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Abstract
The eccentric adjacency index of an n-vertex-connected and simple graphG is defined

as ξad(G) = ∑
x∈VG

SG(x)

ecG(x)
, where SG(x) is the sum of degrees of neighbors of x and

ecG(x) is the eccentricity of x in G. Denote by G(n, k) the set of n-vertex-connected
graphs with k cut edges, where 0 ≤ k ≤ n−1(k �= n−2). In this paper, we determine
the graph with largest eccentric adjacency index and characterize the extremal graph
among all graphs in G(n, k).

Keywords Eccentric adjacency index · Extremal values · Cut edge

Mathematics Subject Classification 05C07 · 05C12 · 05C35

1 Introduction

Let G be an n-vertex-connected and simple graph with vertex set VG and edge set
EG . The degree of a vertex x in G, denoted by degG(x), is degG(x) = |ΓG(x)|,
where ΓG(x) is the set of neighbors of x in G. A vertex x is called a pendent vertex
if degG(x) = 1. The length of a shortest path connecting the vertices x and y in G is
called the distance between x and y and is denoted by dG(x, y). For a vertex x ∈ VG ,
the eccentricity of x in G is ecG(x) = maxy∈VG dG(x, y). The radius rG and the
diameter dG of G are defined by rG = minx∈VG ecG(x) and dG = maxx∈VG ecG(x),
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respectively. For a vertex x ∈ VG , the sum of degrees of neighbors of the vertex x in
G is SG(x) = ∑

y∈ΓG (x) degG(y).
A path from x1 to xn consisting of vertices x1, x2, . . . , xn is written by x1x2 . . . xn

and is called x1, xn-path. The vertices x1 and xn are the end vertices, and
x2, x3, . . . , xn−1 are the internal vertices of the path x1x2 . . . xn . A path with length
dG in G is said to be a diametrical path in G. An n-vertex tree with n − 1 pendant
vertices and a vertex of degree n − 1 is said to be a star and is denoted by Sn . An
n-vertex simple graph is called a complete graph if every pair of its vertices is linked
by an edge and is denoted by Kn . A complete subgraph of an n-vertex graph G is
called a clique in G.

For S ⊆ VG and F ⊆ EG , the graphs G − S and G − F are the subgraphs induced
by VG −S and EG −F , respectively. A vertex u (respectively, an edge e) is called a cut
vertex (respectively, cut edge) of an n-vertex-connected graphG, ifG−v (respectively,
G−e) has at least two components. A cut edge is called an internal cut edge if it is not
a pendent edge. An n-vertex graph G is called a 2-connected (respectively, 2-edge-
connected), ifG−v (respectively,G−e) is connected, for every v ∈ VG (respectively,
e ∈ EG). An n-vertex-connected graph is said to be a block if it does not have any cut
vertex. The cyclomatic number of an n-vertex-connected graphG is c(G) = m−n+1,
where m is the size of G. In particular, if c(G) = 0 then G is a tree. If c(G) = 1 then
G is a unicyclic graph, and if c(G) = 2 then G is a bicyclic graph. Every tree has at
most n − 1 cut edges and an n-vertex-connected graph having cyclomatic number at
least one has at most n−3 cut edges. Thus, it is obvious from the above statement that
for any n-vertex-connected graph with k cut edges, we always have 0 ≤ k ≤ n − 1
and k �= n − 2.

A molecular graph G is a representation of the structural formula of a chemical
compound in terms of graph theory. A topological index is a number which charac-
terizes properties of G. Recently, the development of computational chemistry owes
much to the topological index of a molecular graph. The topological indices have
mainly described the non-empirical molecular structure quantitatively and analyzed
the structure and performance of molecules. There are many classes of topological
indices; some of them are distance-based, degree-based, degree-distance-based and
eccentricity-based indices of graphs. The one of the most used topological indexes,
Wiener index, is defined as the sum of all distances between unordered pairs of vertices

W (G) =
∑

{x,y}⊆VG

dG(x, y).

Recently, many eccentricity-based topological indices have been defined, e.g.,
eccentric connectivity index, total eccentricity index, Zagreb eccentricity indices, etc.
Oneofmost investigated eccentricity-based indexes is the eccentric connectivity index,
which was proposed by Sharma et al. [15]. The eccentric connectivity index is defined
as:

ξ c(G) =
∑

x∈VG
degG(x)ecG(x). (1)
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The eccentric connectivity index has been shown to give high level of predictability of
pharmaceutical properties and provides leads for the development of safe and useful
anti-HIV compounds [7].

