definition 2.2 [32,34,35] If 
 : J → L0
Q(V ,Y ) satisfies

∞∑
n=1

‖K ∗
b (
Q

1
2 )en‖L2(J ,Y ) < ∞, (2.1)

then the stochastic integral
∫ t
0 
(s)dBH (s) can be defined as

∫ t

0

(s)dBH (s) :=

∞∑
n=1

∫ t

0

(s)Q

1
2 endβ

H
n (s)

=
∞∑
n=1

∫ t

0
(K ∗

b (
Q
1
2 en))(s)dβ(s), t ∈ J .
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Lemma 2.1 [34,35] If 
 : J → L0
Q(V ,Y ) satisfies

∞∑
n=1

‖
Q
1
2 en‖

L
1
H (J ,Y )

< ∞, (2.2)

then for ∀ 0 ≤ s < t ≤ b,

E

∥∥∥∥
∫ t

s

(τ)dBH (τ )

∥∥∥∥
2

Y
≤ CH (t − s)2H−1

∞∑
n=1

∫ t

s
‖
(τ)Q

1
2 en‖2Y dτ,

where the constant CH > 0 depends on H. In addition, if
∞∑
n=1

‖
(t)Q
1
2 en‖Y is

uniformly convergent for t ∈ J , then

E

∥∥∥∥
∫ t

s

(τ)dBH (τ )

∥∥∥∥
2

Y
≤ CH (t − s)2H−1

∫ t

s
‖
(τ)‖2

L0
Q(V ,Y )

dτ. (2.3)

Inspired by [6,7], one can define the mild solution for system (1.1).

Definition 2.3 [6,7] A stochastic process {x(t)}t∈[0,b] is said to be a mild solution of
system (1.1), if for ∀ u ∈ L2

F (J ,U ),

x(t) = Sα(t)x0 +
∫ t

0
(t − s)α−1Tα(t − s) [ f (s, x(s)) + Bu(s)] ds

+
∫ t

0
(t − s)α−1Tα(t − s)σ (s)dBH (s), t ∈ [0, b], P − a.s.

where

Sα(t) =
∫ ∞

0
ξα(θ)S(tαθ)dθ, Tα(t) = α

∫ ∞

0
θξα(θ)S(tαθ)dθ,

ξα(θ) = 1

α
θ−(1+ 1

α
)ωα(θ− 1

α ), ωα(θ) =
∞∑
n=1

(−1)n−1θ−nα−1 
(nα + 1)

πn! sin(nπα), θ ∈ (0,∞),

ξα is a probability density function which satisfies

ξα(θ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0
ξα(θ)dθ = 1.

Lemma 2.2 [6,7] Operators Sα(t) and Tα(t) have the following properties.

(i) Sα(t) and Tα(t) are linear and bounded operators, i.e., for ∀ t ≥ 0,

‖Sα(t)x‖ ≤ M‖x‖, x ∈ Yand ‖Tα(t)x‖ ≤ αM


(α + 1)
‖x‖, x ∈ Y .
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(ii) Operators {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous.
(iii) If for ∀ t > 0, S(t) is a compact operator, then Sα(t) and Tα(t) are also compact

operators.

Definition 2.4 The set

Kb( f ) = {x(b) : x(b) is the mild solution of (1.1) at time b corresponding to the control u}

is said to be the reachable set of system (1.1). If f ≡ 0, then system (1.1) is denoted
by (1.1)∗. Moreover, we denote Kb(0) the reachable set of system (1.1)∗.

Definition 2.5 System (1.1) is approximate controllable on J if Kb( f ) = L2(�,Y ),
where Kb( f ) is the closure of Kb( f ). That is, for ∀ξ ∈ L2(�,Y ) and ∀ε > 0, there
exists a control u ∈ L2

F ([0, b],U ) such that E‖x(b) − ξ‖2 < ε. Similarly, system
(1.1)∗ is approximately controllable if Kb(0) = L2(�,Y ).

3 Existence and Uniqueness of Mild Solutions

The existence and uniqueness of mild solutions for system (1.1) are investigated in
this section. We first introduce the following hypotheses.

(H1): The function f : J×Y → Y is measurable and there exists a constant c1 > 0
such that for ∀ x ∈ Y ,∀ t ∈ J ,

‖ f (t, x)‖2 ≤ c1(1 + ‖x‖2).

(H2): There exists a constant l1 > 0 such that for ∀ x, y ∈ Y ,∀ t ∈ J ,

‖ f (t, x) − f (t, y)‖2 ≤ l1‖x − y‖2.

