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Abstract
In thiswork,we consider a one-dimensional porous thermoelastic systemwithmemory
effects. We prove a general decay result, for which exponential and polynomial decay
results are special cases, depending only on the kernel of the memory effects. Our
result is established irrespective of the wave speeds of the system. The result obtained
is new and improves previous results in the literature.
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1 Introduction

Elastic materials with voids have stimulated a lot on interest in recent years and many
results have been published, most notably in the area of petroleum industry, material
science, soil mechanics, foundation engineering, powder technology, and biology. It is
widely known that an extension of the classical elasticity theory to porous media was
established by Goodman and Cowin [1]. They introduced the concept of a continuum
theory of granularmaterials with interstitial voids. In addition, Nunziato andCowin [2]
introduced the concept that the materials with voids possess a microstructure with the
property that themass at each point is obtained as the product of themass density of the
material matrix by the volume fraction. Later, Ieşan [3,5], and Ieşan and Quintanilla
[6] added the temperature as well as the microtemperature elements to the theory. For
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extensive discussion on these materials, we refer interested reader to [7]–[10] and the
references therein.

In this work, we are concerned with the asymptotic behavior of the solution of
porous thermoelastic system with memory effects

ρutt − μuxx − bφx + βθx = 0,

Jφt t − δφxx + bux + ξφ − mθ +
∫ t

0
g(t − s)φxx (x, s)ds = 0,

cθt − κθxx + βutx + mφt = 0,

u(x, 0) = u0(x), ut (x, 0) = u1(x),

φ(x, 0) = φ0(x), φt (x, 0) = φ1(x), θ(x, 0) = θ0(x),

ux (0, t) = ux (1, t) = φ(0, t) = φ(1, t) = θ(0, t) = θ(1, t) = 0, (1.1)

where (x, t) ∈ (0, 1) × [0,+∞), u is the longitudinal displacement, φ is the volume
fraction of the solid elastic material, θ is the temperature difference, u0, u1, φ0, φ1, θ0
are given initial data, and ρ,μ, J , δ, ξ,m, c, κ, β are constitutive constants which are
positive. Furthermore, the constants μ and ξ satisfy μξ > b2, where b �= 0 is a real
number. The integral represents the memory effect and g is the relaxation function
satisfying the following:

(H1) g: R+ → R+ is a C1 decreasing function satisfying

g(0) > 0, δ −
∫ ∞

0
g(s)ds = l > 0.

(H2) There exists a nonincreasing differentiable function ζ : R+ → R+ satisfying

g′(t) ≤ −ζ(t)g(t), t ≥ 0.

The basic evolution together with the constitutive equations, for one-dimensional the-
ories of porous materials, with memory effect is

ρutt = Tx , Jφt t = Hx + G, ρT0ηt = qx , (1.2)

and

T = μux + bφ − βθ, H = δφx −
∫ t

0
g(t − s)φxds,

η = cθ + βux + mφ, q = kθx , G = −bux − ξφ + mθ, (1.3)

respectively. Here, η is the entropy, T is the stress tensor, H is the equilibrated stress
vector, G is the equilibrated body force, q is the heat flux vector, and T0 is the absolute
temperature in the reference configuration. By substituting (1.3) into (1.2), we obtain
the first three equations in (1.1).
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The asymptotic behavior of system (1.1) has been considered in the literature with
various types of dissipative mechanisms. We first mention the case where the memory
term in (1.1) is replaced with a porous dissipation. That is

ρutt = μuxx + bφx − βθx , x ∈ (0, L), t > 0,

Jφt t = δφxx − bux − ξφ + mθ − τφt , x ∈ (0, L), t > 0,

cθt = κθxx − βuxt − mφt , x ∈ (0, L), t > 0. (1.4)

Casas and Quintanilla [11] considered (1.4) and used the semigroup theory together
with the method developed by Liu and Zheng [12] to establish the exponential decay
of the solutions. Whereas in absence of porous dissipation (τ = 0), the same authors
showed in [13] that the heat effect alone is not strong enough to exponentially sta-
bilize the system. However, the heat effect together with microtemperature produced
an exponential decay result. Similarly, when τ = 0 and γ uxxt is added to the first
equation in (1.4), Pamplona et al. [14] proved that the system lacks exponential sta-
bility, however, by taking some regular initial data, a polynomial stability is obtained.
Also, for τ = 0, Soufyane et al. [15] considered (1.4) with some boundary controls
and obtained a general decay result, from which the usual exponential and polynomial
decay rates are just special cases.

