

Strong Geodetic Number of Graphs and Connectivity

Zhao Wang1 · Yaping Mao2,4 · Huifen Ge5 · Colton Magnant3,4

Received: 21 December 2018 / Revised: 17 June 2019 / Published online: 30 July 2019 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Abstract

A recent variation of the classical geodetic problem, the strong geodetic problem, is defined as follows. If *G* is a graph, then $sg(G)$ is the cardinality of a smallest vertex subset *S*, such that one can assign a fixed geodesic to each pair $\{x, y\} \subseteq S$ so that these $\binom{|S|}{2}$ geodesics cover all the vertices of *G*. In this paper, we first give some bounds for strong geodetic number in terms of diameter, connectivity, respectively. Next, we show that $2 \leq sg(G) \leq n$ for a connected graph *G* of order *n*, and graphs with $sg(G) = 2$, $n - 1$, *n* are characterized, respectively. In the end, we investigate the Nordhaus–Gaddum-type problem and extremal problems for strong geodetic number.

Keywords Cover · Strong geodetic number

Mathematics Subject Classification 05C15 · 05C76 · 05C78

Supported by the National Science Foundation of China (Nos. 11601254, 11551001, 11161037, 11461054) and the Science Found of Qinghai Province (No. 2019-ZJ-921) and the Qinghai Key Laboratory of Internet of Things Project (2017-ZJ-Y21).

B Yaping Mao maoyaping@ymail.com

> Zhao Wang wangzhao@mail.bnu.edu.cn

Huifen Ge gehuifen@yahoo.com

Colton Magnant dr.colton.magnant@gmail.com

- ¹ College of Science, China Jiliang University, Hangzhou 310018, China
- ² Department of Mathematics, Qinghai Normal University, Xining 810008, Qinghai, China
- ³ Department of Mathematics, Clayton State University, Morrow, GA 30260, USA
- ⁴ Academy of Plateau Science and Sustainability, Xining 810008, Qinghai, China
- ⁵ School of Computer, Qinghai Normal University, Xining 810008, Qinghai, China

Communicated by Xueliang Li.

1 Introduction

Let $V(G)$, $E(G)$, $e(G)$, \overline{G} , $d(G)$ be the vertex set, edge set, size, complement, diameter of *G*, respectively. Covering vertices of a graph with shortest paths is a problem that naturally appears in different applications; modeling them as graphs, one arrives at different variations of the graph problem. Given a pair of vertices *u* and v in a graph *G*, the *shortest path interval* between *u* and v is the set of all vertices contained in shortest paths from *u* to v. The classical *geodetic problem* [\[7](#page-10-0)] is to determine a smallest set of vertices *S* of a given graph such that the (shortest path) intervals between them cover all the vertices. For more details on this subject, we refer to the survey [\[2\]](#page-10-1) and the book [\[11\]](#page-10-2) for a general framework on the geodesic convexity. Recent developments on the geodetic problem include the papers [\[3](#page-10-3)[,4](#page-10-4)[,12](#page-10-5)], for a detailed literature survey see [\[8](#page-10-6)[,9\]](#page-10-7). Another variation of the *shortest path covering problem* is the isometric path problem [\[5](#page-10-8)] where one is asked to determine the minimum number of geodesics required to cover the vertices; see [\[10\]](#page-10-9). Motivated by applications in social networks, very recently the so-called *strong geodetic problem* was introduced in [\[8](#page-10-6)] as follows.

Let $G = (V, E)$ be a graph. Given a set $S \subseteq V$, for each pair of vertices $\{x, y\} \subseteq S$, $x \neq y$, let *P*(*x*, *y*) be a selected fixed shortest path between *x* and *y*. Then we set

$$
\widetilde{I}(S) = \{ \widetilde{P}(x, y) : x, y \in S \},
$$

and let $V(I(S)) = \bigcup_{P \in \widetilde{I}(S)} V(P)$. If $V(I(S)) = V$ for some collection of paths $\tilde{I}(S)$, then the set *S* is called a *strong geodetic set*. The strong geodetic problem is to find a minimum strong geodetic set *S* of *G*. Clearly, the collection $\overline{I}(S)$ of geodesics consists of exactly $\binom{|S|}{2}$ paths. The cardinality of a minimum strong geodetic set is the *strong geodetic number* of *G* and denoted by sg(*G*). For the edge version of the strong geodetic problem, we refer the reader to [\[9\]](#page-10-7).

In [\[8](#page-10-6)] it was proved that the problem of deciding whether the strong geodetic number equals a given value is *NP*-complete.

Let $\mathcal{G}(n)$ denote the class of simple graphs of order *n* ($n \geq 2$) and $\mathcal{G}(n, m)$ the subclass of $G(n)$ in which every graph has *n* vertices and *m* edges. Give a graph parameter *f* (*G*) and a positive integer *n*, the *Nordhaus–Gaddum Problem* is to determine sharp bounds for (1) $f(G) + f(\overline{G})$ and (2) $f(G) \cdot f(\overline{G})$, as *G* ranges over the class $G(n)$, and characterize the extremal graphs, i.e., graphs that achieve the bounds. Nordhaus–Gaddum-type results in general have received wide attention; see a recent survey paper [\[1](#page-10-10)] by Aouchiche and Hansen.

