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1 Introduction

Investigation of fixed point and related problems has been a wide area of research of
many mathematicians in the last few decades. Hundreds of results have been obtained
for mappings in various settings and under various conditions.

Pata-type inequalities are a recent introduction in fixed point theory. It was initiated
in a paper of V. Pata [33] in which he proved a result that appeared to be stronger than
Banach Contraction Principle, even (in some cases) than the well-known Boyd–Wong
fixed point theorem. The inequality in this case is not a single one; instead, it is a
group of inequalities which is obtained by varying a parameter over a certain range.
At the same time, any single inequality obtained by fixing the parameter to a certain
value is not sufficient to imply the existence of a fixed point. A new methodology
was introduced in [33] to ensure that fixed points of such mappings exist. This result
inspired several researchers to obtain further fixed point, cycled-type fixed point, com-
mon fixed point, coupled fixed point and other types of fixed point theorems, both for
single-valued and for multivalued mappings in various types of spaces.

In this paper, we present some of the mentioned results (mostly skipping the proofs
which can be found in respective papers), including examples showing that they are
stronger than some other known ones. Comments on somemisinterpretations of Pata’s
result are also included.

2 Basic Pata-Type Results

Throughout this paper (except Sect. 7), (X , d) will be a complete metric space and a
point x0 ∈ X will be fixed (sometimes it will be called “the zero of X”). For x ∈ X ,
we will denote ‖x‖ = d(x, x0). It will be clear that the obtained results do not depend
on the particular choice of point x0. Also,Ψ will denote the set of increasing functions
ψ : [0, 1] → [0, ∞), continuous at zero, with ψ(0) = 0.

In the paper [33], Pata obtained the following interesting refinement of the classical
Banach Contraction Principle.

Theorem 1 [33, Theorem 1] Let Λ ≥ 0, α ≥ 1, and β ∈ [0, α] be some constants
and ψ ∈ Ψ . Let f : X → X be such that for every ε ∈ [0, 1] and all x, y ∈ X,

d( f x, f y) ≤ (1 − ε)d(x, y) + Λεαψ(ε)
[
1 + ‖x‖ + ‖y‖]β. (1)

Then f has a unique fixed point z ∈ X. Furthermore, the sequence { f nx0} converges
to z.

Chakraborty and Samanta [9], resp. Kadelburg and Radenović [26], resp. Jacob et
al. [21] extended Theorem 1 to the case of Kannan-type, resp. Chatterjea-type, resp.
Zamfirescu-type contractive condition, as follows.

123



A Survey of Fixed Point Theorems Under Pata-Type Conditions 1291

Theorem 2 [9,21,26] LetΛ ≥ 0,α ≥ 1 and β ∈ [0, α] be some constants andψ ∈ Ψ .
Let f : X → X be such that the inequality

d( f x, f y) ≤ 1 − ε

2

[
d(x, f x) + d(y, f y)

]

+ Λεαψ(ε)
[
1 + ‖x‖ + ‖y‖ + ‖ f x‖ + ‖ f y‖]β, (2)

resp.

d( f x, f y) ≤ 1 − ε

2

[
d(x, f y) + d(y, f x)

]

+ Λεαψ(ε)
[
1 + ‖x‖ + ‖y‖ + ‖ f x‖ + ‖ f y‖]β, (3)

resp.

d( f x, f y) ≤ (1 − ε)max
{
d(x, y),

1

2
[d(x, f x) + d(y, f y)], 1

2
[d(x, f y) + d(y, f x)]

}

+ Λεαψ(ε)
[
1 + ‖x‖ + ‖y‖ + ‖ f x‖ + ‖ f y‖]β, (4)

is satisfied for every ε ∈ [0, 1] and all x, y ∈ X. Then f has a unique fixed point
z ∈ X.

As a sample, we provide the proof of the second mentioned statement.

Proof [26] Starting from the given x0, we introduce the sequences

xn = f xn−1 = f nx0 and cn = ‖xn‖.

The sequence d(xn+1, xn) is non-increasing, that is,

d(xn+1, xn) ≤ d(xn, xn−1) ≤ · · · ≤ d(x1, x0), (5)

for all n ∈ N. Indeed, putting ε = 0, x = xn , y = xn−1 in (3), we obtain (5).
Further, the sequence {cn} is bounded. In order to prove this, using (5), we deduce

the following estimate

cn = d(xn, x0) ≤ d(xn, xn+1) + d(xn+1, x1) + d(x1, x0)

≤ d(xn+1, x1) + 2c1 = d( f xn, f x0) + 2c1.

Therefore, we infer from (3) that

cn ≤ 1 − ε

2

[
d(xn, x1) + d(xn+1, x0)

]

+ Λεαψ(ε)
[
1 + ‖xn‖ + ‖xn+1‖ + ‖x1‖

]β + 2c1.
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1292 B. S. Choudhury et al.

Using d(xn, x1) ≤ d(xn, x0) + d(x0, x1), d(xn+1, x0) ≤ d(xn+1, xn) + d(xn, x0) and
(5), as β ≤ α, the previous inequality implies that

cn ≤ (1 − ε)(cn + c1) + Λεαψ(ε)[1 + 2cn + 2c1]α + 2c1.

Now,

[1 + 2cn + 2c1]α ≤ (1 + 2cn)
α(1 + 2c1)

α ≤ 2αcα
n (1 + 2c1)

α,

which implies that

cn ≤ (1 − ε)cn + aεαψ(ε)cα
n + b,

for some a, b > 0. Hence,

εcn ≤ aεαψ(ε)cα
n + b.

If there existed a subsequence {cnk } of {cn} such that cnk → ∞ as k → ∞, taking
ε = εk = (1 + b)/cnk would lead to a contradiction

1 ≤ a(1 + b)αψ(εk) → 0.

