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Abstract
A graph is (d1, . . . , dr )-colorable if the vertex set can be partitioned into r sets
V1, . . . , Vr where the maximum degree of the subgraph induced by Vi is at most di for
each i ∈ {1, . . . , r}. In this paper, we prove that every planar graph without 4-cycles
and 5-cycles is (2, 6)-colorable, which improves the result of Sittitrai and Nakprasit,
who proved that every planar graph without 4-cycles and 5-cycles is (2, 9)-colorable.
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1 Introduction

All graphs in this paper are finite and simple. A graph is planar if it has a drawing
without crossings; such a drawing is a planar embedding of a planar graph. A plane
graph is a particular planar embedding of a planar graph. Given a plane graph G,
denote the vertex set, edge set and face set by V (G), E(G) and F(G), respectively.
The degree of a vertex v, denoted by d(v), is the number of edges incident to v. The
degree of a face f , denoted by d( f ), is the length of a shortest boundary walk of f .
The girth of a graph G is the length of its shortest cycle.

A graph G is called improper (d1, . . . , dr )-colorable, or simply (d1, . . . , dr )-
colorable, if its vertex set can be partitioned into r sets V1, . . . , Vr such that the
maximum degree of the induced subgraph G[Vi ] of G is at most di for 1 � i � r .
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Using this terminology, the Four Color Theorem can be reformulated as that every pla-
nar graph is (0, 0, 0, 0)-colorable and the Grötzsch Theorem can be restated as every
triangle-free planar graph is (0, 0, 0)-colorable. Improper coloring of plane graphs is
a kind of relaxation of coloring of plane graphs, which is regarded as an important
method to solve important plane graph coloring problems. One important version of
improper colorings of planar graphs is that three colors are allowed. Cowen et al. [6]
showed that every planar graph is (2, 2, 2)-colorable. Eaton and Hull [7] proved that
(2, 2, 2)-colorability is optimal by exhibiting a non-(1, d1, d2)-colorable planar graph
for any given nonnegative integers d1 and d2. Stronger results can be obtained by
adding some restrictions. Liu et al. [10] showed that planar graphs without 5-cycles
and intersecting triangles are (1, 1, 0)-colorable. For every planar G without 4-cycles
and 5-cycles, Chen et al. [3] showed that G is (2,0,0)-colorable, Xu et al. [13] showed
that G is (1,1,0)-colorable, but whether it is (1, 0, 0)-colorable is still open and more
open problems; see [13]. Another version of improper colorings of planar graphs is
that two colors are allowed. Montassier and Ochem [11] constructed planar graphs of
girth 4 that are not (i, j)-colorable for every nonnegative integer i, j . For all k � 2,
Borodin et al. [1] constructed non-(0, k)-colorable graphs with maximum average
degree arbitrarily close to 3k+2

k+1 = 3 − 1
k+1 . On the other hand, Kim et al. [9] proved

that planar graphs with girth at least 11 are (1, 0)-colorable. For every planar graph G
of girth 8, Borodin and Kostochka [2] showed G is (2, 0)-colorable. For every planar
graphG of girth 7, Borodin and Kostochka [2] showedG is (4, 0)-colorable. For every
planar graph G of girth 6, Borodin and Kostochka [2] showed G is (4, 1)-colorable
andHavet and Seren [8] showed thatG is (2, 2)-colorable. For every planar graphG of
girth 5, Choi et al. [5] showed that G is (1, 10)-colorable, Borodin and Kostochka [2]
showed G is (2, 6)-colorable, Havet and Seren [8] showed that G is (4, 4)-colorable
and Choi and Raspaud [4] showed that G is (3,5)-colorable. More interesting results
can be found in Montassier and Ochem [11].

Recently, Sittitrai and Nakprasit [12] showed that every planar graph G without
4-cycles and 5-cycles is (2, 9)-, (3, 5)- and (4, 4)-colorable and constructed non-
(1, k)-colorable planar graphs without 4-cycles and 5-cycles for every positive integer
k.

Theorem 1.1 [12] Every planar graph without 4-cycles and 5-cycles is (d1, d2)-
colorable, where (d1, d2) ∈ {(2, 9), (3, 5), (4, 4)}.

Motivated by above observations and Theorem 1.1, we present the following result
in this paper.

Theorem 1.2 Every planar graph without 4-cycles and 5-cycles is (2, 6)-colorable.

Other notations that we use in this paper are as follows. A k-vertex (k+-vertex, k−-
vertex) is a vertex of degree k (at least k, at most k). A k-face (k+-face, k−-face) is a
face of degree k (at least k, at most k). A k-face f = [v1v2 . . . vk] is a (d1, d2 . . . , dk)-
face if d(vi ) = di for 1 � i � k. Let uv ∈ E(G). We call u a pendant neighbor
of v if uv is not incident to any 3-faces. Moreover, we call u a pendant k-neighbor
(k+-neighbor, k−-neighbor) of v if u is a k-vertex (k+-vertex, k−-vertex). A 3-face f
is called a pendant face of u if f is incident to a pendant 3-neighbor of u. A 3-face f is

123



Every Planar Graph Without 4-Cycles and 5-Cycles is… 2495

called a bad 3-face if f is incident to a 2-vertex and good 3-face otherwise. A 2-vertex
is called a bad 2-vertex if it is incident to a 3-face and good 2-vertex otherwise.

