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Abstract
In this paper,we study theBerezin number inequalities by using the transformCα,β (A)

on reproducing kernel Hilbert spaces (RKHS). Moreover, we give Grüss-type inequal-
ities for selfadjoint operators in RKHS.

Keywords Berezin number · Berezin symbol · Selfadjoint operators · Grüss
inequality
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1 Introduction

Grüss [17] proved the following integral inequality which gives an approximation of
the integral of the product in terms of the product of the integrals as follows:
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where f , g : [a, b] → R are integrable on [a, b] and satisfy the condition

φ ≤ f (x) ≤ �, γ ≤ g(x) ≤ �

for each x ∈ [a, b] , where φ, �, γ, � are given real constants.
Moreover, the constant 14 is sharp in the sense that it cannot be replaced by a smaller

one.
The discrete version of the Grüss’ inequality can be found in [22] as following:
Let a = (a1, . . . , an), b = (b1, . . . , bn) be two n-tuples of real numbers such that

r ≤ ai ≤ R and s ≤ bi ≤ S for i = 1, . . . , n. Then, one has
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(R − r) (S − s) ,

where [x] denotes the integer part of x ∈ R. In fact, the presented version of the
discrete Grüss’ inequality is due to Biernacki et al. [7]. For Grüss-type inequalities,
we refer to [3,8,9,11,12] and references therein.

Let A be a selfadjoint linear operator on a complex Hilbert space H. The Gelfand
map establishes a ∗-isometrically isomorphism � between the set C(Sp(A)) of all
continuous functions defined on the spectrum of A, denoted by Sp(A), and the C∗-
algebra C∗(A) generated by A and the identity operator 1H on H as follows (see for
instance [14]).

For any f , g ∈ C(Sp(A)) and any α, β ∈ C, we have

(i) �(α f + βg) = α� ( f ) + β� (g) ;
(ii) �( f g) = �( f ) � (g) and �

(

f
) = �( f )∗ ;

(iii) ||�( f )|| = || f || := sup
t∈Sp(A)

| f (t)| ;

(iv) �( f0) = 1H and �( f1) = A, where f0 (t) = 1 and f1 (t) = t , for t ∈ Sp(A).

With this notation, we define

f (A) := �( f ) for all f ∈ C(Sp(A))

and it is called the continuous functional calculus for the selfadjoint operator A.
If A is a selfadjoint operator and f is a real-valued continuous function on Sp(A),

then f (t) ≥ 0 for any t ∈ Sp(A) implies that f (A) ≥ 0 on H. Therefore, if f and g
are real-valued functions on Sp(A), then the following basic property holds:

f (t) ≥ g(t) for any t ∈ Sp(A) implies that f (A) ≥ g(A) (1)

in the operator order of B(H).

Let � be an arbitrary set. Denote by F (�) the set of all complex-valued functions
on �. A reproducing kernel Hilbert space (RKHS for short) on the set � is a Hilbert
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space H = H (�) ⊂ F (�) with a function kλ : �×� → H, which is called the
reproducing kernel enjoying the reproducing property kλ := k (., λ) ∈ H for all
λ ∈ � and f (λ) = 〈 f , kλ〉H holds for all λ ∈ � and all f ∈ H (see [24]). As it is
known (see [2,24]),

kλ (z) =
∞
∑

n=0

en (λ)en (z)

for any orthonormal basis {en (z)}n≥0 of the space H (�) .

Let k̂λ = kλ‖kλ‖ be the normalized reproducing kernel of the space H. For any

bounded linear operator A onH, the Berezin transform of A is the function Ã defined
by (see [23])

Ã(λ) := 〈

Ak̂λ, k̂λ

〉

H (λ ∈ �).

The Berezin set and the Berezin number for operator A are defined by (see [19,20])

Ber (A) := {

Ã (λ) : λ ∈ �
}

and ber (A) := sup
{∣
∣ Ã (λ)

∣
∣ : λ ∈ �

}

,

respectively. Recently, some Berezin number inequalities have been obtained by
authors [5,15,16,25–27].