In Sect. [2,](#page-2-0) we give some bounds for strong geodetic number in terms of diameter, connectivity, respectively, and give sharp upper and lower bounds for join and corona graphs. In Sects. [3](#page-3-0) and [4,](#page-5-0) we show that $2 \leq sg(G) \leq n$ for a connected graph G of order *n*, and graphs with sg(G) = 2, $n-1$, *n* are characterized, respectively. In Sects. [5](#page-7-0) and [6,](#page-8-0) we investigate the Nordhaus–Gaddum-type problem and extremal problems for strong geodetic number, respectively.

In particular, in Sect. [6,](#page-8-0) we consider the following problems.

Problem 1 *Given two positive integers n and k, compute the minimum integer*

 $s(n, k) = \min\{|E(G)| : G \in \mathscr{G}(n, k)\},\$

where G (*n*, *k*) *the set of all graphs of order n (that is, with n vertices) with strong geodetic number k, where* $2 \leq k \leq n$.

Problem 2 *Given two positive integers n and k, compute the minimum integer f* (*n*, *k*) *such that for every connected graph G of order n, if* $|E(G)| \ge f(n, k)$ *then* sg(*G*) $\ge k$.

Problem 3 *Given two positive integers n and k, compute the maximum integer* $g(n, k)$ *such that for every graph G of order n, if* $|E(G)| \leq g(n, k)$ *then* $sg(G) \leq k$.

2 Bounds for Strong Geodetic Number

For trees, the following observation is immediate.

Observation 2.1 *If T is any tree, then* sg(*T*) *equals the number of leaves in T .*

Given a vertex x and a set U of vertices, an (x, U) -fan is a set of paths from x to *U* such that each pair of paths shares only the vertex x. The size of a (x, U) -fan is the number of internally disjoint paths from *x* to *U*.

Lemma 2.1 (Fan Lemma, [\[13\]](#page-10-11), p. 170) *A graph is k-connected if and only if it has at least k* + 1 *vertices, and for every choice of a vertex x and a set U with* $|U| \geq k$ *, the graph has an* (*x*, *U*)*-fan of size k.*

By the Fan Lemma, we can derive the following result.

Theorem 2.1 Let G be a connected graph of order n $(n \geq 2)$, and let k be a positive *integer. If* sg(*G*) = *n* − *k, then* κ (*G*) \leq *k or* κ (*G*) \geq *n* − 2*k.*

Proof If $n \leq 3k + 1$, then trivially $\kappa(G) \leq k$ or $\kappa(G) \geq k + 1 \geq n - 2k$, as desired. We may therefore assume that $n \geq 3k + 2$ and assume, for a contradiction, that $k+1 \le \kappa(G) \le n-2k-1$. Let $\kappa(G) = r$ so $k+1 \le r \le n-2k-1$ and $n-r \ge 2k+1$. Let *X* be a minimum vertex cut set of *G* so $|X| = r \ge k + 1$. Let C_1, C_2, \ldots, C_t be the components of *G* − *X*, of which *C_t* is the smallest. Set $A = \bigcup_{i=1}^{t-1} V(C_i)$ and *x* ∈ *V*(C_t). Clearly, $|A| \ge k + 1$. Choose *Y* ⊆ *A* so that $|Y| = k + 1$. Because *G* is $(k + 1)$ -connected, there is an (x, Y) -fan of size $k + 1$ in *G*. Let $P_1, P_2, \ldots, P_{k+1}$ be the $k + 1$ internally disjoint paths in this fan. Let $Z = (\bigcup_{i=1}^{k+1} V(P_i)) - Y - x$. Since $E_G[A, C_t] = \emptyset$, it follows that $|Z \cap X| \geq k + 1$. Choose $k + 1$ vertices in $Z \cap X$, say $v_1, v_2, \ldots, v_{k+1}$, such that $v_i \in V(P_i)$. Let $S = V(G) - \{v_1, v_2, \ldots, v_{k+1}\}$. For each v_i ($1 \le i \le k + 1$), it has two nonadjacent neighbors in P_i , say a_i, b_i . Since $a_i b_i \notin E(G)$, it follows that a strong geodetic set connecting a_i and b_i can use the vertex v_i . So one can assign a fixed geodesic to each pair $\{x, y\} \subseteq S$ so that these geodesics cover all the vertices of *G*. So sg(*G*) $\leq |S| \leq n - k - 1$, a contradiction. Therefore, $\kappa(G) \le k$ or $\kappa(G) \ge n - 2k$. Iršič $[6]$ obtained the upper and lower bounds of sg(*G*) in terms of diameter.

Theorem 2.2 [\[6](#page-10-12)] Let G be a connected graph of order n $(n \ge 2)$ with diameter d. *Then*

$$
\left\lceil \frac{d(G) - 3 + \sqrt{(d(G) - 3)^2 + 8n(d(G) - 1)}}{2(d(G) - 1)} \right\rceil \le \text{sg}(G) \le n - d(G) + 1.
$$

Similarly to the proof of Theorem [2.1,](#page-2-1) we can derive the following upper bound for strong geodetic number.

