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Abstract
In this paper, we study the local law for eigenvalues of large random regular bipartite
graphs with degree growing moderately fast. We prove that the empirical spectral
distribution of the adjacency matrix converges in probability to a scaled down copy of
the Marchenko–Pastur distribution on intervals of short length.
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1 Introduction

Random regular graphs have long been one of the most important models in the theory
of random graphs. The model is defined to be a random graph sampled uniformly
at random from the set of all regular graphs on the same set of vertices. Thanks
to their many nice behaviors such as being good expanders with large spectral gap
that allow them to mix quickly, the graphs have been widely used for applications
in computer science. From the spectral graph theory’s perspective, investigating the
eigenvalues and eigenvectors of the adjacency matrices of random graphs can reveal
important facts about the graphs themselves. The spectra of random regular graphs
were studied for both local properties such as the spectral gap [5] and global properties
such as the limiting distribution of the eigenvalues [9,10]. It was showed that if the
degree grows fast as a function of number of vertices, the random regular graphs will
have similar behavior as that of the Erdös–Rényi random graphs, which in turn is
similar to the Gaussian orthogonal ensemble on both global and local scales [3,4,10].
This phenomenon is an evidence of the universality conjecture in modern random
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matrix theory, which roughly states that the spectra of a random matrix depend less
on the distribution of the entries but more on the algebraic structure of the matrix,
so similar matrices with different entry distributions could have similar asymptotic
spectral properties.

In this paper, we study the model of random regular bipartite graphs. This is a
bipartite analogue of the popular random regular graph model. We mainly concern
about the asymptotic behavior of the spectral of the adjacencymatrices of these graphs
as the size of the vertex set goes to infinity.

In [2], Dumitriu and Johnson studied the convergence of the empirical spectral
distribution of random regular bipartite graphs. Their results show that as the degree
grows to infinity, there is a strong connection between the adjacency matrix of random
regular bipartite graph with Wishart random matrix. This is an interesting analogue to
the connection between the random regular graphs and the Wigner random matrices.
Due to a limitation in their method, their results only hold if the degree grows slower
than any power of the number of vertices.

The goal of this paper is to prove an extension of Dumitriu and Johnson’s result,
which allows the degree to grow at faster rates, up to o(

√
n). Our method is very

different and largely based on the comparison method in [10] which deals with a
similar problem of random regular graphs.

2 Preliminaries andMain Results

A (dL , dR)-regular bipartite graph is a bipartite graph on two sets of vertices L and R so
that every vertex of L (or R) has degree dL (or dR , respectively). ThemodelGm,n,dL ,dR
is defined as a random graph sampled uniformly from the set of all (dL , dR)-regular
bipartite graphs on two sets L and R and |L| = m, |R| = n. Assume that m ≥ n. The
adjacency matrix of Gm,n,dL ,dR is a random matrix A of the following form (under
proper labeling of vertices)

A =
(

0 X
XT 0

)
, (2.1)

where X is am×n (0, 1) randommatrix. It is easy to show that the nonzero eigenvalues
of A come in pairs (−λ, λ)where λ2 is an eigenvalue of XT X and A has at leastm−n
zero eigenvalues. Also assume that m and n increase to infinity in the way that

dR
dL

= m

n
−→ α ≥ 1.

We will compare Gm,n,dL ,dR with the Erdös–Rényi bipartite random graph model
G(m, n, p) defined on two sets of vertices L and R, and each edge from a vertex in
L to a vertex in R is chosen randomly and independently with probability p. Under
proper vertex labeling, the adjacency matrix B of G(m, n, p) has the form

B =
(

0 Y
Y T 0

)
, (2.2)
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where Y is a m × n random matrix with iid entries (equal 1 with probability p, 0 with
probability 1 − p).

For a n × n Hermitian matrix M with real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn , the
empirical spectral distribution (ESD) is the probability measure μn(M) defined as

μn(M) = 1

n

n∑
i=1

δλi ,

where δλ is the Dirac point measure at point λ. Note that if M is a random matrix then
μn(M) is a random probability measure.