The numerical range and numerical radius of A in B (H) are, respectively, defined
by

W (A) := {〈A f , f 〉 : f ∈ H, ‖ f ‖ = 1} and w (A) := sup {|z| : z ∈ W (A)} .

The Berezin set and the Berezin number have a relationship with the numerical range
and the numerical radius as follows:

Ber (A) ⊂ W (A) and ber (A) ≤ w (A) ≤ ‖A‖ .

For the numerical radius and its applications, we refer to [1,4,6,10,13,21], and ref-
erences therein. The numerical radius inequality for the product of two operators is
following:

w (AB) ≤ 4w (A) w (B)

for the bounded linear operators A, B on the Hilbert spaceH. In that case that AB =
BA, then

w (AB) ≤ 2w (A) w (B)

(see [18] for detailed information). So, the following questions are natural:
Is it true that the above inequality is also provided for Berezin number of operators?

For which operator classes, there exists a number C > 0 such that
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ber (AB) ≤ Cber (A) ber (B) ? (2)

In this paper, we study inequality (2) by using the transform Cα,β (A) on repro-
ducing kernel Hilbert spaces (RKHS). Moreover, we give Grüss-type inequalities for
selfadjoint operators in RKHS.

2 Berezin Number Inequalities for Two Operators

Let α, β ∈ C and let A ∈ B (H) be a bounded linear operator. We define the following
transform [11]

Cα,β (A) := (

A∗ − α I
)

(β I − A) ,

where A∗ denotes the adjoint of A. The transform Cα,β (.) has some interesting prop-
erties for A, B ∈ B (H) and α, β ∈ C as following:

(i) Cα,β (I ) := (1 − α) (β − 1) I and Cα,α (A) := − (α I − T )∗ (α I − A).
(ii)

[

Cα,β (A)
]∗ = Cβ,α (A) and Cβ,α (A∗) − Cα,β (A) = A∗A − AA∗.

A bounded linear operator A on the RKHSH is said to be accretive if Re Ã (λ) ≥ 0
for any λ ∈ �. Using this property, we have

Re ˜Cα,β (A) (λ) = Re ˜Cβ,α (A) (λ) = 1

4
|β − α|2 −

∥
∥
∥
∥

(

A − β + α

2
I

)

k̂λ

∥
∥
∥
∥

2

for any scalars α, β ∈ C and λ ∈ �. So we can give a simple result.

Lemma 1 For A ∈ B (H (�)) and complex numbers α, β, the following statements
are equivalent:

(i) The transforms Cα,β (A) and Cα,β (A∗) are accretive;

(ii)

∥
∥
∥
∥
Ak̂λ − β + α

2
k̂λ

∥
∥
∥
∥

≤ 1

2
|β − α| and

∥
∥
∥
∥
∥
A∗k̂λ − β + α

2
k̂λ

∥
∥
∥
∥
∥

≤ 1

2
|β − α|

for any λ ∈ �.

Theorem 1 Let Cα,β (A) and Cγ,δ (B) be accretive transform for A, B ∈ B (H) and
α, β, γ, δ ∈ C. Then,

ber (BA) ≤ 3ber (A) ber (B) + 1

4
|β − α| |γ − δ| .

Proof By hypothesis, Cα,β (A) and Cγ,δ (B) are accretive, and then, from Lemma 1

we get

∥
∥
∥
∥
Ak̂λ − β + α

2
k̂λ

∥
∥
∥
∥

≤ 1

2
|β − α| and

∥
∥
∥
∥
∥
B∗k̂λ − γ + δ

2
k̂λ

∥
∥
∥
∥
∥

≤ 1

2

∣
∣γ − δ

∣
∣ for any

λ ∈ �.
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Using the Schwarz inequality, we get that

