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Abstract

In this paper, we study the Berezin number inequalities by using the transform Cy, g (A)
on reproducing kernel Hilbert spaces (RKHS). Moreover, we give Griiss-type inequal-
ities for selfadjoint operators in RKHS.
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1 Introduction

Griiss [17] proved the following integral inequality which gives an approximation of
the integral of the product in terms of the product of the integrals as follows:

b b b
1 1 1
b—/f(X)g(X)d(X) - —/f(X)d(X)- /g(X)d(X)
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where f, g : [a, b] — R are integrable on [a, b] and satisfy the condition

= fx)<d,y<gx)=<T

for each x € [a, b] , where ¢, @, y, I are given real constants.

Moreover, the constant zlt is sharp in the sense that it cannot be replaced by a smaller
one.

The discrete version of the Griiss’ inequality can be found in [22] as following:

Leta = (a1, ...,an), b = (b1, ..., by) be two n-tuples of real numbers such that
r<a, <Rands <b; < Sfori =1,...,n.Then, one has

%gaibi — %gai.%ébi
SO e

where [x] denotes the integer part of x € R. In fact, the presented version of the
discrete Griiss’ inequality is due to Biernacki et al. [7]. For Griiss-type inequalities,
we refer to [3,8,9,11,12] and references therein.

Let A be a selfadjoint linear operator on a complex Hilbert space H. The Gelfand
map establishes a x-isometrically isomorphism & between the set C(Sp(A)) of all
continuous functions defined on the spectrum of A, denoted by Sp(A), and the C*-
algebra C*(A) generated by A and the identity operator 17, on H as follows (see for
instance [14]).

For any f, g € C(Sp(A)) and any «, 8 € C, we have

(i) ®(af+Bg) =ad(f)+BP(g);
(i) D (fe) =P (/)P (g and ® (f) =D (NH)*;
(i) 1P (O =IIfIl:= sup [f(®);

1eSp(A)
@iv) @ (fo) = 13y and @ (f1) = A, where fo (¢) = 1 and f1 (t) =t,fort € Sp(A).

With this notation, we define
f(A) :=d(f) forall f e C(Sp(A))

and it is called the continuous functional calculus for the selfadjoint operator A.

If A is a selfadjoint operator and f is a real-valued continuous function on Sp(A),
then f(z) > O for any r € Sp(A) implies that f(A) > 0 on H. Therefore, if f and g
are real-valued functions on Sp(A), then the following basic property holds:

f () > g(t) forany t € Sp(A) implies that f(A) > g(A) €))
in the operator order of B(H).

Let 2 be an arbitrary set. Denote by F (£2) the set of all complex-valued functions
on 2. A reproducing kernel Hilbert space (RKHS for short) on the set €2 is a Hilbert
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space H = H (2) C F (2) with a function k, : Q2xQ — H, which is called the
reproducing kernel enjoying the reproducing property k; = k (., 1) € H for all
A€ Qand f(A) = (f, kp)p holds for all A € @ and all f € H (see [24]). As it is
known (see [2,24]),

k. (2) =) en Men (2)
n=0

for any orthonormal basis {e, (z)},>¢ of the space H (L2) .
Let k;, = ”lg—i” be the normalized reproducing kernel of the space H. For any

bounded linear operator A on H, the Berezin transform of A is the function A defined
by (see [23])

A() = Ak ka)y, (h € Q).
The Berezin set and the Berezin number for operator A are defined by (see [19,20])
Ber (A) := {Z(A) TAE Q} and ber (A) := sup{|g()»)| A E Q},

respectively. Recently, some Berezin number inequalities have been obtained by
authors [5,15,16,25-27].

The numerical range and numerical radius of A in B (H) are, respectively, defined
by

W(A) ={Af, f): feH, I fIl=1} and w (A) :==sup{lz| : 2 € W (A)}.

The Berezin set and the Berezin number have a relationship with the numerical range
and the numerical radius as follows:

Ber (A) C W (A) and ber (A) < w (A) < ||A]l.
For the numerical radius and its applications, we refer to [1,4,6,10,13,21], and ref-
erences therein. The numerical radius inequality for the product of two operators is
following:

w (AB) < 4w (A) w (B)

for the bounded linear operators A, B on the Hilbert space H. In that case that AB =
BA, then

w(AB) < 2w (A) w (B)
(see [18] for detailed information). So, the following questions are natural:

Is it true that the above inequality is also provided for Berezin number of operators?
For which operator classes, there exists a number C > 0 such that
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ber (AB) < Cber (A) ber (B) ? 2)

In this paper, we study inequality (2) by using the transform C, g (A) on repro-
ducing kernel Hilbert spaces (RKHS). Moreover, we give Griiss-type inequalities for
selfadjoint operators in RKHS.

