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Abstract
DP-coloring is a generalization of list coloring in simple graphs. Many results in list
coloring can be generalized in those of DP-coloring. Kim andOzeki showed that every
planar graph without k-cycles where k = 3, 4, 5, or 6 is DP-4-colorable. Recently,
Kim and Yu extended the result on 3- and 4-cycles by showing that every planar graph
without triangles adjacent to 4-cycles are DP-4-colorable. Xu and Wu showed that
every planar graph without 5-cycles adjacent simultaneously to 3-cycles and 4-cycles
is 4-choosable. In this paper, we extend the results on 3-, 4-, and 5-cycles as follows.
Let G be a planar graph without pairwise adjacent 3-, 4-, and 5-cycle. We prove that
each precoloring of a 3-cycle of G can be extended to a DP-4-coloring of G. As
a consequence, each planar graph without pairwise adjacent 3-, 4-, and 5-cycle is
DP-4-colorable.

Keywords DP-coloring · List coloring · Planar graph · Cycle

MSC code 05C15

1 Introduction

Every graph in this paper is finite, simple, and undirected. Embedding a graph G in
the plane, we let V (G), E(G), and F(G) denote the vertex set, edge set, and face
set of G. For U ⊆ V (G), we let G[U ] denote the subgraph of G induced by U . For
X ,Y ⊆ V (G) where X and Y are disjoint, we let EG(X ,Y ) be the set of all edges in
G with one endpoint in X and the other in Y .
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The concept of choosability was introduced by Vizing [9] and by Erdős et al. [5],
independently. A k-assignment L of a graphG assigns a list L(v) (a set of colors) with
|L(v)| = k to each vertex v. A graph G is L-colorable if there is a proper coloring f
where f (v) ∈ L(v). If G is L-colorable for every k-assignment L, then we say G is
k-choosable.

Dvořák and Postle [4] introduced a generalization of list coloring in which they
called correspondence coloring. But following Bernshteyn et al. [3], we call it DP-
coloring.

Definition 1 Let L be an assignment of a graphG.We call H a cover ofG if it satisfies
all the followings:

(i) The vertex set of H is
⋃

u∈V (G)({u} × L(u)) = {(u, c) : u ∈ V (G), c ∈ L(u)};
(ii) H [u × L(u)] is a complete graph for every u ∈ V (G);
(iii) For each uv ∈ E(G), the set EH ({u} × L(u), {v} × L(v)) is a matching (may be

empty).
(iv) If uv /∈ E(G), then no edges of H connect {u} × L(u) and {v} × L(v).

Definition 2 An (H , L)-coloring of G is an independent set in a cover H of G with
size |V (G)|. We say that a graph is DP-k-colorable if G has an (H , L)-coloring for
every k-assignment L and every cover H of G. The DP-chromatic number of G,

denoted by χDP (G), is the minimum number k such that G is DP-k-colorable.

If we define edges on H to match exactly the same colors in L(u) and L(v) for each
uv ∈ E(G), then G has an (H , L)-coloring if and only if G is L-colorable. Thus DP-
coloring is a generalization of list coloring. This also implies that χDP (G) ≥ χl(G).

In fact, the difference of these two chromatic numbers can be arbitrarily large. For
graphs with average degree d, Bernshteyn [2] showed that χDP (G) = �(d/ log d),

while Alon [1] showed that χl(G) = �(log d).

Dvořák and Postle [4] showed that χDP (G) ≤ 5 for every planar graph G. This
extends a major result on list coloring by Thomassen [8]. On the other hand, Voigt
[10] gave an example of a planar graph which is not 4-choosable (thus not DP-4-
colorable). It is of interest to obtain sufficient conditions for planar graphs to be
DP-4-colorable. Kim and Ozeki [6] showed that every planar graph without k-cycles
is DP-4-colorable for each k = 3, 4, 5, 6. Kim and Yu [7] extended the result on 3-
and 4-cycles by showing that every planar graph without triangles adjacent to 4-cycles
is DP-4-colorable.

Let A denote the family of planar graphs G without pairwise adjacent 3-, 4-, and
5-cycle. In this paper, we extend the results on 3-, 4-, and 5-cycles as follows.

Theorem 1.1 Let G ∈ A. Then each precoloring of a 3-cycle can be extended to a
DP-4-coloring of G.

The following corollary is immediate.

Corollary 1.2 Every planar graph without pairwise adjacent 3-, 4-, and 5-cycle is
DP-4-colorable.

Corollary 1.2 generalizes the aforementioned result by Kim and Yu [7] and the
following result by Xu and Wu [11].
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Theorem 1.3 [11] Every planar graph without 5-cycles adjacent simultaneously to
3-cycles and 4-cycles is 4-choosable.

2 Preliminaries

First, we introduce some notations and definitions. A k-vertex (k+-vertex, k−-vertex,
respectively) is a vertex of degree k (at least k, at most k, respectively). The same
notations are applied to faces.

A (d1, d2, . . . , dk)-face f is a face of degree k where vertices on f have degree
d1, d2, . . . , dk in a cyclic order. A (d1, d2, . . . , dk)-vertex v is a vertex of degree k
where faces incident to v have degree d1, d2, . . . , dk in a cyclic order. Note that some
face may appear more than one time in the order. We say xy is a chord in a cycle C
if x, y ∈ V (C) but xy ∈ E(G) − E(C). An internal chord of C is a chord inside C
while external chord of C is a chord outside C

A graph C(m, n) is obtained from a cycle x1x2 . . . xm+n−2 with an internal chord
x1xm . A graph C(l,m, n) is obtained from a cycle x1x2 . . . xl+m+n−4 with internal
chords x1xl and x1xl+m−2. A graph C(m, n, p, q) can be defined similarly. We use
int(C) and ext(C) to denote the sets of vertices inside and outside a cycle C , respec-
tively. The cycle C is a separating cycle if int(C) and ext(C) are not empty. We
use B( f ) to denote a boundary of a face f . It is straightforward to see that if f is a
5−-face, then B( f ) is a cycle.