The eccentric adjacency index (also known as Ediz eccentric connectivity index
[8]) is the modification of eccentric connectivity index and is defined as follows:

ξad(G) =
∑

x∈VG

SG(x)

ecG(x)
. (2)

Relationship of eccentric connectivity index and eccentric adjacency index has been
investigated by Gupta et al. [10]. The eccentric distance sum was introduced by Gupta
et al. [11], which was defined as:

ξd(G) =
∑

x∈VG
ecG(x)DG(x),

where DG(x) = ∑
y∈VG dG(y, x) is the sum of all distances from the vertex x .

In recent years, finding the extremal bounds for some topological indices in terms
of graph structure parameters, has turned out to be a useful direction in extremal graph
theory andmany results are obtained. In [1], the authors found the extremal conjugated
trees with respect to eccentric connectivity index and eccentric adjacency index. In
[2], the authors determined the largest unicyclic graphs with a given girth and largest
tree with a fixed diameter with respect to eccentric adjacency index. Akhter [3] derived
the extremal trees for eccentric connectivity and eccentric adjacency indices in terms
of other graph invariants including matching number, bipartition size, independence
number and domination number. Hua [12] determined the smallest value of Wiener
index among all n-vertex-connected graphs with k cut edges. Hua et al. [13] character-
ized the graphs with the smaller eccentric distance sum among all n-vertex-connected
graphs with k cut edges. For further studies on topological indices of graphs with given
parameters, we refer [4–6,9,14,16–20] to the readers.

Motivated by the work referred above, we continue the research on the eccentric
adjacency index of graphs with some given parameters. In this paper, we find the
graphs with the largest eccentric adjacency index among the n-vertex graphs with a
given number of cut edges and characterize the extremal graphs.

2 The Connected Graphs with a Given Number of Cut Edges

Let G(n, k) be the set of n-vertex-connected graphs with k cut edges, where 0 ≤ k ≤
n−1(k �= n−2). Denote by Kk

n−k the graph obtained by attaching k pendent vertices
to a unique vertex of a complete graph Kn−k . In this section, we find an n-vertex-
connected graph in G(n, k) with largest eccentric adjacency index. First, we prove
some lemmas which will be crucial to the proof of our main result (Fig. 1).

Lemma 1 Let H1 and H2 be two vertex-disjoint-connected graphs each of order at
least 2 with u ∈ VH1 and v ∈ VH2 . Let G1 be the graph obtained by connecting u and
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Fig. 1 The graphs G1 and G2 in Lemma 1

v by an edge uv, and G2 be the graph obtained by identifying u with v and introducing
a pendent edge uw with pendent vertex w, respectively. Then ξad(G1) < ξad(G2).

Proof For each vertex x ∈ VG1 , we have

ecG1(x) = max{ecH1(x), dH1(x, u) + 1 + ecH2(v)}, if x ∈ VH1 ,

ecG1(x) = max{ecH2(x), dH2(x, v) + 1 + ecH1(u)}, if x ∈ VH2 .
(3)

For each vertex x ∈ VG2\{u, w}, we have

ecG2(x) = max{ecH1(x), dH1(x, u) + ecH2(v), dH1(x, u) + 1}, if x ∈ VH1 ,

ecG2(x) = max{ecH2(x), dH2(x, v) + ecH1(u), dH2(x, v) + 1}, if x ∈ VH2 .
(4)

Now, it is easily seen that the eccentricities of u and w in G2 are as follows:

ecG2(u) = max{ecH1(u), ecH2(v)},
ecG2(w) = max{ecH2(u) + 1, ecH2(v) + 1}. (5)

Note that from (3) and (4), we get ecG1(x) ≥ ecG2(x) for each x ∈ VG1\{u, v}. By
the construction of G1 and G2, for each x ∈ VG1\({u, v, w} ∪ ΓH1(u) ∪ ΓH2(v)), we
have SG2(x) = SG1(x). For each x ∈ ΓH1(u), we have