Now, we will show that limn→∞ d(xn+1, xn) = 0.
For all ε ∈ (0, 1] and for x = xn , y = xn−1, we have

d(xn+1, xn) = d( f xn, f xn−1)

≤ 1 − ε

2

[
d(xn, xn) + d(xn−1, xn+1)

]

+ Λεαψ(ε)
[
1 + 2‖xn‖ + ‖xn−1‖ + ‖xn+1‖

]β

≤ 1 − ε

2

[
d(xn−1, xn) + d(xn, xn+1)

] + K εψ(ε), K > 0. (6)

If limn→∞ d(xn+1, xn) = d∗ > 0, it follows from (6) that

d∗ ≤ Kψ(ε),

which implies that d∗ = 0, a contradiction.
In order to show that {xn}n∈N is a Cauchy sequence, suppose the contrary. In this

case, similarly as in [34, Lemma 2.1], we can chose δ > 0 and strictly increasing
sequences {mk}, {nk} of positive integers, such that the following sequences tend to δ

when k → ∞:

d(x2m(k), x2n(k)), d(x2m(k), x2n(k)+1), d(x2m(k)−1, x2n(k)),

d(x2m(k)−1, x2n(k)+1), d(x2m(k)+1, x2n(k)+1).
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Putting x = x2m(k)−1, y = x2n(k) in (3), we obtain

d(x2m(k), x2n(k)+1) ≤ 1 − ε

2

[
d(x2m(k)−1, x2n(k)+1) + d(x2m(k), x2n(k))

] + K εψ(ε),

(7)

where d(x2m(k), x2n(k)+1) → δ, d(x2m(k)−1, x2n(k)+1) → δ and d(x2m(k), x2n(k)) →
δ. Letting k → ∞ in (7), we obtain

δ ≤ Kψ(ε),

which implies that δ = 0, a contradiction.
Taking into account the completeness of (X , d), we can nowguarantee the existence

of some z ∈ X to which {xn} converges. It remains to show that z is a fixed point for
f .
For this, we observe that, for all n ∈ N and for ε = 0,

d( f z, z) ≤ d( f z, xn+1) + d(xn+1, z) = d( f z, f xn) + d(xn+1, z)

≤ 1

2

[
d(z, xn+1) + d( f z, xn)

] + d(xn+1, z).

Hence, d( f z, z) ≤ 1
2d( f z, z), that is, f z = z, which is the required result.

Finally, we prove the uniqueness of the fixed point. For any two fixed u, v ∈ X , we
can write (3) in the form

d( f u, f v) ≤ 1 − ε

2

[
d(u, f v) + d(v, f u)

] + K εψ(ε), K > 0.

If f u = u and f v = v, then

d(u, v) ≤ Kψ(ε),

for all ε ∈ (0, 1], which implies that d(u, v) = 0, that is, u = v. 	

Remark 1 There is a scope of misunderstanding with the inequality (1) in the work of
Pata and also in similar other inequalities like (2)–(4) in works incorporating the ideas
of Pata. Berinde noted in [7] that if the condition (1) is satisfied, not for all ε ∈ [0, 1],
but just for some specific values, the conclusion of Theorem 1 might not hold. For
example, if (1) holds just for ε = 0, then one has just the non-expansive condition

d( f x, f y) ≤ d(x, y), x, y ∈ X ,

which obviously does not imply the existence of fixed point. Similarly, if ε = 1, (1)
reduces to

d( f x, f y) ≤ L
[
1 + ‖x‖ + ‖y‖]β,
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with some constant L , which is also known to be insufficient for the existence of a
fixed point of f .

Similar conclusions hold for conditions (2)–(4).
From this observation, Berinde concludes that the Pata-type result is incorrect.

But this is not so. There is no contradiction between the above observations and
conclusions of the Pata-type theorems for the following reasons. As we have already
noted in the introduction, the Pata-type results are obtained for functions satisfying a
family of inequalities and any single inequality from the above-mentioned family will
not provide us with a sufficient condition for the existence of a fixed point. Had it been
so, then there is no need of considering a family of inequalities. Thus, the argument
of Berinde is not tenable.

Remark 2 It was shown already in [33] that Theorem 1 is strictly stronger than the
Banach Contraction Principle, even stronger than the Boyd–Wong fixed point result
[8] in the case when the underlying space (X , d) is unbounded (on the bounded space,
Pata’s and Boyd–Wong’s results are equivalent).

Indeed, suppose that

d( f x, f y) ≤ λ d(x, y)

holds for some λ ∈ [0, 1) and all x, y ∈ X . Further, we follow the procedure as in
[33, §3], only we write it with some details that were skipped in [33].

First of all, for arbitrary ε ∈ [0, 1], the last inequality implies that

d( f x, f y) ≤ (1 − ε)d(x, y) + (λ + ε − 1)d(x, y)

≤ (1 − ε)d(x, y) + (λ + ε − 1)(‖x‖ + ‖y‖).

We want to prove that there are some γ ≥ 0 and Λ ≥ 0 such that

(λ + ε − 1)(‖x‖ + ‖y‖) ≤ Λε1+γ (1 + ‖x‖ + ‖y‖)

holds for each ε ∈ [0, 1] and all x, y ∈ X . Indeed, this will be the case if one can find
Λ ≥ 0 such that

Λ ≥ λ + ε − 1

ε1+γ

holds for some γ ≥ 0 and each ε ∈ [0, 1]. By a routine procedure, it is easy to show
that this is the case if we chose γ such that γ

1+γ
> 1 − λ and then

Λ = γ γ

(1 + γ )1+γ

1

(1 − λ)γ
. (8)

Hence, the condition (1) is fulfilled with α = β = 1, γ ≥ 0 such that γ
1+γ

> 1 − λ,
ψ(ε) = εγ and Λ defined by (8).
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On the other hand, the following example shows that there exists a mapping
satisfyingPata’s condition andnot satisfyingBoyd–Wong’s one. (Recall that theBoyd–
Wong’s result guarantees the existence of fixed point of the mapping f : X → X if
there is an increasing continuous function � : [0,∞) → [0,∞) such that �(t) < t
for each t > 0 and

d( f x, f y) ≤ �(d(x, y)) (9)

for all x �= y.)