In the absence of the heat effect, (1.4) becomes

ρutt = μuxx + bφx , x ∈ (0, L), t > 0,

Jφt t = δφxx − bux − ξφ − τφt , x ∈ (0, L), t > 0. (1.5)

Quintanilla [16] considered (1.5) and proved that the porous dissipation is not strong
enough to bring about an exponential decay. However, Apalara [17] considered the
same system and proved that the system is exponentially stable provided the wave
speeds of the two systems are equal. Equivalently, Apalara [18] replaced the porous

dissipation in (1.5) with a memory term of the form
∫ t

0
g(t − s)φxx (x, s)ds and

obtained a general decay result depending on the kernel of the memory term and the
wave speeds of the system. We refer reader to [19]–[23] and the references therein for
more results.

Obviously, when μ = b = ξ and m = β then (1.1) is equivalent to the following
Timoshenko system

ρutt − μ(u + φx )x + βθx = 0,

Jφt t − δφxx + μ (ux + φ) − βθ +
∫ t

0
g(t − s)φxx (x, s)ds = 0,

ρ3θt − κθxx + β(ux + φ)t = 0. (1.6)

In the absence of memory term (g = 0), Almeida Júnior et al [24] considered (1.6)
and proved that the system is exponentially stable if and only if
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1436 T. A. Apalara

μ

ρ
= δ

J
(1.7)

holds. Prior to the results in [24], Messaoudi and Fareh [25,26] considered (1.6) with
initial data and fullyDirichlet boundary conditions and established some general decay
results depending on (1.7) and the kernel g of the memory term. In other words, the
viscoelastic dissipation given by the memory term is not strong enough to neutralize
the condition of equal wave speeds required to obtain an exponential decay result
as established in [24]. However, Apalara [27] recently proved that the memory term
together with the heat effect is strong enough to uniformly stabilize system (1.6)
without imposing condition (1.7).

The main question which can be asked here is the following: Is the memory term
together with the heat effect strong enough to exponentially stabilize system (1.1)
irrespective of the wave speeds as in [27] for Timoshenko system? The aim of the
present work is to give a positive answer to the question by considering (1.1) and
establish a general stability result without imposing (1.7). Our result depends only on
the kernel g of thememory term.Meanwhile, from (1.1)1 and the boundary conditions,
it follows that

d2

dt2

∫ 1

0
u(x, t)dx = 0. (1.8)

So, by solving (1.8) and using the initial data of u, we obtain

∫ 1

0
u(x, t)dx = t

∫ 1

0
u1(x)dx +

∫ 1

0
u0(x)dx .

Consequently, if we let

u(x, t) = u(x, t) − t
∫ 1

0
u1(x)dx −

∫ 1

0
u0(x)dx,

we obtain

∫ 1

0
u(x, t)dx = 0, ∀t ≥ 0.

Consequently, the use of Poincaré’s inequality for u is justified. Furthermore, simple
substitution shows that (u, φ, θ) satisfies system (1.1) with initial data for u given as

u0(x) = u0(x) −
∫ 1

0
u0(x)dx and u1(x) = u1(x) −

∫ 1

0
u1(x)dx .

Henceforth, we work with u instead of u but write u for simplicity of notation.
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For the well-posedness result, we consider the following space

H1∗ (0, 1)=H1(0, 1) ∩ L2∗(0, 1), where L2∗(0, 1)=
{
u ∈ L2(0, 1) |

∫ 1

0
u(x)dx=0

}

and state without proof the following result.

