

# $p\text{-}\mathsf{Adic}$ Denseness of Members of Partitions of $\,\mathbb N$ and Their Ratio Sets

Piotr Miska<sup>1</sup> · Carlo Sanna<sup>2</sup>

Received: 27 October 2018 / Published online: 21 January 2019 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

## Abstract

The *ratio set* of a set of positive integers A is defined as  $R(A) := \{a/b : a, b \in A\}$ . The study of the denseness of R(A) in the set of positive real numbers is a classical topic, and, more recently, the denseness in the set of *p*-adic numbers  $\mathbb{Q}_p$  has also been investigated. Let  $A_1, \ldots, A_k$  be a partition of  $\mathbb{N}$  into *k* sets. We prove that for all prime numbers *p* but at most  $\lfloor \log_2 k \rfloor$  exceptions at least one of  $R(A_1), \ldots, R(A_k)$  is dense in  $\mathbb{Q}_p$ . Moreover, we show that for all prime numbers *p* but at most k - 1 exceptions at least one of  $A_1, \ldots, A_k$  is dense in  $\mathbb{Z}_p$ . Both these results are optimal in the sense that there exist partitions  $A_1, \ldots, A_k$  having exactly  $\lfloor \log_2 k \rfloor$ , respectively, k - 1, exceptional prime numbers; and we give explicit constructions for them. Furthermore, as a corollary, we answer negatively a question raised by Garcia et al.

Keywords Denseness · p-Adic topology · Partition · Quotient set · Ratio set

Mathematics Subject Classification  $11A07 \cdot 11B05$ 

# 1 Introduction

The ratio set (or quotient set) of a set of positive integers A is defined as

$$R(A) := \{a/b : a, b \in A\}.$$

Communicated by Emrah Kilic.

 Carlo Sanna carlo.sanna.dev@gmail.com
 Piotr Miska piotrmiska91@gmail.com

<sup>1</sup> Institute of Mathematics, Jagiellonian University in Kraków, Kraków, Poland

<sup>2</sup> Department of Mathematics, Università degli Studi di Torino, Torino, Italy

The study of the denseness of R(A) in the set of positive real numbers  $\mathbb{R}_+$  is a classical topic. For example, Strauch and Tóth [10] (see also [11]) showed that R(A) is dense in  $\mathbb{R}_+$  whenever *A* has lower asymptotic density at least equal to 1/2. Furthermore, Bukor et al. [3] proved that if  $\mathbb{N} = A \cup B$  for two disjoint sets *A* and *B*, then at least one of R(A) or R(B) is dense in  $\mathbb{R}_+$ . On the other hand, Brown et al. [1] showed that there exist pairwise disjoint sets *A*, *B*,  $C \subseteq \mathbb{N}$  such that  $\mathbb{N} = A \cup B \cup C$  and none of R(A), R(B), R(C) is dense in  $\mathbb{R}_+$ . See also [2,4,7,8] for other related results.

More recently, the study of when R(A) is dense in the *p*-adic numbers  $\mathbb{Q}_p$ , for some prime number *p*, has been initiated. Garcia and Luca [6] proved that the ratio set of the set of Fibonacci numbers is dense in  $\mathbb{Q}_p$ , for all prime numbers *p*. Their result has been generalized by Sanna [9], who proved that the ratio set of the *k*-generalized Fibonacci numbers is dense in  $\mathbb{Q}_p$ , for all integers  $k \ge 2$  and prime numbers *p*. Furthermore, Garcia et al. [5] gave several results on the denseness of R(A) in  $\mathbb{Q}_p$ . In particular, they studied R(A) when *A* is the set of values of Lucas sequences, the set of positive integers which are sum of *k* squares, respectively, *k* cubes, or the union of two geometric progressions.

In this paper, we continued the study of the denseness of R(A) in  $\mathbb{Q}_p$ .