Proposition 2.1 *Let G be a connected non-complete graph of order n* ($n \geq 3$)*. Then*

$$
sg(G) \le \max\left\{ \left\lfloor \frac{n + \kappa(G)}{2} \right\rfloor, n - \kappa(G) \right\}.
$$

Proof Let *X* be a vertex cut set such that $|X| = \kappa(G)$. Let C_1, C_2, \ldots, C_r be the connected components of *G*−*X*. Note that $\sum_{i=1}^{r} |C_r| = n - \kappa(G)$. Let $C' = \bigcup_{i=1}^{r-1} C_i$. Then $|C_r| \geq \lceil \frac{n - \kappa(G)}{2} \rceil$ or $|C'| \geq \lceil \frac{n - \kappa(G)}{2} \rceil$. Without loss of generality, we suppose $|C'| \geq \lceil \frac{n - \kappa(G)}{2} \rceil$. Let $p = \min \left\{ \left\lceil \frac{n - \kappa(G)}{2} \right\rceil, \kappa(G) \right\}$. Choose $v \in C_r$, $U \subseteq C'$ and $|U| = p$. From Lemma [2.1,](#page-2-2) there is an (v, U) -fan in *G* and this fan has *p* common vertices with *X*. Choose the other $n - p$ vertices as *S*. Then these geodesics cover all the vertices of *G*. So sg(*G*) \leq max $\left\{ \left| \frac{n+\kappa(G)}{2} \right|, n-\kappa(G) \right\}$.

To show the sharpness of the above upper bound, we consider the following example.

Example 1 For $n \geq 7$, we let *G* be a graph obtained from K_{n-1} by adding a pendent edge. Then $sg(G) = n - 1 = \max \left\{ \left| \frac{n + \kappa(G)}{2} \right|, n - \kappa(G) \right\}.$

3 Results for Some Graph Classes

The graph join and corona operations are defined as follows.

The *join* or *complete product* of two disjoint graphs *G* and *H*, denoted by $G \vee H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{uv \mid u \in$ *V*(*G*), *v* ∈ *V*(*H*)}.

The *corona* $G * H$ is obtained by taking one copy of G and $|V(G)|$ copies of H , and by joining each vertex of the *i*th copy of H with the *i*th vertex of G , where $i = 1, 2, \ldots, |V(G)|$.

Proposition 3.1 *Let G*, *H be two connected graphs such that G or H is not complete. Then*

$$
sg(G \vee H) \le \max \{|V(G)| + \max\{|V(H)| - |E(\overline{G})|, 0\}, |V(H)| + \max\{|V(G)| - |E(\overline{H})|, 0\}\},\
$$

and

$$
sg(G \vee H) \ge \left\lceil \frac{-1 + \sqrt{8(|V(G)| + |V(H)|) + 1}}{2} \right\rceil.
$$

Proof For each pair of nonadjacent vertices in *G*, the connecting path can cover a vertex of *H*. Observe that there are $|E(\overline{G})|$ such pairs. Choose $S = V(G) \cup X$ with *X* ⊂ *V*(*H*) and $|X| = |V(H)| - |E(\overline{G})|$. Then the geodesics cover all the vertices of *G* ∨ *H*, and hence sg(*G* ∨ *H*) ≤ |*V*(*G*)| + max{|*V*(*H*)| − |*E*(\overline{G})|, 0}. Similarly, sg(*G* ∨ *H*) ≤ |*V*(*H*)| + max{|*V*(*G*)| − |*E*(\overline{H})|, 0}. The result follows. The lower bound follows from Theorem 2.2. bound follows from Theorem [2.2.](#page-3-1)

To show the sharpness of upper and lower bounds, we consider the following examples.

Example 2 Let *G*, *H* be complete graphs of order *n*, *m*, respectively. Then sg(*G* \vee H) = *n* + *m* and $|V(G)|$ + max{ $|V(H)| - |E(G)|$, 0} = $|V(G)| + |V(H)| = n + m$ and $|V(H)| + \max\{|V(G)| - |E(H)|, 0\} = |V(G)| + |V(H)| = n + m$. This implies that the upper bound is sharp.

Example 3 Let G be a graph obtained from a clique K_n by adding x pendent edges $u_i v_i$ (1 leq i leq x) such that $u_i \in V(K_n)$, and let *H* be a clique of order *m*, such that $n + m = {x \choose 2}$. Then $|V(G)| = n + x$ and $|V(H)| = m$, and hence $\int_{0}^{\frac{-1+2\sqrt{2(|V(G)|+|V(H)|)+1}}{2}}$ = *x*. Clearly, sg(*G* ∨ *H*) = *x*. This implies that the lower bound is sharp.

Proposition 3.2 *Let G*, *H be two connected graphs. Then*

$$
sg(H)|V(G)| \le sg(G*H) \le |V(G)|\left(|V(H)| - \left\lfloor\frac{d(H)-1}{2}\right\rfloor\right)
$$

Proof Let $V(G) = \{u_i \mid 1 \le i \le n\}$, and $H(u_i)$ $(1 \le i \le n)$ be the copies of *H* in *G* ∗ *H*, and $V(H(u_i)) = \{(u_i, v_j) | 1 \le j \le m\}$ (1 ≤ *i* ≤ *n*), where $|V(H)| = m$. Let $v_1v_2 \ldots v_{d+1}$ be a shortest path between v_1 and v_{d+1} in *H*. For each $H(u_i)$ ($1 \le i \le n$), let (u_i, v_1) , (u_i, v_{d+1}) be the two vertices such their distance in $H(u_i)$ is $d(H)$. Let $X_i = \{(u_i, v_{2j}) | 1 \leq j \leq \lfloor \frac{d-1}{2} \rfloor\}$. Note that $|V(H(u_i))| - |X_i| = m - \lfloor \frac{d-1}{2} \rfloor =$ $|V(H)| - \left[\frac{d(H)-1}{2} \right]$. Choose $S = V(G * H) - \bigcup_{i=1}^{n} X_i = \bigcup_{i=1}^{n} (V(H(u_i)) - X_i)$. For each $u_i(1 \le i \le n)$, the geodesic from (u_i, v_1) to (u_i, v_{d+1}) can cover it; for the vertex (u_i, v_{2j}) $(1 \le j \le \lfloor \frac{d-1}{2} \rfloor)$, it can be covered by the geodesic from (u_i, v_{2j-1}) to (u_i, v_{2i+1}) . It is clear that

$$
sg(H)|V(G)| \le sg(G*H) \le |V(G)| \left(|V(H)| - \left\lfloor \frac{d(H) - 1}{2} \right\rfloor \right).
$$

To show the sharpness of upper and lower bounds, we consider the following example.