SG1(x) =
∑

y∈ΓH1 (x)\{u}
degH1

(y) + degH1
(u) + 1,

SG2(x) =
∑

y∈ΓH1 (x)\{u}
degH1

(y) + degH1
(u) + degH2

(v) + 1.
(6)

For each x ∈ ΓH2(v), we have

SG1(x) =
∑

y∈ΓH2 (x)\{v}
degH2

(y) + degH2
(v) + 1,

SG2(x) =
∑

y∈ΓH2 (x)\{v}
degH2

(y) + degH1
(u) + degH2

(v) + 1.
(7)
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Furthermore, the sum of degrees of neighbors of the vertices u, v and w in G1 and G2
is given by

SG1(u) =
∑

y∈ΓH1 (u)

degH1
(y) + degH2

(v) + 1,

SG1(v) =
∑

y∈ΓH2 (v)

degH2
(y) + degH1

(u) + 1,

SG2(u) =
∑

y∈ΓH1 (u)

degH1
(y) +

∑

y∈ΓH2 (v)

degH2
(y) + 1,

SG2(w) = degH1
(u) + degH2

(v) + 1.

(8)

Therefore, from (3) to (8), we obtain

ξad(G1) − ξad(G2) ≤
∑

x∈ΓH1 (u)

(∑
y∈ΓH1 (x)\{v} degH1

(y) + degH1
(u) + 1

ecG2(x)

)

−
∑

x∈ΓH1 (u)

⎛

⎜
⎜
⎜
⎝

∑
y∈ΓH1 (x)\{v} degH1

(y) + degH1
(u)

+ degH2
(v) + 1

ecG2(x)

⎞

⎟
⎟
⎟
⎠

+
∑

x∈ΓH2 (v)

(∑
y∈ΓH2 (x)\{v} degH2

(y) + degH2
(v) + 1

ecG2(x)

)

−
∑

x∈ΓH2 (v)

⎛

⎜
⎜
⎜
⎝

∑
y∈ΓH2 (x)\{v} degH2

(y) + degH1
(u)

+ degH2
(v) + 1

ecG2(x)

⎞

⎟
⎟
⎟
⎠

+
∑

y∈ΓH1 (u) degH1
(y) + degH2

(v) + 1

max{ecH1(u), ecH2(v) + 1}

−

∑
y∈ΓH1 (u) degH1

(y) + ∑

y∈ΓH2 (v)

degH2
(y) + 1

max{ecH1(u), ecH2(v)}

+
∑

y∈ΓH2 (v) degH2
(y) + degH1

(u) + 1

max{ecH2(v), ecH1(u) + 1}
− degH1

(u) + degH2
(v) + 1

max{ecH1(u) + 1, ecH2(v) + 1}
= −

(∑

x∈ΓH1 (u)

degH2
(v)

ecG2(x)
+

∑

x∈ΓH2 (v)

degH2
(u)

ecG2(x)

)
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+
∑

y∈ΓH1 (u) degH1
(y) + degH2

(v) + 1

max{ecH1(u), ecH2(v) + 1}

−
∑

y∈ΓH1 (u) degH1
(y) + ∑

y∈ΓH2 (v) degH2
(y) + 1

max{ecH1(u), ecH2(v)}

+
∑

y∈ΓH2 (v) degH2
(y) + degH1

(u) + 1

max{ecH2(v), ecH1(u) + 1}
− degH1

(u) + degH2
(v) + 1

max{ecH1(u) + 1, ecH2(v) + 1}

Case I If ecH1(u) ≥ ecH2(v) + 1, then

ξad(G1) − ξad(G2) = −
(∑

x∈ΓH1 (u)

degH2
(v)

ecG2(x)
+

∑

x∈ΓH2 (v)

degH2
(u)

ecG2(x)

)

+
∑

y∈ΓH1 (u) degH1
(y) + degH2

(v) + 1

ecH1(u)

−
∑

y∈ΓH1 (u) degH1
(y) + ∑

y∈ΓH2 (v) degH2
(y) + 1

ecH1(u)

+
∑

y∈ΓH2 (v) degH2
(y) + degH1

(u) + 1

ecH1(u) + 1

− degH1
(u) + degH2

(v) + 1

ecH1(u) + 1

= −
(∑

x∈ΓH1 (u)

degH2
(v)

ecG2(x)
+

∑

x∈ΓH2 (v)

degH2
(u)

ecG2(x)

)

+
∑

y∈ΓH2 (v) degH2
(y) − degH2

(v)

ecH1(u) + 1

−
∑

y∈ΓH2 (v) degH2
(y) − degH2

(v)

ecH1(u)
< 0.