#### 2 Denseness of Members of Partitions of N

Motivated by the results on partitions of  $\mathbb{N}$  mentioned in Introduction, the authors of [5] showed that for each prime number *p* there exists a partition of  $\mathbb{N}$  into two sets *A* and *B* such that neither *R*(*A*) nor *R*(*B*) is dense in  $\mathbb{Q}_p$  [5, Example 3.6]. Then, they asked the following question [5, Problem 3.7]:

**Question 2.1** Is there a partition of  $\mathbb{N}$  into two sets *A* and *B* such that R(A) and R(B) are dense in no  $\mathbb{Q}_p$ ?<sup>1</sup>

We show that the answer to Question 2.1 is negative. In fact, we will prove even more. Our first result is the following:

**Theorem 2.1** Let  $A_1, \ldots, A_k$  be a partition of  $\mathbb{N}$  into k sets. Then, for all prime numbers p but at most k - 1 exceptions, at least one of  $A_1, \ldots, A_k$  is dense in  $\mathbb{Z}_p$ .

Then, from Theorem 2.1 it follows the next corollary, which gives a strong negative answer to Question 2.1.

**Corollary 2.1** Let  $A_1, \ldots, A_k$  be a partition of  $\mathbb{N}$  into k sets. Then, for all prime numbers p but at most k - 1 exceptions, at least one of  $R(A_1), \ldots, R(A_k)$  is dense in  $\mathbb{Q}_p$ .

**Proof** It is easy to prove that if  $A_j$  is dense in  $\mathbb{Z}_p$  then  $R(A_j)$  is dense in  $\mathbb{Q}_p$ . Hence, the claim follows from Theorem 2.1.

The proof of Theorem 2.1 requires just a couple of easy preliminary lemmas. For positive integers *a* and *b*, define  $a + b\mathbb{N} := \{a + bk : k \in \mathbb{N}\}.$ 

<sup>&</sup>lt;sup>1</sup> Actually, in [5, Problem 3.7] it is erroneously written "such that A and B are dense in no  $\mathbb{Q}_p$ ," so that the answer is obviously: "Yes, pick any partition into two sets!". Question 2.1 is the intended question.

**Lemma 2.2** Suppose that  $(a + b\mathbb{N}) \subseteq A \cup B$  for some positive integers a, b and some disjoint sets  $A, B \subseteq \mathbb{N}$ . If p is a prime number such that  $p \nmid b$  and A is not dense in  $\mathbb{Z}_p$ , then there exist positive integers c and j such that  $(c + bp^j\mathbb{N}) \subseteq B$ .

**Proof** Since *A* is not dense in  $\mathbb{Z}_p$ , there exist positive integers *d*, *j* such that  $(d + p^j \mathbb{N}) \cap A = \emptyset$ . Hence,  $(a + b\mathbb{N}) \cap (d + p^j \mathbb{N}) \subseteq B$ . The claim follows by the Chinese remainder theorem, which implies that  $(a + b\mathbb{N}) \cap (d + p^j \mathbb{N}) = c + bp^j \mathbb{N}$ , for some positive integer *c*.

**Lemma 2.3** Let a and b be positive integers. Then,  $a + b\mathbb{N}$  is dense in  $\mathbb{Z}_p$  for all prime numbers p such that  $p \nmid b$ .

**Proof** It follows from the Chinese remainder theorem and the fact that  $\mathbb{N}$  is dense in  $\mathbb{Z}_p$ .

We are now ready for the proof of Theorem 2.1.

**Proof of Theorem 2.1** For the sake of contradiction, suppose that  $p_1, \ldots, p_k$  are k pairwise distinct prime numbers such that none of  $A_1, \ldots, A_k$  is dense in  $\mathbb{Z}_{p_i}$  for  $i = 1, \ldots, k$ . Since  $A_1$  is not dense in  $\mathbb{Z}_{p_1}$ , there exist positive integers  $c_1$  and  $j_1$  such that  $(c_1 + p_1^{j_1} \mathbb{N}) \cap A_1 = \emptyset$ . Hence,  $(c_1 + p_1^{j_1} \mathbb{N}) \subseteq A_2 \cup \cdots \cup A_k$  and, thanks to Lemma 2.2, there exist positive integers  $c_2$  and  $j_2$  such that  $(c_2 + p_1^{j_1} p_2^{j_2} \mathbb{N}) \subseteq A_3 \cup \cdots \cup A_k$ . Continuing this process, we get that  $(c_{k-1} + p_1^{j_1} \cdots p_{k-1}^{j_{k-1}} \mathbb{N}) \subseteq A_k$ , for some positive integers  $c_{k-1}, j_1, \ldots, j_{k-1}$ . By Lemma 2.3, this last inclusion implies that  $A_k$  is dense in  $\mathbb{Z}_{p_k}$ , but this contradicts the hypotheses.