3 Structures

Proof of Theorem 1.1 LetG be aminimal counterexample to Theorem 1.1with |V (G)|
minimized and a precolored 3-cycle C0. ��

Lemma 3.1 G has no separating 3-cycles.

Proof Suppose to the contrary that there exists G contains a separating 3-cycle C .

Note that C is not necessary C0. By symmetry, we assume V (C0) ⊆ V (C) ∪ int(C).

By the minimality of G, a precoloring of C0 can be extended to V (C)∪ int(C). After
C is colored, then again the coloring on C can be extended to ext(C). Thus we have
a DP-4-coloring of G, a contradiction. ��

Since C0 is not a separating 3-cycle by Lemma 3.1, we may assume that C0 is the
boundary of the outer face D of G in the remaining of the paper.

Definition 3 Let H be a cover of G with a list assignment L. Let G ′ = G − F
where F is an induced subgraph of G. A list assignment L ′ is a restriction of L on
G ′ if L ′(u) = L(u) for each vertex in G ′. A graph H ′ is a restriction of H on G ′ if
H ′ = H [{{v} × L(v) : v ∈ V (G ′)}]. Assume G ′ has an (H ′, L ′)-coloring with an
independent set I ′ in H ′ such that |I ′| = |V (G)| − |V (F)|.
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A residual list assignment L∗ of F is defined by

L∗(x) = L(x) −
⋃

ux∈E(G)

{c′ ∈ L(x) : (u, c)(x, c′) ∈ E(H) and (u, c) ∈ I ′}

for each x ∈ V (F).

A residual cover H∗ is defined by H∗ = H [{{x} × L∗(x) : x ∈ V (F)}].
From above definitions, we have the following fact.

Lemma 3.2 Assume I ′ is a (H ′, L ′)-coloring of G ′. A residual cover H∗ is a cover
of F with an assignment L∗. Furthermore, if F is (H∗, L∗)-colorable, then G is
(H , L)-colorable.

Proof One can check from the definitions of a cover and a residual cover that H∗ is a
cover of F with an assignment L∗.

Suppose that F is (H∗, L∗)-colorable. Then H∗ has an independent set I ∗ with
|I ∗| = |F |. It follows fromDefinition 3 that no edges connect H∗ and I ′.Additionally,
I ′ and I ∗ are disjoint. Altogether, we have that I = I ′ ∪ I ∗ is an independent set in H
with |I | = (|V (G)| − |V (F)|) + |V (F)| = |V (G)|. Thus G is (H , L)-colorable. ��
Lemma 3.3 Every vertex not on C0 has degree at least 4.

Proof Suppose to the contrary that G has a vertex x not on C0 with degree at most 3.
Let L be a 4-assignment and let H be a cover ofG such thatG has no (H , L)-coloring.
By the minimality ofG, the subgraphG ′ = G− x an (H ′, L ′)-coloring where L ′ (and
H ′) is a restriction of L (and H , respectively) on G ′. Thus there is an independent
set I ′ with |I ′| = |G ′| in H ′. Consider a residual list assignment L∗ on x . Since
|L(x)| = 4 and d(x) ≤ 3, we obtain |L∗(x)| ≥ 1. Clearly, {(x, c)} where c ∈ L∗(x)
is an independent set in G[{x}]. Thus G[{x}] is (H∗, L∗)-colorable. It follows from
Lemma 3.2 that G is (H , L)-colorable, a contradiction. ��
Lemma 3.4 (a) A 5-cycle has no chords.
(b) A bounded 3-face f is not adjacent to a 4-face g.
(c) If bounded 3-faces f and g are adjacent, then B( f ) ∪ B(g) = C(3, 3).
(d) If a bounded 3-face f is adjacent to a 5-face g, then B( f ) ∪ B(g) = C(3, 5).
(e) If C(3, 5) is obtained from a 6-cycle C with a chord, then C has exactly one chord.
(f) If bounded 3-faces f and g are adjacent, then f is not adjacent to a bounded

5−-face.

Proof (a) Let C = rstuv be a 5-cycle. Suppose that r t is a chord. Then we have three
pairwise adjacent cycles rst, r tuv, and rstuv, contrary to G ∈ A.

(b) Let B( f ) = uvw and B(g) = vwxy. Suppose that u = x or y. We have that
d(v) = 2 or d(w) = 2, contrary to Lemma 3.3. Thus x �= u �= y. We obtain a
5-cycle uwxyv with a chord vw, contrary to (a).

(c) Let B( f ) = uvw and B(g) = uvx . Since both f and g are bounded, we have that
w �= x . Thus B( f ) ∪ B(g) = C(3, 3).
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(d) Let B( f ) = uvz and B(g) = uvwxy. If z ∈ {w, x, y}, then a 5-cycle B(g) has
a chord, contrary to (a).

(e) Let C be a cycle uzvwxy with a chord uv. Suppose to the contrary thatC contains
another chord st .By (a) and (b), st is not a chord in a 5-cycle uvwxy.By symmetry,
we may assume s = z and t = x or t = y. Then we have three pairwise adjacent
cycles uvz, uvwxy, and xyuz or uvzy, contrary to G ∈ A.

(f) Let B( f ) = uvw and B(g) = vwx . By (c), u �= x . Suppose f is adjacent to a
k-face h where k ≤ 5. By (b), h = 3 or 5.

• B(h) = uvz.
By (c), z �= w. Suppose to the contrary that z = x . Then d(v) = 3, contrary to
Lemma 3.3. Thus z �= x . Altogether, we have three pairwise adjacent 3-cycles
uvw, uvxw, zuwxv, contrary to G ∈ A.

• B(h) = rstuv.

By (a), w /∈ {r , s, t}. By (e), x /∈ {r , s, t}. Altogether, we have three pairwise
adjacent cycles uvw, uvxw, and rstuv, contrary to G ∈ A.

Thus h is not a 5−-face. ��
Lemma 3.4 (f) yields this immediate consequence.

Corollary 3.5 For k ≥ 4, a k-vertex v in G is incident to at most k − 2 3-faces.