Case II If ecH2(v) ≥ ecH1(u) + 1, then

ξad(G1) − ξad(G2) = −
(∑

x∈ΓH1 (u)

degH2
(v)

ecG2(x)
+

∑

x∈ΓH2 (v)

degH2
(u)

ecG2(x)

)

+
∑

y∈ΓH1 (u) degH1
(y) + degH2

(v) + 1

ecH2(v) + 1

−
∑

y∈ΓH1 (u) degH1
(y) + ∑

y∈ΓH2 (v) degH2
(y) + 1

ecH2(v)

+
∑

y∈ΓH2 (v) degH2
(y) + degH1

(u) + 1

ecH2(v)
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−degH1
(u) + degH2

(v) + 1

ecH2(v) + 1

= −
(∑

x∈ΓH1 (u)

degH2
(v)

ecG2(x)
+

∑

x∈ΓH2 (v)

degH2
(u)

ecG2(x)

)

+
∑

y∈ΓH1 (u) degH1
(y) − degH1

(u)

ecH2(v) + 1

−
∑

y∈ΓH1 (u) degH1
(y) − degH1

(u)

ecH2(v)
< 0.

Case III If ecH1(u) = ecH2(v), then

ξad(G1) − ξad(G2) = −
(∑

x∈ΓH1 (u)

degH2
(v)

ecG2(x)
+

∑

x∈ΓH2 (v)

degH2
(u)

ecG2(x)

)

+
∑

y∈ΓH1 (u) degH1
(y) + degH2

(v) + 1

ecH2(v) + 1

−
∑

y∈ΓH1 (u) degH1
(y) + ∑

y∈ΓH2 (v) degH2
(y) + 1

ecH2(v)

+
∑

y∈ΓH2 (v) degH2
(y) + degH1

(u) + 1

ecH2(v) + 1

− degH1
(u) + degH2

(v) + 1

ecH2(v) + 1

= −
(∑

x∈ΓH1 (u)

degH2
(v)

ecG2(x)
+

∑

x∈ΓH2 (v)

degH2
(u)

ecG2(x)

)

+
∑

y∈ΓH1 (u) degH1
(y) + ∑

y∈ΓH2 (v) degH2
(y) + 1

ecH2(v) + 1

−
∑

y∈ΓH1 (u) degH1
(y) + ∑

y∈ΓH2 (v) degH2
(y) + 1

ecH2(v)
< 0.

This completes the proof. �	
In the following lemma, we prove an elementary result.

Lemma 2 Let G � Kn be an n-vertex-connected graph, and u, v ∈ VG be non-
adjacent vertices of G. Then ξad(G) < ξad(G + uv).

Proof Observe that dG(u, v) ≥ 2 and dG+uv(u, v) = 1. Let x ∈ VG and A be the set
of eccentric vertices of x in G, such that ecG(x) = dG(x, u) + dG(u, v) + dG(v, y),
for all y ∈ A. Then

ecG+uv(x) = dG+uv(x, u) + dG+uv(u, v) + dG+uv(v, y)

< dG(x, u) + dG(u, v) + dG(v, y) = ecG(x).
(9)
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The eccentricities of other vertices ofG are same inG andG+uv. The sum of degrees
of neighbors of the vertices u and v in G + uv is given by

SG+uv(u) = SG(u) + degG(v) + 1,

SG+uv(v) = SG(v) + degG(u) + 1.
(10)

For each x ∈ ΓG(u) and y ∈ ΓG(v), we have

SG+uv(x) = SG(x) + 1, SG+uv(y) = SG(y) + 1. (11)

Therefore, from (9) to (11), we obtain

ξad(G) − ξad(G + uv) ≤ SG(u)

ecG+uv(u)
− SG(u) + degG(v) + 1

ecG+uv(u)
+ SG(v)

ecG+uv(v)

− SG(v) + degG(u) + 1

ecG+uv(v)
+

∑

x∈ΓG (u)

(
SG(x)

ecG+uv(x)

− SG(x) + 1

ecG+uv(x)

)

+
∑

y∈ΓG (v)

(
SG(y)

ecG+uv(y)
− SG(y) + 1

ecG+uv(y)

)

= −degG(v) + 1

ecG+uv(u)
− degG(u) + 1

ecG+uv(v)
−

∑

x∈ΓG (u)

1

ecG+uv(x)

−
∑

y∈ΓG (v)

1

ecG+uv(y)

< 0.

