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Abstract

In this work, we consider a one-dimensional porous thermoelastic system with memory
effects. We prove a general decay result, for which exponential and polynomial decay
results are special cases, depending only on the kernel of the memory effects. Our
result is established irrespective of the wave speeds of the system. The result obtained
is new and improves previous results in the literature.
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1 Introduction

Elastic materials with voids have stimulated a lot on interest in recent years and many
results have been published, most notably in the area of petroleum industry, material
science, soil mechanics, foundation engineering, powder technology, and biology. It is
widely known that an extension of the classical elasticity theory to porous media was
established by Goodman and Cowin [1]. They introduced the concept of a continuum
theory of granular materials with interstitial voids. In addition, Nunziato and Cowin [2]
introduced the concept that the materials with voids possess a microstructure with the
property that the mass at each point is obtained as the product of the mass density of the
material matrix by the volume fraction. Later, Iegan [3,5], and Iesan and Quintanilla
[6] added the temperature as well as the microtemperature elements to the theory. For
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extensive discussion on these materials, we refer interested reader to [7]-[10] and the
references therein.

In this work, we are concerned with the asymptotic behavior of the solution of
porous thermoelastic system with memory effects

ol — pxx — by + o =0,
t

St — 8¢Pxx + buy +E¢ —mo +/ 8t — $)xx(x, 5)ds =0,
0

O — kOxy + ,Butx +me; = 0,

u(x,0) =uo(x), u/(x,0) =ui(x),

$(x,0) = do(x), ¢1(x,0) = ¢1(x), 0(x,0) =6p(x),

Uy (0,1) = ux(1,t) = ¢0,1) = ¢(1,t) =6(0,t) =0(1,1) =0, (1.1)

where (x, 1) € (0, 1) x [0, +00), u is the longitudinal displacement, ¢ is the volume
fraction of the solid elastic material, 6 is the temperature difference, ug, u1, ¢o, ¢1, 6o
are given initial data, and p, u, J, 8, &, m, c, k, B are constitutive constants which are
positive. Furthermore, the constants  and & satisfy u& > b%, where b # 0 is a real
number. The integral represents the memory effect and g is the relaxation function
satisfying the following:

(H1) g:R; — R, isa C! decreasing function satisfying

(@]
g0 =0 5- [ gas=1>0,
0
(H2) There exists a nonincreasing differentiable function ¢ : Ry — R satisfying

g <—t(mg), t=0.

The basic evolution together with the constitutive equations, for one-dimensional the-
ories of porous materials, with memory effect is

PU = TX5 J¢l‘l = HX +Ga ,0T07)t = {x, (12)
and
t
T =puy+bp—p60, H=5p, — / g(t — s)pyds,
0
n=cl+ Buy+mop, q=kO0,, G=—buy—E&Ep+mb, (1.3)
respectively. Here, 7 is the entropy, T is the stress tensor, H is the equilibrated stress
vector, G is the equilibrated body force, g is the heat flux vector, and Ty is the absolute
temperature in the reference configuration. By substituting (1.3) into (1.2), we obtain

the first three equations in (1.1).
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The asymptotic behavior of system (1.1) has been considered in the literature with
various types of dissipative mechanisms. We first mention the case where the memory
term in (1.1) is replaced with a porous dissipation. That is

PU = UUxx +b¢x _.39)0 X € (07 L), r> Ov
S = 8¢pxx —bux —§¢p+mb —t¢,  x€(0,L), t >0,
cby = kbOyy — Buy, — may, xe€(0,L), t >0. (1.4)

Casas and Quintanilla [11] considered (1.4) and used the semigroup theory together
with the method developed by Liu and Zheng [12] to establish the exponential decay
of the solutions. Whereas in absence of porous dissipation (r = 0), the same authors
showed in [13] that the heat effect alone is not strong enough to exponentially sta-
bilize the system. However, the heat effect together with microtemperature produced
an exponential decay result. Similarly, when = 0 and yu,y, is added to the first
equation in (1.4), Pamplona et al. [14] proved that the system lacks exponential sta-
bility, however, by taking some regular initial data, a polynomial stability is obtained.
Also, for T = 0, Soufyane et al. [15] considered (1.4) with some boundary controls
and obtained a general decay result, from which the usual exponential and polynomial
decay rates are just special cases.
In the absence of the heat effect, (1.4) becomes

PUs = lxx + by, xe€(©,L), t >0,
SO =8¢xx —buy —5¢p —1¢;,  x€(0,L), 1>0. (1.5)

Quintanilla [16] considered (1.5) and proved that the porous dissipation is not strong

enough to bring about an exponential decay. However, Apalara [17] considered the

same system and proved that the system is exponentially stable provided the wave

speeds of the two systems are equal. Equivalently, Apalara [18] replaced the porous
t

dissipation in (1.5) with a memory term of the form gt — $)pxx(x, s)ds and

obtained a general decay result depending on the kernel gf the memory term and the
wave speeds of the system. We refer reader to [19]-[23] and the references therein for
more results.

