

Berezin Number, Grüss-Type Inequalities and Their Applications

Ulaş Yamancı¹ · Remziye Tunç² · Mehmet Gürdal²

Received: 4 December 2018 / Revised: 12 April 2019 / Published online: 12 July 2019 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Abstract

In this paper, we study the Berezin number inequalities by using the transform $C_{\alpha,\beta}(A)$ on reproducing kernel Hilbert spaces (RKHS). Moreover, we give Grüss-type inequalities for selfadjoint operators in RKHS.

Keywords Berezin number \cdot Berezin symbol \cdot Selfadjoint operators \cdot Grüss inequality

Mathematics Subject Classification Primary 47A63

1 Introduction

Grüss [17] proved the following integral inequality which gives an approximation of the integral of the product in terms of the product of the integrals as follows:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x)g(x)d(x) - \frac{1}{b-a} \int_{a}^{b} f(x)d(x) \cdot \frac{1}{b-a} \int_{a}^{b} g(x)d(x) \right|$$

$$\leq \frac{1}{4} (\Phi - \phi)(\Gamma - \gamma),$$

Communicated by Sorina Barza.

Ulaş Yamancı ulasyamanci@sdu.edu.tr

> Remziye Tunç remziye_tunc_rt@hotmail.com

Mehmet Gürdal gurdalmehmet@sdu.edu.tr

- ¹ Department of Statistics, Suleyman Demirel University, 32260 Isparta, Turkey
- ² Department of Mathematics, Suleyman Demirel University, 32260 Isparta, Turkey

where $f, g: [a, b] \to \mathbb{R}$ are integrable on [a, b] and satisfy the condition

$$\phi \le f(x) \le \Phi, \gamma \le g(x) \le \Gamma$$

for each $x \in [a, b]$, where ϕ , Φ , γ , Γ are given real constants.

Moreover, the constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller one.

The discrete version of the Grüss' inequality can be found in [22] as following:

Let $a = (a_1, \ldots, a_n)$, $b = (b_1, \ldots, b_n)$ be two *n*-tuples of real numbers such that $r \le a_i \le R$ and $s \le b_i \le S$ for $i = 1, \ldots, n$. Then, one has

$$\left| \frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i} - \frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} b_{i} \right|$$

$$\leq \frac{1}{n} \left[\frac{n}{2} \right] \left(1 - \frac{1}{n} \left[\frac{n}{2} \right] \right) (R - r) (S - s) ,$$

where [x] denotes the integer part of $x \in \mathbb{R}$. In fact, the presented version of the discrete Grüss' inequality is due to Biernacki et al. [7]. For Grüss-type inequalities, we refer to [3,8,9,11,12] and references therein.

Let *A* be a selfadjoint linear operator on a complex Hilbert space \mathcal{H} . The Gelfand map establishes a *-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous functions defined on the spectrum of *A*, denoted by Sp(A), and the *C**-algebra *C**(*A*) generated by *A* and the identity operator $1_{\mathcal{H}}$ on \mathcal{H} as follows (see for instance [14]).

For any $f, g \in C(Sp(A))$ and any $\alpha, \beta \in \mathbb{C}$, we have

(i)
$$\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g)$$
;

(ii)
$$\Phi(fg) = \Phi(f) \Phi(g)$$
 and $\Phi(\overline{f}) = \Phi(f)^*$;

(iii)
$$||\Phi(f)|| = ||f|| := \sup_{t \in Sp(A)} |f(t)|;$$

(iv)
$$\Phi(f_0) = 1_{\mathcal{H}}$$
 and $\Phi(f_1) = A$, where $f_0(t) = 1$ and $f_1(t) = t$, for $t \in Sp(A)$.

With this notation, we define

$$f(A) := \Phi(f)$$
 for all $f \in C(Sp(A))$

and it is called the continuous functional calculus for the selfadjoint operator A.

If *A* is a selfadjoint operator and *f* is a real-valued continuous function on Sp(A), then $f(t) \ge 0$ for any $t \in Sp(A)$ implies that $f(A) \ge 0$ on \mathcal{H} . Therefore, if *f* and *g* are real-valued functions on Sp(A), then the following basic property holds:

$$f(t) \ge g(t)$$
 for any $t \in Sp(A)$ implies that $f(A) \ge g(A)$ (1)

in the operator order of $B(\mathcal{H})$.