 \Box

Example 4 Let *H* be a complete graph. Then $sg(H) = |V(H)|$ and hence $sg(G * H) =$ $|V(G)||V(H)|$. This implies that the upper and lower bounds are sharp.

4 Graphs with Given Strong Geodetic Number

The following proposition is easily seen.

Proposition 4.1 *Let G be a connected graph of order n* (*n* ≥ 2)*. Then*

$$
2 \le \text{sg}(G) \le n.
$$

We first classify those graphs with strong geodetic number equal to the lower bound of 2.

Proposition 4.2 Let G be a connected graph of order n $(n > 2)$. Then $sg(G) = 2$ if *and only if G is a path.*

Proof If *G* is a path, then $sg(G) = 2$. Conversely, we suppose $sg(G) = 2$. From the definition, there exist an $S \subseteq V(G)$ with $|S| = 2$ such that there is a shortest path connecting *S* that covers all vertices in $V(G) - S$. Let $S = \{x, y\}$. Then $d_G(x, y) = n - 1$ and hence diam(*G*) > $n - 1$ so *G* is a path *n* − 1, and hence diam(G) ≥ *n* − 1, so G is a path.

Next we classify those graphs with strong geodetic number at the opposite extreme from Proposition [4.1,](#page-5-1) equal to the order of the graph.

Proposition 4.3 *Let G be a connected graph of order n* $(n \geq 2)$ *. Then* sg(*G*) = *n* if *and only if G is a complete graph of order n.*

Proof Suppose $sg(G) = n$. We claim that *G* is a complete graph of order *n*. Assume, to the contrary, that $G \neq K_n$. Then there exist two vertices $u, v \in V(G)$ such that $uv \notin E(G)$. Let $P = uw_1w_2...w_rv$ be one of the shortest paths connecting *u*, *v* in *G*, where *r* ≥ 1. Let *S* = *V*(*G*) − {*w*₁, *w*₂, ..., *w*_{*r*}}. For each {*x*, *y*} ⊆ *S*, one can assign a fixed geodesic to each pair $\{x, y\} \subseteq S$ so that these geodesics cover all the vertices of *G*. So sg(*G*) $\leq |S| \leq n - r \leq n - 1$, a contradiction. So *G* is a complete graph of order *n*.

Conversely, we suppose *G* is a complete graph of order *n*. Then for any pair of vertices (u, v) , the unique geodesic between *u* and *v* is the edge *uv*. This means that no geodesic covers any vertices other than its endpoints, so all vertices must be in any strong geodetic set *S*, so $|S| = n$.

One step further, we classify those graphs with strong geodetic number equal to one less than the order of the graph.

Theorem 4.1 *Let G be a connected graph of order n* ($n \ge 6$)*. Then* sg(G) = $n - 1$ *if and only if G satisfies one of the following.*

- *There is a cut vertex* v of G such that each induced subgraph $G[V(C_i) \cup \{v\}]$ (1 ≤ $i \leq t$) *is complete, where* C_1, C_2, \ldots, C_t *be the connected components of* $G - v$ *.*
- $G = K_n \backslash e$, where $e \in E(K_n)$.

Proof Suppose $sg(G) = n - 1$. From Theorem [2.1,](#page-2-1) $\kappa(G) \leq 1$ or $\kappa(G) \geq n - 2$. Clearly, $\kappa(G) = 1$ or $\kappa(G) = n - 2$. If $\kappa(G) = 1$, then there exist a cut vertex v. Let C_1, C_2, \ldots, C_t be the connected components of $G - v$. We have the following claim.

Claim 1 Each induced subgraph $G[V(C_i) \cup \{v\}]$ ($1 \le i \le t$) is complete.

Proof of Claim [1](#page-6-0) Assume, to the contrary, that $G[V(C_i) \cup \{v\}]$ (1 ≤ *i* ≤ *t*) is not complete. Then there exist two vertices w_1, w_2 in some C_j such that $w_1w_2 \notin E(G)$, or there exists a vertex w in some C_i such that $wv \notin E(G)$. For the latter case, we have diam(*G*) ≥ 3. From Theorem [2.2,](#page-3-1) we have sg(*G*) ≤ *n* − diam(*G*) + 1 ≤ *n* − 3 + 1 = $n-2$, a contradiction. For the former case, there is a shortest path $w_1v_1v_2 \ldots v_rw_2$ connecting w_1 and w_2 in C_j , where $r \geq 1$. Let $S = V(G) - \{v_1, v_2, \ldots, v_r, v\}$. For the vertex pair w_1, w_2 , geodesic set $P(w_1, w_2)$ cover all the vertices in $\{v_1, v_2, \ldots, v_r\}$. For the vertex pair $u_1 \in C_i$ and $u_2 \in C_j$, geodesic set $P(u_1, u_2)$ cover the vertex v. So one can assign a fixed geodesic to each pair $\{x, y\} \subseteq S$ so that these geodesics cover all the vertices of *G*. So sg(*G*) ≤ |*S*| ≤ *n* − *r* − 1 ≤ *n* − 2, a contradiction. \Box

From Claim [1,](#page-6-0) there is a cut vertex v of *G* such that each induced subgraph $G[V(C_i) \cup \{v\}]$ (1 ≤ *i* ≤ *t*) is complete, where C_1, C_2, \ldots, C_t be the connected components of $G - v$.