Obviously, when © = b = & and m = g then (1.1) is equivalent to the following
Timoshenko system

puy — (U + ¢x), + B0y =0,
t
J Pt — 8Py + 1 (uy + @) — BO +/0 gt — )y (x,s)ds =0,
P30y — kbxx + Blux +¢)r = 0. (1.6)

In the absence of memory term (g = 0), Almeida Junior et al [24] considered (1.6)
and proved that the system is exponentially stable if and only if
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) (1.7)
o J

holds. Prior to the results in [24], Messaoudi and Fareh [25,26] considered (1.6) with
initial data and fully Dirichlet boundary conditions and established some general decay
results depending on (1.7) and the kernel g of the memory term. In other words, the
viscoelastic dissipation given by the memory term is not strong enough to neutralize
the condition of equal wave speeds required to obtain an exponential decay result
as established in [24]. However, Apalara [27] recently proved that the memory term
together with the heat effect is strong enough to uniformly stabilize system (1.6)
without imposing condition (1.7).

The main question which can be asked here is the following: Is the memory term
together with the heat effect strong enough to exponentially stabilize system (1.1)
irrespective of the wave speeds as in [27] for Timoshenko system? The aim of the
present work is to give a positive answer to the question by considering (1.1) and
establish a general stability result without imposing (1.7). Our result depends only on
the kernel g of the memory term. Meanwhile, from (1.1) and the boundary conditions,
it follows that

2

1
@/0 u(x,t)dx =0. (1.8)

So, by solving (1.8) and using the initial data of u, we obtain

1 1 1
/ u(x,t)dx = t/ ui(x)dx + / uo(x)dx.
0 0 0

Consequently, if we let

1 1
ulx,t) =u(x,t) —t/ uy(x)dx — / ugp(x)dx,
0 0
we obtain
1
/ u(lx,t)dx =0, Vt=>0.
0

Consequently, the use of Poincaré’s inequality for u is justified. Furthermore, simple
substitution shows that (i, ¢, 0) satisfies system (1.1) with initial data for & given as

1

1
uo(x) = up(x) —/ ug(x)dx and wi(x) = uy(x) —/ u(x)dx.
0

0

Henceforth, we work with u instead of u but write u for simplicity of notation.
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For the well-posedness result, we consider the following space
1
H0, H)=H'0, 1) N L2(0, 1), where L2(0, 1)={u e L*0,1) | f u(x)dx:O}
0

and state without proof the following result.

Proposition 1.1 Let (uo, ¢o, 60) € H1(0, 1)x (H. (0, 1)) and (uy, ¢1) € (L*©, 1))’
be given. Assume that (H1) and (H2) are satisfied, then problem (1.1) has a unique
global solution (u, ¢, 0) which satisfies

ueCRy, H(0,1)) NC' (R, L0, 1)), ¢ € C(Ry, HL(0, 1))
NC' (R, L*(0, 1)), 0 € C(Ry, HJ (0, 1)).

Moreover, if (1o, do,60) € H2(0,1) N HL0,1) x (H*0, 1)N HL(0,1))’ and
(uy, ¢) € H},} 0,1) x Hé (0, 1) then the solution satisfies

ueCRy, HX0,1) N H O, ) N C Ry, H' (0, 1)) N C*(R,, L*(0, 1)),
¢ € C(Ry, HX(0, 1) N HL (0, 1)) N C (R, HI (0, 1)) N C*(Ry, L0, 1)),
6 € C(Ry, H*(0, 1) N H (0, 1)) N CL(Ry, HJ (0, 1)).

Remark 1.2 The proof can be established using the Galerkin method.
The rest of our paper is organized as follows. In Sect. 2, we state and prove some

technical lemmas. In Sect. 3, we state and prove our stability result. We use ¢ through-
out this paper to denote a generic positive constant.