Let Ω be an arbitrary set. Denote by $\mathcal{F}(\Omega)$ the set of all complex-valued functions on Ω . A reproducing kernel Hilbert space (RKHS for short) on the set Ω is a Hilbert space $\mathcal{H} = \mathcal{H}(\Omega) \subset \mathcal{F}(\Omega)$ with a function $k_{\lambda} : \Omega \times \Omega \to \mathcal{H}$, which is called the reproducing kernel enjoying the reproducing property $k_{\lambda} := k(., \lambda) \in \mathcal{H}$ for all $\lambda \in \Omega$ and $f(\lambda) = \langle f, k_{\lambda} \rangle_{\mathcal{H}}$ holds for all $\lambda \in \Omega$ and all $f \in \mathcal{H}$ (see [24]). As it is known (see [2,24]),

$$k_{\lambda}(z) = \sum_{n=0}^{\infty} \overline{e_n(\lambda)} e_n(z)$$

for any orthonormal basis $\{e_n(z)\}_{n>0}$ of the space $\mathcal{H}(\Omega)$.

Let $\hat{k}_{\lambda} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$ be the normalized reproducing kernel of the space \mathcal{H} . For any bounded linear operator A on \mathcal{H} , the Berezin transform of A is the function \widetilde{A} defined by (see [23])

$$\widetilde{A}(\lambda) := \left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda} \right\rangle_{\mathcal{H}} \ (\lambda \in \Omega).$$

The Berezin set and the Berezin number for operator A are defined by (see [19,20])

Ber
$$(A) := \{\widetilde{A}(\lambda) : \lambda \in \Omega\}$$
 and ber $(A) := \sup\{|\widetilde{A}(\lambda)| : \lambda \in \Omega\}$,

respectively. Recently, some Berezin number inequalities have been obtained by authors [5,15,16,25–27].

The numerical range and numerical radius of A in $\mathcal{B}(\mathcal{H})$ are, respectively, defined by

$$W(A) := \{ \langle Af, f \rangle : f \in \mathcal{H}, ||f|| = 1 \} \text{ and } w(A) := \sup \{ |z| : z \in W(A) \}.$$

The Berezin set and the Berezin number have a relationship with the numerical range and the numerical radius as follows:

Ber $(A) \subset W(A)$ and ber $(A) \leq w(A) \leq ||A||$.

For the numerical radius and its applications, we refer to [1,4,6,10,13,21], and references therein. The numerical radius inequality for the product of two operators is following:

$$w(AB) \leq 4w(A)w(B)$$

for the bounded linear operators A, B on the Hilbert space \mathcal{H} . In that case that AB = BA, then

$$w(AB) \leq 2w(A)w(B)$$

(see [18] for detailed information). So, the following questions are natural:

Is it true that the above inequality is also provided for Berezin number of operators? For which operator classes, there exists a number C > 0 such that

$$\operatorname{ber}(AB) < \operatorname{Cber}(A)\operatorname{ber}(B)?$$
(2)

In this paper, we study inequality (2) by using the transform $C_{\alpha,\beta}(A)$ on reproducing kernel Hilbert spaces (RKHS). Moreover, we give Grüss-type inequalities for selfadjoint operators in RKHS.

2 Berezin Number Inequalities for Two Operators

Let $\alpha, \beta \in \mathbb{C}$ and let $A \in \mathcal{B}(\mathcal{H})$ be a bounded linear operator. We define the following transform [11]

$$C_{\alpha,\beta}(A) := (A^* - \overline{\alpha}I) (\beta I - A),$$

where A^* denotes the adjoint of A. The transform $C_{\alpha,\beta}$ (.) has some interesting properties for $A, B \in \mathcal{B}(\mathcal{H})$ and $\alpha, \beta \in \mathbb{C}$ as following:

- (i) $C_{\alpha,\beta}(I) := (1 \overline{\alpha}) (\beta 1) I$ and $C_{\alpha,\alpha}(A) := -(\alpha I T)^* (\alpha I A).$
- (ii) $\left[C_{\alpha,\beta}(A)\right]^* = C_{\beta,\alpha}(A)$ and $C_{\overline{\beta},\overline{\alpha}}(A^*) C_{\alpha,\beta}(A) = A^*A AA^*$.