The proof of Theorem 1.2 is shown in Sects. 2 and 3. In Sect. 2, a counterexample
G to Theorem 1.2 is constructed and the structural properties of G are investigated.
In Sect. 3, discharging technique is used to derive a contradiction. In all figures in this
paper, a black point means all its incident edges are drawn, a white point otherwise.

2 Structural Properties

Suppose Theorem 1.2 is false. LetG be a counterexample to Theorem 1.2 with |V (G)|
minimized, and subject to that choose one with minimum number of edges. Clearly,
G is connected and with minimum degree at least 2. Moreover, G itself is not (2, 6)-
colorable and any proper subgraph of G is (2, 6)-colorable. Let S = {2, 6} denote the
color set such that the subgraph of G induced by the vertices colored 2 has maximum
degree atmost 2 and the subgraph ofG induced by the vertices colored 6 hasmaximum
degree at most 6. For a (partial) coloring of G, a vertex v colored i is i -saturated if
v is adjacent to i neighbors colored i , where i ∈ S. For simplicity, we say a vertex is
saturated if it is i-saturated for some i ∈ S.

Lemma 2.1 [12] If a 2-vertex v is on a bad 3-face f of G, then the other face g
incident to v is a 7+-face.

Lemma 2.2 [12] Let f be a k-face of G where k � 7. Then, f has at most k − 6
incident bad 2-vertices.

Lemma 2.3 [4] If v is a 3−-vertex of G, then v is adjacent to two 4+-neighbors, one
of which is a 8+-vertex.

Lemma 2.4 A 7−-vertex of G is adjacent to at least one 8+-vertex.

Proof Suppose otherwise that v is a k-vertex of G such that v is not adjacent to any
8+-vertices, where k � 7. Denote the neighbors of v by v1, . . . , vk . Then, v1, . . . , vk
are 7−-vertices. By the minimality, G − v admits a (2, 6)-coloring. If each neighbor
of v is colored 6, then obviously we can color v with 2 to obtain a (2, 6)-coloring of
G, a contradiction. Thus, assume that at least one neighbor of v is colored 2. Without
loss of generality, assume that v1 is colored 2. If vi is 6-saturated in G − v, then vi
must be a 7-vertex and each neighbor of vi other than v is colored 6 since vi is a
7−-vertex, where i ∈ {2, . . . , k}. Thus, recolor vi with 2 if vi is 6-saturated for each
i ∈ {2, . . . , k}. Then, at most k − 1 � 6 neighbors of v are colored 6 but each of them
is not 6-saturated. Thus, we can color v with 6 and obtain a (2, 6)-coloring of G, a
contradiction. ��
Lemma 2.5 A 9−-vertex of G is adjacent to at least one 4+-vertex.

Proof Suppose otherwise that v is a k-vertex of G such that v is not adjacent to any
4+-vertices, where k � 9. Denote the neighbors of v by v1, . . . , vk . Then, v1, . . . , vk
are 3−-vertices. By the minimality, G − v admits a (2, 6)-coloring. Note that a 3−-
vertex cannot be 6-saturated. If there are at most six neighbors of v colored 6, we can
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color v with 6 and obtain a (2, 6)-coloring of G, a contradiction. Thus, assume that
there are at least seven neighbors of v colored 6 (which implies that k � 7). Without
loss of generality, assume that v1, . . . , v7 are colored 6 and v8, . . . , vk are colored 2.
If vi is 2-saturated in G − v, then vi must be a 3-vertex and each neighbor of vi other
than v is colored 2 since vi is a 3−-vertex, where i ∈ {8, . . . , k}. Thus, recolor vi with
6 if vi is 2-saturated for each i ∈ {8, . . . , k}. Then, at most k − 7 � 2 neighbors of
v are colored 2 but each of them is not 2-saturated. Thus, we can color v with 2 and
obtain a (2, 6)-coloring of G, a contradiction. ��
Lemma 2.6 There are no two adjacent 3-vertices in G.

Proof Suppose otherwise that u and v are two adjacent 3-vertices of G. Since G − uv
is a graph with the same vertex set with G and fewer edges than G, G − uv admits a
(2, 6)-coloring c. If c is not a (2, 6)-coloring of G, then c(u) = c(v) and at least one
vertex in {u, v} is saturated inG−uv. Since u and v are 3-vertices, neither u nor v can
be 6-saturated. Thus, c(u) = c(v) = 2 and at least one vertex in {u, v} is 2-saturated
in G − uv. For each 2-saturated vertex in {u, v}, we recolor it with 6 since both of its
two neighbors are colored 2 in G − uv and obtain a new coloring c1. Note that the
new coloring c1 is also a (2, 6)-coloring of G, a contradiction. ��

The following lemma is straightforward.

Lemma 2.7 Suppose that u is a 2-vertex of G, v and w are two neighbors of u. Then,
for any (2, 6)-coloring of G − u, one of v and w is 2-saturated and the other is
6-saturated.

Lemma 2.8 Let [uvw] be a bad 3-face of G where u is bad. Then, one of v and w is a
5+-vertex and the other is a 8+-vertex or one of v and w is a 9+-vertex and the other
is a 4+-vertex.