Example 1 [33] Let X = [1, ∞) and let f : X → X be defined by

f x = −2 + x − 2
√
x + 4 4

√
x .

It has a unique fixed point z = 1. For any given r > 0 and x ≥ 1, if

F(x, r) = 2[√x + r − √
x] − 4[ 4

√
x + r − 4

√
x],

then

| f (x + r) − f (x)| = r − F(x, r)

holds for all r and x . If there existed � satisfying the condition (9), then choosing any
r > 0 one would have a contradiction

r > �(r) ≥ lim
x→+∞[r − F(x, r)] = r .

On the other hand, for every ε ∈ [0, 1], one can prove that

−εr + ε2(2x + r)3/2 + F(x, r) ≥ F(x, r) − r2

4(r + 2x)3/2
≥ 0.

It follows that

| f (x + r) − f (x)| = r − F(x, r) ≤ (1 − ε)r + ε2(2x + r)3/2,

and the condition (1) of Theorem 1 is fulfilled.

Similar conclusions as presented in Remark 2 and Example 1 hold for other Pata-
type conditions.

3 Cyclic Fixed Point Results

Cyclic versions of the results of previous section were treated in [2,3,10,24]. As a
sample, we state the following theorem for cyclic generalized contractions from [24].
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Recall that Y = ⋃p
i=1 Ai is said to be a cyclic representation of Y ⊆ X w.r.t. the

mapping f : Y → Y if Ai , i = 1, 2, . . . , p, are non-empty closed subsets of Y and
f (Ai ) ⊆ Ai+1 for i = 1, 2, . . . , p (for j ∈ N, j > p, we always put A j := Ai ,
where j ≡ i (mod p) and 1 ≤ i ≤ p).

Theorem 3 [24] Let f : Y → Y , with Y = ⋃p
i=1 Ai being a cyclic representation of

Y w.r.t. f . Assume that there exist ψ ∈ Ψ and constants Λ ≥ 0, α ≥ 1 and β ∈ [0, α]
such that

d( f x, f y) ≤ (1 − ε)max
{
d (x, y) , d (x, f x) , d (y, f y) ,

d (x, f y) + d (y, f x)

2

}

+ Λεαψ(ε)
[
1 + ‖x‖ + ‖y‖ + ‖ f x‖ + ‖ f y‖]β (10)

holds for all ε ∈ [0, 1], i = 1, 2, . . . , p, x ∈ Ai and y ∈ Ai+1. Then f has a unique
fixed point z, it belongs to

⋂p
i=1 Ai , and the Picard iteration sequence { f nx1}n∈N

converges to z for any initial point x1 ∈ Y .

Example 2 [24] Let X = R be equipped with the standard metric and let

A1 =
{ 1

2n
: n ∈ N

}
∪ {0}, A2 =

{
− 1

2n − 1
: n ∈ N

}
∪ {0}, Y = A1 ∪ A2.

Define f : Y → Y by

f x =
⎧
⎨

⎩

− x

x + 4
, x ∈ A1,

− x

4
, x ∈ A2.

It is easy to see that Y = A1 ∪ A2 is a cyclic representation of Y w.r.t. f (with p = 2).
We will show that f satisfies the contractive condition of Theorem 3.

Indeed, let x ∈ A1 and y ∈ A2. Then

d( f x, f y) =
∣∣∣∣

x

x + 4
− y

4

∣∣∣∣ ≤ 1

4
(x + |y|) = 1

4
d(x, y)

≤ 1

4
max

{
d (x, y) , d (x, f x) , d (y, f y) ,

d (x, f y) + d (y, f x)

2

}

=: 1
4
F(x, y).

The rest of the procedure is similar to the one in Remark 2. It is enough to choose γ

such that γ
1+γ

> 1 − 1
4 and

Λ = γ γ

(1 + γ )1+γ

1

(1 − 1
4 )

γ
.
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Then we have

Λ ≥
1
4 + ε − 1

ε1+γ

and it easily follows that, for the chosen γ and Λ,

d( f x, f y) ≤ (1 − ε)max
{
d (x, y) , d (x, f x) , d (y, f y) ,

d (x, f y) + d (y, f x)

2

}

+ Λε1+γ
[
1 + ‖x‖ + ‖y‖ + ‖ f x‖ + ‖ f y‖],

for each ε > 0 and all x ∈ A1, y ∈ A2 or x ∈ A2, y ∈ A1. Thus, the conditions of
Theorem 3 are fulfilled (with α = β = 1 and ψ(ε) = εγ ), and the mapping f has a
unique fixed point (which is z = 0).

4 Pata-Type Fixed Point Results in OrderedMetric Spaces

Fixed point theory in metric spaces along with a partial order has developed rapidly in
recent years. Although an early result appeared in the work of Turinici [39] in 1986,
the actual development of this line of research took place following the publications
of the works of Ran and Reurings [35] and Nieto and Rodriguez-López [31]. For the
existence of fixed points, the various types of contractive inequality conditions to be
satisfied by the operators for pairs of points collected from the metric space can be
restricted to those pairs which are related by the partial order, and still not disturbing
the conclusions of the theorems. As a kind of compensation for this restrictive use of
contractive conditions, some condition is usually added to the mapping itself (e.g., its
monotonicity).