If $\kappa(G) = n - 2$, then $\delta(G) \geq n - 2$ and hence *G* is a graph obtained from K_n by deleting a matching *M*. Suppose $|M| \ge 2$. Let $u_1v_1, u_2v_2 \in M \subseteq E(G)$. Since $n \geq 6$, it follows that there exist two vertices w_1, w_2 such that $u_1w_1v_1, u_2w_2v_2$ are two shortest paths connecting $\{u_1v_1\}$, $\{u_2v_2\}$, respectively. Let $S = V(G) - \{w_1, w_2\}$. For the vertex pair u_1 , v_1 , geodesic set $P(u_1, v_1)$ cover all the vertex w_1 . For the vertex pair u_2 , v_2 , geodesic set $P(u_2, v_2)$ cover all the vertex w_2 . So one can assign a fixed geodesic to each pair $\{x, y\} \subseteq S$ so that these geodesics cover all the vertices of *G*. So sg(*G*) $\leq |S| \leq n-2$, a contradiction. So $|M| = 1$, that is, $G = K_n \e$, where $e \in E(K_n)$.

Conversely, we suppose *G* satisfies the conditions of this theorem. From Proposition [4.1,](#page-5-1) we have $sg(G) \leq n - 1$. It suffices to show that $sg(G) \geq n - 1$. Suppose *G* = $K_n \e e$, where *e* ∈ $E(K_n)$. For any *S* ⊆ $V(G)$ and $|S|$ ≤ *n* − 2, and for each pair $\{x, y\} \subseteq S$, these geodesics do not cover all the vertices of $V(G) - S$. So $sg(G) \geq n - 1$. Suppose that there is a cut vertex v of G such that each induced subgraph $G[V(C_i) \cup \{v\}]$ ($1 \leq i \leq t$) is complete, where C_1, C_2, \ldots, C_t be the connected components of $G - v$. For any $S \subseteq V(G)$ and $|S| \leq n - 2$, and for each pair $\{x, y\} \subseteq S$, these geodesics do not cover the vertices of $V(G) - S$. So $\text{sg}(G) > n - 1.$

When the connectivity of the graph is used, we obtain the following.

Theorem 4.2 Let G be a connected graph of order n $(n \ge (2k + 2)k + k + 1)$, $\kappa(G) \geq k+1$ ($k \geq 2$), and let k be a positive integer. Then sg(G) = $n - k$ if and only *if* $G = K_n - \{e_1, e_2, \ldots, e_k\}$, where $\{e_1, e_2, \ldots, e_k\}$ *is a subset of the edge set of* K_n .

Proof Suppose sg(*G*) = *n* − *k*. From Theorem [2.1,](#page-2-1) we have $\kappa(G) \leq k$ or $\kappa(G) \geq$ $n-2k$. Since $\kappa(G) \geq k+1$ and $\delta(G) \geq \kappa(G)$, it follows that $\delta(G) \geq \kappa(G) \geq n-2k$. If $n-2k \leq \delta(G) \leq n-k-2$, there exist a vertex *u*, such that $d_G(u) = \delta(G)$, and there exist vertex set $\{w_1, w_2, \ldots, w_k, w_{k+1}\}\$, such that $\{w_1u, w_2u, \ldots, w_ku, w_{k+1}u\} \notin$ $E(G)$. Since $\delta(G) \geq n - 2k$, it follows that there are at most $2k - 1$ vertices does not adjacent to w_i (1 ≤ *i* ≤ *k* + 1) for each *i*, so there are at most $(2k - 2)(k + 1) + 1$ vertices does not adjacent to $\{w_1, w_2, \ldots, w_k, w_{k+1}\}\)$. Since $n \geq 2k(k+1) + 1$, it follows that there are at least $(2k+2)k+k+1-(2k-2)(k+1)-(k+1)-1 \geq k+1$ vertices all adjacent to $\{w_1, w_2, \ldots, w_k, w_{k+1}\}$ vertex set, say $u_1, u_2, \ldots, u_k, u_{k+1}$. We choose $S = G - \{u_1, u_2, \ldots, u_k, u_{k+1}\}\$, for each $\{x, y\} \subseteq S$, one can assign a fixed geodesic to each pair $\{x, y\} \subseteq S$ so that these geodesic cover all the vertices of *G*. So sg(*G*) < $|S|$ < *n* − *k* − 1, a contradict. Next we consider *n* − *k* − 1 < $\delta(G)$. If *G* \neq *K_n* − { e_1, e_2, \ldots, e_k }, then $|E(G)| \geq k + 1$ or $|E(G)| \leq k - 1$. First, we consider $|E(G)| \geq k + 1$. We can choose $k + 1$ edges, say $e_1, e_2, \ldots, e_{k+1}$. Since $n-k-1 \le \delta(G)$, it follows that there are at lease $(2k+2)k+k+1-(2k+2)(k-1) 2(k + 1) \geq k + 1$ vertices all adjacent to $e_1, e_2, \ldots, e_{k+1}$, say $v_1, v_2, \ldots, v_k, v_{k+1}$. We choose $S = G - \{v_1, v_2, \ldots, v_k, v_{k+1}\}\$, for each $\{x, y\} \subseteq S$, one can assign a fixed geodesic to each pair $\{x, y\} \subseteq S$ so that these geodesic cover all the vertices of *G*. So sg(*G*) $\leq |S| \leq n - k - 1$, a contradict. Next we consider $|E(G)| \leq k - 1$. This case we can found that *G* is a graph obtain from K_n by delete *r* edges, say $x_1 y_1, x_2 y_2, \ldots, x_r y_r$. Since $n \geq 2k(k+1)$, it follows that diameter is 2. So each edge in $\{x_1 y_1, x_2 y_2, \ldots, x_r y_r\}$ covers at most one vertex. Since any vertex set $|S| = n - k$ does not cover all vertex of *G*, this is the desired contradiction.