2 Technical Lemmas

In this section, we state and prove some technical lemmas needed in the proof of our
stability result.

Lemma 2.1 Under assumptions (H1) and (H2), the energy functional E, defined by

1 1 t
E()= 5 / [pu?+uu§+f¢,2 + ce2+(5 - / g(s)ds) R 2bux¢] dx
0 0
1
+§g o ¢y, 2.1
satisfies

1 1 1 1
E'(t) = —K/O 02dx + Eg/ oy — E,g(t)/o $2dx <0, (2.2)
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1438 T.A. Apalara

where

1 pt
(g0 ¢u)(1) = /0 fo g(t — $)(¢x (1) — hx(5)) dsdx.

Proof Multiplying the first three equations of (1.1) by u,, ¢y, and 6, respectively,
integrating by parts over (0, 1), and using the boundary conditions, we obtain

1d !
——/ [W? + i+ JG] 4 c0% + 567 + E¢7 + 2bux¢] dx
2dt Jo
1 t
- / bxt f gt — 5)¢x (s)dsdx
0 0

1
=—« f 62dx. (2.3)
0

The last term in the left hand side of (2.3) is estimated as follows.

1 t 1 t
- /0 . /0 g(t — 5)y (s)dsdx = /0 . /0 g(t — $)(@a () — o (s))dsdx

' I
—/ g(s)dS/ Pxpixdx
0 0

1d 1d [! ry 1, 1 b
=5—80¢r —5— | g(s)ds ; ¢rdx — S8 0 dr + 58(0) ; ¢rdx. (2.4)

2 dt C2dr o
The substitution of (2.4) into (2.3), bearing in mind (2.1), yields (2.2). O

Remark 2.2 The energy functional E (¢) defined by (2.1) is nonnegative. In fact, it can
easily be verified that

2 2
/Lu)% +2bux¢+€¢2 = % |:,u, ("‘x + %d’) +& <¢+ —ux>

So, using the fact that u& > b%, we obtain

2 2
Wi + 2+ £0 > [(u— b—) uy + (s - b—) ¢2] > 0.
2 £ "

Consequently,

1 t

>3 [ [pu%+mu§+f¢?+c92+<8— | g(s)ds) ¢§+sl¢2} drt 3800
0 0

(2.5)
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b? b
where 21 :,u—?>03nd2§1 =§-——>0.
m

Lemma 2.3 The functional

1 X
Fi(t) .= —c/ % </ u;(y, t)dy) dx
0 0

satisfies, along the solution of (1.1), for any &1 > 0, the estimate

1
Fl(t)<——/ 2dx+8]/ (u +¢ )dx—l—q/ (/)tzdx—i—C] <1+ 1)/ 9§dx.
0

(2.6)

Proof Direct computations using (1.1) yield

1
Fl(t) = —ﬂf u%dx+xf 9 utdx+—/ 62dx — C—f Ouydx
——f qudx—i—m/ & (/ u,(y,t)dy) . @7

By Young’s inequality, for any £; > 0, we obtain

1 g [l 2 !
Kf Oyudx < —/ utzdx + —/ Qfdx (2.8)
0 4 Jo B Jo
I 1 2.2
~E udx < 81/ wldx + 2 / 02dx (2.9
P Jo 0 4p%e
b 2b2 1
@ 9¢dx < 51/ ¢2dx + — / 62dx (2.10)
P 4pZer Jo
1 X /3 1 X 2 m2 1
m/ R (f ur(y, t)dy) dx < —/ (/ us(y, t)dy) dx + —/ ¢12dx.
0 0 4 Jo \Jo B Jo
@2.11)

The combination of (2.7)—(2.11) yields

1
Fl(t)<__/ u?dx +—/ 2dx+€1/ uldx + ¢ <1+8l)/ 62dx
1/ Jo
2 m 2 p * g
+81/ ¢ dx—}-—/ qb,dx—i——/ </ u;(y,t)dy) dx. (2.12)
0 B Jo 4 Jo \Jo
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By Cauchy-Schwarz inequality, it is clear that

X 2 1
(/ ur (y, t)dy) < (/ ufdx>
0 0

By substituting (2.13) into (2.12), and using Poincaré’s inequality, we obtain (2.6). O

2

1
< / u?dx. (2.13)
0

Lemma 2.4 The functional

1
F (1) = ,0/ uu,dx
0
satisfies, along the solution of (1.1),
w ! 1
Fy(1) < ——/ uidx—i—p/ u?dx
2 Jo 0
1 1
+c1 / >dx + ¢ / 02dx. (2.14)
0 0