Lemma 3.6 Let C(l1, . . . , lk) be obtained from a cycle C = x1 . . . xm with k internal
chords sharing a common endpoint x1 such that V (C) ∩ V (C0) = ∅. Suppose x2
or xm is not the endpoint of any chord in C . If d(x1) ≤ k + 2, then there exists
i ∈ {2, 3, . . . ,m} such that d(xi ) ≥ 5.

Proof By symmetry, let xm be not an endpoint of any chord in C . Suppose to the
contrary that d(xi ) ≤ 4 for each i = 2, 3, . . . ,m. Let L be a 4-assignment and let
H be a cover of G such that G has no (H , L)-coloring. By the minimality of G,

the subgraph G ′ = G − {x1, . . . , xm} admits an (H ′, L ′)-coloring where L ′ (and
H ′, respectively) is a restriction of L (and H , respectively) in G ′. Thus there is an
independent set I ′ with |I ′| = |G ′| in H ′.

Consider a residual list assignment L∗ on F . Since |L(v)| = 4 for every v ∈ V (G),

we have |L∗(x1)| ≥ 3 and |L∗(v)| ≥ 3 for each v ∈ V (C) with an edge x1v and
|L∗(xi )| ≥ 2 for each of the remaining vertices xi in V (C). Let H∗ be an residual
cover of F . Since xm is not an endpoint of a chord in C, we can choose a color c from
L∗(x1) such that |L∗(xm) − {c′ : (x1, c)(xm, c′) ∈ E(H∗)}| ≥ 2. By choosing colors
of x2, x3, . . . , xm in this order, we obtain an independent set I ∗ with |I ∗| = m = |F |.
Thus F is (H∗, L∗)-colorable. It follows from Lemma 3.2 that G is (H , L)-colorable,
a contradiction. ��
Corollary 3.7 For each C(3, 5) such that V (C(3, 5)) ∩ V (C0) = ∅, there exists a
vertex with degree at least 5.

Proof Let C(3, 5) be obtained from a 6-cycle C = x1 . . . x6 with a chord x1x3 such
that V (C) ∩ V (C0) = ∅. By Lemma 3.4 (e), C has no other chords. The proof is
complete by Lemma 3.6. ��
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Lemma 3.8 Let F = C(3, 5, 3),C(3, 5, 5) or C(5, 3, 5) be obtained from a cycle C =
x1 . . . xm with two internal chords sharing an endpoint x1 such that V (C)∩V (C0) = ∅.

If d(x1) = 5, then there exists i ∈ {2, . . . ,m} with d(xi ) ≥ 5.

Proof By Lemma 3.6, it suffices to show that x2 or xm is not an endpoint to a chord
in C .

Let F = C(3, 5, 3). It follows from Lemma 3.4 (e) that x2 is not adjacent to x4, x5,
or x6. If x2 is adjacent to x7, then we have separating 3-cycle x1x2x7, contrary to
Lemma 3.1. Thus x2 is not an endpoint of any chord of C .

Let F = C(3, 5, 5). Suppose there exists a chord e of C where e = x2xi , for
otherwise we have the desired condition. If xi = x9, then we have separating 3-cycle
x1x2x9, contrary to Lemma 3.1. It follows from Lemma 3.4 (e) that i /∈ {4, 5, 6}. Then
xi = x7 or x8. By Lemma 3.4 (a), x9 is not adjacent to x6 or x7. Thus x9 is not an
endpoint of any chord of C .

Let F1 = C(5, 3, 5). Suppose there exists a chord e of C where e = x2xi , for
otherwise we have the desired condition. If xi = x9, then we have separating 3-cycle
x1x2x9, contrary to Lemma 3.1. It follows from Lemma 3.4 (e) that i /∈ {4, 5, 6}. Then
xi = x7 or x8. By Lemma 3.4 (a), x9 is not adjacent to x6 or x7. Thus x9 is not an
endpoint of any chord of C ′. ��
Corollary 3.9 Let v be a 5-vertex with incident bounded faces f1, . . . , f5 in a cyclic
order. Let F = B1 ∪ B2 ∪ B3 where Bi denote B( fi ) and V (F) ∩ V (C0) = ∅.

If (d( f1), d( f2), d( f3)) = (3, 5, 3) or (3, 5, 5), or (d( f1), d( f2), d( f3), d( f4)) =
(5, 3, 5, 3), then there exists w ∈ V (F) such that d(w) ≥ 5 and w �= v.

Proof ByLemma3.8, it suffices to show that F = C(3, 5, 3),C(3, 5, 5), orC(5, 3, 5).

• (d( f1), d( f2), d( f3)) = (3, 5, 3).
Let B1 = rsv, B2 = vstuw, and B3 = vwx . It follows from Lemma 3.4 (d)
that V (B1) ∩ V (B2) = {s, v} and V (B2) ∩ V (B3) = {v,w}. If r = x, then
d(v) = 3, contrary to Lemma 3.3. Thus V (B1) ∩ V (B3) = {v}. Altogether we
have F = C(3, 5, 3).

• (d( f1), d( f2), d( f3)) = (3, 5, 5).
Let B1 = rsv, B2 = vstuw, and B3 = vwxyz. It follows from Lemma 3.4 (d)
that V (B1) ∩ V (B2) = {s, v}. If r = z, then d(v) = 3, contrary to d(v) = 5.
It follows from Lemma 3.4 (a) that neither r nor s is in V (B3). Thus V (B1) ∩
V (B3) = {v}. Now consider V (B2) ∩ V (B3). It follows from Lemma 3.4 (a)
that neither s nor u is in V (B3). Similarly, neither x nor z is in V (B2). Then
V (B2) ∩ V (B3) = {t = y, v, w} or {v,w}. Note that r �= z, for otherwise rsv is
a separating cycle, contrary to Lemma 3.1. Moreover, r /∈ {x, y}, otherwise the
cycle vwxyz has a chord, contrary to Lemma 3.4 (a). Thus V (B1)∩V (B3) = {v}.
If V (B2) ∩ V (B3) = {t = y, v, w}, then we have three adjacent pairwise cycles
rsv, st zv, stuwv, contrary to G ∈ A. Thus V (B2)∩V (B3) = {v,w}.Altogether
we have F = C(3, 5, 5).