A bounded linear operator A on the RKHS \mathcal{H} is said to be accretive if Re $\widetilde{A}(\lambda) \ge 0$ for any $\lambda \in \Omega$. Using this property, we have

$$\operatorname{Re} \widetilde{C_{\alpha,\beta}(A)}(\lambda) = \operatorname{Re} \widetilde{C_{\beta,\alpha}(A)}(\lambda) = \frac{1}{4} |\beta - \alpha|^2 - \left\| \left(A - \frac{\beta + \alpha}{2} I \right) \widehat{k_{\lambda}} \right\|^2$$

for any scalars $\alpha, \beta \in \mathbb{C}$ and $\lambda \in \Omega$. So we can give a simple result.

Lemma 1 For $A \in \mathcal{B}(\mathcal{H}(\Omega))$ and complex numbers α, β , the following statements are equivalent:

(i) The transforms $C_{\alpha,\beta}(A)$ and $C_{\overline{\alpha},\overline{\beta}}(A^*)$ are accretive;

(ii)
$$\left\|A\widehat{k}_{\lambda} - \frac{\beta + \alpha}{2}\widehat{k}_{\lambda}\right\| \leq \frac{1}{2}|\beta - \alpha| \text{ and } \left\|A^*\widehat{k}_{\lambda} - \frac{\overline{\beta} + \overline{\alpha}}{2}\widehat{k}_{\lambda}\right\| \leq \frac{1}{2}|\beta - \alpha| \text{ for any } \lambda \in \Omega.$$

Theorem 1 Let $C_{\alpha,\beta}(A)$ and $C_{\gamma,\delta}(B)$ be accretive transform for $A, B \in \mathcal{B}(\mathcal{H})$ and $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. Then,

$$\operatorname{ber}(BA) \leq \operatorname{3ber}(A)\operatorname{ber}(B) + \frac{1}{4}|\beta - \alpha||\gamma - \delta|$$

Proof By hypothesis, $C_{\alpha,\beta}(A)$ and $C_{\gamma,\delta}(B)$ are accretive, and then, from Lemma 1 we get $\left\|A\widehat{k}_{\lambda} - \frac{\beta + \alpha}{2}\widehat{k}_{\lambda}\right\| \leq \frac{1}{2}|\beta - \alpha|$ and $\left\|B^*\widehat{k}_{\lambda} - \frac{\overline{\gamma} + \overline{\delta}}{2}\widehat{k}_{\lambda}\right\| \leq \frac{1}{2}|\overline{\gamma} - \overline{\delta}|$ for any $\lambda \in \Omega$.

🖄 Springer

Using the Schwarz inequality, we get that

$$\begin{aligned} \left| \left\langle A\widehat{k}_{\lambda} - \widetilde{A} \left(\lambda \right) \widehat{k}_{\lambda}, B^{*}\widehat{k}_{\eta} - \widetilde{B}^{*} \left(\eta \right) \widehat{k}_{\eta} \right\rangle \right| \\ &\leq \left\| A\widehat{k}_{\lambda} - \widetilde{A} \left(\lambda \right) \widehat{k}_{\lambda} \right\| \left\| B^{*}\widehat{k}_{\eta} - \widetilde{B}^{*} \left(\eta \right) \widehat{k}_{\eta} \right\| \end{aligned} \tag{3}$$

for all $\lambda, \eta \in \Omega$. Since $\|f - \langle f, \hat{k}_{\lambda} \rangle \hat{k}_{\lambda}\| = \inf_{\phi \in \mathbb{C}} \|f - \phi \hat{k}_{\lambda}\|$ for any $f \in \mathcal{H}$ and $\lambda \in \Omega$, we have

$$\left\|A\widehat{k}_{\lambda} - \widetilde{A}(\lambda)\widehat{k}_{\lambda}\right\| \leq \left\|A\widehat{k}_{\lambda} - \frac{\beta + \alpha}{2}\widehat{k}_{\lambda}\right\| \leq \frac{1}{2}|\beta - \alpha|$$

and

$$\left\|B^*\widehat{k}_{\eta} - \widetilde{B^*}(\eta)\,\widehat{k}_{\eta}\right\| \leq \left\|B^*\widehat{k}_{\eta} - \frac{\overline{\gamma} + \overline{\delta}}{2}\widehat{k}_{\eta}\right\| \leq \frac{1}{2}\,|\gamma - \delta|$$