Proof By the minimality, G−u admits a (2, 6)-coloring. By Lemma 2.7, one of v and
w is 2-saturated and the other is 6-saturated. Without loss of generality, assume that v
is 2-saturated andw is 6-saturated. Then, v is a 4+-vertex of G andw is a 8+-vertex of
G. We only need to show that if v is a 4-vertex, then w cannot be a 8-vertex. Suppose
otherwise that v is a 4-vertex and w is a 8-vertex. Since v is 2-saturated and w is
6-saturated, each neighbor of v other than u and w is colored 2 and each neighbor of
w other than v and u is colored 6. Then, recolor v with 6,w with 2. Now, we can color
u with 2, a contradiction. ��

Abad3-face f is called a terrible 3-face if f is incident to a 4-vertex.ByLemma2.8,
a terrible face is a (2, 4, 9+)-face and a bad 3-face which is not terrible is a (2, 5+, 8+)-
face (see Fig. 1).

Lemma 2.9 A k-vertex u of G is incident to at most (k − 8) terrible 3-faces, where
9 � k � 14.

Proof Suppose otherwise that a k-vertex u of G is incident to (k − 7) terrible 3-faces,
where 9 � k � 14 (see Fig. 2). Denote the terrible 3-faces incident to u by [uv1w1],
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(A) (B)

Fig. 1 A bad 3-face that is not terrible and a terrible 3-face

Fig. 2 u is a k-vertex, where 9 � k � 14

. . ., [uvk−7wk−7], where v1, . . . , vk−7 are bad 2-vertices and w1, . . . , wk−7 are 4-
vertices. The other neighbors of u are denoted by u1, . . . , u14−k . Since k � 9, u is
incident to at least two terrible 3-faces.

By the minimality, G − v1 admits a (2, 6)-coloring c. By Lemma 2.7, one of w1
and u is 2-saturated and the other is 6-saturated. Since w1 is a 4-vertex, it cannot
be 6-saturated. This implies that w1 is 2-saturated and u is 6-saturated, that is, each
neighbor of w1 other than v1 and u is colored 2 and six neighbors of u other than v1
and w1 are colored 6. There are two cases to be considered.

Case 1 There exists some i ∈ {2, . . . , k − 7} such that c(vi ) = c(wi ) = 6. Recolor
vi with 2 since no neighbors of vi are colored 2. Then, u is not 6-saturated. Thus, we
can color v1 with 6, a contradiction.

Case 2 At most one vertex in {vi , wi } is colored 6 for each i ∈ {2, . . . , k − 7}.
We claim that exactly one vertex in {vi , wi } is colored 6 for each i ∈ {2, . . . , k − 7}.
Suppose otherwise that there exists some i ∈ {2, . . . , k − 7} such that each vertex
in {vi , wi } is colored 2. Then, there are at most k − 9 + 14 − k = 5 neighbors of u
colored 6. Recall that u is 6-saturated, which implies that u has six neighbors colored 6,
a contradiction.We also claim that each vertex in {u1, . . . , u14−k} is colored 6. Suppose
otherwise that there exists i ∈ {1, . . . , 14 − k} such that ui is colored 2. Then, there
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Fig. 3 u is a k-vertex of G, where 9 � k � 16

are at most 14− k − 1+ k − 8 = 5 neighbors of u colored 6, a contradiction. Assume
that there exists some i ∈ {2, . . . , k − 7} such that wi is colored 2 but not 2-saturated.
Note that vi is colored 6 now. Recolor vi with 2; then, u is not 6-saturated and we
can color v1 with 6, a contradiction. Thus, assume that each wi is either 2-saturated
or colored 6, where i ∈ {2, . . . , k − 7}. For each i ∈ {2, . . . , k − 7}, recolor wi with
6 if wi is 2-saturated (note that now two neighbors of wi other than vi and u are both
colored 2), and recolor vi with 6 if wi is colored 6 (note that now vi is colored 2 and
wi is not 6-saturated since it is a 4-vertex). So, until now, each neighbor of u other
than w1 and v1 is colored 6. Thus, recolor u with 2. Since w1 is 2-saturated in G − v,
each neighbor of w1 other than u is colored 2. Recolor w1 with 6 and obviously w1 is
not 6-saturated. Then, color v1 with 6, a contradiction. ��

Lemma 2.10 No k-vertex of G is incident to (k − 8) terrible 3-faces and also has
(16 − k) pendant 3−-neighbors, where 9 � k � 16.

Proof Suppose otherwise that a k-vertex u of G is incident to (k − 8) terrible 3-faces
and also has (16 − k) pendant 3−-neighbors, where 9 � k � 16 (see Fig. 3). Denote
the terrible 3-faces incident to u by [uv1w1],. . .,[uvk−8wk−8], where v1, . . . , vk−8 are
bad 2-vertices and w1, . . . , wk−8 are 4-vertices. Denote the pendant 3−-neighbors of
u by u1, . . . , u16−k . Since k � 9, u is incident to at least one terrible 3-face.

By the minimality, G − v1 admits a (2, 6)-coloring c. By Lemma 2.7, one vertex
in {u, w1} is 2-saturated and the other is 6-saturated. Since a 4-vertex cannot be 6-
saturated, w1 is 2-saturated and u is 6-saturated; that is, each neighbor of w1 other
than v1 and u is colored 2 and six neighbors of u other than w1 and v1 are colored
6. Erase the colors of u and w1. Since the two neighbors of w1 other than v1 and u
are both colored 2, color w1 with 6. Obviously, w1 is not 6-saturated. Note that u has
seven neighbors colored 6 now, there are two cases to be considered.