**Remark 2.1** In fact, Theorem 2.1 can be strengthened in the following way: For each partition  $A_1, \ldots, A_k$  of  $\mathbb{N}$ , there exists a member  $A_j$  of this partition which is dense in  $\mathbb{Z}_p$  for all but at most k - 1 prime numbers p.

Indeed, for the sake of contradiction, suppose that each member  $A_j$  of the partition  $A_1, \ldots, A_k$  of  $\mathbb{N}$  has at least k prime numbers p such that  $A_j$  is not dense in  $\mathbb{Z}_p$ . Then, we can choose prime numbers  $p_1, \ldots, p_k$  such that for each  $j \in \{1, \ldots, k\}$  the set  $A_j$  is not dense in  $\mathbb{Z}_{p_j}$ . Next, we provide the reasoning from the proof of Theorem 2.1 to reach a contradiction.

The next result shows that the quantity k - 1 in Theorem 2.1 cannot be improved.

**Theorem 2.4** Let  $k \ge 2$  be an integer, and let  $p_1, \ldots, p_{k-1}$  be pairwise distinct prime numbers. Then, there exists a partition  $A_1, \ldots, A_k$  of  $\mathbb{N}$  such that none of  $A_1, \ldots, A_k$  is dense in  $\mathbb{Z}_{p_i}$  for  $i = 1, \ldots, k-1$ .

**Proof** Let  $e_1, \ldots, e_{k-1}$  be positive integers such that  $p_i^{e_i} \ge k$  for  $i = 1, \ldots, k-1$ , and put

$$V := \{0, \dots, p_1^{e_1} - 1\} \times \dots \times \{0, \dots, p_{k-1}^{e_{k-1}} - 1\}$$

We shall construct a partition  $R_0, \ldots, R_{k-1}$  of V (note that the indices of  $R_i$  start from 0) such that if  $(r_1, \ldots, r_{k-1}) \in R_j$  then none of the components  $r_1, \ldots, r_{k-1}$  is equal to j. Then, we define

$$A_j := \{ n \in \mathbb{N} : \exists (r_1, \dots, r_{k-1}) \in R_{j-1}, \forall i = 1, \dots, k-1, n \equiv r_i \pmod{p_i^{e_i}} \},\$$

Deringer

for j = 1, ..., k. At this point, it follows easily that  $A_1, ..., A_k$  is a partition of  $\mathbb{N}$  and that none of  $A_1, ..., A_k$  is dense in  $\mathbb{Z}_{p_i}$ , since  $A_{j+1}$  misses the residue class  $j \pmod{p_i^{e_i}}$ .

The construction of  $R_0, \ldots, R_{k-1}$  is algorithmic. We start with  $R_0, \ldots, R_{k-1}$  all empty. Then, we pick a vector  $\mathbf{x} \in V$  which is not already in  $R_0 \cup \cdots \cup R_{k-1}$ . It is easy to see that there exists some  $j \in \{0, \ldots, k-1\}$  such that j does not appear as a component of  $\mathbf{x}$ . We thus throw  $\mathbf{x}$  into  $R_j$ . We continue this process until all the vectors in V have been picked.

Now, by the construction it is clear that  $R_0, \ldots, R_{k-1}$  is a partition of V satisfying the desired property.

#### 3 Denseness of Ratio Sets of Members of Partitions of $\mathbb N$

The result in Corollary 2.1 is not optimal. Let  $\lfloor x \rfloor$  denote the greatest integer not exceeding *x*, and write  $\log_2$  for the base 2 logarithm. Our next result is the following:

**Theorem 3.1** Let  $A_1, \ldots, A_k$  be a partition of  $\mathbb{N}$  into k sets. Then, for all prime numbers p but at most  $\lfloor \log_2 k \rfloor$  exceptions, at least one of  $R(A_1), \ldots, R(A_k)$  is dense in  $\mathbb{Q}_p$ .