for all $\lambda, \eta \in \Omega$. Hence, we have

$$\left\|A\widehat{k}_{\lambda} - \widetilde{A}(\lambda)\widehat{k}_{\lambda}\right\| \left\|B^{*}\widehat{k}_{\eta} - \widetilde{B}^{*}(\eta)\widehat{k}_{\eta}\right\| \leq \frac{1}{4}\left|\beta - \alpha\right|\left|\gamma - \delta\right| \tag{4}$$

for all $\lambda, \eta \in \Omega$. On the other hand,

$$\begin{split} \left\langle A\widehat{k}_{\lambda} - \widetilde{A}\left(\lambda\right)\widehat{k}_{\lambda}, B^{*}\widehat{k}_{\eta} - \widetilde{B}^{*}\left(\eta\right)\widehat{k}_{\eta} \right\rangle \\ &= \left\langle BA\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle + \widetilde{A}\left(\lambda\right)\widetilde{B}\left(\eta\right)\left\langle \widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \\ &- \widetilde{A}\left(\lambda\right)\left\langle B\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle - \left\langle A\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \widetilde{B}\left(\eta\right) \end{split}$$

for all $\lambda, \eta \in \Omega$. Taking the modulus in the above equality, we have

$$\begin{split} & \left| \left\langle A\widehat{k}_{\lambda} - \widetilde{A} \left(\lambda \right) \widehat{k}_{\lambda}, B^{*}\widehat{k}_{\eta} - \widetilde{B}^{*} \left(\eta \right) \widehat{k}_{\eta} \right\rangle \right| \\ & \geq \left| \left\langle BA\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \right| - \left| \widetilde{A} \left(\lambda \right) \left\langle B\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle + \left\langle A\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \widetilde{B} \left(\eta \right) - \widetilde{A} \left(\lambda \right) \widetilde{B} \left(\eta \right) \left\langle \widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \right| \\ & \geq \left| \left\langle BA\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \right| - \left| \widetilde{A} \left(\lambda \right) \left\langle B\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \right| - \left| \left\langle A\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \widetilde{B} \left(\eta \right) \right| - \left| \widetilde{A} \left(\lambda \right) \widetilde{B} \left(\eta \right) \left\langle \widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \right|, \end{split}$$

which is equivalent to

$$\begin{split} \left| \left\langle A\widehat{k}_{\lambda} - \widetilde{A}(\lambda) \,\widehat{k}_{\lambda}, \, B^{*}\widehat{k}_{\eta} - \widetilde{B}^{*}(\eta) \,\widehat{k}_{\eta} \right\rangle \right| \\ + \left| \widetilde{A}(\lambda) \left\langle B\widehat{k}_{\lambda}, \,\widehat{k}_{\eta} \right\rangle \right| + \left| \left\langle A\widehat{k}_{\lambda}, \,\widehat{k}_{\eta} \right\rangle \widetilde{B}(\eta) \right| + \left| \widetilde{A}(\lambda) \, \widetilde{B}(\eta) \left\langle \widehat{k}_{\lambda}, \,\widehat{k}_{\eta} \right\rangle \right| \\ \geq \left| \left\langle BA\widehat{k}_{\lambda}, \,\widehat{k}_{\eta} \right\rangle \right| \end{split}$$
(5)

for all $\lambda, \eta \in \Omega$. So we have for $\lambda = \eta$ from (3)-(5)

$$\frac{1}{4} \left| \beta - \alpha \right| \left| \gamma - \delta \right| + \left| \widetilde{A} \left(\lambda \right) \widetilde{B} \left(\lambda \right) \right| + \left| \widetilde{A} \left(\lambda \right) \widetilde{B} \left(\lambda \right) \right| + \left| \widetilde{A} \left(\lambda \right) \widetilde{B} \left(\lambda \right) \right| \ge \left| \widetilde{BA} \left(\lambda \right) \right|.$$
(6)

Taking the supremum in (6) over $\lambda \in \Omega$, we get that

ber
$$(BA) \leq 3$$
ber (A) ber $(B) + \frac{1}{4} |\beta - \alpha| |\gamma - \delta|$.

This gives the desired result.

Now, we consider a different approach in the following result.