• (d( f1), d( f2), d( f3), d( f4)) = (5, 3, 5, 3).
Let B1 = rstuv, B2 = uvw, B3 = vwxyz, and B4 = vpz. It follows from
Lemma 3.4 (e) that V (B1) ∩ V (B2) = {u, v} and V (B2) ∩ V (B3) = {v,w}.
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Consider V (B1) ∩ V (B3). It follows from Lemma 3.4 (a) that neither r nor u is
in V (B3). Similarly, neither w nor z is in V (B2). By Lemma 3.4 (a) that neither r
nor u is in V (B3).

– Suppose {s, t} ⊆ V (B1) ∩ V (B3).

Then {x, y} ⊆ V (B1) ∩ V (B3) and s = y and t = x . Consequently, we have
three adjacent pairwise cycles uvw, uvwt, rstuv, contrary to G ∈ A.

– Suppose s ∈ V (B1) ∩ V (B3) but t /∈ V (B1) ∩ V (B3).

Then {v, s} = V (B1) ∩ V (B3). Consequently s = x or s = y. In the former
case, we have three adjacent pairwise cycles uvw, stuw, vwxyz, contrary to
G ∈ A. In the later case, we have three adjacent pairwise cycles pvz, srvz,
vwxyz, contrary to G ∈ A.

– Suppose t ∈ V (B1) ∩ V (B3) but s /∈ V (B1) ∩ V (B3).

Then {v, t} = V (B1) ∩ V (B3). Consequently t = x or t = y. In the former
case, we have three adjacent pairwise cycles uvw, uvwt, vwxyz, contrary to
G ∈ A. In the later case, we have three adjacent pairwise cycles uvw, uwxy,
vwxyz, contrary to G ∈ A.

Thus V (B1) ∩ V (B3) = {v}. Altogether we have B1 ∪ B2 ∪ B3 = C(5, 3, 5).

��
Corollary 3.10 Let v be a 6-vertex with consecutive incident faces f1, . . . , f6. Let
F = B1 ∪ B2 ∪ B3 ∪ B4 where Bi denote B( fi ) and V (F) ∩ V (C0) = ∅. If
(d( f1), d( f2), d( f3), d( f4)) = (3, 5, 3, 5), then there exists w ∈ V (F) such that
w �= v and d(w) ≥ 5.

Proof By Lemma 3.6, it suffices to show that F = C(3, 5, 3, 5). Similar to the proof
of corollary 3.9, one can show that B1 ∪ B2 ∪ B3 = C(3, 5, 3) and B2 ∪ B3 ∪ B4 =
C(5, 3, 5). Let V (B1) = {t, u, v} and V (B4) = {v,w, x, y, z} where t ∈ V (B2) and
w ∈ V (B3). It only remains to show that u /∈ {x, y, z}. If u = x or y, then the cycle
vwxyz has a chord vx or vy, contrary to Lemma 3.4 (a). If u = z, then vt z is a
separating cycle, contrary to Lemma 3.1. Thus F = C(3, 5, 3, 5). ��

4 Discharging Process

We are now ready to present a discharging procedure that will complete the proof of
Theorem 1.1. Let each vertex v ∈ V (G) have an initial charge of μ(v) = 2d(v) − 6,
each face f �= D has an initial charge ofμ( f ) = d( f )−6 andμ(D) = d(D)+6 = 9.
By Euler’s Formula,

∑
x∈V∪F μ(x) = 0. Let μ∗(x) be the charge of x ∈ V ∪ F after

the discharge procedure. We prove that μ∗(x) ≥ 0 for all x ∈ V ∪ F and μ∗(D) > 0
to get a contradiction.

Let w(v → f ) be the charge transferred from a vertex v to an incident face f . We
say that v is a flaw vertex if v is a (3, 5, 3, 5+)-vertex. The discharging rules are as
follows.
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(R1) Let f be a 3-face.
(R1.1) For a 4-vertex v not in C0,

w(v → f ) =

⎧
⎪⎨

⎪⎩

3
5 , if v is flaw and f is a (4, 5+, 5+)-face,
4
5 , if v is flaw and f is a (4, 4, 5+)-face,

1, otherwise.

(R1.2) For a 5+-vertex v not in C0,

w(v → f ) =

⎧
⎪⎨

⎪⎩

7
5 , if f is a (4, 4, 5+)-face with two incident flaw vertices,
6
5 , if f is a (4, 4+, 5+)-face with exactly one flaw vertex,

1, otherwise.

(R2) Let f be a 4-face.
For a 4+-vertex v not in C0, w(v → f ) = 1

2 .
(R3) Let f be a 5-face.

(R3.1) For a 4-vertex v not in C0,

w(v → f ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if v is a flaw vertex with four 4-neighbors,
1
10 , if v is a flaw vertex with exactly one 5+-neighbor,
1
5 , if v is a flaw vertex with at least two 5+-neighbors,
1
5 , if v is a (3, 5, 4, 5)-vertex,
1
3 , otherwise.

(R3.2) For a 5-vertex v not in C0,

w(v → f ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

7
10 , if f is a (4, 4, 4, 4, 5)-face with five adjacent 4−-faces,
3
5 , if f is a (4, 4, 4, 4, 5)-face with at least one adjacent 5+-face,
2
5 , if f is a (4, 4, 4, 5, 5+)-face
3
10 , otherwise.

(R3.3) For a 6+-vertex v not in C0,

w(v → f ) =
{

4
5 , if f is a (4, 4, 4, 4, 6+)-face,
2
5 , if f is incident to a 5+-vertex other than v.

(R4) The outerface D gets μ(v) from each incident vertex v and gives 2 to each 4-
or 5-face or 3-face sharing exactly one vertex with D, 12

5 to each 3-face sharing one
edge with D.