Before proving Theorem 3.1, we need to introduce some notations. For a prime number p and a positive integer w, we identify the group  $(\mathbb{Z}/p^w\mathbb{Z})^*$  with  $\{a \in \{1, \ldots, p^w\} : p \nmid a\}$ . Moreover, for each  $a \in (\mathbb{Z}/p^w\mathbb{Z})^*$  we define

$$(a)_{p^w} := \left\{ x \in \mathbb{Q}_p^* : x/p^{\nu_p(x)} \equiv a \mod p^w \right\},\$$

where, as usual,  $v_p$  denotes the *p*-adic valuation. Note that the family of sets

$$(a)_{p^w} \cap \nu_p^{-1}(s) = \{(a + rp^w) p^s : r \in \mathbb{Z}_p\}$$

where *w* is a positive integer,  $a \in (\mathbb{Z}/p^w\mathbb{Z})^*$ , and  $s \in \mathbb{Z}$ , is a basis of the topology of  $\mathbb{Q}_p^*$ . Finally, for all integers  $t \leq m$  and for each set  $X \subseteq \mathbb{N}$ , we define

$$V_{p^{w},t,m} := \left\{ (a)_{p^{w}} \cap v_{p}^{-1}(s) : a \in \left( \mathbb{Z}/p^{w} \mathbb{Z} \right)^{*}, \ s \in \mathbb{Z} \cap [t, m-1] \right\}$$

and

$$V_{p^{w},t,m}(X) := \left\{ I \in V_{p^{w},t,m} : X \cap I \neq \varnothing \right\}.$$

Note that the following trivial upper bound holds

$$\#V_{p^{w},t,m}(X) \le \#V_{p^{w},t,m} = (m-t)\varphi(p^{w}),$$

where  $\varphi$  is the Euler's totient function.

Now, we are ready to state a lemma that will be crucial in the proof of Theorem 3.1.

**Lemma 3.2** Fix a prime number p, two positive integers w, t, a real number c > 1/2, and a set  $X \subseteq \mathbb{N}$ . Suppose that  $\#V_{p^w,0,m}(X) \ge cm \varphi(p^w)$  for some positive integer m > t/(2c - 1). Then, the ratio set R(X) intersects nontrivially with each set in  $V_{p^w,0,t}$ .

**Proof** Given  $(a_0)_{p^w} \cap v_p^{-1}(s_0) \in V_{p^w,0,t}$ , we have to prove that  $R(X) \cap (a_0)_{p^w} \cap v_p^{-1}(s_0) \neq \emptyset$ . For the sake of convenience, define  $A := V_{p^w,t,m}(X)$  and

$$B := \left\{ (a_0 a)_{p^w} \cap \nu_p^{-1}(s_0 + s) : (a)_{p^w} \cap \nu_p^{-1}(s) \in V_{p^w, t - s_0, m - s_0}(X) \right\}.$$

We have

$$#A = #V_{p^{w},0,m}(X) - #V_{p^{w},0,t}(X) \ge (cm-t)\varphi\left(p^{w}\right) > \frac{1}{2}(m-t)\varphi\left(p^{w}\right), \quad (1)$$

where we used the inequality m > t/(2c - 1). Similarly,

$$#B = #V_{p^{w},0,m}(X) - #V_{p^{w},0,t-s_{0}}(X) - #V_{p^{w},m-s_{0},m}(X)$$
  

$$\geq (cm - (t - s_{0}) - s_{0})\varphi(p^{w}) > \frac{1}{2}(m - t)\varphi(p^{w}).$$
(2)

Now, *A* and *B* are both subsets of  $V_{p^w,t,m}$ , while  $\#V_{p^w,t,m} = (m-t)\varphi(p^w)$ . Therefore, (1) and (2) imply that  $A \cap B \neq \emptyset$ . That is, there exist  $(a_1)_{p^w} \cap v_p^{-1}(s_1) \in A$  and  $(a_2)_{p^w} \cap v_p^{-1}(s_2) \in V_{p^w,t-s_0,m-s_0}(X)$  such that  $a_1/a_2 \equiv a_0 \pmod{p^w}$  and  $s_1 - s_2 = s_0$ , so that  $R(X) \cap (a_0)_{p^w} \cap v_p^{-1}(s_0) \neq \emptyset$ , as claimed.