Theorem 2 Let $C_{\alpha,\beta}(A)$ and $C_{\gamma,\delta}(B)$ be accretive transform for $A, B \in \mathcal{B}(\mathcal{H})$ and $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. Then,

ber
$$(BA) \leq ber (A) ber (B) + \frac{1}{4} |\beta - \alpha| (|\gamma - \delta| + |\gamma + \delta|).$$

Proof We can state the following inequality from the Schwarz inequality and the assumptions

$$\left| \left\langle A\widehat{k}_{\lambda} - \widetilde{A}(\lambda)\widehat{k}_{\lambda}, B^{*}\widehat{k}_{\eta} - \frac{\overline{\gamma} + \overline{\delta}}{2}\widehat{k}_{\eta} \right\rangle \right| \leq \left\| A\widehat{k}_{\lambda} - \widetilde{A}(\lambda)\widehat{k}_{\lambda} \right\| \left\| B^{*}\widehat{k}_{\eta} - \frac{\overline{\gamma} + \overline{\delta}}{2}\widehat{k}_{\eta} \right\|$$
$$\leq \left\| A\widehat{k}_{\lambda} - \frac{\beta + \alpha}{2}\widehat{k}_{\lambda} \right\| \left\| B^{*}\widehat{k}_{\eta} - \frac{\overline{\gamma} + \overline{\delta}}{2}\widehat{k}_{\eta} \right\|$$
$$\leq \frac{1}{4} \left| \beta - \alpha \right| \left| \gamma - \delta \right| \tag{7}$$

for all $\lambda, \eta \in \Omega$. Since

$$\left\langle A\widehat{k}_{\lambda} - \widetilde{A}(\lambda)\widehat{k}_{\lambda}, B^{*}\widehat{k}_{\eta} - \frac{\overline{\gamma} + \overline{\delta}}{2}\widehat{k}_{\eta} \right\rangle$$

= $\left\langle BA\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle - \widetilde{A}(\lambda)\left\langle B\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle - \frac{\gamma + \delta}{2}\left\langle A\widehat{k}_{\lambda} - \widetilde{A}(\lambda)\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle$

on taking the modulus in this inequality, we obtain

$$\left| \left\langle A\widehat{k}_{\lambda} - \widetilde{A}(\lambda)\widehat{k}_{\lambda}, B^{*}\widehat{k}_{\eta} - \frac{\overline{\gamma} + \overline{\delta}}{2}\widehat{k}_{\eta} \right\rangle \right| \\ \geq \left| \left\langle BA\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \right| - \left| \widetilde{A}(\lambda) \left\langle B\widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \right| - \left| \frac{\gamma + \delta}{2} \right| \left| \left\langle A\widehat{k}_{\lambda} - \widetilde{A}(\lambda) \widehat{k}_{\lambda}, \widehat{k}_{\eta} \right\rangle \right|$$

$$(8)$$

2292

Deringer

for all $\lambda, \eta \in \Omega$. Then, we have for $\lambda = \eta \in \Omega$ from (7) and (8)

$$\begin{split} \left|\widetilde{BA}\left(\lambda\right)\right| &\leq \left|\widetilde{A}\left(\lambda\right)\widetilde{B}\left(\lambda\right)\right| + \left|\frac{\gamma+\delta}{2}\right| \left|\widetilde{Ak_{\lambda}-\widetilde{A}}\left(\lambda\right)\right| + \frac{1}{4}\left|\beta-\alpha\right|\left|\gamma-\delta\right| \\ &\leq \left|\widetilde{A}\left(\lambda\right)\widetilde{B}\left(\lambda\right)\right| + \left|\frac{\gamma+\delta}{2}\right| \left\|\widetilde{Ak_{\lambda}} - \frac{\beta+\alpha}{2}\widetilde{k_{\lambda}}\right\| + \frac{1}{4}\left|\beta-\alpha\right|\left|\gamma-\delta\right| \\ &\leq \left|\widetilde{A}\left(\lambda\right)\widetilde{B}\left(\lambda\right)\right| + \frac{1}{4}\left|\beta-\alpha\right|\left(\left|\gamma-\delta\right| + \left|\gamma+\delta\right|\right). \end{split}$$

Taking the supremum over $\lambda \in \Omega$ in the above inequality, we have

$$\operatorname{ber} (BA) \leq \operatorname{ber} (A) \operatorname{ber} (B) + \frac{1}{4} \left| \beta - \alpha \right| \left(\left| \gamma - \delta \right| + \left| \gamma + \delta \right| \right).$$

This proves the theorem.

By using arguments in above theorem, we can get the following result.