It suffices to check that each x ∈ V (G) ∪ F(G) has nonnegative final charge and
D has positive final charge. By (R4), we have μ∗(v) = 0 for each v ∈ V (C0). Thus
we only consider a vertex v not on C0.
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Let v be a vertex with neighbors v1, v2, . . . , vd(v) in a cyclic order. Let
f1, f2, . . . , fd(v) be incident faces of v in a cyclic order with vi and vi+1 incident
to fi where i + 1 is taken in modulo d(v). Thus v is a (d( f1), d( f2), . . . , d( fd(v))-
vertex.

Case 1 v is a 4-vertex but v is not a flaw vertex.
It follows from Lemma 3.4 (b) that a 3-face is not adjacent to a 4-face, and from

Corollary 3.5 that v has at most two incident 3-faces. Thus it suffices to consider that v
is a (4+, 4+, 4+, 4+)-, (3, 5, 4, 5)-, (3, 5+, 4, 6+)-, (3, 5+, 5+, 5+)-, (3, 3, 5+, 5+)-,
or (3, 5+, 3, 5+)-vertex.

• v is (4+, 4+, 4+, 4+)-vertex.
Then v sends charge at most 1

2 to each incident face by (R2) and (R3.1). Thus
μ∗(v) ≥ μ(v) − 4 × 1

2 = 0.
• v is a (3, 5, 4, 5)-vertex.
Then w(v → f1) ≤ 1 by (R1.1), w(v → f2) = w(v → f4) = 1

5 by (R3.1), and
w(v → f3) = 1

2 by (R2). Thus μ∗(v) ≥ μ(v) − 2 × 1
5 − 1 − 1

2 > 0.
• v is a (3, 5+, 4, 6+)-vertex.
Thenw(v → f1) ≤ 1 by (R1.1),w(v → f2) ≤ 1

3 by (R3.1), andw(v → f3) = 1
2

by (R2). Thus μ∗(v) ≥ μ(v) − 1 − 1
2 − 1

3 > 0.
• v is a (3, 5+, 5+, 5+)-vertex.
Then w(v → f1) ≤ 1 by (R1.1) and w(v → fi ) ≤ 1

3 for 2 ≤ i ≤ 4 by (R3.1).
Thus μ∗(v) ≥ μ(v) − 1 − 3 × 1

3 = 0.
• v is a (3, 3, 5+, 5+)-vertex.
It follows from Lemma 3.4 (b) that f3 and f4 are 6+-faces. Thus μ∗(v) ≥ μ(v)−
2 × 1 = 0 by (R1.1).

• v is a (3, 5+, 3, 5+)-vertex.
Since v is not a flaw vertex, f2 and f4 are 6+-faces. Thusμ∗(v) ≥ μ(v)−2×1 = 0
by (R1.1).

Case 2 v is a flaw vertex, that is v is a (3, 5, 3, 5+)-vertex.

• Each adjacent vertex of v is a 4-vertex.
Then max{w(v → f1), w(v → f3)} ≤ 1 by (R1.1) and w(v → f2) = w(v →
f4) = 0 by (R3.1). Thus μ∗(v) ≥ μ(v) − 2 × 1 = 0.

• v is adjacent to exactly one 5+-vertex.
Then max{w(v → f1), w(v → f3)} ≤ 1, min{w(v → f1), w(v → f3)} ≤ 4

5
by (R1.1), and max{w(v → f2), w(v → f4)} = 1

10 by (R3.1). Thus μ∗(v) ≥
μ(v) − 1 − 4

5 − 2 × 1
10 = 0.

• v is adjacent to at least two 5+-vertices and incident to a (4, 5+, 5+)-face.
Then max{w(v → f1), w(v → f3)} ≤ 1, min{w(v → f1), w(v → f3)} = 3

5
by (R1.1), and max{w(v → f2), w(v → f4)} = 1

5 by (R3.1). Thus μ∗(v) ≥
μ(v) − 1 − 3

5 − 2 × 1
5 = 0.

• v is adjacent to at least two 5+-vertices but neither f1 nor f3 is a (4, 5+, 5+)-face.
Then f1 and f3 are (4, 4, 5+)-faces. It follows that w(v → f1) = w(v →
f3)} = 4

5 by (R1.1) and max{w(v → f2), w(v → f4)} ≤ 1
5 by (R3.1). Thus

μ∗(v) ≥ μ(v) − 2 × 4
5 − 2 × 1

5 = 0.
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Case 3 v is a 5-vertex but is not a (3, 5, 3, 5, 5)-vertex. It follows fromCorollary 3.5
that v is incident to at most three 3-faces. Since a 3-face is not adjacent to a 4-face
[Lemma 3.4 (b)], we may assume v is a (3+, 4+, 4+, 4+, 4+)-, (3, 3, 4+, 3+, 4+)-,
(3, 6+, 3, 6+, 5+)-, (3, 5, 3, 6+, 6+)-, (3, 6+, 3, 5, 5)-, or (3, 5, 3, 5, 6+)-vertex.

• v is a (3+, 4+, 4+, 4+, 4+)-vertex.
It follows that w(v → f1) ≤ 7

5 by (R1.2), (R2), (R3.2).

– Suppose v is a (3+, 5+, 5+, 5+, 5+)-vertex.
Then each incident 5-face is adjacent to a 5+-face. Consequently, max{w(v →
f2), . . . , w(v → f5)} ≤ 3

5 by (R3.2). Thus μ∗(v) ≥ μ(v) − 7
5 − 4 × 3

5 > 0.
– Suppose there exists i ∈ {2, . . . , 5} such that d( fi ) = 4.
Then w(v → fi ) ≤ 1

2 by (R2) and max{w(v → f2), . . . , w(v → f5)} ≤ 7
10

by (R3.2). Thus μ∗(v) ≥ μ(v) − 7
5 − 1

2 − 3 × 7
10 = 0.