Proof By taking a derivative of F3, using (1.1), and then integrating by parts, we
obtain

1 1 1 1
Fy(1) = —M/ ufcdx+p/ u%dx—bf ux¢dx+,3/ u,Odx.
0 0 0 0

Using Young’s and Poincaré’s inequalities as in the proof of Lemma 2.3, we obtain
(2.14). O

Lemma 2.5 The functional

1 t
Fat) = —J /0 ¢ /0 g(t — $)(@(1) — p(s))dsdx

satisfies, for some fixed to > 0 and for any gy > 0, the estimate

J 1 1 1
F(t) < —%/0 ¢t2dx+82/0 (u§+¢2+¢§)dx+c1/0 62dx
1
+ci <1+g)g°¢x —c18 o ¢, (2.15)

1o
where gg =/ g(s)ds.
0
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Proof Differentiating F3, taking into account (1.1), and using integrating by parts
together with the boundary conditions, we obtain

ity = —J /Otg(s)ds [01 prdx —J /01 o /Ot ¢/t — )(@(1) — p(s)dsdx
+3 fo 5 fo 40t — )@ (t) — de())dsdx
—m fol 6 /0 4t — )@ (0) — $(5))dsdx
+b/0l e /Otga — G0 — ¢ (5))dsdx
+$/Ol¢>/0tg(t—S)(¢(t) — ¢ (s))dsdx
- /0 1 /0 gt — ) (5)ds /0 gl — )(@(0) — dee)dsdr.  (216)

Now, we estimate the terms in the right-hand side of (2.16), using Young’s, Cauchy-
Schwarz, and Poincaré’s inequalities, and the fact that

t
f g(s)ds <8 —1>0. (2.17)
0

So, for any §1, &2 > 0, we obtain

1 '
I = —J/O ¢tf0 gt —5)(P(t) — ¢(s))dsdx
1 J 1 t 2
< J& / pidx + —— (/ gt —s)(p@) — ¢(S))dS> dx
0 461 Jo \Jo
1 J 1 t t
< 151/ prdx + </ —g/(S)dS)/ —g/(t — $)(p(t) — P (s))*dsdx
0 451 Jo \Jo 0

1
< J&f ¢Zdx — %g/ o ¢x, (2.18)
0

1 t
I = 5/0 %/0 gt — 5)(hx (1) — ¢x(s))dsdx
2

& 1 52 1 t
< —/ ¢pldx + — (/ gt —s)(x(t) — ¢x(S))dS> dx
2 Jo 2e2 Jo \Jo

& 1 32 t 1 t
<= / ¢ldx + — / g(s)ds / / gt — $)(px (1) — dx(5))*dsdx
2 Jo 22 Jo 0 Jo

IA

1
& C
_2/ 62dx + g o ¢, (2.19)
2 Jo €
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1442 T.A. Apalara

Similar to I, we have

1 t 1
I3 =b/ ux/ g(t — ) (P (1) — Pp(s))dsdx < 82/ udx + eoge, (220)
0 0 0 &2
1 t 1 5 c
Iy ZEf ¢/ gt —s)(@@) — ¢ (s))dsdx < 82/ ¢7dx + —gogy, (221)
0 0 0 &

I m [ m
Is = —m/ 9/ gt —s)(@(t) — ¢ (s))dsdx < —/ 0%dx + —go ¢,
0o Jo 2 Jo 2

1
< / 02dx + c1g o ¢y, (2.22)
0

1 t t
—fo /0 g —S)¢X(S)dS/0 gt — 5)(hx (1) — ¢x(s))dsdx

t 1 t
= —/ g(S)dS/ ¢x/ gt — 5)(Px (1) — ¢y (s))dsdx
0 0 0

2

1 t
+ / ([ (t—s)(qax(t)—qsx(s))ds) dx
2 1 t 2
/ $2dx +—( / g(s)ds) /O ( /0 g(r—s>(¢x<r>—¢x(s>>ds> d
2

+f0 (/0 g(t—S)(¢x(t)—¢x(S))dS> dx

1
& C
=< —2f $2dx + g o ¢y (2.23)
2 Jo L)