Following the above-mentioned ideas, many Pata-type results can be adapted to
ordered metric spaces (see, e.g., [23,26]). The following are some notions and defini-
tions.

Throughout the section, (X ,�, d) denotes a partially ordered metric space, i.e., a
triple where (X ,�) is a partially ordered set and (X , d) is a metric space.

For x, y ∈ X , x � y will denote that x and y are comparable, i.e., either x � y or
y � x holds.

Recall that the space (X ,�, d) is said to be regular if it has the following properties:

1. if for a non-decreasing sequence {xn}, xn → x as n → ∞, then xn � x for all n;
2. if for a non-increasing sequence {xn}, xn → x as n → ∞, then xn � x for all n.

Theorem 4 [23, Theorem 3.1] Let (X ,�, d) be a complete ordered metric space and
let Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be some constants and ψ ∈ Ψ . Let f : X → X be
a non-decreasing map such that there exists x0 satisfying x0 � f x0 and suppose that
the inequality (1) is satisfied for every ε ∈ [0, 1] and all x, y ∈ X with x � y. If f is
continuous or (X , d,�) is regular, then f has a fixed point z ∈ X. Moreover,

(1) the set of fixed points of f is a singleton if and only if it is totally ordered;
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1298 B. S. Choudhury et al.

(2) the set of fixed points of f is a singleton if for every two points u, v ∈ X there
exists w ∈ X, comparable with u, v and f w.

Remark 3 Theorem 4 is strictly stronger than Theorem 2.1 in [35]. On the one side,
the hypotheses of Theorem 2.1 [35] imply those of Theorem 4, which follows in the
same way as in Remark 2. On the other side, the example of function

f : [1, ∞) → [1, ∞); f (x) = −2 + x − 2
√
x + 4 4

√
x

(see Example 1) shows that condition (1) can be satisfied when Banach’s condition
is not. It is also an example of the situation when condition (2) for the uniqueness
of fixed point (in the previous theorem) is fulfilled (since the given space is totally
ordered).

Aswas already shown, some of the generalizations of Banach Contraction Principle
have their Pata-type versions. We shall present here a result of Pata-type for so-called
generalized contractions, in the “ordered” version.

Theorem 5 [23, Theorem 3.2] Let (X ,�, d) be a complete ordered metric space and
let Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be some constants and ψ ∈ Ψ . Let f : X → X be
a non-decreasing map such that there exists x0 satisfying x0 � f x0 and suppose that
the inequality (10) is satisfied for every ε ∈ [0, 1] and all x, y ∈ X with x � y. If f
is continuous or (X , d,�) is regular, then f has a fixed point z ∈ X. Moreover,

(1) the set of fixed points of f is a singleton if and only if it is totally ordered;
(2) the set of fixed points of f is a singleton if for every two points u, v ∈ X there

exists w ∈ X, comparable with u, v and f w.

Remark 4 Similarly as in the classical situation, treated in [36], it can be proved
that Theorem 5 contains as special cases several other Pata-type results in their
ordered versions. In particular, this includes Kannan, Chatterjea, Reich, Zamfirescu
and Hardy–Rogers results. The exact formulations and proofs are obvious.

5 Coupled and Tripled Fixed Point Results

Coupled fixed points are relatively new concepts in the study of fixed point theory
which originated in the work of Guo and Lakshmikantham [19]. It was after the
publication of the coupled contraction mapping principle by Gnana Bhaskar and Lak-
shmikantham [17] that the interest in these problems gained momentum.

Recall the following notions.
Let (X ,�) be a partially ordered set and F : X × X → X .

1. F is said to have the mixed monotone property if the following two conditions
are satisfied:

(∀x1, x2, y ∈ X) x1 � x2 �⇒ F(x1, y) � F(x2, y),

(∀x, y1, y2 ∈ X) y1 � y2 �⇒ F(x, y1) � F(x, y2).
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2. A point (x, y) ∈ X × X is said to be a coupled fixed point of F if F(x, y) = x
and F(y, x) = y.

Coupled fixed point results under Pata-type contractive conditions were firstly
obtained in [14]. The basic result was the following.

Theorem 6 [14] Let (X ,�, d) be a complete ordered metric space and F : X ×
X → X be a mapping having the mixed monotone property. Suppose that there exist
x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0); for x, y ∈ X, denote
‖x, y‖ = d(x, x0)+ d(y, y0). Let there exist ψ ∈ Ψ and constants Λ ≥ 0, α ≥ 1 and
β ∈ [0, α] such that the inequality

d(F(x, y), F(u, v)) ≤ (1 − ε)

2

[
d(x, u) + d(y, v)

] + Λεαψ(ε)
[
1 + ‖x, y‖ + ‖u, v‖]β

is satisfied for every ε ∈ [0, 1] and all (x, y), (u, v) ∈ X × X with u � x, y � v. If

1. F is continuous, or
2. The space (X ,�, d) is regular,

then F has a coupled fixed point in X × X.

A new approach to coupled fixed point problems was initiated by Berinde in [6] and
further developed, e.g., in [1,18,22]. The basic idea is to exploit results for mappings
with one variable and apply them to mappings defined on products of spaces. Using
this approach, an improved version of the above result is obtained in [26].