(H3): The function σ : J → L0
Q(V ,Y ) is measurable and there exists a constant

c2 > 0 such that

(i) sup
0≤s≤b

‖σ(s)‖2
L0
Q(V ,Y )

≤ c2,

(ii)
∞∑
n=1

‖σQ
1
2 en‖

L
1
H (J ,Y )

< ∞,

(iii)
∞∑
n=1

‖σ(t)Q
1
2 en‖Y is uniformly convergent for t ∈ J .

(H4): For ∀ t > 0, S(t) is a compact operator.
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Define the operator T : C → C by

(T x)(t) = Sα(t)x0 +
∫ t

0
(t − s)α−1Tα(t − s)[ f (s, x(s)) + Bu(s)]ds

+
∫ t

0
(t − s)α−1Tα(t − s)σ (s)dBH (s).

Lemma 3.1 Suppose (H1), (H3) and (H4) hold, then for ∀ x ∈ C , t → (T x)(t) is
continuous on [0, b] in the L2(�, Y )-sense.

Proof For ∀ x ∈ C and 0 ≤ t1 < t2 ≤ b, we have

E ‖(T x)(t2) − (T x)(t1)‖2
≤ 4E ‖Sα(t2)x0 − Sα(t1)x0‖2

+ 4E

∥∥∥∥
∫ t2

0
(t2−s)α−1Tα(t2−s) f (s, x(s))ds −

∫ t1

0
(t1 − s)α−1Tα(t1 − s) f (s, x(s))ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t2

0
(t2 − s)α−1Tα(t2 − s)Bu(s)ds −

∫ t1

0
(t1 − s)α−1Tα(t1 − s)Bu(s)ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t2

0
(t2 − s)α−1Tα(t2 − s)σ (s)dBH (s) −

∫ t1

0
(t1 − s)α−1Tα(t1 − s)σ (s)dBH (s)

∥∥∥∥
2

:= I1 + I2 + I3 + I4.

By the strong continuity of Sα(t), we obtain

lim
t2→t1

‖Sα(t2)x0 − Sα(t1)x0‖ = 0.

Using Lemma 2.2, it follows that

‖Sα(t2)x0 − Sα(t1)x0‖ ≤ 2M‖x0‖ ∈ L2(�, R+).

According to Lebesgue dominated theorem, we can obtain

lim
t2→t1

I1 = 0.

Moreover,

I2 ≤ 12E

∥∥∥∥
∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s) f (s, x(s))ds

∥∥∥∥
2

+12E

∥∥∥∥
∫ t1

0
(t1 − s)α−1[Tα(t2 − s) − Tα(t1 − s)] f (s, x(s))ds

∥∥∥∥
2

+12E

∥∥∥∥
∫ t2

t1
(t2 − s)α−1Tα(t2 − s) f (s, x(s))ds

∥∥∥∥
2

:= I21 + I22 + I23.
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By (H1) and Hölder’s inequality, it is easy to validate that

I21 ≤ 12M2


2(α)

(∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]2ds

)∫ t1

0
E‖ f (s, x(s))‖2ds

≤ 12M2


2(α)

∫ t1

0
[(t1 − s)2α−2 − (t2 − s)2α−2]ds ×

∫ t1

0
c1
(
1 + E‖x(s)‖2

)
ds

≤ 12M2c1t1(1 + sups∈J E‖x(s)‖2)

2(α)(2α − 1)

×
[
t2α−1
1 + (t2 − t1)

2α−1 − t2α−1
2

]
,

and

I22 ≤ 12E

(∫ t1

0
(t1 − s)α−1‖Tα(t2 − s) − Tα(t1 − s)‖‖ f (s, x(s))‖ds

)2

≤ 12t2α1 c1(1 + sups∈J E‖x(s)‖2)
2α − 1

(
sup

s∈[0,t1]
‖Tα(t2 − s) − Tα(t1 − s)‖

)2

.

From Lemma 2.2 and (H4), we know that Tα(t)(t > 0) is continuous in uniform
operator topology about the variable t . Hence, lim

t2→t1
I21 = lim

t2→t1
I22 = 0. Further,

I23 ≤ 12M2


2(α)

(∫ t2

t1
(t2 − s)2α−2ds

)(∫ t2

t1
E‖ f (s, x(s))‖2ds

)

≤ 12M2c1(t2 − t1)2α
(
1 + sups∈J E‖x(s)‖2)


2(α)(2α − 1)
→ 0 as t2 → t1.