Corollary 1 Let $C_{\alpha,\beta}(A)$ and $C_{\gamma,\delta}(B)$ be accretive transform for $A, B \in \mathcal{B}(\mathcal{H})$ and $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. Then,

$$\operatorname{ber} (BA) \leq \operatorname{ber} (A) \operatorname{ber} (B) + |\gamma + \delta| \operatorname{ber} (A) + \frac{1}{4} |\beta - \alpha| |\gamma - \delta|.$$

Proof Indeed, we have that

$$\left\langle A\widehat{k}_{\lambda} - \widetilde{A}(\lambda)\,\widehat{k}_{\lambda},\,B^{*}\widehat{k}_{\eta} - \frac{\overline{\gamma} + \overline{\delta}}{2}\widehat{k}_{\eta} \right\rangle = \left\langle BA\widehat{k}_{\lambda},\,\widehat{k}_{\eta} \right\rangle - \widetilde{A}(\lambda)\left\langle B\widehat{k}_{\lambda},\,\widehat{k}_{\eta} \right\rangle \\ - \frac{\gamma + \delta}{2}\left\langle A\widehat{k}_{\lambda},\,\widehat{k}_{\eta} \right\rangle + \frac{\gamma + \delta}{2}\widetilde{A}(\lambda)\left\langle \widehat{k}_{\lambda},\,\widehat{k}_{\eta} \right\rangle$$

for all $\lambda, \eta \in \Omega$. Taking the supremum on $\lambda = \eta \in \Omega$ and using the same arguments in the proof of the above theorem, we get

$$\operatorname{ber}(BA) \leq \operatorname{ber}(A)\operatorname{ber}(B) + |\gamma + \delta|\operatorname{ber}(A) + \frac{1}{4}|\beta - \alpha||\gamma - \delta|$$

for the operators $A, B \in \mathcal{B}(\mathcal{H})$.

3 Grüss-Type Inequality

Now, we give a Grüss-type inequality for selfadjoint operators on a RKHS $\mathcal{H} = \mathcal{H}(\Omega)$.

Theorem 3 Let $A \in \mathcal{B}(\mathcal{H})$ be a selfadjoint operator and assume that $Sp(A) \subseteq [m, M]$ for some scalars m < M. If f and g are continuous on [m, M], then

$$f(\widetilde{A}) \widetilde{g(A)}(\mu) - \widetilde{f(A)}(\mu) \widetilde{g(A)}(\lambda) - \frac{\gamma + \Gamma}{2} \left[\widetilde{g(A)}(\mu) - \widetilde{g(A)}(\lambda) \right]$$

$$\leq \frac{1}{2} \cdot (\Gamma - \gamma) \left[||g(A)||^2 + \left(\widetilde{g(A)}(\lambda) \right)^2 - 2\widetilde{g(A)}(\lambda) \widetilde{g(A)}(\mu) \right]^{1/2}$$
(9)

for any $\lambda, \mu \in \Omega$, where $\gamma = \min_{t \in [m,M]} f(t), \Gamma = \max_{t \in [m,M]} f(t)$

Proof Indeed, we have the identity

$$\langle (f(A) - \xi \cdot 1_{\mathcal{H}}) \left(g(A) - \langle g(A) \hat{k}_{\lambda}, \hat{k}_{\lambda} \rangle \cdot 1_{\mathcal{H}} \right) \hat{k}_{\mu}, \hat{k}_{\mu} \rangle = \langle f(A) g(A) \hat{k}_{\mu}, \hat{k}_{\mu} \rangle - \xi \cdot \left[\langle g(A) \hat{k}_{\mu}, \hat{k}_{\mu} \rangle - \langle g(A) \hat{k}_{\lambda}, \hat{k}_{\lambda} \rangle \right] - \langle g(A) \hat{k}_{\lambda}, \hat{k}_{\lambda} \rangle \langle f(A) \hat{k}_{\mu}, \hat{k}_{\mu} \rangle$$
(10)

for each $\xi \in \mathbb{R}$ and $\lambda, \mu \in \Omega$.