Theorem 7 [26] Let (X ,�, d) be a complete ordered metric space and F : X × X →
X be a continuous mapping having the mixed monotone property. Suppose that there
exist x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0); for x, y ∈ X, denote
‖x, y‖ = d(x, x0)+ d(y, y0). Let there exist ψ ∈ Ψ and constants Λ ≥ 0, α ≥ 1 and
β ∈ [0, α] such that the inequality

d(F(x, y), F(u, v)) + d(F(y, x), F(v, u))

≤ (1 − ε)[d(x, u) + d(y, v)] + Λεαψ(ε)
[
1 + ‖x, y‖ + ‖u, v‖]β

is satisfied for every ε ∈ [0, 1] and all (x, y), (u, v) ∈ X × X with u � x, y � v.
Then F has a coupled fixed point in X × X.

Example 3 [26] Let X = R be equipped with the usual metric and order. The mapping
F : X × X → X defined by F(x, y) = 1

6 (x − 4y) is obviously mixed monotone. It
is easy to obtain that

d(F(x, y), F(u, v)) + d(F(y, x), F(v, u))

=
∣∣∣
∣
x − 4y

6
− u − 4v

6

∣∣∣
∣ +

∣∣∣
∣
y − 4x

6
− v − 4u

6

∣∣∣
∣
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≤ 1

6
|x − u| + 4

6
|y − v| + 1

6
|y − v| + 4

6
|x − u|

= 5

6
[d(x, u) + d(y, v)].

The further procedure is similar to the one in Remark 2. The mapping F has a unique
coupled fixed point (which is (0, 0)).

Note that the same conclusion cannot be made using the results from [14].

We present also an example of a tripled fixed point result.

Theorem 8 [23] Let (X ,�, d) be a complete ordered metric space and F : X3 →
X be a non-decreasing mapping w.r.t. each variable, and suppose that there exist
x0, y0, z0 ∈ X such that x0 � F(x0, y0, z0), y0 � F(y0, x0, z0), z0 � F(z0, y0, x0).
Let, for some ψ ∈ Ψ and some constants Λ ≥ 0, α ≥ 1 and β ∈ [0, α], the inequality

d(F(x, y, z), F(u, v, w)) + d(F(y, x, z), F(v, u, w)) + d(F(z, y, x), F(w, v, u))

≤ (1 − ε)(d(x, u) + d(y, v) + d(z, w)) + Λε αψ(ε)[1 + ‖x, y, z‖ + ‖u, v, w‖]β

holds for all ε ∈ [0, 1] and all x, y, z, u, v, w ∈ X with (x � u, y � v and z � w)
or (x � u, y � v and z � w). Finally, suppose that F is continuous or that the
space is regular. Then there exists (x∗, y∗, z∗) ∈ X3 such that F(x∗, y∗, z∗) = z∗,
F(y∗, x∗, z∗) = y∗, F(z∗, y∗, x∗) = z∗.

6 Pata-Type Results for MultivaluedMappings

Fixed point results for multivalued mappings under Pata-type conditions were proved
in [11,12,28]. As a sample, we state here the following theorems.

In the fixed point theory of set-valued maps, two types of distances are generally
used. One is the Hausdorff–Pompeiu distance, and the other is δ-distance. The follow-
ing standard notations will be used. N (X) is the family of all non-empty subsets of X ,
B(X) is the family of all non-empty bounded subsets of X , CB(X) is the family of
all non-empty closed and bounded subsets of X , C(X) is the family of all non-empty
compact subsets of X and

D(x, B) = inf{d(x, y) : y ∈ B}where x ∈ Xand B ∈ B(X),

δ(A, B) = sup{d(x, y) : x ∈ A, y ∈ B} where A, B ∈ B(X),

H(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)} where A, B ∈ CB(X).

H is known as the Hausdorff–Pompeiu metric induced by the metric d on CB(X)

[29]. The δ-distance [15] is not metric as the Hausdorff–Pompeiu distance but shares
most of the properties of a metric.

Let T : X → N (X) be a multivalued mapping. An element x ∈ X is called a fixed
point of T if x ∈ T x . An element x ∈ X is called an endpoint of T if T x = {x}.
Obviously, each endpoint of T is a fixed point of it, but the converse is not true.
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The following theorem deals with two types of inequalities with Hausdorff–
Pompeiu and δ-distances, respectively, in two different situations.

Theorem 9 [11] Let (X , d) be a complete metric space and T : X → C(X) be a
multivalued mapping. Suppose that for some Λ ≥ 0, L ≥ 0, η > 0, α ≥ 1, β ∈ [0, α]
and ψ ∈ Ψ , every ε ∈ [0, 1] and all x, y ∈ X,

H(T x, T y) ≤ (1 − ε)
[
M(x, y) + L N (x, y)

]

+ Λεαψ(ε)
[
1 + ‖x‖ + ‖y‖ + ‖T x‖ + ‖T y‖]β

holds whenever d(x, y) ≥ η and

δ(T x, T y) ≤ (1 − ε)
[
M(x, y) + L N (x, y)

]

+ Λεαψ(ε)
[
1 + ‖x‖ + ‖y‖ + ‖T x‖ + ‖T y‖]β (11)

holds whenever d(x, y) < η, where

M(x, y) = max
{
d(x, y),

d(x, T x) d(y, T y)

1 + d(x, y)

}
,

N (x, y) = min{d(x, T x), d(y, T y), d(x, T y), d(y, T x)},

‖x‖ = d(x, x0) and ‖T x‖ = D(x0, T x). Also, suppose that T x∗ is a singleton for
some x∗ ∈ X. Then T has a fixed point.

The following result, where the inequality involving δ-distance only is considered,
is contained in Theorem 9.