This completes the proof. �	
Lemma 3 Let H be a complete graph of order n ≥ 2, and v1, . . . , vt ∈ VH be
some distinct vertices of H, where 2 ≤ t ≤ n. Let H1, H2, . . . , Ht be the non-trivial
connected graphs corresponding to a vertex v1, v2, . . . , vt , respectively, and u1 ∈
VH1 , u2 ∈ VH2 , . . . , ut ∈ VHt . Let G3 be the graph obtained from H by identifying
a vertex u j ∈ VHj to a vertex v j ∈ VH for j = 1, . . . , t , respectively. Let G4 be
the graph obtained from H by identifying the vertices u1, u2, . . . , ut to a vertex, say
v1 ∈ VH , of v′

j s. Then ξad(G3) < ξad(G4).

Proof The order of both G3 and G4 is defined as n = ∑t
j=1 |Hj | − t + |H |. For each

vertex u ∈ VHj , we have

ecG3(u) = max{ecHj (u), dHj (u, u j ) + 1 + ecHl (ul), l �= j},
ecG4(u) = max{ecHj (u), dHj (u, u j ) + ecHl (ul), l �= j}. (12)

For each w ∈ VH\{v1, v2, . . . , vt }

ecG3(w) = ecG4(w) = max{1 + ecHj (v j ), j = 1, 2, . . . , t}. (13)

123



Eccentric Adjacency Index of Graphs with a Given Number... 2517

From (12) and (13), it is obvious that ecG3(u) ≥ ecG4(u) for each u ∈ VHj . Let
A = VHj \(VH ∩ VHj ) ∪ ΓHj (u j ). Note that SG3(x) = SG4(x) for each x ∈ A, where
1 ≤ j ≤ t . For each v1, v2, . . . , vt ∈ VH ∩ VHj , j = 1, . . . , t ,

SG3(vl) = SH (vl) +
t∑

j=1,
j �=l

degHj
(u j ) + SHl (ul), for l = 1, 2, . . . , t . (14)

Also

SG3(x) = SG4(x) = SH (x) +
t∑

j=1
degHj

(u j ), ∀ x ∈ VH\{v1, v2, . . . , vt },
SG3(x) = SHj (x) + degH (v j ), ∀ x ∈ ΓHj (u j ), where 1 ≤ j ≤ t .

(15)

From (14) and (15), we obtain

ξad(G3) =
t∑

l=1

1

ecG3(vl)

⎛

⎜
⎜
⎝SH (vl) +

t∑

j=1
j �=l

degHj
(u j ) + SHl (ul)

⎞

⎟
⎟
⎠

+
∑

x∈VH \{v1,v2,...,vt }

1

ecG3(x)

⎛

⎝SH (x) +
t∑

j=1

degHj
(u j )

⎞

⎠

+
t∑

j=1

∑

x∈ΓHj (u j )

1

ecG3(x)
(SHj (x) + degH (v j )) +

t∑

j=1

∑

x∈A

SHj (x)

ecG3(x)

=
∑

x∈VH

SH (x)

ecG3(x)
+

t∑

l=1

t∑

j=1
j �=l

degHj
(u j )

ecG3(vl)
+

t∑

l=1

SHl (ul)

ecG3(vl)

+
t∑

j=1

∑

x∈VH \{v1,v2,...,vt }

degHj
(u j )

ecG3(x)
+

t∑

j=1

∑

x∈ΓHj (u j )

SHj (x)

ecG3(x)

+
t∑

j=1

∑

x∈ΓHj (u j )

degH (v j )

ecG3(x)
+

t∑

j=1

∑

x∈A

SHj (x)

ecG3(x)
.