Let {μn}∞n=1 be a sequence of random probability measures on real numbers. We
say that μn converges weakly in probability to a deterministic probability measure μ

if for all bounded continuous functions f : R → R and any ε > 0 we have

lim
n→∞ P

(∣∣∣
∫

f dμn −
∫

f dμ
∣∣∣ < ε

)
= 1.

It is well known that if M is a m × n random matrix whose entries are iid copies
of a random variable with mean zero and variance one, and m/n converges to a finite
limit α, then the ESD of 1

n M
T M converges to theMarchenko–Pastur distribution νMP

of ratio 1/α. Thus, it is natural to expect that the ESD of 1
dL

XT X with X from the
adjacency matrix of Gm,n,dL ,dR also converges to the Marchenko–Pastur distribution
when dL grows to infinity.

Recall that the Marchenko–Pastur distribution with ratio 1/α is supported on [a, b]
and given by the density function

p(x) = α

2πx

√
(b2 − x)(x − a2),

where a = 1−α−1/2 and b = 1+α−1/2. Notice that the eigenvalues ofμn of d
−1/2
L A

are the square roots (both positive and negative) of the eigenvalues of d−1
L XT X . If

the limiting ESD of d−1
L XT X is the Marchenko–Pastur distribution, then the ESD of

d−1/2
L A will have the limit measure μ which has support on [−b,−a] ∪ {0} ∪ [a, b]

with density function

q(x) = 2|x |
1 + α

p(x2) = α

(1 + α)π |x |
√

(b2 − x2)(x2 − a2), (2.3)

and a point mass of α−1
α+1 at 0. Indeed, them−n zero eigenvalues give the point mass of

m−n
m+n at 0, while the other 2n eigenvalues are described by applying to p(x) a change

of variable from x to
√
x and scaled by factor 2n

m+n .
In [2], Dumitriu and Johnson proved that if dL = o(nε) for a fixed ε > 0 then the

ESD of 1
dL

XT X converges to the Marchenko–Pastur law. They also proved a local

law as follows. Assume that dL = exp(o(1)
√
log n). For any interval I whose length

at least max(2η, η/(− δ log δ)) and does not contain [− ε, ε], there exists a constant
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1520 L. V. Tran

Cε so that for all δ > 0 and n large enough, the following holds with probability
1 − o(1/n)

|μn(I ) − μ(I )| < δCε |I |.

μn is the ESD of d−1/2
L A and μ is the limiting distribution defined by (2.3). Since η

is roughly 1/dL , the length of I can shrink as η does.
We are going to prove a similar local law for the case ω(log n) ≤ dL ≤ o(

√
n),

which is an extension of the result by Dumitriu and Johnson. Let R be the normalized
adjacency matrix of Gm,n,dL ,dR

R = 1√
dL
n

(
1 − dL

n

)
[
A − dL

n

(
0 J
J T 0

)]
, (2.4)

where J is the all 1 m × n matrix. Since

(
0 J
J T 0

)
has rank 2, the ESD of R has the

same global behavior (after proper scaling) as that of A due to Weyl’s perturbation
interlacing inequality. Our main result is

Theorem 2.1 Suppose ω(log n) ≤ dL ≤ o(
√
n) as n tends to infinity. Let δ > 0 and

NI be the number of eigenvalues of n−1/2R in the interval I , where I is an interval
avoiding {0} with length at least

( log dL
δ3d1/2L

)1/4
, then

|NI − nμ(I )| < δnμ(I )

with probability at least 1 − O(exp(−cndL log(dL)).
If m = n, then I does not need to avoid {0}.
The convergence of ESD of A is a direct consequence of Theorem 2.1.

Corollary 2.2 The ESD of d−1/2
L A converges weakly in probability to the limiting

measure μ [as defined by (2.3)].