• v is a (3, 3, 4+, 3+, 4+)-vertex.
It follows fromLemma 3.4 (f) that f3 and f5 are 6+-faces. Since both f1 and f2 are
3-faces, each of common incident vertices is not a flaw vertex. Then max{w(v →
f1), w(v → f3)} ≤ 6

5 and w(v → f4) ≤ 7
5 by (R1.2). Thus μ∗(v) ≥ μ(v) − 2×

6
5 − 7

5 > 0.
• v is a (3, 6+, 3, 6+, 5+)- or a (3, 5, 3, 6+, 6+)-vertex.
If v is a (3, 6+, 3, 6+, 5+)-vertex, then max{w(v → f1), w(v → f3)} ≤ 7

5 by
(R1.2) and w(v → f5) ≤ 7

10 by (R3.2). Thus μ∗(v) ≥ μ(v) − 2 × 7
5 − 7

10 > 0.
The proof is similar for v is a (3, 5, 3, 6+, 6+)-vertex.

• v is a (3, 6+, 3, 5, 5)-vertex.
Thenmax{w(v → f1), w(v → f3)} ≤ 7

5 by (R1.2) andmax{w(v → f4), w(v →
f5)} ≤ 3

5 by (R3.2). Thus μ∗(v) ≥ μ(v) − 2 × 7
5 − 2 × 3

5 = 0.
• v is a (3, 5, 3, 5, 6+)-vertex.
If f3 is a (4+, 5, 5+)-face, then f2 or f4 is incident to at least two5+-vertex. If f3 is a
(4, 4, 5)-vertex, then applyingLemma3.7 to f3 and f4 yields that f4 is incident to at
least two 5+-vertex. Consequently, max{w(v → f1), w(v → f3)} ≤ 7

5 by (R1.2)
and max{w(v → f2), w(v → f4)} ≤ 7

10 and min{w(v → f2), w(v → f4)} ≤ 2
5

by (R3.2). Thus μ∗(v) ≥ μ(v) − 2 × 7
5 − 7

10 − 2
5 > 0.

Case 4 v is a (3, 5, 3, 5, 5)-vertex.

• f1 and f3 are (4, 4, 5)-faces.
Applying Corollary 3.9 to f1, f2, f3, we have that f2 is incident to at least two
non-adjacent 5+-vertices (including v). Then max{w(v → f1), w(v → f3)} ≤ 7

5
by (R1.2) and w(v → f2) ≤ 3

10 by (R3.2).

– Suppose f4 is incident to exactly one 5+-vertex.
Applying Corollary 3.9 to f3, f4, f5, we have that f5 is incident to at least
two non-adjacent 5+-vertices. Then w(v → f4) ≤ 3

5 and w(v → f5) ≤ 3
10

by (R3.2). Thus μ∗(v) ≥ μ(v) − 2 × 7
5 − 2 × 3

10 − 3
5 = 0.

– Suppose f4 and f5 are incident to at least two 5+-vertices. Then max{w(v →
f4), w(v → f5)} ≤ 2

5 by (R3.2) Thusμ∗(v) ≥ μ(v)−2× 7
5 − 3

10 −2× 2
5 > 0.
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• f1 or f3 is a (5, 5+, 5+)-face.
By symmetry, we assume f1 is a (5, 5+, 5+)-face. It follows that f2 and f5 are
incident to at least two 5+-vertices. Then w(v → f1) ≤ 1, w(v → f3) ≤ 7

5 by
(R1.2) and w(v → f4) ≤ 3

5 ,max{w(v → f2), w(v → f5)} ≤ 2
5 by (R3.2). Thus

μ∗(v) ≥ μ(v) − 7
5 − 1 − 3

5 − 2 × 2
5 > 0.

• f1 and f3 are (4, 5, 5+)-faces with incident 5+-vertex x and y, respectively, where
x �= v �= y.
Then max{w(v → f1), w(v → f3)} ≤ 6

5 by (R1.2).

– Suppose x and y are not incident to f2.
It follows that f4 and f5 are incident to at least two 5+-vertices. Consequently,
w(v → f2) ≤ 7

10 ,max{w(v → f4), w(v → f5)} ≤ 2
5 by (R3.2). Thus

μ∗(v) ≥ μ(v) − 2 × 6
5 − 7

10 − 2 × 2
5 > 0.

– Suppose x and y are incident to f2.
Then w(v → f2) = 3

10 ,max{w(v → f4), w(v → f5)} ≤ 3
5 by (R3.2). Thus

μ∗(v) ≥ μ(v) − 2 × 6
5 − 3

10 − 2 × 3
5 > 0.

– Suppose x is incident to f2 but y is not.
Then f4 is incident to at least two 5+-vertices. Consequently, max{w(v →
f2), w(v → f4)} ≤ 2

5 , w(v → f3) ≤ 3
5 by (R3.2). Thus μ∗(v) ≥ μ(v)− 2×

6
5 − 2 × 2

5 − 3
5 > 0.

• f1 is a (4, 4, 5)-face but f3 is a (4, 5, 5+)-face with its two incident 5+-vertices
are also incident to f2.
It follows that w(v → f1) ≤ 7

5 , w(v → f3) ≤ 6
5 by (R1.2) and w(v → f2) ≤ 2

5
by (R1.2). Applying Corollary 3.9 to f1, f5, f4, we have that f4 or f5 is incident
to at least two 5+-vertices.

– Suppose f4 is incident to at least two non-adjacent 5+-vertices.
Then w(v → f4) ≤ 3

10 , w(v → f5) ≤ 3
5 by (R3.2). Thus μ∗(v) ≥ μ(v) −

7
5 − 6

5 − 2
5 − 3

10 − 3
5 > 0. The proof is similar for f5 is incident to at least two

non-adjacent 5+-vertices.
– Suppose a 5+-vertex u incident to f4 or f5 is adjacent to v.

From assumption on f1 and f3, we have that u is not incident to f1 and is not
incident to f3. It follows that u is incident to f4 and f5. Then max{w(v →
f4, w(v → f5)} ≤ 2

5 by (R3.2). Thus μ∗(v) ≥ μ(v) − 7
5 − 6

5 − 3 × 2
5 > 0.

• f1 is a (4, 4, 5)-face but f3 is a (4, 5, 5+)-face with its two 5+-vertices are also
incident to f4.
It follows that w(v → f1) ≤ 7

5 , w(v → f3) ≤ 6
5 by (R1.2). Applying Corollary

3.9 to f5, f1, f2, we have that f2 or f5 is incident to at least two 5+-vertices.