A similar computation yields that

I3 ≤ 12E

∥∥∥∥
∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s)Bu(s)ds

∥∥∥∥
2

+12E

∥∥∥∥
∫ t1

0
(t1 − s)α−1[Tα(t2 − s) − Tα(t1 − s)]Bu(s)ds

∥∥∥∥
2

+12E

∥∥∥∥
∫ t2

t1
(t2 − s)α−1Tα(t2 − s)Bu(s)ds

∥∥∥∥
2

:= I31 + I32 + I33.

Similarly,
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I31 ≤ 12M2‖Bu‖L2(J ,Y )[t2α−1
1 + (t2 − t1)2α−1 − t2α−1

2 ]

2(α)(2α − 1)

→ 0 as t2 → t1,

I32 ≤ 12t2α−1
1 ‖Bu‖L2(J ,Y )

2α − 1

(
sup

s∈[0,t1]
‖Tα(t2 − s) − Tα(t1 − s)‖

)2

→ 0 as t2 → t1,

I33 ≤ 12M2(t2 − t1)2α−1‖Bu‖L2(J ,Y )


2(α)(2α − 1)
→ 0 as t2 → t1.

In a similar way, one can obtain

I4 ≤ 12E

∥∥∥∥
∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s)σ (s)dBH (s)

∥∥∥∥
2

+12E

∥∥∥∥
∫ t1

0
(t1 − s)α−1[Tα(t2 − s) − Tα(t1 − s)]σ(s)dBH (s)

∥∥∥∥
2

+12E

∥∥∥∥
∫ t2

t1
(t2 − s)α−1Tα(t2 − s)σ (s)dBH (s)

∥∥∥∥
2

:= I41 + I42 + I43.

Combing Lemma 2.1 and (H3), we have

I41 ≤ 12CH t
2H−1
1

∫ t1

0

∥∥∥[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s)σ (s)
∥∥∥2
L0
Q(V ,Y )

ds

≤ 12CH t
2H−1
1 c2M2

(
(α))2

∫ t1

0
[(t1 − s)2α−1 − (t2 − s)2α−1]ds

≤ 12CH t
2H−1
1 c2M2

(2α − 1)(
(α))2
[t2α−1
1 + (t2 − t1)

2α−1 − t2α−1
2 ]

→ 0 as t2 → t1,

I42 ≤ 12CH t
2H−1
1

∫ t1

0

∥∥∥(t1 − s)α−1[Tα(t2 − s) − Tα(t1 − s)]σ(s)
∥∥∥2
L0
Q(V ,Y )

ds

≤ 12CH t
2H−1
1 c2 sup

s∈[0,t1]
‖Tα(t2 − s) − Tα(t1 − s)‖2

∫ t1

0
(t1 − s)2α−2ds

≤ 12CH t
2H+2α−2
1 c2

(2α − 1)
sup

s∈[0,t1]
‖Tα(t2 − s) − Tα(t1 − s)‖2

→ 0 as t2 → t1,

I43 ≤ 12CH (t2 − t1)
2H−1

∫ t2

t1
‖(t2 − s)α−1Tα(t2 − s)σ (s)‖2

L0
Q(V ,Y )

ds

≤ 12CHM2c2(t2 − t1)2H+2α−2

(2α − 1)(
(α))2

→ 0 as t2 → t1.
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Hence, limt2→t1 E ‖(T x)(t2) − (T x)(t1)‖2 = 0, which implies that t → (T x)(t) is
continuous on J in the L2(�, Y )-sense. ��
Lemma 3.2 Under (H1), (H3) and (H4), the operator T sends C into C .

Proof For ∀ x ∈ C , we have

E‖(T x)(t)‖2

≤ 4E ‖Sα(t)x0‖2 + 4E

∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s) f (s, x(s))ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s)Bu(s)ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s)σ (s)dBH (s)

∥∥∥∥
2

:= J1 + J2 + J3 + J4.

According to Lemma 2.2, one can obtain

J1 ≤ 4M2E‖x0‖2.

By (H1) and Hölder’s inequality, it follows that

J2 ≤ 4M2


2(α)
E

(∫ t

0
(t − s)α−1‖ f (s, x(s))‖ds

)2

≤ 4M2


2(α)

(∫ t

0
(t − s)2α−2ds

)(∫ t

0
E‖ f (s, x(s))‖2ds

)

≤ 4M2b2αc1
(
1 + sups∈J E‖x(s)‖2)

(2α − 1)
2(α)
,

J3 ≤ 4M2


2(α)

(∫ t

0
(t − s)2α−2ds

)(∫ t

0
‖Bu(s)‖2ds

)

≤ 4M2b2α−1‖Bu‖L2(J ,Y )


2(α)(2α − 1)
.