2 Berezin Number Inequalities for Two Operators

Leta, B € Candlet A € B (H) be a bounded linear operator. We define the following
transform [11]

Cap (A) == (A* —al) (Bl — A),

where A* denotes the adjoint of A. The transform Cy g (.) has some interesting prop-
erties for A, B € B(H) and «, B € C as following:

() Cop(I):=0—-a)(B—1)1and Coq (A) :=— (I —T)* (al — A).

(i) [Cap (A)]" = Cpa (A) and Cpg(A%) = Cop (A) = A*A — AA%.

A bounded linear operator A on the RKHS H is said to be accretive if Re A =0
for any A € Q. Using this property, we have

2

ReCm)(x) =Recm)(k) :%|ﬁ_a|2_ H(A_ 'B;QI)TQA

for any scalars o, 8 € C and A € Q. So we can give a simple result.

Lemma1 For A € B(H () and complex numbers «, B, the following statements
are equivalent:

(1) The transforms Cy g (A) and C&,E (A*) are accretive;

~ ~ 1 ~ BH4a~ 1
(i) ‘Ah—““h < 3 16 ol and A% - Py <518l
forany X € Q.

Theorem 1 Let Cy g (A) and C, 5 (B) be accretive transform for A, B € B (H) and
a, B,y,8 € C. Then,

1
ber (BA) < 3ber (A) ber (B) + 1 IB—ally —§].

Proof By hypothesis, Cy g (A) and C, 5 (B) are accretive, and then, from Lemma 1

~ V45~ 1
,3+ak/\ Y+ nl <t
2 2

Ak, —

1 ~ _
we get <§|ﬂ—a|and HB*IQ— |7—8|forany

A e Q.
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Using the Schwarz inequality, we get that

(Akx — A (W) K, By — B* () ky)|
< || Ak — A0 K| | By — BF () &y | 3)

forall A, n € Q. o R
Since | f — (f. kx) kx| =¢i)n£ | f — ¢k || for any f € H and 1 € Q, we have
S

Ak, — AW k| < || Ak — ﬂ;“% < % 18 —al
and
| By — B* ) by | < | By — VT”LE’E,, <5 ly -4l
for all A, n € 2. Hence, we have
[T~ AR | 8F, — B0 &y < 7 18 —ally — @

for all A, n € Q2. On the other hand,

(A, — A (W) ks, B*ky — B* () ky)
= (BAk, k) + A () B () (s, )
— A (M) (Bky, k) — Ak, k) B ()

for all A, n € Q. Taking the modulus in the above equality, we have

(Aks, — A (W) ks, By — B* () Ky

= [(BAT Ry~ |X () (B ) + (45 T B ) — X0 B (B )
> |(BAK, &y)| — | A (1) (Bky, )| — |{ATr Ky) B (n)l—lA(k)B(n)D

which is equivalent to

(A, — A (W) ks, By — B* () ky)|
+ |A () Bk, &) + (AR, Ky) B ()| + | A (1) B () (ks Ky )|
= |(BAK. &) 5)
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for all A, n € 2. So we have for A = n from (3)-(5)
1 ~ o~ ~ o~
I IB—ally =81+ |AM) BG)|+]AG) B0
+|AG)B| = |BAM).
Taking the supremum in (6) over A € €2, we get that

1
ber (BA) < 3ber (A) ber (B) + 7 IB—oally —§].

This gives the desired result.

Now, we consider a different approach in the following result.

(6)

Theorem 2 Let Cy g (A) and C, 5 (B) be accretive transform for A, B € B (H) and

a, B,y,8 € C. Then,

1
ber (BA) < ber (A) ber (B) + 2 1B —al(y =8|+ |y +6]).