**Proof of Theorem 3.1** For the sake of contradiction, put  $\ell := \lfloor \log_2 k \rfloor + 1$  and suppose that  $p_1, \ldots, p_\ell$  are  $\ell$  pairwise distinct prime numbers such that none of  $R(A_1), \ldots, R(A_k)$  is dense in  $\mathbb{Q}_{p_i}$  for  $i = 1, \ldots, \ell$ . Hence, there exist positive integers w and t such that for each  $i \in \{1, \ldots, k\}$  and each  $j \in \{1, \ldots, \ell\}$  we have  $R(A_i) \cap (a_{i,j})_{p_j^w} \cap v_{p_j}^{-1}(s_{i,j}) = \emptyset$ , for some  $a_{i,j} \in (\mathbb{Z}/p_j^w\mathbb{Z})^*$  and some  $s_{i,j} \in \{-(t-1), \ldots, t-1\}$ . Clearly, since ratio sets are closed under taking reciprocals, we can assume  $s_{i,j} \ge 0$ . Put  $c := 1/\sqrt[\ell]{k}$ , so that c > 1/2, and pick a positive integer m > t/(2c-1). There are

$$N := m^{\ell} \prod_{j=1}^{\ell} \varphi\left(p_j^w\right)$$

sets of the form

$$\bigcap_{j=1}^{\ell} \left( (a_j)_{p_j^w} \cap \nu_{p_j}^{-1}(s_j) \right), \tag{3}$$

where  $a_j \in (\mathbb{Z}/p_j^w\mathbb{Z})^*$  and  $s_j \in \{0, ..., m-1\}$ . Therefore, there exists  $i_0 \in \{1, ..., k\}$  such that  $A_{i_0}$  intersects nontrivially with at least N/k of the sets of form (3). Consequently, there exists  $j_0 \in \{1, ..., \ell\}$  such that  $A_{i_0}$  intersects nontrivially with at

1131

least  $cm\varphi(p_{j_0}^w)$  sets of the form  $(a)_{p_{j_0}^w} \cap v_{p_{j_0}}^{-1}(s)$ , where  $a \in (\mathbb{Z}/p_{j_0}^w\mathbb{Z})^*$  and  $s \in \{0, \ldots, m-1\}$ . In other words,  $\#V_{p_{j_0}^w, 0, m}(A_{i_0}) \ge cm\varphi(p_{j_0}^w)$ . Hence, by Lemma 3.2, the set  $R(A_{i_0})$  intersects nontrivially with all the sets of the form  $(a)_{p_{j_0}^w} \cap v_{p_{j_0}}^{-1}(s)$ , where  $a \in (\mathbb{Z}/p_{j_0}^w\mathbb{Z})^*$  and  $s \in \{0, \ldots, t-1\}$ , but this is in contradiction with the fact that  $R(A_{i_0}) \cap (a_{i_0, j_0})_{p_{j_0}^w} \cap v_{p_{j_0}}^{-1}(s_{i_0, j_0}) = \emptyset$ .

The bound  $\lfloor \log_2 k \rfloor$  in Theorem 3.1 is sharp in the following sense:

**Theorem 3.3** Let  $k \ge 2$  be an integer, and let  $p_1 < \cdots < p_\ell$  be  $\ell := \lfloor \log_2 k \rfloor$  pairwise distinct prime numbers. Then, there exists a partition of  $\mathbb{N}$  into k sets  $A_1, \ldots, A_k$  such that none of  $R(A_1), \ldots, R(A_k)$  is dense in  $\mathbb{Q}_{p_i}$  for  $i = 1, \ldots, \ell$ .

**Proof** We give two different constructions. Put  $h := 2^{\ell}$  and let  $S_1, \ldots, S_h$  be all the subsets of  $\{1, \ldots, \ell\}$ . For  $j = 1, \ldots, h$ , define

$$B_i := \{ n \in \mathbb{N} : \forall i = 1, \dots, \ell \quad v_{p_i}(n) \equiv \chi_{S_i}(i) \pmod{2} \},\$$

where  $\chi_{S_j}$  denotes the characteristic function of  $S_j$ . It follows easily that  $B_1, \ldots, B_h$  is a partition of  $\mathbb{N}$  and that none of  $R(B_1), \ldots, R(B_h)$  is dense in  $\mathbb{Q}_{p_i}$ , for  $i = 1, \ldots, \ell$ , since each  $R(B_j)$  contains only rational numbers with even  $p_i$ -adic valuations. Finally, since  $h \leq k$ , the partition  $B_1, \ldots, B_h$  can be refined to obtain a partition  $A_1, \ldots, A_k$ satisfying the desired property.