Since the function g is positive, continuous and g(0) > 0, then, for any ¢ > 7y > O,
we have

t 1
/ g(s)ds = / T e()ds = go. (2.24)
0 0

By substituting (2.18)—(2.23) into (2.16), and bearing in mind (2.24), we obtain
1 1 1
Fj(t) <—Jlg — 31]/ P2dx + 82/ W? + ¢ + ¢Hdx + ¢ / 62dx
0 0 0
1 c ,
c\l+—)godc— —& ooy,

€ 31

for all t+ > ty. By letting ; = %, we obtain (2.15). O
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Lemma 2.6 Let (u, ¢, 0) be the solution of (1.1). Then the functional

1 b,O 1 X
R0 = [ aoax+ 22 [Co [Cuayex
0 n Jo 0
satisfies, for any €3 > 0, the estimate
/ Lt by ' 1 by
Fit) < —= ¢dx — & ¢-dx + &3 updx +c |14+ — ¢;dx
2 Jo 0 0 €3/ Jo
1
+c / 02dx + c1g o ¢y (2.25)

0

Proof Direct differentiation of Fy4, using (1.1) and integration by parts, yields

1 1 b2 1 bp 1 X
Fi = =5 [ gacrs | ¢?dx—(s——) | a2 [Cor [z
0 0 w 0 Mmoo Jo 0
ﬂb 1 1 t
+ <m — —)/ ¢Odx +/ d)x/ g(t — s)px(s)dsdx. (2.26)
w 0 0 0

In what follows, we use Cauchy-Schwarz and Young’s inequalities, for §3 > O.

2 1
<m—'8—b>/ ¢pOdx <82/ ¢2dx+ (m—ﬂ—b) L/ 62dx,
w/) 48 Jo
x 2
f ¢,/ ut<y>dydx<83/ (/ u,<y,r)dy) dx+( p) / g2,
0 ) des

(2.27)

by using (2.13), we obtain

bo (! * ! 2 e ! 2
— | ¢ | w(dydx <e3 [ uydx+— [ ¢;dx, (2.28)
mJo 0 0 €3 Jo
1 '
/0 ¢x/(; g(t — 5)¢y(s)dsdx

t 1
= / g(s)dsf qz’)fdx
0 0

1 t
—/0 ¢x/0 gt —5)(¢x(t) — Px(s))dsdx

t 1 t
< (53 +f g(s)ds> P2dx + L (/ g(s)ds) gogy. (2.29)
0 0 453 \Jo
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1444 T.A. Apalara

By substituting (2.27)—(2.29) into (2.26), and using Young’s and Poincaré’s inequali-

ties together with (2.17) and the fact that 2§; = & — Z—z > Osince u& > b*and u > 0,
we arrive at

1 1 1
F,(t) < —(1—53)/ Prdx — (25 —52)/ ¢2dx+83/ uldx
0 0 0

1 1 c 1 c
+e <1 + —) / $2dx + —1/ 02dx + g o ¢y (2.30)
&3 0 8 Jo 33

l
By taking 63 = 5 and 6, = &1, we obtain estimate (2.25). O

3 General Stability Result

In this section, we state and prove our result. To achieve this, we define a Lyapunov
functional £ and show that it is equivalent to the energy functional E.

Lemma 3.1 For N sufficiently large, the functional defined by
4p
L():=NE(@)+ ?Fl(t) + F(t) + N1 F3(t) + N Fa(t), 3.1
where N1 and N; are positive real numbers to be chosen appropriately later, satisfies

c3E(t) < L(t) < cyE(1), vVt >0, (3.2)

for two positive constants c3 and c4.

Proof 1t follows that

dx

1
dx-l-p/
0

t
¢z/0 gt =) (@) — P(s))ds

X
Uy fo u;(y, Hydy

1 X
L) — NE(@)| = 2P / o / s (v, 1)dy
B Jo 0

1
v [
0

1 b,O 1
+IN2 | |¢ipldx + —No
0 2 0

dx

dx.

X
6 [ woay
0
Exploiting Young’s, Poincaré, and Cauchy-Schwarz inequalities, we obtain
1
IL(t) — NE(t)| < c1 / (u,2 SR+ o2+ ud ¢+ 92) dx 4 c12 0 ¢y
0

Using (2.5), we obtain

|L(t) = NE@)| < c1E(0),
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that is
(N—=c)E(t) <L) < (N+c)E@®).

By choosing N large enough, (3.2) follows. O
Next, we state and prove the main result of this section.