∣
∣
〈

Ak̂λ − Ã (λ) k̂λ, B
∗k̂η − B̃∗ (η) k̂η

〉∣
∣

≤ ∥
∥Ak̂λ − Ã (λ) k̂λ

∥
∥

∥
∥B∗k̂η − B̃∗ (η) k̂η

∥
∥ (3)

for all λ, η ∈ �.
Since

∥
∥ f − 〈

f , k̂λ

〉

k̂λ

∥
∥ = inf

φ∈C
∥
∥ f − φk̂λ

∥
∥ for any f ∈ H and λ ∈ �, we have

∥
∥Ak̂λ − Ã (λ) k̂λ

∥
∥ ≤

∥
∥
∥
∥
Ak̂λ − β + α

2
k̂λ

∥
∥
∥
∥

≤ 1

2
|β − α|

and

∥
∥B∗k̂η − B̃∗ (η) k̂η

∥
∥ ≤

∥
∥
∥
∥
∥
B∗k̂η − γ + δ

2
k̂η

∥
∥
∥
∥
∥

≤ 1

2
|γ − δ|

for all λ, η ∈ �. Hence, we have

∥
∥Ak̂λ − Ã (λ) k̂λ

∥
∥

∥
∥B∗k̂η − B̃∗ (η) k̂η

∥
∥ ≤ 1

4
|β − α| |γ − δ| (4)

for all λ, η ∈ �. On the other hand,

〈

Ak̂λ − Ã (λ) k̂λ, B
∗k̂η − B̃∗ (η) k̂η

〉

= 〈

BAk̂λ, k̂η

〉 + Ã (λ) B̃ (η)
〈

k̂λ, k̂η

〉

− Ã (λ)
〈

Bk̂λ, k̂η

〉 − 〈

Ak̂λ, k̂η

〉

B̃ (η)

for all λ, η ∈ �. Taking the modulus in the above equality, we have
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〈

BAk̂λ, k̂η
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∣ − ∣

∣ Ã (λ)
〈
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〉∣
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〈
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∣
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∣ ,

which is equivalent to

∣
∣
〈

Ak̂λ − Ã (λ) k̂λ, B
∗k̂η − B̃∗ (η) k̂η

〉∣
∣

+ ∣
∣ Ã (λ)

〈

Bk̂λ, k̂η

〉∣
∣ + ∣

∣
〈

Ak̂λ, k̂η

〉

B̃ (η)
∣
∣ + ∣

∣ Ã (λ) B̃ (η)
〈

k̂λ, k̂η

〉∣
∣

≥ ∣
∣
〈

BAk̂λ, k̂η

〉∣
∣ (5)
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for all λ, η ∈ �. So we have for λ = η from (3)-(5)

1

4
|β − α| |γ − δ| + ∣

∣ Ã (λ) B̃ (λ)
∣
∣ + ∣

∣ Ã (λ) B̃ (λ)
∣
∣

+ ∣
∣ Ã (λ) B̃ (λ)

∣
∣ ≥ ∣

∣B̃ A (λ)
∣
∣ . (6)

Taking the supremum in (6) over λ ∈ �, we get that

ber (BA) ≤ 3ber (A) ber (B) + 1

4
|β − α| |γ − δ| .

This gives the desired result. �
Now, we consider a different approach in the following result.

Theorem 2 Let Cα,β (A) and Cγ,δ (B) be accretive transform for A, B ∈ B (H) and
α, β, γ, δ ∈ C. Then,

ber (BA) ≤ ber (A) ber (B) + 1

4
|β − α| (|γ − δ| + |γ + δ|) .

Proof We can state the following inequality from the Schwarz inequality and the
assumptions

∣
∣
∣
∣
∣

〈

Ak̂λ − Ã (λ) k̂λ, B
∗k̂η − γ + δ

2
k̂η

〉∣
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∣
∣
∣
≤ ∥
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∥
∥