123



Every Planar Graph Without 4-Cycles and 5-Cycles is… 2499

Case 1 u is a 9-vertex. Then, u is incident to only one terrible 3-face and has seven
pendant 3−-neighbors such that six of them are colored 6 and one colored 2. Without
loss of generality, assume that c(u1) = 2. Recolor u1 with 6 if u1 is 2-saturated, since
now u1 is a 3-vertex such that two neighbors of u1 other than u are both colored
2. Then, recolor u with 2 since now at most one neighbor of u is colored 2 but not
2-saturated. Obviously, u is not 2-saturated. Since neither w1 nor u is saturated now,
we can color v1 with 2 or 6, a contradiction.

Case 2 u is a k-vertex with 10 � k � 16.
First, assume that at least two vertices in {u1, . . . , u16−k} are colored 2. We claim

that there exists some i ∈ {2, . . . , k − 8} such that c(vi ) = c(wi ) = 6. Suppose
otherwise that at most one vertex in {vi , wi } is colored 6 for each i ∈ {2, . . . , k − 8}.
Then, at most 16 − k − 2 + k − 9 = 5 neighbors of u are colored 6. Recall that
u is 6-saturated, which implies that u has six neighbors colored 6, a contradiction.
Without loss of generality, assume that c(v2) = c(w2) = 6. Recolor v2 with 2 since
no neighbors of v2 are colored 2. Noting that u has six neighbors colored 6 and no
one is 6-saturated now (a 4−-vertex cannot be 6-saturated), recolor u with 6. So until
now, two neighbors of v1 are both colored 6. Color v1 with 2, a contradiction.

Now assume that at most one vertex in {u1, . . . , u16−k} is colored 2. Without loss
of generality, assume that u1 is colored 2. Recolor u1 with 6 if it is 2-saturated, since
now u1 is a 3-vertex such that two neighbors of u1 other than u are both colored 2.
Assume that there exists some i ∈ {2, . . . , k − 8}, such that c(vi ) = c(wi ) = 6.
By the argument in Case 1, we can color v1 with 6, a contradiction. Thus, assume
that at most one vertex in {vi , wi } is colored 6 for each i ∈ {2, . . . , k − 8}. Without
loss of generality, assume that each vertex in {vi , wi } is colored 2 for i ∈ {2, . . . , j}
and exactly one vertex in {vi , wi } is colored 2 for i ∈ { j + 1, . . . , k − 8}, where
2 � j � k − 8. We claim that j = 2. Suppose otherwise that j � 3, then at most
k−8− ( j +1)+1+16−k = 8− j � 5 neighbors of u are colored 6. Recall that u is
6-saturated, which implies that u has six neighbors colored 6, a contradiction. Assume
that there exists some i ∈ {3, . . . , k − 8} such that wi is colored 2 but not 2-saturated.
Clearly, vi is colored 6 and not 6-saturated. Recolor vi with 2. Then, recolor u with
6 since only six neighbors of u are colored 6 and no one is 6-saturated (a 4−-vertex
cannot be 6-saturated). So until now, two neighbors of v1 are both colored 6 and we
can color v1 with 2, a contradiction. Thus, assume that for each i ∈ {3, . . . , k − 8},
either wi is 2-saturated (and vi is colored 6) or wi is colored 6 (and vi is colored 2).
For each i ∈ {3, . . . , k−8}, recolorwi with 6 ifwi is 2-saturated, since two neighbors
of wi other than u and w are both colored 2 and vi is colored 6, recolor vi with 6 if wi

is colored 6, since now vi is colored 2 and only one neighbor of vi is colored 6 but not
6-saturated. Then, recolor v2 with 6 since both w2 and v2 are colored 2. Clearly, w2 is
not 2-saturated. So, until now, among all neighbors of u, only u1, w2 may be colored
2 and neither of them is 2-saturated. Thus, we recolor u with 2. Then, color v1 with 6
since only one neighbor of vi is colored 6 but not 6-saturated, a contradiction. ��
Lemma 2.11 No k-vertex of G is incident to (k − 8) terrible 3-faces and m bad 3-
faces that are not terrible and also has (16 − 2m − k) pendant 3−-neighbors, where
9 � k � 12 and m � 2.
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Fig. 4 u is a k-vertex of G, where 9 � k � 12 and m � 2

Proof Suppose otherwise that a k-vertexu ofG is incident to (k−8) terrible 3-faces and
m bad 3-faces that not terrible and also has (16−2m−k) pendant 3−-neighbors, where
9 � k � 12 and m � 2 (see Fig. 4). Denote the bad 3-faces incident to u by [uv1w1],
. . ., [uvk−8+mwk−8+m], where v1, . . . , vk−8+m are bad 2-vertices, w1, . . . , wk−8 are
4-vertices, wk−7, . . . , wk−8+m are 5+-vertices. Denote the pendant 3−-neighbors of
u by u1, . . . , u16−2m−k . Since 9 � k � 14, u is incident to at least one terrible 3-face
[uv1w1].

By the minimality, G − v1 admits a (2, 6)-coloring c. By Lemma 2.7, one of u and
w1 is 2-saturated and the other is 6-saturated. Since a 4-vertex cannot be 6-saturated,
w1 is 2-saturated and u is 6-saturated. Since u is 6-saturated, six neighbors of u other
than v1 and w1 are colored 6. We claim that there exists some i ∈ {2, . . . , k − 8+m}
such that c(vi ) = c(wi ) = 6. Suppose otherwise that at most one vertex in {vi , wi } is
colored 6 for each i ∈ {2, . . . , k−8+m}. Then, at most k−8+m−1+16−2m−k =
7 − m � 5 neighbors of u are colored 6. Recall that u is 6-saturated, which implies
that u has six neighbors colored 6, a contradiction. Without loss of generality, assume
that c(v2) = c(w2) = 6. Recolor v2 with 2 since no neighbors of v2 are colored 2;
then, u is not 6-saturated. Thus, we can color v1 with 6, a contradiction. ��

Let u be a k-vertex of G where 8 � k � 14. We call u a special vertex if u satisfies
one of the following conditions: (1) u is a 8-vertex and u is incident to at least one bad
3-face that not terrible; (2) u is a 9+-vertex and u is incident to one bad 3-face that is
not terrible and (k − 8) terrible 3-faces and u also has (14− k) pendant 3−-neighbors
(see Fig. 5). Let N0(u) be the vertex set containing u and bad 2-vertices adjacent to
u, as well as 4-vertices adjacent to u.