(16)

Furthermore, the sum of the degrees of neighbors of v1 in G4 is as follows:

SG4(v1) = SH (v1) +
t∑

j=1

SHj (u j ). (17)
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Also

SG4(x) = SH (x) +
t∑

j=1
degHj

(u j ), ∀ x ∈ ΓH (v1),

SG4(x) = SHl (x) + degH (vl)

+
t∑

j=1
j �=l

degHj
(u j ), ∀ x ∈ ΓHl (ul), where 1 ≤ l ≤ t .

(18)

From (17) and (18), we obtain

ξad(G4) = 1

ecG4(v1)

⎛

⎝SH (v1) +
t∑

j=1

SHj (u j )

⎞

⎠ +
∑

x∈ΓH (v1)

1

ecG4(x)

(

SH (x)

+
t∑

j=1

degHj
(u j )

)

+
t∑

l=1

∑

x∈ΓHl (ul )

1

ecG4(x)

(

SHl (x)

+ degH (v1) +
t∑

j=1
j �=l

degHj
(u j )

)

+
t∑

j=1

∑

x∈A

SHj (x)

ecG4(x)

=
∑

x∈ΓH (v1)

SH (x)

ecG4(x)
+

t∑

j=1

∑

x∈ΓH (v1)

degHj
(u j )

ecG4(x)
+

t∑

l=1

∑

x∈ΓHl (ul )

SHl (x)

ecG4(x)

+
t∑

l=1

∑

x∈ΓHl (ul )

degH (v1)

ecG4(x)
+

t∑

l=1

t∑

j=1
j �=l

∑

x∈ΓHl (ul )

degHj
(u j )

ecG4(x)

+
t∑

j=1

∑

x∈A

SHj (x)

ecG4(x)
.

Since H is a complete graph, ΓH (v1) = VH\{v1} and the degree of every vertex is
same.

ξad(G4) =
t∑

j=1

SHj (u j )

ecG4(v1)
+

∑

x∈VH \{v1}

SH (x)

ecG4(x)
+

t∑

j=1

∑

x∈VH \{v1}

degHj
(u j )

ecG4(x)

+
t∑

l=1

∑

x∈ΓHl (ul )

SHl (x)

ecG4(x)
+

t∑

l=1

∑

x∈ΓHl (ul )

degH (v1)

ecG4(x)

+
t∑

l=1

t∑

j=1
j �=l

∑

x∈ΓHl (ul )

degHj
(u j )

ecG4(x)
+

t∑

j=1

∑

x∈A

SHj (x)

ecG4(x)
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=
∑

x∈VH

SH (x)

ecG4(x)
+

t∑

j=1

SHj (u j )

ecG4(v1)
(19)

+
t∑

j=1

⎛

⎝
∑

x∈VH \{v1,v2,...,vt }

degHj
(u j )

ecG4(x)
+

∑

x∈{v2,...,vt }

degHj
(u j )

ecG4(x)

⎞

⎠

+
t∑

l=1

∑

x∈ΓHl (ul )

SHl (x)

ecG4(x)
+

t∑

l=1

∑

x∈ΓHl (ul )

degH (v1)

ecG4(x)

+
t∑

l=1

t∑

j=1
j �=l

∑

x∈ΓHl (ul )

degHj
(u j )

ecG4(x)
+

t∑

j=1

∑

x∈A

SHj (x)

ecG4(x)
.

Thus, from (16) and (19), we obtain

ξad(G3) − ξad(G4) ≤
t∑

j=2

(
SHj (u j )

ecG4(v j )
− SHj (u j )

ecG4(v1)

)

+
t∑

j=2

∑

x∈ΓHj (u j )

(
degH (v j )

ecG4(x)
− degH (v1)

ecG4(x)

)

+
t∑

j=2

(
degHj

(u j )

ecG4(v1)
− degHj

(u j )

ecG4(v j )

)

−
t∑

l=1

t∑

j=1
j �=l

∑

x∈ΓHl (ul )

degHj
(u j )

ecG4(x)

< 0.

This completes the proof. �	
By elementary calculations, one can easily derive the following lemma.

Lemma 4 Let K k
n−k be an n-vertex-connected graph as described above, where 0 ≤

k ≤ n − 1(k �= n − 2). Then

ξad(Kk
n−k) =

⎧
⎪⎨

⎪⎩

n(n − 1)2

2
fork = 0,

1

2
((n − k − 1)2(n − k) + (n − 1)2 + 2k) fork ≥ 1.