The rest of the paper is organized as follows: In Sect. 3, we present the proof of
Theorem 2.1, pending two important lemmas. In Sect. 4, we prove the first lemma
about the probability for Erdös–Rényi random bipartite graphs to be regular. This
result provides a tool to compare the Erdös–Rényi model with the regular model. In
Sect. 5,we prove the second lemmaabout a general concentration result ofWishart-like
random matrix.

3 Proof of Theorem 2.1

We use the comparison method. Our proof will rely on two important results. The first
one is a lower bound for the probability of Erdös–Rényi random bipartite graphs to be
regular. Recall that the Erdös–Rényi bipartite graph model G(m, n, p) consists of two
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vertex sets A and B whose capacities arem and n, respectively, and an edge between a
vertex of A and a vertex of B is chosen randomly and independently with probability
p.

Lemma 3.1 If p = o(1/
√
n) and m/n → α < ∞ as n → ∞, then G(m, n, p) is

(mp, np)-regular with probability at least exp(−O(n(np)1/2)).

Another key ingredient of the proof is the following concentration lemma, which
may be of independent interest.

Lemma 3.2 Let M be a (m + n) × (m + n) Hermitian random matrix of the form

Mn =
(

0 X
XT 0

)
,

where X is a m × n random matrix whose entries ξi j are independent random
variables with mean zero, variance 1 and |ξi j | < K for some common constant K (K
may depend on n). Suppose m/n converges to 1 < α < ∞ as m and n tend to infinity.
Fix δ > 0 and assume that the eighth moment γ8 := supi, j E(|ξi j |8) < ∞. Then for

any interval I ⊂ R avoiding {0} whose length is at least Ω(δ−1/2γ
1/8
8 n−1/4), there is

a constant c > 0 such that the number NI of the eigenvalues of
1√
n
M which belong

to I satisfies the following concentration inequality

P(|NI − nμ(I )| > δnμ(I )) ≤ 4 exp

(
−c

δ3n2|I |4
K 2

)
,

where μ is the limiting distribution defined by (2.3).
In the case α = 1, the minimal length of I increases to Ω(δ−1/2n−1/8).

Applying Lemma 3.2 for the normalized adjacency matrix of G(m, n, p)

M = 1√
p(1 − p)

[
B − p

(
0 J
J T 0

)]

with K = 1/
√
p, we obtain

Corollary 3.3 Let δ > 0 and NI be the number of eigenvalues of M inside interval I
avoiding {0} with length at least

( log(np)
δ3(np)1/2

)1/4
, there is a constant c > 0 so that

|NI − nμ(I )| ≥ δnμ(I )

with probability at most exp(−cn(np)1/2 log(np)).

By Corollary 3.3 and Lemma 3.1, the probability that NI fails to be close to
the expected value in the model G(m, n, p) is much smaller than the probability
that G(m, n, p) is (mp, np)-regular. Since the conditional distribution of G(m, n, p)
given G(m, n, p) is (mp, np)-regular is the same as the distribution of Gm,n,dl ,dR ,
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it implies that the probability that NI fails to be close to the expected value in the
model Gm,n,dL ,dR where dL = np, dR = mp is the ratio of the two former proba-
bilities, which is O(exp(−cn

√
np log np)) for some small positive constant c. Thus,

Theorem 2.1 is proved, depending on Lemma 3.2 which we turn to next.

4 Proof of Lemma 3.1

We will use a result on the asymptotic number of regular bipartite graph by McKay
and Wang [8]. Let N (m, n, s, t) be the number of bipartite graphs on two vertex sets
A and B with |A| = m, |B| = n and each vertex in A has degree s, each vertex in B
has degree t .

Theorem 4.1 ( [8], Theorem 2) Let S = nt = ms and p = n/s = m/t . Suppose that
S → ∞ and 1 ≤ st = o(p2). Then N (m, n, s, t) is given by

S!
(s!)m(t !)n exp

(
− (s−1)(t−1)

2
− (s − 1)(t − 1)(2st − s − t + 2)

12S
+ O

(
s3t3

S2

))
.