Lemma 2.12 Let [uvw] be a bad 3-face of G which is not terrible, where u is a special
vertex. Suppose that u is 6-saturated in a (2, 6)-coloring of G − {v,w}. Then, we can
recolor the vertices in set N0(u) such that u is not saturated in G − {v,w}.
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Fig. 5 A special k-vertex, where 9 � k � 14

Proof Suppose that u is a 8-vertex. Since u is 6-saturated, each neighbor of u in
G − {v,w} is colored 6. Thus, recolor u with 2 and obviously u is not 6-saturated.

Suppose that u is a k-vertex where 9 � k � 14 (see Fig. 5). Denote the ter-
rible 3-faces incident to u by [uv1w1], . . ., [uvk−8wk−8], where v1, . . . , vk−8 are
bad 2-vertices and w1, . . . , wk−8 are 4-vertices, the pendant 3−-neighbors of u by
u1, . . . , u14−k . There are two cases under consideration.

Case 1 There exists some i ∈ {1, . . . , k − 8} such that each vertex in {vi , wi } is
colored 6. Recolor vi with 2, then u is not 6-saturated.

Case 2 At most one vertex in {vi , wi } is colored 6 for each i ∈ {1, . . . , k − 8}.
We claim that exactly one vertex in {vi , wi } is colored 6 for each i ∈ {1, . . . , k − 8}.
Suppose otherwise that there exists i ∈ {1, . . . , k − 8} such that vi and wi are both
colored 2. Then, at most k − 8− 1+ 14− k = 5 neighbors of u are colored 6. Recall
that u is 6-saturated, which implies that u has six neighbors colored 6, a contradiction.
We also claim that for each i ∈ {1, . . . , k − 8}, ui is colored 6. Suppose otherwise
that there exists some i ∈ {1, . . . , k − 8} such that ui is colored 2. Then, at most
13 − k + k − 8 = 5 neighbors of u are colored 6, a contradiction. First, assume that
there exists one i ∈ {1, . . . , k−8} such thatwi is colored 2 but not 2-saturated.Without
loss of generality, assume that w1 is colored 2 but not 2-saturated and v1 is colored 6.
Recolor v1 with 2. This implies that u is not 6-saturated. Now assume that for each
i ∈ {1, . . . , k − 8}, wi is either 2-saturated or colored 6. For each i ∈ {1, . . . , k − 8},
recolor wi with 6 if wi is 2-saturated, recolor vi with 6 if wi is colored 6 (note that
now vi is colored 2). So, until now, each neighbor of u other than v and w is colored
6. Recolor u with 2. Obviously, u is not 2-saturated. ��
Lemma 2.13 No bad 3-face of G is incident to two special vertices.

Proof Suppose otherwise that there exists a bad 3-face f ofG such that f is incident to
two special vertices. Denote the bad 3-face by f = [uvw], where v is a bad 2-vertex,
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u is a special k1-vertex and w is a special k2-vertices, where 8 � k1, k2 � 14. Since
G has no 4-cycles, N0(u) ∩ N0(w) = ∅.

By the minimality,G−v admits a (2, 6)-coloring c. By Lemma 2.7, one of u andw
is 2-saturated and the other is 6-saturated. Denote the color of w by c1, where c1 ∈ S.
Erase the color ofw. Clearly, u is still saturated. Recolor the vertices in set N0(u) such
that u is not saturated by Lemma 2.12. Denote the new color of u by c2, where c2 ∈ S.
Erase the color of u and color w with c1. Since N0(u) ∩ N0(w) = ∅, the recoloring
of vertices in set N0(u) does not change the colors of w’s neighbors other than u.
Therefore, the color of w is well defined and w is still saturated. Recolor the vertices
in set N0(w) such that w is not saturated by Lemma 2.12. Denote the new color of w
by c3. Color u with c2. Since N0(u) ∩ N0(w) = ∅, the recoloring of vertices in set
N0(w) does not change the colors of of u’s neighbors other than w. Therefore, the
color of u is well defined. If c2 = c3, then we can color v with S\c2, a contradiction.
If c2 �= c3, then we can color v with any color in S since neither u nor w is saturated,
a contradiction. ��
Lemma 2.14 No 5-vertex of G is incident to two bad 3-faces, each of which has a
special vertex.

Proof Suppose otherwise that there exists a 5-vertex u of G such that u is incident to
two bad 3-faces, each of which has a special vertex. Denote the bad 3-faces incident
to u by [uvw] and [uxy], where v, x are bad 2-vertices and w, y are special vertices,
the remaining neighbor of u by z. By the minimality, G − v admits a (2, 6)-coloring
c. By Lemma 2.7, one of u and w is 2-saturated and the other is 6-saturated. Since a
5-vertex cannot be 6-saturated, u is 2-saturated andw is 6-saturated. Thus, two vertices
in {x, y, z} are colored 2. There are three cases to be considered.