– Suppose f2 is incident to a 5+-vertex u where u �= v.

We have that u is not incident to f1 and f3 by assumption on f1 and f3. This
implies u is not adjacent to v. Then w(v → f2) ≤ 3

10 , w(v → f4) ≤ 2
5 , and

w(v → f5) ≤ 3
5 by (R3.2). Thus μ∗(v) ≥ μ(v) − 7

5 − 6
5 − 3

10 − 2
5 − 3

5 > 0.
– Suppose f5 is incident to a 5+-vertex u where u �= v.

If u is not incident to f4, then u is not adjacent to v. It follows that w(v →
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f2) ≤ 7
10 , w(v → f4) ≤ 2

5 , and w(v → f5) ≤ 3
10 by (R3.2). Thus μ∗(v) ≥

μ(v) − 7
5 − 6

5 − 7
10 − 2

5 − 3
10 = 0.

If u is also incident to f4, then f4 is a (4+, 4+, 5, 5+, 5+)-vertex. It follows
that w(v → f2) ≤ 7

10 , w(v → f4) ≤ 3
10 and w(v → f5) ≤ 2

5 by (R3.2).
Thus μ∗(v) ≥ μ(v) − 7

5 − 6
5 − 7

10 − 3
10 − 2

5 = 0.

Case 5 v is a 6-vertex.
From Lemma 3.4 (a) that a 3-face is not adjacent to a 4-face, it suffices to consider

v is a (3, 3, k3, k4, k5, k6)-, (3+, 4+, 3+, 4+, 4+, 4+)-, (3+, 4+, 4+, 3+, 4+, 4+)-,
(3, 5, 3, 5, 3, 5)-, or a (3, 5+, 3, 5+, 3, 6+)-vertex.

• v is a (3, 3, k3, k4, k5, k6)-vertex.
It follows from Lemma 3.4 (b) that f3 and f6 are 6+-faces. Thus μ∗(v) ≥ μ(v)−
4 × 7

5 > 0 by (R1.2), (R2), and (R3.3).
• v is a (3+, 4+, 3+, 4+, 4+, 4+)-vertex (or (3+, 4+, 4+, 3+, 4+, 4+)-vertex, respec-
tively).
Then v sends charge at most 7

5 to f1 and f3 (or f4, respectively) by (R1.2), (R2),
(R3.3), and v sends charge at most 4

5 to each of the remaining incident faces by
(R2), (R3.3). Thus μ∗(v) ≥ μ(v) − 2 × 7

5 − 4 × 4
5 = 0.

• v is a (3, 5, 3, 5, 3, 5)-vertex.

– Suppose at least two incident 5-faces of v, say f2 and f4, are incident to at
least two 5+-vertices.
Then max{w(v → f1), w(v → f3), w(v → f5)} ≤ 7

5 by (R1.2),
max{w(v → f2), w(v → f4)} = 2

5 and w(v → f6) ≤ 4
5 by (R3.3). Thus

μ∗(v) ≥ μ(v) − 3 × 7
5 − 2 × 2

5 − 4
5 > 0.

– Suppose two incident 5-faces of v, say f2 and f4, are incident to exactly one
5+-vertex.
Applying Lemma 3.10 to f1, f2, f3, f4, we obtain that f1 is incident to two
5+ vertices, say v1 and v, that are also incident to f6. Applying Lemma 3.10
to f2, f3, f4, f5, we obtain that f5 is incident to two 5+ vertices, say v5 and
v, that are also incident to f6. Then max{w(v → f1), w(v → f5)} ≤ 6

5 and
w(v → f3) ≤ 7

5 by (R1.2). Moreover, max{w(v → f2), w(v → f4)} ≤ 4
5

andw(v → f6) ≤ 2
5 by (R3.2). Thusμ

∗(v) ≥ μ(v)−2× 6
5− 7

5−2× 4
5− 2

5 > 0.

Case 6 v is a d-vertex with d ≥ 7.

• v is a (3, 3, k3, . . . , kd)-vertex.
It follows from Lemma 3.4 that f3 and fd are two 6+-faces. Thusμ∗(v) ≥ μ(v)−
(d − 2) × 7

5 = 2d − 6 − (d − 2) × 7
5 > 0 by (R1.2), (R2), and (R3.3).

• v has no adjacent incident 3-faces.
It follows that v is incident to at most d

2 3-faces. Since v sends charge at most 7
5

to each of its incident 3-faces by (R1.2) and v sends charge at most 4
5 to each of

the remaining incident faces by (R2) and (R3.3), we have μ∗(v) ≥ μ(v) − d
2 ×

7
5 − d

2 × 4
5 = (2d − 6) − d × 11

10 > 0.

Let f be a face in G. Let V ( f ) ∩ V (D) �= ∅. If d( f ) = 3, then f gets 12
5

from D when f shares an edge with D, 2 from D when f shares exactly one vertex
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with D. Note that each vertex of f in int(C0) sends at least 1
2 to f . It follows that

μ∗( f ) ≥ −3+min{ 125 + 1
2 , 2+ 1

2 × 2} = 0. If d( f ) ∈ {4, 5}, then it gains 2 from D.
Thusμ∗( f ) ≥ d( f )−6+2 ≥ 0. If d( f ) = 6, thenμ∗( f ) = μ( f ) = 0. If d( f ) ≥ 7,
then μ∗( f ) ≥ (k − 6) − k × k−6

k = 0. Thus we may assume that V ( f ) ∩ V (D) = ∅
for the remaining of the paper. Let f be a 5−-face with vertices v1, v2, . . . , vd(v) in a
cyclic order.

Case 7 f is a 3-face.

• f is a (4, 4, 4)-face or each vertex of f is not a flaw vertex.
Then μ∗( f ) = μ( f ) + 3 × 1 = 0 by (R1.1).

• f is a (4, 4, 5+)-face with exactly one incident flaw vertex, say v1.

Then w(v1 → f ) = 4
5 , w(v2 → f ) = 1 by (R1.1) and w(v3 → f ) = 6

5 (R1.2).
Thus μ∗( f ) = μ( f ) + 4

5 + 1 + 6
5 = 0.