Theorem 10 [11, Corollary 3.1] Let (X , d) be a complete metric space and T : X →
C(X) be a multivalued mapping. Suppose that for some Λ ≥ 0, L ≥ 0, α ≥ 1,
β ∈ [0, α] and ψ ∈ Ψ , every ε ∈ [0, 1], and for all x, y ∈ X, the inequality (11) is
satisfied, where M(x, y), N (x, y), ‖x‖ and ‖T x‖ are same as defined in Theorem 9.
Also, suppose that T x∗ is a singleton for some x∗ ∈ X. Then T has a fixed point.

Example 4 [11] Let X = [0, 1] ∪ {3, 6} be equipped with the usual metric d and let
T : X → C(X) be given as

T x =

⎧
⎪⎨

⎪⎩

{x − x2
2 }, if 0 ≤ x ≤ 1,

{0, 1}, if x = 3,

{1, 3}, if x = 6.

Consider ψ ∈ Ψ defined by

ψ(t) =
{
t, if 0 ≤ t ≤ 1

100 ,

4t, otherwise,
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and η = 1
1000 ,Λ = 100, α = 2, β = 1. Then the conditions of Theorem 9 are fulfilled

and T has a fixed point (which is 0).

Remark 5 [11] In Example 4, when x = 6, y = 3 and ε = 10−6, the inequality of
Theorem10, that is, (11) is not satisfied. So Example 4 is not applicable to Theorem10,
and hence, Theorem9properly containsTheorem10. Further, it is observed that for any
ε > 0, the example does not satisfy the inequality H(T x, T y) ≤ (1 − ε)

[
M(x, y) +

LN (x, y)
]
or δ(T x, T y) ≤ (1 − ε)

[
M(x, y) + LN (x, y)

]
for all x, y ∈ X . This

indicates that the second termΛεα ψ(ε)
[
1+‖x‖+‖y‖+‖T x‖+‖T y‖]β is essential

for the theorem which is the spirit of Pata-type results.

The following results are proved using δ-distance under two alternative sets of
assumptions, namely, partial-order assumptions and admissibility conditions. The fol-
lowing class of function is also used in these results.

Let Φ denote the family of all functions ϕ : [0, ∞)4 → [0, ∞) such that (iϕ) ϕ

is non-decreasing in each coordinate and continuous; (i iϕ) ϕ(t, t, t, t) ≤ t for t ≥ 0.
The following ordering between subsets of a partially ordered setwill be considered.

Definition 1 [5] Let A and B be two non-empty subsets of a partially ordered set
(X ,�). We say that A ≺1 B, if for every a ∈ A there exists b ∈ B such that a � b.

Theorem 11 [12] Let (X ,�, d) be a complete ordered metric space and T : X →
B(X) be a multivalued mapping. Suppose that (i) for x, y ∈ X, x � y implies
T x ≺1 T y; (ii) there exists x0 ∈ X such that {x0} ≺1 T x0; (iii) if {xn} is a sequence in
X whose consecutive termsare comparable and xn → x, then xn and x are comparable
for all n; and (iv) there exist Λ ≥ 0, α ≥ 1, β ∈ [0, α] and ψ ∈ Ψ , ϕ ∈ Φ such that
for every ε ∈ [0, 1] and for all comparable x, y ∈ X,

δ(T x, T y) ≤ (1 − ε) ϕ
(
d(x, y), D(x, T x), D(y, T y),

D(x, T y) + D(y, T x)

2

)

+ Λεα ψ(ε)
[
1 + ‖x‖ + ‖y‖ + ‖T x‖ + ‖T y‖]β, (12)

where ‖x‖ = d(x, x0) and ‖T x‖ = D(x0, T x). Then T has an endpoint.

Example 5 [12] Let X = {(0, 0), (− 1
4 ,− 1

4 ), (0,−1)} be a subset ofR2 with the order
� defined as: for (x, y), (u, v) ∈ X , (x, y) � (u, v) if and only if x ≤ u, y ≤ v.
Let d : X × X → R be given as d(p, q) = max{|x − u|, |y − v|}, for p = (x, y),
q = (u, v) ∈ X . Let T : X → B(X) be given as

T x =

⎧
⎪⎨

⎪⎩

{(0, 0)}, if x = (0, 0),

{(0, 0), (− 1
4 ,− 1

4 )}, if x = (0,−1),

{(0, 0)}, if x = (− 1
4 ,− 1

4 ).

Define ϕ : [0, ∞)4 → [0, ∞) and ψ : [0, 1] → [0, ∞), respectively, as

ϕ(x1, x2, x3, x4) = x1 + x2 + x3 + x4
4

, where (x1, x2, x3, x4) ∈ [0, ∞)4,
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and

ψ(t) =
⎧
⎨

⎩
t2, if 0 ≤ t ≤ 1

3
,

4t, otherwise.

Let Λ > 16, α = 2 and β = 1. The conditions of Theorem 11 are fulfilled and (0, 0)
is an endpoint of T .

It was shown by Samet et al. [38] that the purpose of introducing the partial order
can be also served by a set of conditions called admissibility conditions. Later, several
other types of admissibilities have been introduced and used in the domain of fixed
point theory. These conditions, rather than introducing a new structure like partial
order in metric spaces, are requirements on the operator under consideration.

Definition 2 [12] Let T : X → N (X) and θ, η : X → [0, ∞). T is said to be a cyclic
(θ, η)-admissible mapping if (i) θ(x) ≥ 1 for some x ∈ X implies η(u) ≥ 1 for all
u ∈ T x , (ii) η(x) ≥ 1 for some x ∈ X implies θ(v) ≥ 1 for all v ∈ T x .