Case 1 c(x) = 2, c(y) = 2, c(z) = 6. Recolor x with 6 since two neighbors of x are
both colored 2. Then, u is not 2-saturated. Thus, we can color v with 2, a contradiction.

Case 2 c(x) = 6, c(y) = 2, c(z) = 2. Erase the color of u and recolor the vertices
in set N0(w) such that w is not saturated by Lemma 2.12. Denote the new color of w
by i , where i ∈ S. Color u with 6 since at most two neighbors of u are colored 6 and
neither of them is 6-saturated. Obviously, u is not 6-saturated. Then, we can color v
with 6 if w is colored 2 and with 2 if w is colored 6, a contradiction.

Case 3 c(x) = 2, c(y) = 6, c(z) = 2. Erase the color of u and recolor the vertices
in set N0(w) such that w is not saturated by Lemma 2.12. Suppose that y is not 6-
saturated. Color u with 6 since at most two neighbors of u are colored 6 and neither
of them are 6-saturated. Obviously, u is not 6-saturated. Then, color v with 6 if w is
colored 2 and with 2 if w is colored 6, a contradiction. Suppose that y is 6-saturated.
Erase the color of x and recolor the vertices in set N0(y) such that y is not saturated
by Lemma 2.12. Color x with 2 since at most one neighbor of x is colored 2 but not
2-saturated and color u with 6 since at most two neighbors of u are colored 6 and
not 6-saturated. Obviously, u is not 6-saturated. Then, we can color v with 6 if w is
colored 2 and with 2 if w is colored 6, a contradiction. ��
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3 Discharging

Let the initial charge of a vertex v of G be µ(v) = 2d(v)− 6 and the initial charge of
a face f of G be µ( f ) = d( f ) − 6. By Euler’s formula, we have

∑

v∈V (G)

µ(v) +
∑

f ∈V (F)

µ( f ) = −12

Then, we design appropriate discharging rules and redistributeweights accordingly.
After discharging, a new weight function µ∗ is produced. The discharging procedure
will preserve the total charge sum. One the other hand, we will show that µ∗(x) � 0
for all x ∈ V (G) ∪ F(G), which arrives at a contradiction:

−12 =
∑

x∈V (G)∪F(G)

µ(x) =
∑

x∈V (G)∪F(G))

µ∗(x) � 0

Here are the discharging rules:

(R1) Every k-vertex sends 2
3 to each incident good 2-vertex or pendant 3-face, where

k = 4, 5, 6, 7. Every 8+-vertex sends 4
3 to each incident good 2-vertex or pendant

3-face.
(R2) Every 4-vertex sends 2

3 to each incident good 3-face that contains a 8+-vertex
and sends 4

3 to each incident good 3-face that does not contain a 8
+-vertex. Every

5-vertex sends 4
3 to each incident good 3-face. Every 6+-vertex sends 2 to each

incident good 3-face.
(R3) Suppose u is a nonspecial vertex.

(R3.1) If u is a 4-vertex, then u sends 2
3 to each incident bad 3-face.

(R3.2) If u is a 5-vertex, then u sends 2 to each incident bad 3-face with a special
vertex and sends 4

3 to other incident bad 3-face.
(R3.3) If u is a 6,7-vertex, then u sends 2 to each incident bad 3-face.
(R3.4) If u is a 9+-vertex, then u sends 8

3 to each incident bad 3-face that is not
terrible and sends 10

3 to each incident terrible 3-face.

(R4) Suppose u is a special vertex. Then, u sends 2 to each incident bad 3-face that
is not terrible and sends 10

3 to each incident terrible 3-face.
(R5) Every 7+-face sends 1 to each incident bad 2-vertex.
(R6) Every 3-face sends 1 to each incident 2-vertex.

Discharge rules are depicted in Fig. 6.
We will show that each vertex and each face have nonnegative final charge.

Claim 3.1 Each k-vertex v of G has nonnegative final charge.

Proof Recall that the minimum degree of G is 2, k � 2.

(1) Suppose that v is a 2-vertex. Then, µ(v) = 4 − 6 = −2. Suppose that v is
bad. By Lemma 2.1, a bad 2-vertex is incident to a 3-face and a 7+-face. Then,
µ∗(v) = −2+1+1 = 0 by (R5) and (R6). Suppose that v is good. ByLemma2.3,
v has a 4+-neighbor and a 8+-neighbor. Then,µ∗(v) � −2+ 2

3 + 4
3 = 0 by (R1).
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Fig. 6 Illustration of discharging rules

(2) Suppose that v is a 3-vertex. Then, µ(v) = 6 − 6 = 0. Its charge holds to be
nonnegative since no rules involved.

(3) Suppose that v is a 4-vertex. Then, µ(v) = 8 − 6 = 2. Suppose that v is not
incident to any 3-faces. By Lemma 2.4, v has at least one 8+-neighbor. Then,
µ∗(v) � 2− 2

3 ×3 = 0 by (R1). Suppose that v is incident to one 3-face f . If f is
a bad 3-face, then µ∗(v) � 2− 2

3 − 2
3 ×2 = 0 by (R1) and (R3.1). If v is incident

to a good 3-face with a 8+-vertex, then µ∗(v) � 2 − 2
3 − 2

3 × 2 = 0 by (R1)
and (R2). If v is incident to a good 3-face without a 8+-vertex. By Lemma 2.4,
v has a pendant 8+-neighbor. Then, µ∗(v) � 2 − 4

3 − 2
3 = 0 by (R1) and (R2).