Combining Lemma 2.1, (H3) and Hölder’s inequality, we have

J4 ≤ 4CH t
2H−1

∫ t

0
‖(t − s)α−1Tα(t − s)σ (s)‖2

L0
Q(V ,Y )

ds

≤ 4CHM2b2H−1


2(α)

∫ t

0
(t − s)2α−2‖σ(s)‖2

L0
Q(V ,Y )

ds

≤ 4CHM2b2H+2α−2c2

2(α)(2α − 1)

.
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Thus, ‖T x‖2C = supt∈J E‖(T x)(t)‖2 < ∞. From Lemma 3.1, (T x)(t) is continuous
on J in the L2(�,Y )-sense and therefore, T maps C into C . ��
Theorem 3.1 Suppose that hypotheses (H1)−(H4) are satisfied, then system (1.1) has
a unique mild solution on C .

Proof We utilize the Picard’s iteration argument to prove the existence of mild solu-
tions.

For ∀ n ≥ 0, let {
xn+1(t) = (T xn)(t), n = 0, 1, 2, . . .
x0(t) = x0.

(3.1)

By Lemma 3.2, we have xn ∈ C , n = 0, 1, 2, . . .. Moreover, from Lemma 2.2 and
(H2), we have

E‖xn+1(t) − xn(t)‖2

= E

∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s)[ f (s, xn(s)) − f (s, xn−1(s))]ds

∥∥∥∥
2

≤ M2


2(α)

(∫ t

0
(t − s)2α−2ds

)(∫ t

0
E ‖ f (s, xn(s)) − f (s, xn−1(s))‖2 ds

)

≤ M2l1b2α−1


2(α)(2α − 1)

∫ t

0
E‖xn(s) − xn−1(s)‖2ds

≤
(

M2l1b2α−1


2(α)(2α − 1)

)2 ∫ t

0

∫ s

0
E‖xn−1(s1) − xn−2(s1)‖2ds1ds

≤ · · ·
≤
(

M2l1b2α−1


2(α)(2α − 1)

)n ∫ t

0

∫ s

0
· · ·
∫ sn−2

0
E ‖x1(sn−1) − x0(sn−1)‖2 dsn−1 . . . ds1ds

≤
(

M2l1b2α−1


2(α)(2α − 1)

)n
sups∈J E‖x1(s) − x0(s)‖2

n! ,

which implies that

sup
t∈J

E‖xn+1(t) − xn(t)‖2 ≤
(

M2l1b2α−1


2(α)(2α − 1)

)n
sups∈J E‖x1(s) − x0(s)‖2

n! .

Thus, the sequence {xn(t)}n≥0 ⊆ L2(�, Y ) is a Cauchy sequence. Therefore, there
exists x ∈ L2(�,Y ) such that

sup
t∈J

E‖xn(t) − x(t)‖2 = 0.

Taking the limitation in (3.1) as n → ∞, the existence of mild solutions is obtained.
Next, we will prove the uniqueness.
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2616 J. Lv, X. Yang

Suppose that x and y are two mild solutions of system (1.1). It is easy to check that

E‖x(t) − y(t)‖2

= E

∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s)[ f (s, x(s)) − f (s, y(s))]ds

∥∥∥∥
2

≤ M2


2(α)

(∫ t

0
(t − s)2α−2ds

)(∫ t

0
E‖ f (s, x(s)) − f (s, y(s))‖2ds

)

≤ M2b2α−1l1

2(α)(2α − 1)

∫ t

0
E‖x(s) − y(s)‖2ds.

Using Gronwall’s lemma, we have

sup
t∈J

E‖x(t) − y(t)‖2 = 0.

Thus, the mild solution is unique. ��

4 Approximate Controllability

In this section, we investigate the approximate controllability of system (1.1) and
extend our results to FSDEs with bounded delay.

Define an operator F : C → L2(J ,Y ) by

(Fx)(t) = f (t, x(t)), t ∈ J .

The linear operator L : L2(J ,Y ) → Y is given by

L p =
∫ b

0
(b − s)α−1Tα(b − s)p(s)ds, t ∈ J .

The null space ofL is denoted byN0(L ). It is easy to see thatN0(L ) ⊆ L2(J ,Y )

is a closed subspace, whose orthogonal space is denoted by N ⊥
0 (L ). Furthermore,

L2(J ,Y ) can be decomposed uniquely as L2(J ,Y ) = N0(L ) ⊕ N ⊥
0 (L ).

Let R(B) be the range of operator B. We also need the following assumption.
(H5): For ∀ p ∈ L2(J ,Y ), there exists a function q ∈ R(B) such thatL p = L q.