Conversely, we suppose $G = K_n - \{e_1, e_2, \ldots, e_k\}$, where $\{e_1, e_2, \ldots, e_k\}$ is the edge set of K_n . Let $e_i = u_i v_i$ ($1 \le i \le k$), where the vertices in ${u_i \mid 1 \le i \le k}$ ∪ ${v_i \mid 1 \le i \le k}$ are not necessarily different. Since $n \ge$ $(2k + 2)k + k + 1$, we can find the vertex set $\{w_1, w_2, \ldots, w_k\}$ of *G* and edge induce subgraph $E_{\{w_1,w_2,...,w_k\},\{u_1,u_2,...,u_k,v_1,v_2,...,v_k\}}$ is complete bipartite graph. Let $S = G - \{w_1, w_2, \ldots, w_k\}$. For each $\{x, y\} \subseteq S$, one can assign a fixed geodesic to each pair $\{x, y\} \subseteq S$ so that these geodesic cover all the vertices of G. So $\log(G) \leq |S| \leq n - k$. Since any vertex set $|S| \leq n - k - 1$ does not cover all the vertices of *G*, we get $|S| = n - k$.

5 Nordhaus–Gaddum-Type Results

In this section, we study upper and lower bounds on the quantities $sg(G) + sg(\overline{G})$ and $sg(G) \cdot sg(G)$.

Theorem 5.1 Let $G \in \mathcal{G}(n)$ ($n \geq 4$) be a connected graph with a connected comple*ment. Then*

 (1) 2 + $\lceil \sqrt{n} \rceil \le \text{sg}(G) + \text{sg}(\overline{G}) \le 2n - 4;$ (2) 2[\sqrt{n}] \le sg(*G*) · sg(*G*) \le (*n* − 2)².

Moreover, the two upper bounds are sharp.

Proof From Theorem [4.1](#page-5-2) and Proposition [4.2,](#page-5-3) we have $sg(G) + sg(\overline{G}) \leq 2n - 4$ and sg(*G*) · sg(\overline{G}) ≤ (*n* − 2)². Since diam(*G*) ≤ 3 or diam(\overline{G}) ≤ 3, it follows from Theorem 2.2 that sg(\overline{G}) + sg(\overline{G}) > 2 + [\sqrt{n}] and sg(\overline{G}) > 2[\sqrt{n}]. □ Theorem [2.2](#page-3-1) that $sg(G) + sg(\overline{G}) \geq 2 + \lceil \sqrt{n} \rceil$ and $sg(G) \cdot sg(\overline{G}) \geq 2 \lceil \sqrt{n} \rceil$.

To show the sharpness of the above bounds, we have the following examples.

Lemma 5.1 *Let F be a graph obtained from a Kn*−² *and a path P*³ *by identifying a vertex of* K_{n-2} *and an endpoint of* P_3 *. Then* sg(F) = $n-2$ *.*

Proof From Theorem [2.2,](#page-3-1) we have $sg(F) \leq n-2$. We need to prove that $sg(F) \geq n-2$. Let $P_3 = uvw$ and *u* be the identifying vertex in *F*. For any $S \subseteq V(F)$ with $|S| = n-3$, there exists a vertex $x \in V(F) - S$ such that $x \notin \{u, v\}$. If $x = w$, then no geodesic covers w, a contradiction, meaning that $x \in V(F) - \{u, v, w\}$. Clearly, no geodesic covers x, also a contradiction, so $s g(F) \le n - 2$. covers *x*, also a contradiction, so $sg(F) \leq n - 2$.

Lemma 5.2 *Let H be a graph obtained from a complete bipartite graph* $K_{2,n-3}$ *by adding a pendant edge on one vertex of the small part. Then* $sg(H) = n - 2$.