Proposition 1.1 Let (u0, φ0, θ0) ∈ H1∗ (0, 1)×(
H1
0 (0, 1)

)2
and (u1, φ1) ∈ (

L2(0, 1)
)2

be given. Assume that (H1) and (H2) are satisfied, then problem (1.1) has a unique
global solution (u, φ, θ) which satisfies

u ∈ C(R+, H1∗ (0, 1)) ∩ C1(R+, L2(0, 1)), φ ∈ C(R+, H1
0 (0, 1))

∩C1(R+, L2(0, 1)), θ ∈ C(R+, H1
0 (0, 1)).

Moreover, if (u0, φ0, θ0) ∈ H2(0, 1) ∩ H1∗ (0, 1) × (
H2(0, 1) ∩ H1

0 (0, 1)
)2

and
(u1, φ1) ∈ H1∗ (0, 1) × H1

0 (0, 1) then the solution satisfies

u ∈ C(R+, H2(0, 1) ∩ H1∗ (0, 1)) ∩ C1(R+, H1∗ (0, 1)) ∩ C2(R+, L2(0, 1)),

φ ∈ C(R+, H2(0, 1) ∩ H1
0 (0, 1)) ∩ C1(R+, H1

0 (0, 1)) ∩ C2(R+, L2(0, 1)),

θ ∈ C(R+, H2(0, 1) ∩ H1
0 (0, 1)) ∩ C1(R+, H1

0 (0, 1)).

Remark 1.2 The proof can be established using the Galerkin method.

The rest of our paper is organized as follows. In Sect. 2, we state and prove some
technical lemmas. In Sect. 3, we state and prove our stability result.We use c1 through-
out this paper to denote a generic positive constant.

2 Technical Lemmas

In this section, we state and prove some technical lemmas needed in the proof of our
stability result.

Lemma 2.1 Under assumptions (H1) and (H2), the energy functional E, defined by

E(t) = 1

2

∫ 1

0

[
ρu2t +μu2x+ Jφ2

t + cθ2+
(

δ −
∫ t

0
g(s)ds

)
φ2
x +ξφ2 + 2buxφ

]
dx

+1

2
g ◦ φx , (2.1)

satisfies

E ′(t) = −κ

∫ 1

0
θ2x dx + 1

2
g′ ◦ φx − 1

2
g(t)

∫ 1

0
φ2
xdx ≤ 0, (2.2)
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1438 T. A. Apalara

where

(g ◦ φx )(t) =
∫ 1

0

∫ t

0
g(t − s)(φx (t) − φx (s))

2dsdx .

Proof Multiplying the first three equations of (1.1) by ut , φt , and θ, respectively,
integrating by parts over (0, 1), and using the boundary conditions, we obtain

1

2

d

dt

∫ 1

0

[
ρu2t + μu2x + Jφ2

t + cθ2 + δφ2
x + ξφ2 + 2buxφ

]
dx

−
∫ 1

0
φxt

∫ t

0
g(t − s)φx (s)dsdx

= −κ

∫ 1

0
θ2x dx . (2.3)

The last term in the left hand side of (2.3) is estimated as follows.

−
∫ 1

0
φxt

∫ t

0
g(t − s)φx (s)dsdx =

∫ 1

0
φxt

∫ t

0
g(t − s)(φx (t) − φx (s))dsdx

−
∫ t

0
g(s)ds

∫ 1

0
φxφt xdx

= 1

2

d

dt
g ◦ φx − 1

2

d

dt

∫ t

0
g(s)ds

∫ 1

0
φ2
xdx − 1

2
g′ ◦ φx + 1

2
g(t)

∫ 1

0
φ2
xdx . (2.4)

The substitution of (2.4) into (2.3), bearing in mind (2.1), yields (2.2). �
Remark 2.2 The energy functional E(t) defined by (2.1) is nonnegative. In fact, it can
easily be verified that

μu2x + 2buxφ + ξφ2 = 1

2

[
μ

(
ux + b

μ
φ

)2

+ ξ

(
φ + b

ξ
ux

)2

+
(

μ − b2

ξ

)
u2x +

(
ξ − b2

μ

)
φ2

]
.

So, using the fact that μξ > b2, we obtain

μu2x + 2buxφ + ξφ2 >
1

2

[(
μ − b2

ξ

)
u2x +

(
ξ − b2

μ

)
φ2

]
> 0.