• f is a (4, 4, 5+)-face with v1 and v2 are flaw vertices.
Then w(v1 → f ) = w(v2 → f ) = 4

5 by (R1.1) and w(v3 → f ) = 7
5 (R1.2).

Thus μ∗( f ) = μ( f ) + 2 × 4
5 + 7

5 = 0.
• f is a (4, 5+, 5+)-face and v1 is a flaw vertex.
Then w(v1 → f ) = 3

5 by (R1.1) and w(v2 → f ) = w(v3 → f ) = 6
5 by (R1.2)

Thus μ∗( f ) = μ( f ) + 3
5 + 2 × 6

5 = 0.

Case 8 f is a 4-face.
We obtain μ∗( f ) ≥ μ( f ) + 4 × 1

2 = 0 by (R2).

Case 9 f is a 5-face.

• f is incident to at least three 5+-vertices.
It follows that each of its incident 4-vertex is adjacent to at least one 5+-vertex.
Then each of these 4-vertices sends charge at least 1

10 to f by (R3.1) and each
5+-vertex sends charge at least 3

10 to f by (R3.2) and (R3.3). Thus μ∗( f ) ≥
μ( f ) + 2 × 1

10 + 3 × 3
10 > 0.

• f is a (4, 5+, 4, 5+, 4)-face.
Since v1 and v5 are adjacent to at least one 5+-vertex and v3 is adjacent to at least
two 5+-vertices, we havemin{w(v1 → f ), w(v5 → f )} ≥ 1

10 andw(v3 → f ) ≥
1
5 by (R3.1). We have min{w(v2 → f ), w(v4 → f )} ≥ 1

10 by (R3.2) and (R3.3).
Thus μ∗( f ) ≥ μ( f ) + 2 × 1

10 + 1
5 + 2 × 3

10 = 0.
• f is a (4, 4, 4, 5+, 5+)-face
Since v1 and v3 are adjacent to at least one 5+-vertex, we have min{w(v1 →
f ), w(v3 → f )} ≥ 1

10 by (R3.1). We have min{w(v2 → f ), w(v4 → f )} ≥ 2
5

by (R3.2) and (R3.3). Thus μ∗( f ) ≥ μ( f ) + 2 × 1
10 + 2 × 2

5 = 0.
• f is a (4, 4, 4, 4, 6+)-face.
Since v1 and v4 are adjacent to at least one 5+-vertex, we have min{w(v1 →
f ), w(v4 → f )} ≥ 1

10 by (R3.1). We have w(v5 → f ) = 4
5 by (R3.3). Thus

μ∗( f ) ≥ μ( f ) + 2 × 1
10 + 4

5 = 0.
• f is a (4, 4, 4, 4, 5)-face with at least one adjacent 5+-face fi .
Let a 4-vertex vi be in fi . It follows that a 4-vertex vi is not a flaw vertex. Then
w(vi → f ) = 1

3 by (R3.1), min{w(v1 → f ), w(v4 → f )} ≥ 1
10 by (R3.1), and

w(v5 → f ) = 3
5 by (R3.2), Thus μ∗( f ) ≥ μ( f ) + 1

3 + 1
10 + 3

5 > 0.
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• f is a (4, 4, 4, 4, 5)-face with five adjacent 4−-faces and a 4-vertex vi which is
not a flaw vertex.
Then w(vi → f ) = 1

3 by (R3.1) and w(v5 → f ) = 7
10 by (R3.2). Thus μ∗( f ) ≥

μ( f ) + 1
3 + 7

10 > 0.
• f is a (4, 4, 4, 4, 5)-face with five adjacent 4−-faces and four flaw vertices.
It follows that each adjacent face of f is a 3-face. Let f4 be a 3-face incident to
v4 and v5 and let f5 be a 3-face incident to v1 and v5. Applying Corollary 3.9
to f , f4, and f5, we have that f4 or f5 is a (4, 5, 5+)-face. By symmetry, let
f5 be a (4, 5, 5+)-face. Consequently, v1 is adjacent to at least two 5+-vertices
and v4 is adjacent to at least one 5+-vertex. It follows that w(v1 → f ) = 1

5
and w(v4 → f ) ≥ 1

10 by (R3.1). We have w(v5 → f ) = 7
10 by (R3.2). Thus

μ∗( f ) ≥ μ( f ) + 1
5 + 1

10 + 7
10 = 0.

• f is a (4, 4, 4, 4, 4)-face.
Applying Corollary 3.7 to f and its adjacent 3-face, we have that each adjacent
3-face of f is a (4, 4, 5+)-face. This implies that each incident flaw vertex of f
is adjacent to at least two 5+-vertex. If vi is a flaw vertex, then w(vi → f ) ≥ 1

5 ,

otherwise w(vi → f ) ≥ 1
3 by (R3.1). Thus μ∗( f ) ≥ μ( f ) + 5 × 1

5 = 0.

Case 10 Consider the outerface D.
Let f ′

3, f ′ be the number of 3-faces sharing exactly one edge with D, 3-faces
sharing exactly one vertexwith D or 4-or 5-faces sharing vertices with D, respectively.
Let E(C0, V (G) − C0) be the set of edges between C0 and V (G) − C0 and let
e(C0, V (G) − C0) be its size. Then by (R4),

μ∗(D) = 3 + 6 +
∑

v∈C0

(2d(v) − 6) − 12

5
f ′
3 − 2 f ′ (1)

= 9 + 2
∑

v∈C0

(d(v) − 2) − 2 × 3 − 12

5
f ′
3 − 2 f ′ (2)

= 3 − 2

5
f ′
3 + 2(e(C0, V (G) − C0) − f ′

3 − f ′) (3)

So we may consider that each edge e ∈ E(C0, V (G) − C0) gives a charge of 2
to D. Since each 5−-face is a cycle, it contains two edges in E(C0, V (G) − C0). It
follows that e(C0, V (G) − C0) − f ′

3 − f ′ ≥ 0. Note that f ′
3 ≤ 3. Thus μ∗(D) > 0.

This completes the proof.
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