Proof From Theorem [2.2,](#page-3-1) we have $sg(H) \leq n - 2$. We need to prove that $sg(H) \geq$ $n-2$. Let $X = \{v_1, v_2, \ldots, v_{n-3}\}$ be the vertex set of the large part, and $\{u, w\}$ be the vertex set of the small part, and v be the pendent vertex. For any $S \subseteq V(H)$ with $|S| = n - 3$, we have $v \in S$. Let $\overline{S} = V(H) - S$. Then $0 \leq |\overline{S} \cap X| \leq 3$. If $|\overline{S} \cap X| = 0$, then $\overline{S} = \{u, v, w\}$, which contradicts the fact that $v \in S$. If $|\overline{S} \cap X| = 1$, then we suppose that $\overline{S} \cap X = \{v_1\}$. Since $v \in S$, it follows that $\overline{S} = \{u, v_1, w\}$. Clearly, no geodesic covers v_1 , a contradiction. If $|\overline{S} \cap X| = 2$, then we suppose that $\overline{S} \cap X = \{v_1, v_2\}$. Then $u \in \overline{S}$ or $w \in \overline{S}$. Clearly, no geodesic covers v_1 or v_2 , a contradiction. If $|\overline{S} \cap X| = 3$, then we suppose that $\overline{S} \cap X = \{v_1, v_2, v_3\}$. Then no geodesic covers one of v_1, v_2, v_3 , a contradiction. So $sg(H) = n - 2$.

Example 5 Let *G* be a graph obtained from a K_{n-2} and a path P_3 by identifying a vertex of K_{n-2} and an endpoint of P_3 . Then \overline{G} is a graph obtained from a complete bipartite graph $K_{2,n-3}$ by adding an pendent edge on one vertex of the small part. Clearly, diam(*G*) = diam(\overline{G}) = 3. From Theorem [2.2](#page-3-1) and Lemmas [5.1](#page-8-1) and [5.2,](#page-8-2) we have $sg(G) = n - 2$ and $sg(\overline{G}) = n - 2$.

6 Extremal Problems

In this section, we give some results on extremal problems regarding the strong geodetic number. Recall that $s(n, k)$ is the minimum size of all graphs of order *n* with strong geodetic number *k*, where $2 \leq k \leq n$. Our first result concerns the quantity $s(n, k)$.

Proposition 6.1 *Let n, k be two integers with* $2 \leq k \leq n$ *. Then*

$$
s(n,k) = \begin{cases} {n \choose 2}, & \text{if } k = n; \\ n-1, & \text{if } 2 \le k \le n-1. \end{cases}
$$

Proof From Proposition [4.3,](#page-5-4) we have $s(n, n) = \binom{n}{2}$ n_2). Let *T* be a tree with exactly *k* leaves. Clearly, $s(n, k) \leq n - 1$. Since we only consider connected graphs, we have $s(n, k) = n - 1$ for $2 \le k \le n - 1$.

Recall that $f(n, k)$ is the minimum integer such that for every connected graph G of order *n*, if $|E(G)| > f(n, k)$ then sg(*G*) > *k*. Our next result is about *g*(*n*, *k*).

Proposition 6.2 *Let n, k be two integers with* $2 \leq k \leq n$ *. Then*

$$
g(n,k) = \begin{cases} {n \choose 2}, & \text{if } k = n; \\ {n \choose 2} - 1, & \text{if } k = n - 1. \end{cases}
$$

For $2 \leq k \leq n-2$, $g(n, k)$ *does not exist.*

Proof From Proposition [4.3,](#page-5-4) we have $g(n, n) = \binom{n}{2}$ $\binom{n}{2}$ and $g(n, n - 1) = \binom{n}{2}$ $\binom{n}{2} - 1$. For a star $K_{1,n-1}$, we have sg($K_{1,n-1}$) = *n* − 1 and $g(n, k) \le n - 2$. This means that $g(n, k)$ does not exist $g(n, k)$ does not exist.

Recall that $g(n, k)$ is the maximum integer such that for every graph *G* of order *n*, if $|E(G)| \le g(n, k)$ then $sg(G) \le k$. Finally we consider $f(n, k)$.

Proposition 6.3 *Let n, k be two integers with* $2 \leq k \leq n$ *and* $n \geq 8$ *.*

(1) If
$$
\lceil \frac{2n}{3} \rceil \leq k \leq n
$$
, then $f(n, k) = \binom{n}{2} - n + k$:\n(2) If $\lceil \frac{1+\sqrt{1+8n}}{2} \rceil \leq k \leq \lceil \frac{2n}{3} \rceil - 1$, then

$$
\binom{n}{2} - n + k \le f(n, k) \le \binom{n}{2} - \left\lfloor \frac{n}{3} \right\rfloor.
$$

(3) If
$$
3 \le k \le \lceil \frac{1+\sqrt{1+8n}}{2} \rceil - 1
$$
, then

$$
\binom{k-1}{2} + n - k + 2 \le f(n,k) \le \binom{n}{2} - n + \left\lceil \frac{1 + \sqrt{1 + 8n}}{2} \right\rceil.
$$

Proof Suppose $\lceil \frac{1+\sqrt{1+8n}}{2} \rceil \leq k \leq n$. Let K_n be a complete graph of order *n* and K_k be a clique of order *k* in K_n . Let *G* be a graph obtained from K_n by deleting $n - k + 1$ edges in K_k . Clearly, sg(*G*) $\leq k - 1$ and $e(G) = \binom{n}{2}$ $\binom{n}{2} - n + k - 1$, and hence $f(n, k) \geq {n \choose 2}$ $\binom{n}{2} - n + k.$

(1) For $\lceil \frac{2n}{3} \rceil \leq k \leq n$, we suppose that *G* is a connected graph with $e(G) \geq$ $\binom{n}{2}$ $\binom{n}{2} - n + k$. Since $\lceil \frac{2n}{3} \rceil \leq k \leq n$, it follows that $e(\overline{G}) \leq n - k$. We claim that $sg(G) \geq k$. If $sg(G) \leq k-1$, then there exists a vertex set *S* with $|S| \leq k-1$ such that the geodesics from the vertex pairs of *S* can cover all the vertices of *G*. Since $|G[S]|$ ≤ *n* − *k*, it follows that the geodesics from *S* cover *n* − *k* vertices in $V(G)$ − *S*, which contradicts the fact that the geodesics from the vertex pairs of *S* can cover all the vertices of *G*. So $f(n, k) = \binom{n}{2}$ $\binom{n}{2} - n + k.$