Consequently,

E(t)>
1

2

∫ 1

0

[
ρu2t +μ1u

2
x+ Jφ2

t +cθ2+
(

δ−
∫ t

0
g(s)ds

)
φ2
x +ξ1φ

2
]
dx+ 1

2
g ◦ φx ,

(2.5)
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where 2μ1 = μ − b2

ξ
> 0 and 2ξ1 = ξ − b2

μ
> 0.

Lemma 2.3 The functional

F1(t) := −c
∫ 1

0
θ

(∫ x

0
ut (y, t)dy

)
dx

satisfies, along the solution of (1.1), for any ε1 > 0, the estimate

F ′
1(t)≤−β

2

∫ 1

0
u2t dx+ε1

∫ 1

0
(u2x+φ2)dx + c1

∫ 1

0
φ2
t dx + c1

(
1 + 1

ε1

)∫ 1

0
θ2x dx .

(2.6)

Proof Direct computations using (1.1) yield

F ′
1(t) = −β

∫ 1

0
u2t dx + κ

∫ 1

0
θxutdx + cβ

ρ

∫ 1

0
θ2dx − cμ

ρ

∫ 1

0
θuxdx

−cb

ρ

∫ 1

0
θφdx + m

∫ 1

0
φt

(∫ x

0
ut (y, t)dy

)
dx . (2.7)

By Young’s inequality, for any ε1 > 0, we obtain

κ

∫ 1

0
θxutdx ≤ β

4

∫ 1

0
u2t dx + κ2

β

∫ 1

0
θ2x dx (2.8)

− cμ

ρ

∫ 1

0
θuxdx ≤ ε1

∫ 1

0
u2xdx + c2μ2

4ρ2ε1

∫ 1

0
θ2dx (2.9)

− cb

ρ

∫ 1

0
θφdx ≤ ε1

∫ 1

0
φ2dx + c2b2

4ρ2ε1

∫ 1

0
θ2dx (2.10)

m
∫ 1

0
φt

(∫ x

0
ut (y, t)dy

)
dx ≤ β

4

∫ 1

0

(∫ x

0
ut (y, t)dy

)2

dx + m2

β

∫ 1

0
φ2
t dx .

(2.11)

The combination of (2.7)–(2.11) yields

F ′
1(t) ≤ −3β

4

∫ 1

0
u2t dx + κ2

β

∫ 1

0
θ2x dx + ε1

∫ 1

0
u2xdx + c1

(
1 + 1

ε1

)∫ 1

0
θ2dx

+ε1

∫ 1

0
φ2dx + m2

β

∫ 1

0
φ2
t dx + β

4

∫ 1

0

(∫ x

0
ut (y, t)dy

)2

dx . (2.12)
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By Cauchy-Schwarz inequality, it is clear that

(∫ x

0
ut (y, t)dy

)2

≤
(∫ 1

0
utdx

)2

≤
∫ 1

0
u2t dx . (2.13)

By substituting (2.13) into (2.12), and using Poincaré’s inequality, we obtain (2.6). �

Lemma 2.4 The functional

F2(t) := ρ

∫ 1

0
uutdx

satisfies, along the solution of (1.1),

F ′
2(t) ≤ −μ

2

∫ 1

0
u2xdx + ρ

∫ 1

0
u2t dx

+c1

∫ 1

0
φ2dx + c1

∫ 1

0
θ2x dx . (2.14)

Proof By taking a derivative of F2, using (1.1), and then integrating by parts, we
obtain

F ′
2(t) = −μ

∫ 1

0
u2xdx + ρ

∫ 1

0
u2t dx − b

∫ 1

0
uxφdx + β

∫ 1

0
uxθdx .