Moreover, R(L ) = Y .
Obviously, (H5) implies that L2(J ,Y ) = N0(L ) ⊕ R(B). Define a linear and

continuous mapping P : N ⊥
0 (L ) → R(B) by Pz∗ = q∗, where q∗ ∈ {z∗ +

N0(L )} ∩ R(B) is the unique minimum norm element, that is

‖Pz∗‖ = ‖q∗‖ = min
{
‖v‖ : v ∈ {z∗ + N0(L )} ∩ R(B)

}
.
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By (H5), it follows that for ∀ z∗ ∈ N ⊥
0 (L ), {z∗ + N0(L )} ∩ R(B) �= ∅ and

∀ z ∈ L2(J ,Y ) has a unique decomposition z = n + q∗. Therefore, the operator P
is well defined and ‖P‖ ≤ c for some constant c [36].

Lemma 4.1 [30,37] For ∀ z ∈ L2(J ,Y ) and its corresponding n ∈ N0(L ), there
exists a constant C > 0 such that

‖n‖L2(J ,Y ) ≤ (1 + C)‖z‖L2(J ,Y ).

We define the operator K : L2(J ,Y ) → L2(J ,Y ) by

(K ν)(t) =
∫ t

0
(t − s)α−1Tα(t − s)ν(s)ds.

Let

D0 = {m ∈ L2(J ,Y ) : m(t) = (K n)(t), n ∈ N0(L ), t ∈ J }.

It is clear that for ∀ m ∈ D0, m(b) = (K n)(b) = 0.
Assume that x(·) is a mild solution of system (1.1)∗, define an operator gx : D0 →

D0 by

(gxm)(t) = (K n)(t), t ∈ J ,

where n is given by the unique decomposition

F(x + m) = n + q, n ∈ N0(L ), q ∈ R(B).

Theorem 4.1 Suppose that (H1)−(H5) are satisfied, then system (1.1)∗ is approximate
controllable, i.e., Kb(0) = L2(�, Y ).

Proof For ∀ ξ ∈ L2(�, Y ), we have ξ − Sα(b)x0 − ∫ b
0 (b − s)α−1Tα(b −

s)σ (s)dBH (s) ∈ L2(�, Y ). In particular ξ − Sα(b)x0 − ∫ b
0 (b − s)α−1Tα(b −

s)σ (s)dBH (s) ∈ Y for almost all ω ∈ �. By (H5), there exists p ∈ L2(J ,Y )

such that

ξ − Sα(b)x0−
∫ b

0
(b−s)α−1Tα(b−s)σ (s)dBH (s)=

∫ b

0
(b − s)α−1Tα(b−s)p(s)ds.

Using (H5) again, there exists q ∈ R(B) such that

∫ b

0
(b − s)α−1Tα(b − s)p(s)ds =

∫ b

0
(b − s)α−1Tα(b − s)q(s)ds.

Therefore,

ξ = Sα(b)x0+
∫ b

0
(b−s)α−1Tα(b−s)σ (s)dBH (s)+

∫ b

0
(b−s)α−1Tα(b − s)q(s)ds.
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Note that q ∈ R(B), for ∀ ε > 0 there exists a control function uε such that

sup
t∈J

E‖Buε(t) − q(t)‖2 <

2(α)(2α − 1)ε

M2b2α
.

Define

ξε = Sα(b)x0 +
∫ b

0
(b − s)α−1Tα(b − s)σ (s)dBH (s)

+
∫ b

0
(b − s)α−1Tα(b − s)Buε(s)ds.

Thus, ξε ∈ Kb(0). Moreover,

E‖ξ − ξε‖2

= E

∥∥∥∥
∫ b

0
(b − s)α−1Tα(b − s)[Buε(s) − q(s)]ds

∥∥∥∥
2

≤ M2


2(α)
E

(∫ b

0
(b − s)α−1‖Buε − q‖ds

)2

≤ M2b2α

(2α − 1)
2(α)
sup
s∈J

E‖Buε(s) − q(s)‖2
< ε,

which means that system (1.1)∗ is approximate controllable. ��
Lemma 4.2 Suppose that (H1) − (H4) are fulfilled, the operator gx has a fixed point
m0 ∈ D0 provided that

4M2b2α(1 + C)2l1

2(α)(2α − 1)

< 1. (4.1)

Proof For r > 0, let Br = {z ∈ D0 : ‖z‖L2(J ,Y ) ≤ r}. Next, we prove that gx (Br ) ⊆
Br . If it is not true, then for ∀ r > 0, there exists an element m ∈ Br , such that
‖gx (m)‖L2(J ,Y ) > r . Consequently,

r2 < ‖gx (m)‖2L2(J ,Y )
= ‖K n‖2L2(J ,Y )

.