Proof We can state the following inequality from the Schwarz inequality and the

assumptions
- o~ o~ -~ Y46~ o o~ o~ ~
<AkA — A\ ks, B¥ky — %kn> < | Ak — A k|| | B*ky — Tk
< Aa—ﬁ%k H B*ky — “——k,
<1|ﬁ [y =3l
Z8—ally —
=3 14
forall A, n € Q.
Since
~ o~~~ P+~
Ak — A (M) k., B¥ky — Tk,,
y +6

= (BAky, ky) — A (M) (Bl ky) — — (Aks — A () Ky, Ky)

on taking the modulus in this inequality, we obtain

a3
<Ak,\ — Ak By — %kn>

Y45~

(N

~ -~ ~ ~ o~ 1) -~ ~ o~ o~
> |(BAK;. k)| — |A (V) (B )| — ’%‘ (A, — A )T k)| (8)
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for all A, n € Q2. Then, we have for A = n € Q from (7) and (8)

— ~ y+8|| ~—= 1
|IBAW| < |A) B M|+ | [Ak =A@+ ;1B —ally =4

B+a~
2

~ o~ y+o|| ~ 1
s|A<A)B(A)|+T Ak, — + 1B —ally =3l

k.

|A()»)B(/\)|+ 1B —al(y =8l +1y +4D).

Taking the supremum over A € 2 in the above inequality, we have
ber (BA) < ber (A) ber (B) + — Iﬂ —al(ly =8l +1y +3D.

This proves the theorem. O
By using arguments in above theorem, we can get the following result.

Corollary 1 Let Cy g (A) and C, s (B) be accretive transform for A, B € B (H) and
a, B,y,8 € C. Then,

ber (BA) < ber (A) ber (B) + |y + 8| ber (A) + — |,3 —ally —§].
Proof Indeed, we have that

<A7€,\—X(A)7c\,\, E—VTHE> (BAK,. &) — A (1) (BRy, &)

5
YR, )+—A()\)(},

for all A, n € Q. Taking the supremum on A = 1 € 2 and using the same arguments
in the proof of the above theorem, we get

1
ber (BA) < ber (A)ber (B) + |y + 8| ber (A) + 2 B —ally — 4|

for the operators A, B € B (H). O

3 Griiss-Type Inequality

Now, we give a Griiss-type inequality for selfadjoint operators on a RKHS H = H(L2).

Theorem3 Let A € B (H) be a selfadjoint operator and assume that Sp (A) C
[m, M] for some scalars m < M. If f and g are continuous on [m, M), then
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— — —— Cr— —
F g ()~ F @) (0 g (A ) = L= [ 0 — 5 ) )]
1 o 5 1/2
<3 =) [Ilg I+ (2 (A () —2g () () g (A) (u)} ©)
forany A, u € Q, where y = ter[rrlni’r}w]f ), I = zer[l}rfl,)fv[]f (1)

Proof Indeed, we have the identity

o~

(f (A) = £.190) (g (A) — (g (A) Ko, k) 12¢) Ko, )

= (f (A) g (A ks k) — & [(g (A ks k) — (g (A) o, ki) ]
— (g (A ko, To) (f (A) b, k) (10)

foreach& e Rand A, u € Q.
Taking the modulus in (10), we obtain

|7 g () (10— &.[g (A () — g (A (W] = g (D) W) T () ()|
= {(g ) = £ ) @130 s (F (4) = £.100K, )|

= |eWE =g D WED| | DF, — ek
1

i —~ 2 — 2 —_— — 2
= le Wk + (¢ D M) =26 (D) 1) g (A) (u)}
[(F )k = 3) |

>< I

1
2

i — 2 — —
= [lg DI+ (gD M) =28 () 1) g (A) (u)]
X1 (A4) = Al (an

forany A, u € Q.
Since y = min f(t) and I’ = max f (¢), by the property (1) we have that
relm,M] relm,M]

< f(A) (u) <T foreach u € Q which is obviously equivalent to

— I ~ 1
'f(A) (u)—% AREEIOEY

or with

+ I 1
‘(f(A)—yTlH> (W| <5 @=y)

for each u € Q.
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Taking the supremum in this inequality, we get

Hf(A)—i I

2 (T‘ Y),

which together with the inequality (11) applied for § = 7+F produces the desired

results. O
As a special case of the above theorem, we can give the following result.

Corollary2 Let A € B (H) be a selfadjoint operator and assume that Sp (A) C
[m, M] for some scalars m < M. Then,

N—=

ber (12 (4) — (/ (4)?) = 5 @ =) [IF WI7 ~ber (07 40?) ]

foreach ) € Q, wherey = min f (t), [ = max f (¢).
te[m,M te[m,M]

Proof Taking f = g and A = w in (9), then
- — 2
‘fz @0 = (F M) ‘

<5 =) [IIf(A)II (@ w) }

for all A € Q. Taking the supremum on A € 2 in above inequality, we have

ber (240~ (£ ) = 2 @ = [ P —ber (05 a0?) |

for any selfadjoint operator A € 3 (H). This proves the theorem. O
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