Using Young’s and Poincaré’s inequalities as in the proof of Lemma 2.3, we obtain
(2.14). �

Lemma 2.5 The functional

F3(t) := −J
∫ 1

0
φt

∫ t

0
g(t − s)(φ(t) − φ(s))dsdx

satisfies, for some fixed t0 > 0 and for any ε2 > 0, the estimate

F ′
3(t) ≤ − Jg0

2

∫ 1

0
φ2
t dx + ε2

∫ 1

0
(u2x + φ2 + φ2

x )dx + c1

∫ 1

0
θ2x dx

+ c1

(
1 + 1

ε2

)
g ◦ φx − c1g

′ ◦ φx , (2.15)

where g0 =
∫ t0

0
g(s)ds.
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Proof Differentiating F3, taking into account (1.1), and using integrating by parts
together with the boundary conditions, we obtain

F ′
3(t) = −J

∫ t

0
g(s)ds

∫ 1

0
φ2
t dx − J

∫ 1

0
φt

∫ t

0
g′(t − s)(φ(t) − φ(s))dsdx

+ δ

∫ 1

0
φx

∫ t

0
g(t − s)(φx (t) − φx (s))dsdx

−m
∫ 1

0
θ

∫ t

0
g(t − s)(φ(t) − φ(s))dsdx

+ b
∫ 1

0
ux

∫ t

0
g(t − s)(φ(t) − φ(s))dsdx

+ ξ

∫ 1

0
φ

∫ t

0
g(t − s)(φ(t) − φ(s))dsdx

−
∫ 1

0

∫ t

0
g(t − s)φx (s)ds

∫ t

0
g(t − s)(φx (t) − φx (s))dsdx . (2.16)

Now, we estimate the terms in the right-hand side of (2.16), using Young’s, Cauchy-
Schwarz, and Poincaré’s inequalities, and the fact that

∫ t

0
g(s)ds ≤ δ − l > 0. (2.17)

So, for any δ1, ε2 > 0, we obtain

I1 = −J
∫ 1

0
φt

∫ t

0
g′(t − s)(φ(t) − φ(s))dsdx

≤ Jδ1

∫ 1

0
φ2
t dx + J

4δ1

∫ 1

0

(∫ t

0
g′(t − s)(φ(t) − φ(s))ds

)2

dx

≤ Jδ1

∫ 1

0
φ2
t dx + J

4δ1

∫ 1

0

(∫ t

0
−g′(s)ds

) ∫ t

0
−g′(t − s)(φ(t) − φ(s))2dsdx

≤ Jδ1

∫ 1

0
φ2
t dx − c1

δ1
g′ ◦ φx , (2.18)

I2 = δ

∫ 1

0
φx

∫ t

0
g(t − s)(φx (t) − φx (s))dsdx

≤ ε2

2

∫ 1

0
φ2
xdx + δ2

2ε2

∫ 1

0

(∫ t

0
g(t − s)(φx (t) − φx (s))ds

)2

dx

≤ ε2

2

∫ 1

0
φ2
xdx + δ2

2ε2

∫ t

0
g(s)ds

∫ 1

0

∫ t

0
g(t − s)(φx (t) − φx (s))

2dsdx

≤ ε2

2

∫ 1

0
φ2
xdx + c1

ε2
g ◦ φx , (2.19)
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Similar to I2, we have

I3 = b
∫ 1

0
ux

∫ t

0
g(t − s)(φ(t) − φ(s))dsdx ≤ ε2

∫ 1

0
u2xdx + c1

ε2
g ◦ φx , (2.20)

I4 = ξ

∫ 1

0
φ

∫ t

0
g(t − s)(φ(t) − φ(s))dsdx ≤ ε2

∫ 1

0
φ2dx + c1

ε2
g ◦ φx , (2.21)

I5 = −m
∫ 1

0
θ

∫ t

0
g(t − s)(φ(t) − φ(s))dsdx ≤ m

2

∫ 1

0
θ2dx + m

2
g ◦ φ,

≤ c1

∫ 1

0
θ2x dx + c1g ◦ φx , (2.22)