Theorem 12 [12] Let (X , d) be a complete metric space, T : X → B(X) and θ, η :
X → [0, ∞). Suppose that (i) T is cyclic (θ, η)-admissible; (ii) there exists x0 ∈ X
such that θ(x0) ≥ 1 and η(x0) ≥ 1; (iii) if {xn} is a sequence in X with θ(xn) ≥ 1(
or η(xn) ≥ 1

)
and xn → x, then θ(x) ≥ 1 or η(x) ≥ 1; and (iv) there exist Λ ≥ 0,

α ≥ 1, β ∈ [0, α] and ψ ∈ Ψ , ϕ ∈ Φ such that (12) is satisfied for every ε ∈ [0, 1]
and for all x, y ∈ X with θ(x) η(y) ≥ 1. Then T has an endpoint.

Example 6 [12] Let X = [0, ∞) be equipped with the usual metric d and order and
let T : X → B(X) be given as

T x =
{

{ x8 }, if 0 ≤ x ≤ 1
[
x + 1

x − 1
n , n

]
, if n − 1 < x ≤ n with n ≥ 2.

Define θ, η : X → [0, ∞), respectively, as

θ(x) =
{
ex , if 0 ≤ x ≤ 1
1
4 , if x > 1

η(x) =
{
x + 2, if 0 ≤ x ≤ 1

0, if x > 1.

Take the same functionsψ and ϕ as in Example 5. LetΛ > 2, α = 2 and β = 1. Then
the conditions of Theorem 12 are fulfilled and {0, 2, 3, 4, n, . . .} is the set of endpoints
of T .

Remark 6 One can treat T : X → X as a multivalued mapping even in the case when
T x is a singleton for every x ∈ X . In Theorem 11, considering ψ(x1, x2, x3, x4) =
max{x1, x2, x3, x4} and if T is single valued, Theorem 5 (i.e., [23, Theorem 3.2], see
also [12]) is obtained.
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In Theorem 12, taking ψ(x1, x2, x3, x4) = max{x1, x2, x3, x4}, T to be single
valued and θ(x) = 1 and η(x) = 1 for all x ∈ X , the following “non-cycling” variant
of Theorem 3 can again be obtained.

Theorem 13 [12] Suppose that for some Λ ≥ 0, α ≥ 1, β ∈ [0, α] and ψ ∈ Ψ , every
ε ∈ [0, 1] and all x, y ∈ X, the condition (10) is fulfilled. Then T has a fixed point.

7 Some Results in More General Settings

There have been large efforts for generalizing metric spaces by changing the form and
interpretation of the metric function. Fixed point and common fixed point problems
under Pata-type conditions were also investigated in spaces more general than metric
ones. We will shortly present here some results in b-metric and b-rectangular metric
spaces from [25], as well as in modular spaces from [32].

Definition 3 [4,13] Let X be a non-empty set, s ≥ 1 be a given real number. Amapping
d : X × X → [0, ∞) is called a b-metric with parameter s if

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X ;
3. d(x, z) ≤ s[d(x, y) + d(y, z)] for all x, y, z ∈ X (b-triangular inequality).

Then (X , d) is called a b-metric space.

Theorem 14 [25] Let (X , d) be a complete b-metric space with parameter s > 1 and
f , g : X → X be two self-mappings such that f X ⊆ gX. Suppose that for some
ψ ∈ Ψ , and constants Λ ≥ 0, α ≥ 1, β ∈ [0, α],

d ( f x, f y) ≤ 1 − ε

s
max

{d (gx, gy)

2s
, d (gx, f x) , d (gy, f y)

}

+ Λεαψ (ε)
[
1 + ‖gx‖ + ‖gy‖ + ‖ f x‖ + ‖ f y‖ ]β

, (13)

holds for all x, y ∈ X and each ε ∈ [0, 1]. Then f and g have a unique point of
coincidence. Moreover, if f and g are weakly compatible, then they have a unique
common fixed point.

Example 7 [25] Let X = N ∪ {∞} and let d : X × X → [0, ∞) be defined by

d(m, n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if m = n,

| 1m − 1
n |, if one of m, n is even and the other is even or ∞,

5, if one of m, n is odd and the other is odd

(andm �= n) or ∞,

2, otherwise.

Then d is a b-metric on X which is not continuous (see [20]). Consider the mapping

f : X → X , f x =
{
100, x ≤ 100,

4, otherwise
. The only non-trivial case to be considered is
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when x ∈ {1, 2, . . . , 100} and y ∈ {101, 102, . . . ,∞}. Then

d ( f x, f y) = d (100, 4) =
∣∣∣∣
1

100
− 1

4

∣∣∣∣ = 24

100
.

We have to check that

24

100
≤ 2 (1 − ε)

5
max

{d (x, y)

5
, d (x, 100) , d (y, 4)

}
+ ε2

(which is condition (13) with g = IX , Λ = 1, ψ(ε) = ε, α = 1, β = 0).
Now

max
d (x, y)

5
= max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
5

∣∣∣ 1x − 1
y

∣∣∣ , both x and y are even or one is even and

the other is ∞,
1
5 · 5, both x and y are odd or one is odd the

other is ∞,
1
5 · 2, otherwise

≤ 1,

max d (x, 100) =
{∣

∣ 1
x − 1

100

∣
∣ , if x is even

2, if x is odd
≤ 2,

max d (y, 4) =
{∣∣∣ 1y − 1

100

∣∣∣ , if y is even or ∞,

2, if y is odd or ∞
≤ 2.

Then

24

100
≤ 2 (1 − ε)

5
· 2 + ε2,

which is fulfilled for each ε ∈ R, a fortiori for ε ∈ [0, 1] .

Definition 4 [16,37] Let X be a non-empty set and s ≥ 1 be a given real number. Let
d : X × X → [0, ∞) be a mapping such that for all x, y ∈ X and distinct points
u, v ∈ X , each distinct from x and y,

(i) d(x, y) = 0 iff x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] (b-rectangular inequality)
hold. Then (X , d) is called a b-rectangular metric space with parameter s.