Taking the modulus in (10), we obtain

$$\begin{split} \left| f\left(\widetilde{A}\right) \widetilde{g}\left(A\right)\left(\mu\right) - \xi \cdot \left[\widetilde{g}\left(A\right)\left(\mu\right) - \widetilde{g}\left(A\right)\left(\lambda\right) \right] - \widetilde{g}\left(A\right)\left(\lambda\right) \widetilde{f}\left(A\right)\left(\mu\right) \right| \\ &= \left| \left| \left\langle \left(g\left(A\right) - \widetilde{g}\left(A\right)\left(\lambda\right) \cdot 1_{\mathcal{H}}\right) \widehat{k}_{\mu}, \left(f\left(A\right) - \xi \cdot 1_{H}\right) \widehat{k}_{\mu} \right) \right| \right| \\ &\leq \left\| g\left(A\right) \widehat{k}_{\mu} - \widetilde{g}\left(A\right)\left(\lambda\right) \widehat{k}_{\mu} \right) \right\| \left\| f\left(A\right) \widehat{k}_{\mu} - \xi \widehat{k}_{\mu} \right\| \\ &= \left[\left\| g\left(A\right) \widehat{k}_{\mu} \right\|^{2} + \left(\widetilde{g}\left(A\right)\left(\lambda\right) \right)^{2} - 2\widetilde{g}\left(A\right)\left(\lambda\right) \widetilde{g}\left(A\right)\left(\mu\right) \right]^{\frac{1}{2}} \\ &\times \left\| \left(f\left(A\right) \widehat{k}_{\mu} - \lambda \widehat{k}_{\mu}\right) \right\| \\ &\leq \left[\left\| g\left(A\right) \right\|^{2} + \left(\widetilde{g}\left(A\right)\left(\lambda\right) \right)^{2} - 2\widetilde{g}\left(A\right)\left(\lambda\right) \widetilde{g}\left(A\right)\left(\mu\right) \right]^{\frac{1}{2}} \\ &\times \left\| f\left(A\right) - \lambda \cdot 1_{\mathcal{H}} \right\| \end{split}$$
(11)

for any $\lambda, \mu \in \Omega$.

Since $\gamma = \min_{t \in [m,M]} f(t)$ and $\Gamma = \max_{t \in [m,M]} f(t)$, by the property (1) we have that $\gamma \leq \widetilde{f(A)}(\mu) \leq \Gamma$ for each $\mu \in \Omega$ which is obviously equivalent to

$$\left|\widetilde{f(A)}(\mu) - \frac{\gamma + \Gamma}{2} \left\| \widehat{k}_{\mu} \right\|^{2} \right| \leq \frac{1}{2} \left(\Gamma - \gamma \right)$$

or with

$$\left| \left(f(A) - \frac{\gamma + \Gamma}{2} \mathbf{1}_{\mathcal{H}} \right) (\mu) \right| \le \frac{1}{2} \left(\Gamma - \gamma \right)$$

for each $\mu \in \Omega$.

Deringer

Taking the supremum in this inequality, we get

$$\left\| f(A) - \frac{\gamma + \Gamma}{2} . 1_{\mathcal{H}} \right\| \leq \frac{1}{2} \left(\Gamma - \gamma \right),$$

which together with the inequality (11) applied for $\xi = \frac{\gamma + \Gamma}{2}$ produces the desired results.

As a special case of the above theorem, we can give the following result.

Corollary 2 Let $A \in \mathcal{B}(\mathcal{H})$ be a selfadjoint operator and assume that $Sp(A) \subseteq [m, M]$ for some scalars m < M. Then,

$$\operatorname{ber}\left(f^{2}(A) - (f(A))^{2}\right) \leq \frac{1}{2}\left(\Gamma - \gamma\right)\left[\|f(A)\|^{2} - \operatorname{ber}\left((f(A))^{2}\right)\right]^{\frac{1}{2}}$$

for each $\lambda \in \Omega$, where $\gamma = \min_{t \in [m,M]} f(t)$, $\Gamma = \max_{t \in [m,M]} f(t)$.

Proof Taking f = g and $\lambda = \mu$ in (9), then

$$\left| \widetilde{f^{2}(A)}(\lambda) - \left(\widetilde{f(A)}(\lambda)\right)^{2} \right|$$

$$\leq \frac{1}{2} \left(\Gamma - \gamma \right) \left[\|f(A)\|^{2} - \left(\widetilde{f(A)}(\lambda)\right)^{2} \right]^{\frac{1}{2}}$$

for all $\lambda \in \Omega$. Taking the supremum on $\lambda \in \Omega$ in above inequality, we have

$$\operatorname{ber}\left(f^{2}(A) - (f(A))^{2}\right) \leq \frac{1}{2}\left(\Gamma - \gamma\right)\left[\|f(A)\|^{2} - \operatorname{ber}\left((f(A))^{2}\right)\right]^{\frac{1}{2}}$$

for any selfadjoint operator $A \in \mathcal{B}(\mathcal{H})$. This proves the theorem.