Suppose that v is incident to two 3-faces. If v is incident to at least one bad 3-face,
then µ∗(v) � 2 − 2

3 − 4
3 = 0 by (R2) and (R3.1). If v is not incident to any bad

3-face, then at least one of the two faces has a 8+-vertex by Lemma 2.4. Thus,
µ∗(v) � 2 − 2

3 − 4
3 = 0 by (R2).

(4) Suppose that v is a 5-vertex. Then, µ(v) = 10 − 6 = 4. Suppose that v is not
incident to any 3-faces. Then, µ∗(v) � 4 − 2

3 × 5 = 2
3 > 0 by (R1). Suppose

that v is incident to exactly one 3-face. Then, µ∗(v) � 4 − 2 − 2
3 × 3 = 0 by

(R1) (R2) and (R3.2). Suppose that v is incident to two 3-faces. By Lemma 2.14,
at most one of them has a special vertex. Then, µ∗(v) � 4 − 2 − 4

3 − 2
3 = 0 by

(R1) (R2) and (R3.2).
(5) Suppose that v is a 6-vertex. Then, µ(v) = 12 − 6 = 6, µ∗(v) � 6 − 2 × 3 = 0

by (R1) (R2) and (R3.3).
(6) Suppose that v is a 7-vertex. Then,µ(v) = 14−6 = 8,µ∗(v) � 8−2×3− 2

3 =
4
3 > 0 by (R1) (R2) and (R3.3).
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(7) Suppose that v is a 8-vertex. Then, µ(v) = 16 − 6 = 10. Suppose that v is not
incident to any 3-faces. ByLemma2.5, v has atmost seven pendant 3−-neighbors.
Then, µ∗(v) � 10 − 4

3 × 7 = 2
3 > 0 by (R1). Suppose that v is incident to at

least one 3-face f . Then, v is special. By Lemma 2.8, each 3-face incident to v

is not terrible. Thus, µ∗(v) � 10 − 2 − 4
3 × 6 = 0 by (R1) (R2) and (R4).

(8) Suppose that v is a k-vertex, where 9 � k � 12. Then, µ(v) = 2k − 6. By
Lemma 2.9, v is incident to at most (k − 8) terrible 3-faces. Assume that v is
incident to at most (k − 9) terrible 3-faces. Then, µ∗(v) � 2k − 6− 10

3 (k − 9)−
4
3 (18 − k) = 0 by (R1) (R2) and (R3.4). Assume that v is incident to (k − 8)
terrible 3-faces. Then, there exist five possible cases.
Case 1 v is not incident to anyother 3-faces.ByLemma2.10, v has atmost (15−k)
pendant 3−-neighbors. Thus, µ∗(v) � 2k − 6− 10

3 (k − 8)− 4
3 (15− k) = 2

3 > 0
by (R1) (R2) and (R3.4).
Case 2 v is incident to at least one good 3-face. Then, µ∗(v) � 2k − 6− 10

3 (k −
8) − 2 − 4

3 (14 − k) = 0 by (R1) (R2) and (R3.4).
Case 3 v is not incident to any good 3-face but incident to one bad 3-face that
is not terrible and has at most (13 − k) pendant 3−-neighbors. Then, µ∗(v) �
2k − 6 − 10

3 (k − 8) − 8
3 − 4

3 (13 − k) = 2
3 > 0 by (R1) (R2) and (R3.4).

Case 4 v is not incident to any good 3-face but incident to one bad 3-face that
is not terrible and has (14 − k) pendant 3−-neighbors. Then, v is special. Thus,
µ∗(v) � 2k − 6 − 10

3 (k − 8) − 2 − 4
3 (14 − k) = 0 by (R1) (R2) and (R4).

Case 5 v is not incident to any good 3-face but incident to at least m � 2 bad 3-
faces that not terrible. ByLemma2.11, v has atmost 16−2m−k−1 = 15−2m−k
pendant 3−-neighbors; thus,µ∗(v) � 2k−6− 10

3 (k−8)− 8
3m− 4

3 (15−2m−k) =
2
3 > 0 by (R1) (R2) and (R3.4).

(9) Suppose that v is a k-vertex, where 13 � k � 14. Then, µ(v) = 2k − 6. By
Lemma 2.9, v is incident to at most (k − 8) terrible 3-faces. Since 13 � k � 14,

 k
2� = k − 7, that is, v is incident to at most (k − 7) 3-faces. Assume that v is

incident to at most (k − 9) terrible 3-faces. Then, µ∗(v) � 2k − 6− 10
3 (k − 9)−

4
3 (18 − k) = 0 by (R1) (R2) and (R3.4). Assume that v is incident to (k − 8)
terrible 3-faces. Then, there exist four possible cases.
Case 1 v is not incident to anyother 3-faces.ByLemma2.10, v has atmost (15−k)
pendant 3−-neighbors. Thus, µ∗(v) � 2k − 6− 10

3 (k − 8)− 4
3 (15− k) = 2

3 > 0
by (R1) (R2) and (R3.4).
Case 2 v is also incident to one good 3-faces. By (R1) (R2) and (R3.4), µ∗(v) �
2k − 6 − 10

3 (k − 8) − 2 − 4
3 (14 − k) = 0 .