Proof of Lemma 3.1 In our setting, s = np, t = mp = αnp, S = mnp = αn2 p. Since
p = o(1/

√
n), st = o(p2). Then

P(G(m, n, p) is (np,mp) − regular)

= P(G(m, n, p) has exactly mnp edges) × N (m, n, np,mp)

= pαn2 p(1 − p)αn
2(1−p) (αn2 p)!

((np)!)αn((αnp)!)n exp(−O(n2 p2))

= (2π)−0.5(α−1)n2αn2 pα−0.5n(np)−0.5(α+1)n p0.5(1 − p)αn
2(1−p) exp(−O(n2 p2))

= exp(−0.5(α − 1)n ln(2π) + αn2 p ln(2) − 0.5n ln(α) − 0.5(α + 1)n ln(np)

+ 0.5 ln(p) + αn2(1 − p) ln(1 − p) − O(n2 p2))

≥ exp(−O(n ln(np) + n2 p2)) ≥ exp(−O(n
√
np)).

5 Proof of Lemma 3.2

Assume I = [a, b] where a < b < 0 or 0 < a < b.
We will use the approach of Guionnet and Zeitouni in [7]. Consider a random

Hermitian matrix Wn with independent entries (Wn)i j = Ai jwi j where

• A = (Ai j ) is a deterministic matrix of the form

A =
(

0 J
J T 0

)

with J be the m × n all 1 matrix.
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• wi j ’s are iid copies of a random variable w with mean zero, variance one, support
in a compact region S. Moreover, w is bounded by a constant K .

• Ai j ’s and wi j ’s are independent.

Let f be a real convex L-Lipschitz function and define

Z :=
n∑

i=1

f (λi ),

where λi ’s are the eigenvalues of 1√
n
Wn . We are going to view Z as the function of the

variables wi j . For our application, we need wi j to be independent random variables
with mean zero and variance 1, whose absolute values are bounded by a common
constant K . (K may depend on n.)

The following concentration inequality is a version of Theorem 1.1 in [7].

Lemma 5.1 Let Wn, f , Z be as above. Then there is a constant c > 0 such that for
any T > 0

P(|Z − E(Z)| ≥ T ) ≤ 4 exp

(
−c

T 2

K 2L2

)
.

In order to apply Lemma 5.1 for NI and M , it is natural to consider

Z := NI =
n∑

i=1

χI (λi ),

where χI is the indicator function of I and λi are the eigenvalues of 1√
n
Mn . However,

this function is neither convex nor Lipschitz. As suggested in [7], one can overcome
this problem by a proper approximation. Define Il = [a − |I |

C , a], Ir = [b, b + |I |
C ],

where C is a constant to be chosen later, and construct two real functions f1 and f2
as follows (see Fig. 1):

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩

− C
|I | (x − a) − 1 if x ∈

(
−∞, a − |I |

C

)
0 if x ∈ I ∪ Il ∪ Ir
C
|I | (x − b) − 1 if x ∈

(
b + |I |

C ,∞
)

f2(x) =

⎧⎪⎨
⎪⎩

− C
|I | (x − a) − 1 if x ∈ (−∞, a)

−1 if x ∈ I
C
|I | (x − b) − 1 if x ∈ (b,∞).

Note that f j ’s are convex and C
|I | -Lipschitz. Define

X1 =
n∑

i=1

f1(λi ), X2 =
n∑

i=1

f2(λi )
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Fig. 1 Auxiliary functions used in the proof

and apply Lemma 5.1 with T = δ
8nμ(I ) for X1 and X2. Thus, we have

P(|X j − E(X j )| ≥ δ

8
nμ(I )) ≤ 4 exp

(
−c

δ2n2|I |2(μ(I ))2

K 2C2

)
.