∥
∥
∥
∥
∥
B∗k̂η − γ + δ

2
k̂η

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
Ak̂λ − β + α

2
k̂λ

∥
∥
∥
∥

∥
∥
∥
∥
∥
B∗k̂η − γ + δ

2
k̂η

∥
∥
∥
∥
∥

≤ 1

4
|β − α| |γ − δ| (7)

for all λ, η ∈ �.
Since

〈

Ak̂λ − Ã (λ) k̂λ, B
∗k̂η − γ + δ

2
k̂η

〉

= 〈

BAk̂λ, k̂η

〉 − Ã (λ)
〈

Bk̂λ, k̂η

〉 − γ + δ

2

〈

Ak̂λ − Ã (λ) k̂λ, k̂η

〉

on taking the modulus in this inequality, we obtain

∣
∣
∣
∣
∣

〈

Ak̂λ − Ã (λ) k̂λ, B
∗k̂η − γ + δ

2
k̂η

〉∣
∣
∣
∣
∣

≥ ∣
∣
〈

BAk̂λ, k̂η

〉∣
∣ − ∣

∣ Ã (λ)
〈

Bk̂λ, k̂η

〉∣
∣ −

∣
∣
∣
∣

γ + δ

2

∣
∣
∣
∣

∣
∣
〈

Ak̂λ − Ã (λ) k̂λ, k̂η

〉∣
∣ (8)
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for all λ, η ∈ �. Then, we have for λ = η ∈ � from (7) and (8)

∣
∣B̃ A (λ)

∣
∣ ≤ ∣

∣ Ã (λ) B̃ (λ)
∣
∣ +

∣
∣
∣
∣

γ + δ

2

∣
∣
∣
∣

∣
∣
∣
∣

˜Ak̂λ − Ã (λ)

∣
∣
∣
∣
+ 1

4
|β − α| |γ − δ|

≤ ∣
∣ Ã (λ) B̃ (λ)

∣
∣ +

∣
∣
∣
∣

γ + δ

2

∣
∣
∣
∣

∥
∥
∥
∥
Ak̂λ − β + α

2
k̂λ

∥
∥
∥
∥

+ 1

4
|β − α| |γ − δ|

≤ ∣
∣ Ã (λ) B̃ (λ)

∣
∣ + 1

4
|β − α| (|γ − δ| + |γ + δ|) .

Taking the supremum over λ ∈ � in the above inequality, we have

ber (BA) ≤ ber (A) ber (B) + 1

4
|β − α| (|γ − δ| + |γ + δ|) .

This proves the theorem. �
By using arguments in above theorem, we can get the following result.

Corollary 1 Let Cα,β (A) and Cγ,δ (B) be accretive transform for A, B ∈ B (H) and
α, β, γ, δ ∈ C. Then,

ber (BA) ≤ ber (A) ber (B) + |γ + δ| ber (A) + 1

4
|β − α| |γ − δ| .

Proof Indeed, we have that

〈

Ak̂λ − Ã (λ) k̂λ, B
∗k̂η − γ + δ

2
k̂η

〉

= 〈

BAk̂λ, k̂η

〉 − Ã (λ)
〈

Bk̂λ, k̂η

〉

− γ + δ

2

〈

Ak̂λ, k̂η

〉 + γ + δ

2
Ã (λ)

〈

k̂λ, k̂η

〉

for all λ, η ∈ �. Taking the supremum on λ = η ∈ � and using the same arguments
in the proof of the above theorem, we get

ber (BA) ≤ ber (A) ber (B) + |γ + δ| ber (A) + 1

4
|β − α| |γ − δ|

for the operators A, B ∈ B (H). �

3 Grüss-Type Inequality

Now,we give aGrüss-type inequality for selfadjoint operators on a RKHSH = H(�).

Theorem 3 Let A ∈ B (H) be a selfadjoint operator and assume that Sp (A) ⊆
[m, M] for some scalars m < M. If f and g are continuous on [m, M], then
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˜f (A) g (A) (μ) − f̃ (A) (μ) g̃ (A) (λ) − γ + �

2

[

g̃ (A) (μ) − g̃ (A) (λ)
]

≤ 1

2
. (� − γ )

[

||g (A)||2 +
(

g̃ (A) (λ)
)2 − 2g̃ (A) (λ) g̃ (A) (μ)

]1/2

(9)

for any λ,μ ∈ �, where γ = min
t∈[m,M]

f (t), � = max
t∈[m,M]

f (t)

Proof Indeed, we have the identity

〈( f (A) − ξ.1H)
(

g (A) − 〈g (A) k̂λ, k̂λ〉.1H
)

k̂μ, k̂μ〉
= 〈 f (A) g (A) k̂μ, k̂μ〉 − ξ.