I6 = −
∫ 1

0

∫ t

0
g(t − s)φx (s)ds

∫ t

0
g(t − s)(φx (t) − φx (s))dsdx

= −
∫ t

0
g(s)ds

∫ 1

0
φx

∫ t

0
g(t − s)(φx (t) − φx (s))dsdx

+
∫ 1

0

(∫ t

0
g(t − s)(φx (t) − φx (s))ds

)2

dx

≤ ε2

2

∫ 1

0
φ2
xdx+ 1

2ε2

(∫ t

0
g(s)ds

)2 ∫ 1

0

(∫ t

0
g(t−s)(φx (t) − φx (s))ds

)2

dx

+
∫ 1

0

(∫ t

0
g(t − s)(φx (t) − φx (s))ds

)2

dx

≤ ε2

2

∫ 1

0
φ2
xdx + c1

ε2
g ◦ φx . (2.23)

Since the function g is positive, continuous and g(0) > 0, then, for any t ≥ t0 > 0,
we have

∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0. (2.24)

By substituting (2.18)−(2.23) into (2.16), and bearing in mind (2.24), we obtain

F ′
3(t) ≤ −J [g0 − δ1]

∫ 1

0
φ2
t dx + ε2

∫ 1

0
(u2x + φ2 + φ2

x )dx + c1

∫ 1

0
θ2x dx

+ c

(
1 + 1

ε2

)
g ◦ φx − c

δ1
g′ ◦ φx ,

for all t ≥ t0. By letting δ1 = g0
2
, we obtain (2.15). �
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Lemma 2.6 Let (u, φ, θ) be the solution of (1.1). Then the functional

F4(t) := J
∫ 1

0
φtφdx + bρ

μ

∫ 1

0
φ

∫ x

0
ut (y)dydx

satisfies, for any ε3 > 0, the estimate

F ′
4(t) ≤ − l

2

∫ 1

0
φ2
xdx − ξ1

∫ 1

0
φ2dx + ε3

∫ 1

0
u2t dx + c1

(
1 + 1

ε3

) ∫ 1

0
φ2
t dx

+c1

∫ 1

0
θ2x dx + c1g ◦ φx . (2.25)

Proof Direct differentiation of F4, using (1.1) and integration by parts, yields

F ′
4(t) = −δ

∫ 1

0
φ2
xdx+ J

∫ 1

0
φ2
t dx−

(
ξ− b2

μ

)∫ 1

0
φ2dx+ bρ

μ

∫ 1

0
φt

∫ x

0
ut (y)dydx

+
(
m − βb

μ

) ∫ 1

0
φθdx +

∫ 1

0
φx

∫ t

0
g(t − s)φx (s)dsdx . (2.26)

In what follows, we use Cauchy-Schwarz and Young’s inequalities, for δ3 > 0.

(
m − βb

μ

) ∫ 1

0
φθdx ≤ δ2

∫ 1

0
φ2dx +

(
m − βb

μ

)2 1

4δ2

∫ 1

0
θ2dx,

bρ

μ

∫ 1

0
φt

∫ x

0
ut (y)dydx ≤ ε3

∫ 1

0

(∫ x

0
ut (y, t)dy

)2

dx +
(
bρ

μ

)2 1

4ε3

∫ 1

0
φ2
t dx,

(2.27)

by using (2.13), we obtain

bρ

μ

∫ 1

0
φt

∫ x

0
ut (y)dydx ≤ ε3

∫ 1

0
u2t dx + c1

ε3

∫ 1

0
φ2
t dx, (2.28)

∫ 1

0
φx

∫ t

0
g(t − s)φx (s)dsdx

=
∫ t

0
g(s)ds

∫ 1

0
φ2
xdx

−
∫ 1

0
φx

∫ t

0
g(t − s)(φx (t) − φx (s))dsdx

≤
(

δ3 +
∫ t

0
g(s)ds

)∫ 1

0
φ2
xdx + 1

4δ3

(∫ t

0
g(s)ds

)
g ◦ φx . (2.29)
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By substituting (2.27)–(2.29) into (2.26), and using Young’s and Poincaré’s inequali-
ties together with (2.17) and the fact that 2ξ1 = ξ − b2

μ
> 0 sinceμξ > b2 andμ > 0,

we arrive at

F ′
4(t) ≤ − (l − δ3)

∫ 1

0
φ2
xdx − (2ξ1 − δ2)

∫ 1

0
φ2dx + ε3

∫ 1

0
u2t dx

+c

(
1 + 1

ε3

) ∫ 1

0
φ2
t dx + c1

δ2

∫ 1

0
θ2x dx + c1

δ3
g ◦ φx . (2.30)

By taking δ3 = l

2
and δ2 = ξ1, we obtain estimate (2.25). �

3 General Stability Result

In this section, we state and prove our result. To achieve this, we define a Lyapunov
functional L and show that it is equivalent to the energy functional E .