(2) For $\lceil \frac{1+\sqrt{1+8n}}{2} \rceil \le k \le \lceil \frac{2n}{3} \rceil - 1$, we suppose that *G* is a connected graph with $e(G) \geq {n \choose 2}$ $\binom{n}{2} - \binom{n}{3}$. From (1), we have $f(n, \lceil \frac{2n}{3} \rceil) = \binom{n}{2}$ $\binom{n}{2} - n + \lceil \frac{2n}{3} \rceil = \binom{n}{2}$ $\binom{n}{2} - \lfloor \frac{n}{3} \rfloor$. That is to say, for any graph of *G'*, if $|E(G')| \geq {n \choose 2}$ $\binom{n}{2} - \left\lfloor \frac{n}{3} \right\rfloor$, then sg(*G'*) $\geq \lceil \frac{2n}{3} \rceil$. Since $\left[\frac{1+\sqrt{1+8n}}{2}\right] \le k \le \left[\frac{2n}{3}\right] - 1$, it follows that sg(*G*) $\ge k$. So $\binom{n}{2}$ $\binom{n}{2} - n + k \leq f(n, k) \leq$ $\binom{n}{2}$ $\binom{n}{2} - \lfloor \frac{n}{3} \rfloor$.

(3) Let *G* be a graph obtained from a clique K_{k-1} and a path P_{n-k+2} by identifying a vertex of K_{k-1} and an endpoint of P_{n-k+2} . Clearly, sg(*G*) = $k-1$ and $e(G)$ = ${k-1 \choose 2} + n - k + 1$, and hence $f\frac{2}{n}$ $\frac{1}{n}$, k) $\geq \binom{k-1}{2} + n - k + 2$.

For upper bound, we suppose that *G* is a connected graph with $e(G) \geq {n \choose 2} - n$ + 2 $\lceil \frac{1+\sqrt{1+8n}}{2} \rceil$. From (2), we have $f\frac{6}{n}$ $\frac{(n+1+\sqrt{1+8n})}{2}$ 2 = $\frac{(n+1+\sqrt{1+8n})}{2}$ $\binom{n}{2} - n + \lceil \frac{1 + \sqrt{1 + 8n}}{2} \rceil$. That is to say, for any graph of G' , if $|E(G')| \geq {n \choose 2}$ $\binom{n}{2} - n + \lceil \frac{1 + \sqrt{1 + 8n}}{2} \rceil$, then sg(*G'*) $\geq \lceil \frac{1 + \sqrt{1 + 8n}}{2} \rceil$. Since $3 \le k \le \lceil \frac{1+\sqrt{1+8n}}{2} \rceil - 1$, it follows that sg(*G*) ≥ *k*. So $\binom{k-1}{2} + n - k + 2 \le$ $f(n, k) \leq {n \choose 2}$ $\binom{n}{2} - n + \left[\frac{1 + \sqrt{1 + 8n}}{2} \right]$ $\frac{1+8n}{2}$.

Acknowledgements The authors are very grateful to the referees for their valuable comments and suggestions, which improved the presentation of this paper.

References

- 1. Aouchiche, M., Hansen, P.: A survey of Nordhaus–Gaddum type relations. Discrete Appl. Math. **161**(4–5), 466–546 (2013)
- 2. Brešar, B., Kovše, M., Tepeh, A.: Geodetic sets in graphs. In: Dehmer, M. (ed.) Structural Analysis of Complex Networks, pp. 197–218. Birkhauser/Springer, New York (2011)
- 3. Ekim, T., Erey, A.: Block decomposition approach to compute a minimum geodetic set. RAIRO Oper. Res. **48**, 497–507 (2014)
- 4. Ekim, T., Erey, A., Heggernes, P., vant Hof, P., Meister, D.: Computing minimum geodetic sets in proper interval graphs. In: Lecture Notes Computer Science, vol. 7256, pp. 279–290. Springer, Berlin (2012)
- 5. Fisher, D.C., Fitzpatrick, S.L.: The isometric path number of a graph. J. Combin. Math. Combin. Comput. **38**, 97–110 (2001)
- 6. Iršič, V.: Strong geodetic number of complete bipartite graphs and of graphs with specified diameter. Graphs Combin. **34**(3), 443–456 (2018)
- 7. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Model. **17**, 89–95 (1993)
- 8. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong geodetic problem in networks: computational complexity and solution for Apollonian networks (2017). [arXiv:1708.03868](http://arxiv.org/abs/1708.03868)
- 9. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geodetic problem in networks. Open Math. **15**, 1225–1235 (2017)
- 10. Pan, J.-J., Chang, G.J.: Isometric path numbers of graphs. Discrete Math. **306**, 2091–2096 (2006)
- 11. Pelayo, I.M.: Geodesic Convexity in Graphs, Springer Briefs in Mathematics. Springer, New York (2013)
- 12. Solof, J.A., Márquez, R.A., Friedler, L.M.: Products of geodesic graphs and the geodetic number of products. Discuss. Math. Graph Theory **35**, 35–42 (2015)
- 13. West, D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.