[〈g (A) k̂μ, k̂μ〉 − 〈g (A) k̂λ, k̂λ〉
]

− 〈g (A) k̂λ, k̂λ〉〈 f (A) k̂μ, k̂μ〉 (10)

for each ξ ∈ R and λ,μ ∈ �.
Taking the modulus in (10), we obtain

∣
∣
∣ ˜f (A) g (A) (μ) − ξ.

[

g̃ (A) (μ) − g̃ (A) (λ)
]

− g̃ (A) (λ) f̃ (A) (μ)

∣
∣
∣

=
∣
∣
∣

〈(

g (A) − g̃ (A) (λ) .1H
)

k̂μ, ( f (A) − ξ.1H )̂kμ

〉∣
∣
∣

≤
∥
∥
∥g (A) k̂μ − g̃ (A) (λ) k̂μ〉

∥
∥
∥

∥
∥ f (A) k̂μ − ξ k̂μ

∥
∥

=
[
∥
∥g (A) k̂μ

∥
∥
2 +

(

g̃ (A) (λ)
)2 − 2g̃ (A) (λ) g̃ (A) (μ)

] 1
2

× ∥
∥
(

f (A) k̂μ − λ̂kμ

)∥
∥

≤
[

‖g (A)‖2 +
(

g̃ (A) (λ)
)2 − 2g̃ (A) (λ) g̃ (A) (μ)

] 1
2

× ‖ f (A) − λ.1H‖ (11)

for any λ,μ ∈ �.
Since γ = min

t∈[m,M]
f (t) and � = max

t∈[m,M]
f (t), by the property (1) we have that

γ ≤ f̃ (A) (μ) ≤ � for each μ ∈ � which is obviously equivalent to

∣
∣
∣
∣
f̃ (A) (μ) − γ + �

2

∥
∥̂kμ

∥
∥
2
∣
∣
∣
∣
≤ 1

2
(� − γ )

or with

∣
∣
∣
∣
∣

˜
(

f (A) − γ + �

2
1H

)

(μ)

∣
∣
∣
∣
∣
≤ 1

2
(� − γ )

for each μ ∈ �.
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Taking the supremum in this inequality, we get

∥
∥
∥
∥
f (A) − γ + �

2
.1H

∥
∥
∥
∥

≤ 1

2
(� − γ ) ,

which together with the inequality (11) applied for ξ = γ+�
2 produces the desired

results. �
As a special case of the above theorem, we can give the following result.

Corollary 2 Let A ∈ B (H) be a selfadjoint operator and assume that Sp (A) ⊆
[m, M] for some scalars m < M. Then,

ber
(

f 2 (A) − ( f (A))2
)

≤ 1

2
(� − γ )

[

‖ f (A)‖2 − ber
(

( f (A))2
)] 1

2

for each λ ∈ �, where γ = min
t∈[m,M]

f (t), � = max
t∈[m,M]

f (t).

Proof Taking f = g and λ = μ in (9), then

∣
∣
∣
∣
f̃ 2 (A) (λ) −

(

f̃ (A) (λ)
)2

∣
∣
∣
∣

≤ 1

2
(� − γ )

[

‖ f (A)‖2 −
(

f̃ (A) (λ)
)2

] 1
2

for all λ ∈ �. Taking the supremum on λ ∈ � in above inequality, we have

ber
(

f 2 (A) − ( f (A))2
)

≤ 1

2
(� − γ )

[

‖ f (A)‖2 − ber
(

( f (A))2
)] 1

2

for any selfadjoint operator A ∈ B (H). This proves the theorem. �
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