Acknowledgements We are thankful to the anonymous referees for their valuable comments to improve the quality of the article. This work was supported by Süleyman Demirel University with Project FYL-2018-6696.

References

- Abu-Omar, A., Kittaneh, F.: Notes on some spectral radius and numerical radius inequalities. Studia Math. 272, 97–109 (2015)
- 2. Aronzajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337-404 (1950)
- Anastassiou, G.A.: Grüss type inequalities for the Stieltjes integral. Nonlinear Funct. Anal. Appl. 12(4), 583–593 (2007)
- Bakherad, M., Shebrawi, K.: Upper bounds for numerical radius inequalities involving off-diagonal operator matrices. Ann. Funct. Anal. 9(3), 297–309 (2018)
- Bakherad, M.: Some Berezin number inequalities for operator matrices. Czechoslov. Math. J. 68(143), 997–1009 (2018)

- Bakherad, M., Kittaneh, F.: Numerical radius inequalities involving commutators of G1 operators. Complex Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-017-0726-9
- Biernacki, M., Pidek, H., Ryll-Nardzewski, C.: Sur une inégalité entre des intégrales définies. Ann. Univ. Mariae Curie-Sklodowska Sect. A Math. 4, 1–4 (1950)
- Dragomir, S.S.: A generalization of Grüss' inequality in inner product spaces and applications. J. Math. Anal. Appl. 237, 74–82 (1999)
- Dragomir, S.S.: Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 31(4), 397–415 (2000)
- Dragomir, S.S.: Norm and numerical radius inequalities for a product of two linear operators in Hilbert spaces. J. Math. Inequal. 2, 499–510 (2008)
- 11. Dragomir, S.S.: Inequalities of the Čebyšev and Grüss Type. Springer, New York (2012)
- Dragomir, S.S.: Quasi Grüss' type inequalities for continuous functions of selfadjoint operators in Hilbert spaces. Filomat 27, 277–289 (2013)
- Dragomir, S.S.: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces. Banach J. Math. Anal. 1, 154–175 (2017)
- Furuta, T., Micic Hot, J., Pecaric, J., Seo, Y.: Mond-Pecaric Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb (2005)
- Garayev, M.T., Gürdal, M., Okudan, A.: Hardy-Hilbert's inequality and a power inequality for Berezin numbers for operators. Math. Inequal. Appl. 3, 883–891 (2016)
- Garayev, M.T., Gürdal, M., Saltan, S.: Hardy type inequality for reproducing kernel Hilbert space operators and related problems. Positivity 21, 1615–1623 (2017)
- 17. Grüss, G.: Über das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_{a}^{b} f(x)g(x) dx \frac{1}{b-a}\int_{a}^{b} f(x)g(x) dx$

$$\frac{1}{(b-a)^2} \int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx.$$
 Math. Z. **39**, 215–226 (1935)

- 18. Gustafson, K.E., Rao, D.K.M.: Numerical Range. Springer, New York (1997)
- Karaev, M.T.: Berezin symbol and invertibility of operators on the functional Hilbert spaces. J. Funct. Anal. 238, 181–192 (2006)
- Karaev, M.T.: Reproducing Kernels and Berezin symbols techniques in various questions of operator theory. Complex Anal. Oper. Theory 7, 983–1018 (2013)
- Kittaneh, F., Moslehian, M.S., Yamazaki, T.: Cartesian decomposition and numerical radius inequalities. Linear Algebra Appl. 471, 46–53 (2015)
- Mitronovic, D.S., Pecaric, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht (1993)
- Nordgren, E., Rosenthal, P.: Boundary values of Berezin symbols. Oper. Theory Adv. Appl. 73, 362– 368 (1994)
- 24. Saitoh, S., Sawano, Y.: Theory of Reproducing Kernels and Applications. Springer, Singapore (2016)
- Yamancı, U., Gürdal, M., Garayev, M.T.: Berezin number inequality for convex function in reproducing kernel Hilbert space. Filomat 31, 5711–5717 (2017)
- Yamancı, U., Gürdal, M.: On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space. N. Y. J. Math. 23, 1531–1537 (2017)
- Yamancı, U., Garayev, M.T., Çelik, C.: Hardy-Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results. Linear Multilinear Algebra 67(4), 830–842 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.