Case 3 v is also incident to one bad 3-face that is not terrible and has at most
(13 − k) pendant 3−-neighbors. By (R1) (R2) and (R3.4), µ∗(v) � 2k − 6 −
10
3 (k − 8) − 8

3 − 4
3 (13 − k) = 2

3 > 0 .
Case 4 v is also incident to one bad 3-face that is not terrible and has (14 − k)
pendant 3−-neighbors. Then, v is special. Thus, µ∗(v) � 2k − 6 − 10

3 (k − 8) −
2 − 4

3 (14 − k) = 0 by (R1) (R2) and (R4).
(10) Suppose that v is a 15-vertex. Then, µ(v) = 30− 6 = 24. Note that v is incident

to at most seven 3-faces. Assume that v is incident to at most six 3-faces. Then,
µ∗(v) � 24 − 10

3 × 6 − 4
3 × 3 = 0 by (R1) (R2) and (R3.4). Assume that v
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is incident to seven 3-faces. If at least one of seven 3-faces is not terrible, then
µ∗(v) � 24− 10

3 × 6− 8
3 − 4

3 = 0 by (R1) (R2) and (R3.4). If each of the seven
3-faces is terrible, then v has no pendant 3−-neighbors by Lemma 2.10. Thus,
µ∗(v) � 24 − 10

3 × 7 = 2
3 > 0 by (R1) (R2) and (R3.4).

(11) Suppose that v is a 16-vertex. Then, µ(v) = 32− 6 = 26. Note that v is incident
to at most eight 3-faces. Assume that v is incident to at most seven 3-faces. Then,
µ∗(v) � 26 − 10

3 × 7 − 4
3 × 2 = 0 by (R1) (R2) and (R3.4). Assume that v is

incident to eight 3-faces. By Lemma 2.10, at least one of the eight 3-faces is not
terrible. Thus, µ∗(v) � 26 − 10

3 × 7 − 8
3 = 0 by (R1) (R2) and (R3.4).

(12) Suppose that v is a k-vertex, k � 17. If k is odd, then µ∗(v) � 2k − 6 − 10
3 ×

k−1
2 − 4

3 = 1
3 (k−17) � 0 by (R4). If k is even, then µ∗(v) � 2k−6− 10

3 × k
2 =

1
3 (k − 18) � 0 by (R4). ��

Claim 3.2 Each bad 3-face f of G has nonnegative final charge.

Proof Since f is a 3-face,µ( f ) = 3−6 = −3. By Lemma 2.8, f is a (2, 5+, 8+)-face
or a (2, 4, 9+)-face.

(1) Suppose that f = [uvw] is a (2, 5+, 8+)-face, which implies that f is not terrible.
By Lemma 2.13, at most one vertex in {v,w} is special. Assume that exactly one
vertex in {v,w} is special. Then, µ∗( f ) � −3 + 2 + 2 − 1 = 0 by (R3.2)–
(R3.4) (R4) and (R6). Assume that neither v nor w is special. Then, µ∗( f ) �
−3 + 4

3 + 8
3 − 1 = 0 by (R3.2)–(R3.4) and (R6).

(2) Suppose that f = [uvw] is a (2, 4, 9+)-face, which implies that f is terrible.
Then, µ∗( f ) � −3 + 2

3 + 10
3 − 1 = 0 by (R3.1) (R3.4) (R4) and (R6). ��

Claim 3.3 Each good 3-face f of G has nonnegative final charge.

Proof Since f is a 3-face, µ( f ) = 3− 6 = −3. By Lemma 2.6, there are no adjacent
two 3-vertices in G. Thus, f contains at most one 3-vertex.

(1) Suppose that f is not incident to any 3-vertices. Then, f = [uvw] is a
(4+, 4+, 4+)-face. Suppose that at least one vertex in {u, v, w} is a 8+-vertex.
Then, µ∗( f ) � −3 + 2

3 + 2
3 + 2 = 1

3 > 0 by (R2). Suppose that each vertex in
{u, v, w} is a vertex with degree 4–7. Then, µ∗( f ) � −3 + 4

3 × 3 = 1 > 0 by
(R2).

(2) Suppose that f is incident to exactly one 3-vertex u, which implies that f = [uvw]
is a (3, 4+, 4+)-face. Denote the pendant neighbor of u by x . By Lemma 2.6, x is a
4+-vertex. Note that f is a pendant face of x . Suppose that x is a 8+-vertex. If one
vertex in {v,w} is a 5+-vertex, then µ∗( f ) � −3 + 4

3 + 4
3 + 2

3 = 1
3 > 0 by (R1)

and (R2). If each vertex in {v,w} is a 4-vertex, thenµ∗( f ) � −3+ 4
3 ×3 = 1 > 0

by (R1) and (R2). Suppose that x is a k-vertex, where 4 � k � 7. By Lemma 2.5,
one of v,w is a 8+-vertex. Thus, µ∗( f ) � −3+ 2+ 2

3 + 2
3 = 1

3 > 0 by (R1) and
(R2). ��

Claim 3.4 Each 6+-face f has nonnegative final charge.
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Proof Suppose that f is a 6-face. Then, µ( f ) = 6 − 6 = 0. Its charge holds to
be nonnative since no discharging rules involved. Suppose that f is a k-face, where
k � 7. Then, µ( f ) = k − 6. By Lemma 2.2, f has at most (k − 6) bad 2-vertices.
Thus, µ∗( f ) � k − 6 − (k − 6) × 1 = 0 by (R5). ��

So until now, we have shown that µ∗(x) � 0 for all x ∈ V (G)∪ F(G). Therefore,
we complete the proof of Theorem 1.2.
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