Proof If k = 0 then Kk
n−k

∼= Kn−k and ξad(Kk
n−k) = n(n − 1)2

2
. Since there are

n − k − 1 vertices of eccentricity 2 and the sum of degrees of its neighbors ((n − k −
2)(n − k − 1) + (n − 1)), one vertex of eccentricity 1 and the sum of degrees of its
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neighbors (n − k − 1)2 + k, and k pendent vertices of eccentricity 2 and the sum of

degrees of its neighbor n − 1 in Kk
n−k , k ≥ 1. Therefore, by Eq. (2), we obtain the

following:

ξad(Kk
n−k) = (n − k − 1)[(n − k − 2)(n − k − 1) + (n − 1)]

2

+ (n − k − 1)2 + k

1
+ k(n − 1)

2

= 1

2
(n − k − 1)2(n − k − 2 + 2) + 1

2
(n − 1)(n − k − 1 + k) + k

= 1

2
((n − k − 1)2(n − k) + (n − 1)2 + 2k).

This completes the proof. �	
The following theorem gives the n-vertex-connected graph with larger eccentric

adjacency index among all the graphs in G(n, k), where 0 ≤ k ≤ n − 1(k �= n − 2).

Theorem 1 Let G ∈ G(n, k) be an n-vertex-connected graph with k cut edges. Then

ξad(G) ≤

⎧
⎪⎨

⎪⎩

n(n − 1)2

2
for k = 0,

1

2
((n − k − 1)2(n − k) + (n − 1)2 + 2k) for k ≥ 1,

equality hold if and only if G ∼= Kk
n−k .

Proof LetGmax ∈ G(n, k) be a graphwith the largest eccentric adjacency index among
all n-vertex-connected graphs with k cut edges. Let E ′ = {e1, e2, . . . , ek} ⊆ EGmax

be the set of all cut edges of Gmax . Then, all edges in E ′ must be pendent edges and
incident at a common vertex of Gmax , say w. For k = 0, the graph Gmax has no cut
edges and its each component is a clique or a single vertex. If Gmax is not the graph
as described above, then we can add an edge e between two non-adjacent vertices of
Gmax and obtain a new graph Gmax + uv having no cut edges. But by Lemma 2, we
get ξ c(Gmax ) < ξ c(Gmax + uv) and it contradicts our assumption.

Therefore, now we have 1 ≤ k ≤ n − 1 and k �= n − 2. If Gmax has an internal cut
edge uv, then we can construct a new graph by identifying u with v and introducing a
pendent edge uwwith pendent vertexw and denote it byG2. It is obvious thatG2 has k
cut edges. Thus, byLemma3,we obtain ξ c(Gmax ) < ξ c(G2), which is a contradiction.
When k = n − 1 we have Gmax is a tree, and thus, we have Gmax ∼= Sn = Kn−1, as
our claim.

Next, we suppose that 1 ≤ k ≤ n − 3. Now let 2-edge-connected graph G3 with
order n − k and k pendent edges is an induced subgraph of Gmax . If G3 � Kn−k ,
then we can add edges into G3. Similar to the above argument, we can deduce a new
graph with a larger eccentric adjacency index than Gmax , and therefore, G3 ∼= Kn−k

inGmax . Moreover, we can conform that all k pendent edges inGmax must be attached
at the same vertex of Kn−k . LetG4 � Gmax be a graph with k pendent edges and these
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vertices attached at vi vertices of G4. Then, we can transform the k pendent edges
to exactly one vertex of clique Kn−k of G4. Therefore, by Lemma 1, we construct
a new graph with a larger eccentric adjacency index than that of Gmax , which is a
contradiction.

Therefore, from all the above discussion, we must have Gmax ∼= Kk
n−k . By Lemma

4, we have ξad(Kk
n−k) = n(n − 1)2

2
for k = 0, and ξad(Kk

n−k) = 1

2
((n−k−1)2(n−

k) + (n − 1)2 + 2k) for k ≥ 1 and this completes the proof. �	
The following result is the consequence of Theorem 1 for k = n − 1.

Theorem 2 (Akhter and Farooq [2]) Let G be an n-vertex-connected graph, n ≥ 2.

Then, ξad(G) ≤ n2 − 1

2
with equality if and only if G ∼= Sn.
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