Direct calculation shows that for I in the support of μ one has μ(I ) ≤ α|I |2 for some
absolute constant α. Thus, we have for j = 1, 2

P(|X j − E(X j )| ≥ δ

8
nμ(I )) ≤ 4 exp

(
−c1

δ2n2|I |4
K 2C2

)
.

Let X = X1 − X2, then

P(|X − E(X)| ≥ δ

4
nμ(I )) ≤ O

(
exp

(
−c1

δ2n2|I |4
K 2C2

))
.

Now we compare X to Z using the following result about convergence rate for
Marchenko–Pastur law by Götze and Tikhomirov .

Lemma 5.2 ([6] Theorem1.1)LetWn = (ωi j ) be am×n randommatrixwhose entries
are independent with mean zero and variance one, and γ8 = supi, j E(|ωi j |8) < ∞.
Suppose that m/n converges to 1 < α < ∞. Then for any I ⊂ R the number N ′

I of
eigenvalues of 1√

n
WT

n Wn inside I satisfies

|E(N ′
I ) − nμMP (I )| < β ′n1/2γ 1/4

8 ,

where β ′ is an absolute constant.

Since μ is a scaled down copy of μMP , the same convergence rate (with another
constant) holds for our case

|E(NI ) − nμ(I )| < βγ
1/4
8 n1/2.
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We have E(X − Z) ≤ E(NIl + NIr ). Thus, by Lemma 5.2

E(X) ≤ E(Z) + n(μ(Il) + μ(Ir )) + βγ
1/4
8 n1/2.

Choose C = (4/δ)1/2, because |I | ≥ Ω(δ−1/2γ
1/8
8 n−1/4),

n(μ(ll) + μ(Ir )) = �

(
n

( |I |
C

)2
)

> Ω
(
γ
1/4
8 n1/2

)

and

n(μ(Il) + μ(Ir )) + βγ
1/4
8 n1/2 = �

(
n

( |I |
C

)2
)

= �

(
δ

4
nμ(I )

)
.

Therefore, with probability at least 1 − O(exp(− c1
δ4n2|I |4

K 2 )), we have

Z ≤ X ≤ E(X) + δ

4
nμ(I ) < E(Z) + δ

2
nμ(I ).

Lemma 5.2 again gives

E(NI ) < nμ(I ) + βγ
1/4
8 n1/2 <

(
1 + δ

2

)
nμ(I );

hence, with probability at least 1 − O(exp(−c1
δ3n2|I |4

K 2 ))

NI < (1 + δ)nμ(I ),

which is the desires upper bound.
In the case α ≈ 1, as proved in [1] the convergence rate decreases

|E(NI ) − nμ(I )| < O(n3/4).

Using the assumption that |I | ≥ Ω(δ−1/2n−1/8) and repeating the argument as in the
case α is bounded away from 1, we reach the same conclusion.

The lower bound is proved using a similar argument. Let I ′ = [a + |I |
C , b − |I |

C ],
I ′
l = [a, a + |I |

C ], I ′
r = [b − |I |

C , b] where C is to be chosen later and define two
functions g1 and g2 as follows (see Fig. 1):

g1(x) =

⎧⎪⎨
⎪⎩

− C
|I | (x − a) if x ∈ (−∞, a)

0 if x ∈ I ′ ∪ I ′
l ∪ I ′

r
C
|I | (x − b) if x ∈ (b,∞)
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g2(x) =

⎧⎪⎪⎨
⎪⎪⎩

− C
|I | (x − a) if x ∈

(
−∞, a + |I |

C

)
−1 if x ∈ I ′
C
|I | (x − b) if x ∈

(
b − |I |

C ,∞
)

.

Define

Y1 =
n∑

i=1

g1(λi ), Y2 =
n∑

i=1

g2(λi ).

A similar argument using Lemmas 5.1 and 5.2 with Y1, Y2 in place of X1, X2 shows

that with probability at least 1 − O(exp(−c2
δ3n2|I |4
K 2C2 ))

NI > (1 − δ)nμ(I ).

Thus, Lemma 3.2 is proved.
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