In fact, by Lemma 4.1, we have

‖(K n)(t)‖2 =
∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s)n(s)ds

∥∥∥∥
2

≤ M2


2(α)

(∫ t

0
(t − s)α−1‖n(s)‖ds

)2
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≤ M2


2(α)

(∫ t

0
(t − s)2α−2ds

)(∫ t

0
‖n(s)‖2ds

)

≤ M2b2α−1


2(α)(2α − 1)
‖n‖2L2(J ,Y )

≤ M2b2α−1(1 + C)2


2(α)(2α − 1)
‖F(x + m)‖2L2(J ,Y )

≤ M2b2α−1(1 + C)2


2(α)(2α − 1)

(∫ b

0
‖ f (t, (x + m)(t)) − f (t, 0) + f (t, 0)‖2dt

)

≤ 2M2b2α−1(1 + C)2


2(α)(2α − 1)

(∫ b

0
‖ f (t, (x + m)(t)) − f (t, 0)‖2 + ‖ f (t, 0)‖2dt

)

≤ 2M2b2α−1(1 + C)2


2(α)(2α − 1)

[∫ b

0

(
l1‖(x + m)(t)‖2 + l2f

)
dt

]

≤ 2M2b2α−1(1 + C)2


2(α)(2α − 1)

[
2l1

(∫ b

0
‖x(t)‖2dt + r2

)
+ l2f b

]
,

where l f = maxt∈J ‖ f (t, 0)‖. Hence,

r2 < ‖gx (m)‖2L2(J ,Y )
(4.2)

= ‖K n‖2L2(J ,Y )

≤ 2M2b2α(1 + C)2


2(α)(2α − 1)

[
2l1

∫ b

0
‖x(t)‖2dt + 2l1r

2 + l2f b

]
.

Dividing by r2 on both sides of (4.2) and taking limitation as r → ∞, it follows
that

4M2b2α(1 + C)2l1

2(α)(2α − 1)

≥ 1,

which is a contradiction to (4.1). Thus, gx maps Br into Br .
By (H4) and Lemma 2.2, Tα(t) is a compact operator, which implies that gx is a

compact operator.
Due to Schauder fixed-point theorem, gx has a fixed point m0 ∈ D0, which implies

that gx (m0) = K n0 = m0. ��
Theorem 4.2 Suppose that (H1)− (H5) are fulfilled and (4.1) is satisfied, then system
(1.1) is approximate controllable.

Proof Suppose that x(·) is the mild solution of system (1.1)∗, that is

x(t) = Sα(t)x0 +
∫ t

0
(t − s)α−1Tα(t − s)Bu(s)ds

+
∫ t

0
(t − s)α−1Tα(t − s)σ (s)dBH (s).
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Recalling that gx (m0) = K n0 = m0, then we get

F(x + m0)(t) = n0(t) + q0(t).

Operating K on both sides, we obtain

K F(x + m0)(t) = K n0(t) + K q0(t) = m0(t) + K q0(t).

Hence,

x(t) + K F(x + m0)(t) = x(t) + m0(t) + K q0(t).

Denote y(t) = x(t) + m0(t), then

x(t) + K Fy(t) = y(t) + K q0(t).

Hence,

y(t) = x(t) + K Fy(t) − K q0(t)

= Sα(t)x0 +
∫ t

0
(t − s)α−1Tα(t − s)[Bu(s) − q0(s)]ds

+
∫ t

0
(t − s)α−1Tα(t − s) f (s, y(s))ds +

∫ t

0
(t − s)α−1Tα(t − s)σ (s)dBH (s).

Therefore, y = x + m0 is the mild solution of the following equation

{
C Dα y(t) = Ay(t) + (Bu − q0)(t) + f (t, y(t)) + σ(t) dB

H (t)
dt , t ∈ [0, b],

y(0) = x0.
(4.3)

By the definition of K and n0 ∈ N0(L ), we have m0(0) = m0(b) = 0. Further,

y(0) = x(0) + m0(0) = x0,

y(b) = x(b) + m0(b) = x(b) ∈ Kb(0).

Next, we will prove Kb(0) ⊆ Kb( f ). Since q0 ∈ R(B), there exists a v ∈
L2
F (J ,U ) such that

sup
t∈J

E‖Bv − q0‖2 < ε.