Lemma 3.1 For N sufficiently large, the functional defined by

L(t) := NE(t) + 4ρ

β
F1(t) + F2(t) + N1F3(t) + N2F4(t), (3.1)

where N1 and N2 are positive real numbers to be chosen appropriately later, satisfies

c3E(t) ≤ L(t) ≤ c4E(t), ∀t ≥ 0, (3.2)

for two positive constants c3 and c4.

Proof It follows that

|L(t) − NE(t)| ≤ 4cρ

β

∫ 1

0

∣∣∣∣θ
∫ x

0
ut (y, t)dy

∣∣∣∣ dx + ρ

∫ 1

0

∣∣∣∣ux
∫ x

0
ut (y, t)dy

∣∣∣∣ dx

+J N1

∫ 1

0

∣∣∣∣φt

∫ t

0
g(t − s)(φ(t) − φ(s))ds

∣∣∣∣ dx

+J N2

∫ 1

0
|φtφ|dx + bρ

μ
N2

∫ 1

0

∣∣∣∣φ
∫ x

0
ut (y)dy

∣∣∣∣ dx .

Exploiting Young’s, Poincaré, and Cauchy-Schwarz inequalities, we obtain

|L(t) − NE(t)| ≤ c1

∫ 1

0

(
u2t + φ2

t + φ2
x + u2x + φ2 + θ2

)
dx + c1g ◦ φx .

Using (2.5), we obtain

|L(t) − NE(t)| ≤ c1E(t),
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that is

(N − c1)E(t) ≤ L(t) ≤ (N + c1)E(t).

By choosing N large enough, (3.2) follows. �
Next, we state and prove the main result of this section.

Theorem 3.2 Let (u0, φ0, θ0) ∈ H1∗ (0, 1) × (
H1
0 (0, 1)

)2
and (u1, φ1) ∈ (

L2(0, 1)
)2

be given. Assume (H1) and (H2) hold. Then, there exist positive constants λ1 and λ2
such that the energy functional given by (2.1) satisfies

E(t) ≤ λ1e
−λ2

∫ t
0 ζ(s)ds, ∀t ≥ 0. (3.3)

Proof By differentiating (3.1), recalling (2.2), (2.6), (2.14), (2.15), (2.25), and letting

ε1 = βμ

16ρ
, ε3 = ρ

2N2

we obtain

L′(t) ≤ − [κN − c1N1 − c1N2 − c1]
∫ 1

0
θ2x dx − ρ

2

∫ 1

0
u2t dx

−
[μ

4
− ε2N1

] ∫ 1

0
u2xdx −

[
Jg0
2

N1 − c1N2 (1 + N2) − c1

] ∫ 1

0
φ2
t dx

−
[
l

2
N2 − ε2N1

] ∫ 1

0
φ2
xdx − [ξ1N2 − ε2N1 − c1]

∫ 1

0
φ2dx

+
[
N

2
− c1N1

]
g′ ◦ φx + c1

[
N2 + N1

(
1 + 1

ε2

)]
g ◦ φx .

We choose N2 large enough such that

α1 = ξ1N2 − c1 > 0,

then we choose N1 large enough such that

α2 = Jg0
2

N1 − c1N2 (1 + N2) − c1 > 0.

Next, we pick ε2 small enough such that

ε2 < min

(
α1

N1
,

μ

4N1
,
lN2

2N1

)
,

consequently, we obtain

α3 = l

2
N2 − ε2N1 > 0, α4 = μ

4
− ε2N1 > 0, α5 = α1 − ε2N1 > 0.
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Finally, we choose N large enough such that (3.2) remains valid and

α6 = κN − c1N1 − c1N2 − c1 > 0, α7 = N

2
− c1N2 > 0.