Theorem 15 [25] Let (X , d) be a complete b-rectangular metric space with parameter
s > 1 and f , g : X → X be such that f X ⊆ gX. Suppose that for some ψ ∈ Ψ , and
constants Λ ≥ 0, α ≥ 1, β ∈ [0, α],

123



1306 B. S. Choudhury et al.

d ( f x, f y) ≤ 1 − ε

s
max

{d (gx, gy)

2s
, d (gx, f x) , d(gy, f y)

}

+ Λεαψ (ε)
[
1 + ‖gx‖ + ‖gy‖ ]β

,

holds for all x, y ∈ X and each ε ∈ [0, 1]. Then f and g have a unique point of
coincidence. Moreover, if f and g are weakly compatible, then they have a unique
common fixed point.

Example 8 [25] Let X = A ∪ B, where A = { 1
n : n ∈ {2, 3, 4, 5}} and B = [1, 2].

Define d : X × X → [0,∞) so that d (x, y) = d (y, x) for all x, y ∈ X , and

d

(
1

2
,
1

3

)
= d

(
1

4
,
1

5

)
= 0.03; d

(
1

2
,
1

5

)
= d

(
1

3
,
1

4

)
= 0.02;

d

(
1

2
,
1

4

)
= d

(
1

5
,
1

3

)
= 0.06; d (x, y) = (x − y)2 otherwise.

Then (X , d) is a b-rectangularmetric spacewith coefficient s = 3, but (X , d) is neither
a metric space nor a rectangular metric space (see [25] for details). Let f , g : X → X
be defined as:

f (x) =
{

1
3 , if x ∈ A
1
5 , if x ∈ B,

g (x) = x .

We have to check the condition

d ( f x, f y) ≤ 1 − ε

3
max

{d (x, y)

6
, d (x, f x) , d (y, f y)

}
+ ε2 [1 + ‖x‖ + ‖y‖] ,

with x0 = 1
5 (i.e., ‖x‖ = d(x, 1

5 )). It is enough to consider the case when x ∈ A,
y ∈ B. Then,

d ( f x, f y) = d
( 1
3 ,

1
5

) = 0.06, max d(x,y)
6 = max |x−y|2

6 =
(
2− 1

5

)2

6 = 27
50 ,

max d (x, f x)=max d
(
x, 1

3

)=0.06, max d (y, f y)=max d
(
y, 1

5

)= (
2 − 1

5

)2 =
81
25 .

Hence, max
{
d(x,y)

6 , d (x, f x) , d (y, f y)
}

= 81
25 when x ∈ A, y ∈ B. Then it is to

be checked that

0.06 ≤ 1 − ε

3
· 81
25

+ ε2 (1 + ‖x‖ + ‖y‖) .

Since min{1+‖x‖+‖y‖} = 1+ 0+ (
1 − 1

5

)2 = 1+ 16
25 = 41

25 , it is required to check
the inequality

0.06 ≤ 1 − ε

3
· 81
25

+ 41

25
ε2,
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which is satisfied for all ε ∈ R, a fortiori for ε ∈ [0, 1].
Thus, it is proved that all the conditions of Theorem 15 are fulfilled and f and g

have a unique common fixed point (which is 1
3 ).

Definition 5 [27,30] Let X be an arbitrary vector space over the field K(= R or C).

(a) A function ρ : X → [0, ∞) is called modular if for all x, y ∈ X

(i) ρ(x) = 0 if and only if x = 0;
(ii) ρ(αx) = ρ(x) for every scalar α with |α| = 1;
(iii) ρ(αx + β y) ≤ ρ(x) + ρ(y) if α + β = 1 and α ≥ 0, β ≥ 0.

(b) If (iii) is replaced by (iv) ρ(αx +β y) ≤ αρ(x)+βρ(y) if α +β = 1 and α ≥ 0,
β ≥ 0, then ρ is called convex modular.

(c) A modular function ρ defines the corresponding modular space, i.e., the vector
space Xρ given by Xρ = {

x ∈ X : ρ(λx) → 0 as λ → 0
}
.

The following is a Pata-type extension of the contraction mapping principle in
modular spaces.

Theorem 16 [32] Let Xρ be a modular function space, C be a non-empty, ρ-complete
and ρ-bounded subset of Xρ . Let α ≥ 1, β > 0 and k ≥ 0 be fixed constants and
ψ ∈ Ψ . Let f : C → C be such that for all x, y ∈ C and each ε ∈ [0, 1],

ρ( f x − f y) ≤ (1 − ε) ρ(x − y) + εαψ (ε)
[
ρ(x − y) + k

]β
,

holds. Then f has a unique fixed point.

8 An Open Question

The concept in the Pata-type inequality can be combined with several other metric
inequalities known already in the literatures to yield Pata-versions of these mappings.
It is perceived that investigations of fixed points of those mappings are worthy of
being studied because they may yield effective generalizations of many established
fixed point theorems. As an instance, we pose the following (possible) generalization
of Ćirić’s quasicontraction principle (see [36]).

Question 1 Prove or disprove the following. Let f : X → X and let there existψ ∈ Ψ

and constants Λ ≥ 0, α ≥ 1 and β ∈ [0, α] such that the inequality

d( f x, f y) ≤ (1 − ε)max{d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)}
+ Λεαψ(ε)[1 + ‖x‖ + ‖y‖]β

is satisfied for every ε ∈ [0, 1] and all x, y ∈ X . Then f has a unique fixed point
z ∈ X . Furthermore, the sequence { f nx0} converges to z.

Acknowledgements The authors are grateful to the referees whose suggestions helped in improving the
text of this paper.
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