Denote ũ = u − v and suppose that xũ is the mild solution of the following equation

{
C Dαw(t) = Aw(t) + Bũ(t) + f (t, w(t)) + σ(t) dB

H (t)
dt , t ∈ [0, b],

w(0) = x0.
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Thus,

xũ(t) = Sα(t)x0 +
∫ t

0
(t − s)α−1Tα(t − s) [ f (s, xũ(s)) + Bũ(s)] ds

+
∫ t

0
(t − s)α−1Tα(t − s)σ (s)dBH (s), t ∈ [0, b],

and xũ(b) ∈ Kb( f ).
On the other hand,

E‖y(t) − xũ(t)‖2

= E

∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s)[(Bv)(s) − q(s)]ds

+
∫ t

0
(t − s)α−1Tα(t − s)[ f (s, y(s)) − f (s, xũ(s))]ds

∥∥∥∥
2

≤ 2E

∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s)[(Bv)(s) − q(s)]ds

∥∥∥∥
2

+2E

∥∥∥∥
∫ t

0
(t − s)α−1Tα(t − s)[ f (s, y(s)) − f (s, xũ(s))]ds

∥∥∥∥
2

≤ 2M2


2(α)

(∫ t

0
(t − s)2α−2ds

)(∫ t

0
E‖Bv − q‖2ds

)

+2M2l21

2(α)

(∫ t

0
(t − s)2α−2ds

)(∫ t

0
E‖y(s) − xũ(s)‖2ds

)

≤ 2b2αM2ε

(2α − 1)
2(α)
+ 2M2l21b

2α−1

(2α − 1)
2(α)

∫ t

0
E‖y(s) − xũ(s)‖2ds.

Let φ(t) = E‖y(t) − xũ(t)‖2, according to Gronwall’s lemma, it follows that

E‖y(t) − xũ(t)‖2 ≤ 2M2b2αε

(2α − 1)
2(α)
exp

{
2M2l21b

2α

(2α − 1)
2(α)

}
.

Moreover,

E‖y(b)−xũ(b)‖2≤ sup
t∈J

E‖y(t)−xũ(t)‖2 ≤ 2M2b2αε

(2α − 1)
2(α)
exp

{
2M2l21b

2α

(2α − 1)
2(α)

}
.

Therefore,

E‖x(b) − xũ(b)‖2 = E‖y(b) − xũ(b)‖2

≤ 2M2b2αε

(2α − 1)
2(α)
exp

{
2M2l21b

2α

(2α − 1)
2(α)

}
,
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which implies that Kb(0) ⊆ Kb( f ). By Theorem 4.1, Kb(0) = L2(�,Y ). Therefore,
Kb( f ) = L2(�,Y ). Hence, system (1.1) is approximate controllable. ��
Remark 4.1 Theorem 4.2 is a generalization of the results in [22–29]. Our results
are obtained without assuming that the nonlinear item is uniformly bounded and the
corresponding fractional linear system is approximate controllable.

Based on the arguments above, we can extend our results to the approximate con-
trollability of FSDEs with bounded delay

{
C Dαx(t) = Ax(t) + Bu(t) + g(t, x(t − h)) + σ(t) dB

H (t)
dt , t ∈ J := [0, b],

x(t) = ψ(t), t ∈ [−h, 0], (4.4)

where α ∈ ( 12 , 1], C Dα denotes the Caputo fractional derivative, A, B, u, σ, BH

are defined the same as system (1.1), g : J × Y → Y , ψ ∈ C([−h, 0],Y ).
Let C̃ = C

([−h, b], L2(�, Y )
)
. It is a Banach space with the norm ‖x‖C̃ :=(

sup
t∈[−h,b]

E‖x(t)‖2
) 1

2

.

The stochastic process x ∈ C̃ is a mild solution of system (4.4) if x(t) = ψ(t), t ∈
[−h, 0] and for all t ∈ [0, b] it satisfies the following integral equation

x(t) = Sα(t)x0 +
∫ t

0
(t − s)α−1Tα(t − s) [g(s, x(s − h)) + Bu(s)] ds

+
∫ t

0
(t − s)α−1Tα(t − s)σ (s)dBH (s), t ∈ [0, b], P − a.s.

We introduce the following hypotheses.
(H ′

1): The function g : J ×Y → Y is measurable and there exists a constant c1 > 0
such that for ∀ x ∈ Y ,∀ t ∈ J ,

‖g(t, x)‖2 ≤ c1(1 + ‖x‖2).

(H ′
2): There exists a constant l1 > 0 such that for ∀ x, y ∈ Y ,∀ t ∈ J ,

‖g(t, x) − g(t, y)‖2 ≤ l1‖x − y‖2.