Theorem 3.2 Let (g, do, 60) € HL(0, 1) x (HL (0, 1))’ and (uy, ¢1) € (L2(0, 1))’
be given. Assume (H1) and (H2) hold. Then, there exist positive constants A1 and \y
such that the energy functional given by (2.1) satisfies

E(t) < he 2l t®ds vy > g (3.3)
Proof By differentiating (3.1), recalling (2.2), (2.6), (2.14), (2.15), (2.25), and letting

Bu o
PR P

1 Tep N,

we obtain

1 1
L'(t) < —[kN —cNy —c Ny — cl]/ 62dx — g/ u?dx
0 0

- 1 1
J
— %—sgNl]f u}%dx— [%Nl —C1N2(1+N2)—Cli|f ¢t2dx
L 0 0

Ji 1 1
- ENZ — 82N1}/ ¢Zdx — [E1N2 — e2Ny — 01]/ ¢*dx
0 0

N 1
+ 5—61N1]8/0¢x+61 [N2+N1 <1+8—>]g°¢x~
2

We choose N, large enough such that
@ =§N—c1 >0,
then we choose Nj large enough such that

Jgo
ay = TNI —ciNo(14+ Ny) —cyp > 0.

Next, we pick &2 small enough such that

. o] 2 IN;
& <min|—, —, — |,
N1 4N; 2N,

consequently, we obtain

l
Ol3=§N2—82N1>0, (X4=%—82N1 >0, as=o; —&N; >0.
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1446 T.A. Apalara

Finally, we choose N large enough such that (3.2) remains valid and
N
og=kN —ciN;y —ciNy —c1 >0, a7= z—clNz > 0.

So, we arrive at

! ! ! 1 1
L'(1) < —a6/ 02dx — g/ uZdx — a4/ uldx — ag/ $>dx — oz3/ $2dx
0 0 0 0 0

—as /0 ' $dx+arg o g +arg ot (3.4
On the other hand, from (2.1), using Young’s and Poincaré’s inequalities, we obtain
EO = /0' [C19,3+W,2+(M + byl + (8—/; g(s)ds) 92 + (& + b)g? + J¢?] dvt 3800,
< ¢ [)1 [0 + u? + u? +¢§+¢2+¢[2]dx+%go¢x

which implies that

1
- / [93 Ui +ul + ¢+ 0+ ¢,2] dr < —CE@®) +c"goge.  (3.5)
0
The combination of (3.4) and (3.5) gives

L'(1) < —k1E(1) + ka(g 0 o) (1), ¥Vt = 1o, (3.6)

for some positive constants k1 and k. By multiplying (3.6) by ¢(¢) and using (H2)
and (2.2), we arrive at

COL(1) < —kig(E®) — 2k E'(1), V1 = 10,
which can be rewritten as
COLE) +2kEM®) — ' (L) < —kig(E®), Y1 > 1.
Using the fact that ¢/(z) < 0, V¢ > 0, we have
(COL@) + 2k E(1) < —kiZ(DE(1), VYt > 1.
By exploiting (3.2), it can easily be shown that
R(t) = ¢()L(t) + 2k E(r) ~ E(1). (3.7)
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Consequently, for some positive constant 1, we obtain
R'(1) < =2iOR@), Vi =10, (3-8)

A simple integration of (3.8) over (7, t) leads to

R@t) < Rig)e 2 oO% v > ¢, (3.9)

Using (3.7) for some positive constant 5\1 , we obtain,

~ — t o o
E(t) < e 2o tO% yp > g, (3.10)

Consequently, (3.3) is established by virtue of the continuity and boundedness of E
and ¢. In other words, since E(t) < E(tp) < E(0), Vt >ty > 0, we get

E(t) < I E(Q)e 7 800 g 2 [ie0ds -y > 4 o g,

Consequently, by taking 1| = A1 E(0)e”? J3 £6)45 we obtain (3.3). O

Remark 3.3 The result given by Theorem 3.2 shows that the memory term together
with the heat effect is strong enough to uniformly stabilize the system without imposing
the condition of equal wave of speeds. This same result was obtained by Apalara [27]
for equivalent Timoshenko system.

3.1 Example

Now, we give two examples to illustrate the energy decay rates obtained by Theorem
3.2.Given that 7, y > O with 7 < y$4.

(1) If g(t) = e~ 7!, then
E(t) <coe Y, Vir>0.
2) Ifg@r) = m, then

co

E@t) = RETCEEER Vi = 0.
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