So, we arrive at

L′(t) ≤ −α6

∫ 1

0
θ2x dx − ρ

2

∫ 1

0
u2t dx − α4

∫ 1

0
u2xdx − α2

∫ 1

0
φ2
t dx − α3

∫ 1

0
φ2
xdx

−α5

∫ 1

0
φ2dx + α7g

′ ◦ φx + c1g ◦ φx . (3.4)

On the other hand, from (2.1), using Young’s and Poincaré’s inequalities, we obtain

E(t) ≤ 1

2

∫ 1

0

[
c1θ

2
x +ρu2t +(μ + b)u2x +

(
δ−

∫ t

0
g(s)ds

)
φ2
x + (ξ + b)φ2 + Jφ2

t

]
dx+ 1

2
g ◦ φx

≤ c1

∫ 1

0

[
θ2x + u2t + u2x + φ2

x + φ2 + φ2
t

]
dx + 1

2
g ◦ φx

which implies that

−
∫ 1

0

[
θ2x + u2t + u2x + φ2

x + φ2 + φ2
t

]
dx ≤ −c′E(t) + c′′g ◦ φx . (3.5)

The combination of (3.4) and (3.5) gives

L′(t) ≤ −k1E(t) + k2(g ◦ φx )(t), ∀t ≥ t0, (3.6)

for some positive constants k1 and k2. By multiplying (3.6) by ζ(t) and using (H2)
and (2.2), we arrive at

ζ(t)L′(t) ≤ −k1ζ(t)E(t) − 2k2E
′(t), ∀t ≥ t0,

which can be rewritten as

(ζ(t)L(t) + 2k2E(t))′ − ζ ′(t)L(t) ≤ −k1ζ(t)E(t), ∀t ≥ t0.

Using the fact that ζ ′(t) ≤ 0,∀t ≥ 0, we have

(ζ(t)L(t) + 2k2E(t))′ ≤ −k1ζ(t)E(t), ∀t ≥ t0.

By exploiting (3.2), it can easily be shown that

R(t) = ζ(t)L(t) + 2k2E(t) ∼ E(t). (3.7)
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Consequently, for some positive constant λ2, we obtain

R′(t) ≤ −λ2ζ(t)R(t), ∀t ≥ t0. (3.8)

A simple integration of (3.8) over (t0, t) leads to

R(t) ≤ R(t0)e
−λ2

∫ t
t0

ζ(s)ds
, ∀t ≥ t0. (3.9)

Using (3.7) for some positive constant λ̃1, we obtain,

E(t) ≤ λ̃1e
−λ2

∫ t
t0

ζ(s)ds
, ∀t ≥ t0. (3.10)

Consequently, (3.3) is established by virtue of the continuity and boundedness of E
and ζ . In other words, since E(t) ≤ E(t0) ≤ E(0), ∀t ≥ t0 > 0, we get

E(t) ≤ λ̃1E(0)eλ2
∫ t0
0 ζ(s)dse−λ2

∫ t
0 ζ(s)ds, ∀t ≥ t0 > 0.

Consequently, by taking λ1 = λ̃1E(0)eλ2
∫ t0
0 ζ(s)ds we obtain (3.3). �

Remark 3.3 The result given by Theorem 3.2 shows that the memory term together
with the heat effect is strong enough to uniformly stabilize the systemwithout imposing
the condition of equal wave of speeds. This same result was obtained by Apalara [27]
for equivalent Timoshenko system.

3.1 Example

Now, we give two examples to illustrate the energy decay rates obtained by Theorem
3.2. Given that τ, γ > 0 with τ < γ δ.

(1) If g(t) = τe−γ t , then

E(t) ≤ c0e
−γ c1t , ∀t ≥ 0.

(2) If g(t) = τ
(1+t)γ+1 , then

E(t) ≤ c0
(1 + t)(γ+1)c1

, ∀t ≥ 0.
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6. Ieşan, D., Quintanilla, R.: A theory of porous thermoviscoelastic mixtures. J. Thermal Stresses 30(7),

693–714 (2007)
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