Theorem 4.3 Suppose that (H ′
1), (H ′

2), (H3) and (H4) are satisfied, then system (4.4)
has a unique mild solution on C̃ provided that

M2b2αl1

2(α)(2α − 1)

< 1. (4.5)
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Proof Define the operator T : C̃ → C̃ by

(T x)(t) =
⎧⎨
⎩
Sα(t)x0 + ∫ t0 (t − s)α−1Tα(t − s)[g(s, x(s − h)) + Bu(s)]ds
+ ∫ t0 (t − s)α−1Tα(t − s)σ (s)dBH (s), t ∈ [0, b],

ψ(t), t ∈ [−h, 0].

Using the same method in Lemmas 3.1 and 3.2, one can deduce that T : C̃ → C̃ is
well defined. By simple calculations and (4.5), we can deduce that T is a contraction.
By applying the Banach contraction principle, we can get T has a unique fixed point
on C̃ . Therefore, system (4.4) has a unique mild solution. ��
Theorem 4.4 Suppose that (H ′

1), (H ′
2), (H3)−(H5) are fulfilled and (4.1), (4.5) are

satisfied, then system (4.4) is approximate controllable.

Proof Using the same method in Theorems 4.1, 4.2, one can deduce this theorem and
hence we omit the detailed proof here. ��
Remark 4.2 If σ(t) ≡ 0, then system (4.4) reduces to system (1) of [30]. Hence, results
of [30] are generalized.

5 An Example

Consider the following fractional stochastic control system

⎧⎪⎨
⎪⎩

C D
3
4 z(t, ξ) = ∂2

∂ξ2
z(t, ξ) + f (t, z(t, ξ))+Bu(t, ξ)+σ(t) dB

H (t)
dt , t ∈ [0, 1], ξ ∈ (0, π),

z(t, 0) = z(t, π) = 0, t ∈ [0, 1],
z(0, ξ) = z0(ξ), ξ ∈ (0, π),

(5.1)

where C D
3
4 is the Caputo fractional derivative of order 3

4 with respect to t , B
H denotes

a fBm defined on (�,F , P). Let Y = V = L2(0, π), J = [0, 1]. Define the operator
A : D(A) ⊂ Y → Y by Az = ∂2z

∂ξ2
, where

D(A) =
{
z ∈ Y : z, ∂z

∂ξ
are absolutely continuous,

∂2z

∂ξ2
∈ Y , z(0) = z(π) = 0

}
.

Let en(ξ) =
√

2
π
sin(nξ), n = 1, 2, . . .. Note that {en}n≥1 is a complete orthonormal

set of eigenvectors of A. It is easy to check that A generates a strongly continuous
semigroup {S(t)}t≥0 which is compact, analytic and self-adjoint [9]. Hence, (H4) is
fulfilled.

Define an infinite-dimensional space U by

U =
{
u : u =

∞∑
n=2

unen with
∞∑
n=2

u2n < ∞
}

.

123



2624 J. Lv, X. Yang

The norm inU is defined by ‖u‖U = (∑∞
n=2 u

2
n

) 1
2 . Define the bounded linear operator

B : U → Y as follows:

Bu = 2u2e1 +
∞∑
n=2

unen, for u =
∞∑
n=2

unen ∈ U .

Choose a sequence {αn}n∈N , αn ≥ 0. Consider the operator Q : V → V defined
by Qen = αnen . Assume that

tr(Q) =
∞∑
n=1

√
αn < ∞.

The process BH (t) is defined by

BH (t) =
∞∑
n=1

√
αnβ

H
n (t)en, t ≥ 0,

1

2
< H < 1,

where {βH
n }n∈N is a sequence of mutually independent one-dimensional fBm.

Let

x(t)(ξ) = z(t, ξ), f (t, x(t))(ξ) = f (t, z(t, ξ)), u(t)(ξ) = u(t, ξ).

Then, (5.1) can be reformulated as

{
C D

3
4 x(t) = Ax(t) + Bu(t) + f (t, x(t)) + σ(t) dB

H (t)
dt , t ∈ [0, 1],

x(0) = x0

Define f (t, z(t, ξ)) = e−t |z(t,ξ)|
(1+et )(1+|z(t,ξ)|) . Clearly, we have

‖ f (t, z(t, ξ))‖ ≤ |z(t, ξ)|,

and

‖ f (t, z1(t))(ξ) − f (t, z2(t))(ξ)‖
= e−t ||z1(t, ξ)| − |z2(t, ξ)||

(1 + et )(1 + |z1(t, ξ)|)(1 + |z2(t, ξ)|)
≤ e−t

1 + et
|z1(t, ξ) − z2(t, ξ)|

≤ 1

2
|z1(t, ξ) − z2(t, ξ)|.

Hence, (H1) and (H2) are satisfied. If conditions (H3), (H5) and (4.1) are satisfied,
then by Theorem 4.2, system (5.1) is approximately controllable on [0, 1].
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