The second construction is similar. For j = 1, ..., h, define

$$C_j = \left\{ n \in \mathbb{N} : \left( \frac{n/p_i^{v_{p_i}(n)}}{p_i} \right) = (-1)^{\chi_{S_j}(i)} \text{ for each } i \in \{1, \dots, \ell\} \right\},$$

where  $\left(\frac{a}{p}\right)$  means the Legendre symbol and in case of  $p_1 = 2$  we put  $\left(\frac{a}{2}\right) = a$  (mod 4). It follows easily that  $C_1, \ldots, C_h$  is a partition of  $\mathbb{N}$ , and that none of  $R(C_1), \ldots, R(C_h)$  is dense in  $\mathbb{Q}_{p_i}$ , for  $i = 1, \ldots, \ell$ , since each  $R(C_j)$  contains only products of powers of  $p_i$  and quadratic residues modulo  $p_i$  (in case of  $p_1 = 2$  we have only products of powers of 2 and numbers congruent to 1 modulo 4). Finally, since  $h \leq k$ , the partition  $C_1, \ldots, C_h$  can be refined to obtain a partition  $A_1, \ldots, A_k$  satisfying the desired property.

In light of Remark 2.1, it is worth to ask the following question.

**Question 3.1** Let us fix a positive integer k. What then is the least number m = m(k) such that for each partition  $A_1, \ldots, A_k$  of  $\mathbb{N}$  there exists a member  $A_j$  of this partition such that  $R(A_j)$  is dense in  $\mathbb{Q}_p$  for all but at most m prime numbers p?

In virtue of Remark 2.1, we know that m(k) exists and  $m(k) \le k - 1$ . On the other hand, by Theorem 3.3 the value m(k) is not less than  $|\log_2 k|$ .

Acknowledgements C. Sanna is a member of the INdAM group GNSAGA.

### References

- Brown, B., Dairyko, M., Garcia, S.R., Lutz, B., Someck, M.: Four quotient set gems. Am. Math. Mon. 121(7), 590–599 (2014)
- Bukor, J., Erdős, P., Šalát, T., Tóth, J.T.: Remarks on the (R)-density of sets of numbers. II. Math. Slovaca 47(5), 517–526 (1997)
- Bukor, J., Šalát, T., Tóth, J.T.: Remarks on *R*-density of sets of numbers. Tatra Mt. Math. Publ. 11, 159–165 (1997). Number theory (Liptovský Ján, 1995)
- Bukor, J., Tóth, J.T.: On accumulation points of ratio sets of positive integers. Am. Math. Mon. 103(6), 502–504 (1996)
- Garcia, S.R., Hong, Y.X., Luca, F., Pinsker, E., Sanna, C., Schechter, E., Starr, A.: p-adic quotient sets. Acta Arith. 179(2), 163–184 (2017)
- 6. Garcia, S.R., Luca, F.: Quotients of Fibonacci numbers. Am. Math. Mon. 123(10), 1039-1044 (2016)
- 7. Salat, T.: On ratio sets of sets of natural numbers. Acta Arith. 15, 273-278 (1968/1969)
- Salat, T.: Corrigendum to the paper "on ratio sets of sets of natural numbers". Acta Arith. 16, 103 (1969/1970)
- 9. Sanna, C.: The quotient set of k-generalised Fibonacci numbers is dense in  $\mathbb{Q}_p$ . Bull. Aust. Math. Soc. **96**(1), 24–29 (2017)
- 10. Strauch, O., Tóth, J.T.: Asymptotic density of  $A \subset N$  and density of the ratio set R(A). Acta Arith. 87(1), 67–78 (1998)
- 11. Strauch, O., Tóth, J.T.: Corrigendum to Theorem 5 of the paper: "asymptotic density of  $A \subset \mathbb{N}$  and density of the ratio set R(A)". Acta Arith. **103**(2), 191–200 (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.