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Abstract
The ratio set of a set of positive integers A is defined as R(A) := {a/b : a, b ∈ A}.
The study of the denseness of R(A) in the set of positive real numbers is a classical
topic, and, more recently, the denseness in the set of p-adic numbers Qp has also been
investigated. Let A1, . . . , Ak be a partition ofN into k sets. We prove that for all prime
numbers p but at most �log2 k� exceptions at least one of R(A1), . . . , R(Ak) is dense
in Qp. Moreover, we show that for all prime numbers p but at most k − 1 exceptions
at least one of A1, . . . , Ak is dense in Zp. Both these results are optimal in the sense
that there exist partitions A1, . . . , Ak having exactly �log2 k�, respectively, k − 1,
exceptional prime numbers; and we give explicit constructions for them. Furthermore,
as a corollary, we answer negatively a question raised by Garcia et al.
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1 Introduction

The ratio set (or quotient set) of a set of positive integers A is defined as

R(A) := {a/b : a, b ∈ A}.
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The study of the denseness of R(A) in the set of positive real numbersR+ is a classical
topic. For example, Strauch and Tóth [10] (see also [11]) showed that R(A) is dense
in R+ whenever A has lower asymptotic density at least equal to 1/2. Furthermore,
Bukor et al. [3] proved that if N = A ∪ B for two disjoint sets A and B, then at least
one of R(A) or R(B) is dense in R+. On the other hand, Brown et al. [1] showed that
there exist pairwise disjoint sets A, B,C ⊆ N such that N = A ∪ B ∪ C and none of
R(A), R(B), R(C) is dense in R+. See also [2,4,7,8] for other related results.

More recently, the study of when R(A) is dense in the p-adic numbers Qp, for
some prime number p, has been initiated. Garcia and Luca [6] proved that the ratio set
of the set of Fibonacci numbers is dense in Qp, for all prime numbers p. Their result
has been generalized by Sanna [9], who proved that the ratio set of the k-generalized
Fibonacci numbers is dense in Qp, for all integers k ≥ 2 and prime numbers p.
Furthermore, Garcia et al. [5] gave several results on the denseness of R(A) in Qp. In
particular, they studied R(A) when A is the set of values of Lucas sequences, the set
of positive integers which are sum of k squares, respectively, k cubes, or the union of
two geometric progressions.

In this paper, we continued the study of the denseness of R(A) in Qp.

2 Denseness of Members of Partitions of N

Motivated by the results on partitions of N mentioned in Introduction, the authors
of [5] showed that for each prime number p there exists a partition of N into two sets
A and B such that neither R(A) nor R(B) is dense in Qp [5, Example 3.6]. Then, they
asked the following question [5, Problem 3.7]:

Question 2.1 Is there a partition of N into two sets A and B such that R(A) and R(B)

are dense in no Qp?1

We show that the answer to Question 2.1 is negative. In fact, we will prove even
more. Our first result is the following:

Theorem 2.1 Let A1, . . . , Ak be a partition of N into k sets. Then, for all prime num-
bers p but at most k − 1 exceptions, at least one of A1, . . . , Ak is dense in Zp.

Then, from Theorem 2.1 it follows the next corollary, which gives a strong negative
answer to Question 2.1.

Corollary 2.1 Let A1, . . . , Ak be a partition of N into k sets. Then, for all prime
numbers p but at most k − 1 exceptions, at least one of R(A1), . . . , R(Ak) is dense
in Qp.

Proof It is easy to prove that if A j is dense in Zp then R(A j ) is dense in Qp. Hence,
the claim follows from Theorem 2.1. �	

The proof of Theorem 2.1 requires just a couple of easy preliminary lemmas. For
positive integers a and b, define a + bN := {a + bk : k ∈ N}.
1 Actually, in [5, Problem 3.7] it is erroneously written “such that A and B are dense in no Qp ,” so that the
answer is obviously: “Yes, pick any partition into two sets!”. Question 2.1 is the intended question.
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Lemma 2.2 Suppose that (a + bN) ⊆ A∪ B for some positive integers a, b and some
disjoint sets A, B ⊆ N. If p is a prime number such that p � b and A is not dense in
Zp, then there exist positive integers c and j such that (c + bp j

N) ⊆ B.

Proof Since A is not dense in Zp, there exist positive integers d, j such that (d +
p j

N)∩ A = ∅. Hence, (a+bN)∩ (d+ p j
N) ⊆ B. The claim follows by the Chinese

remainder theorem, which implies that (a + bN) ∩ (d + p j
N) = c+ bp j

N, for some
positive integer c. �	
Lemma 2.3 Let a and b be positive integers. Then, a+bN is dense in Zp for all prime
numbers p such that p � b.

Proof It follows from the Chinese remainder theorem and the fact that N is dense
in Zp. �	

We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1 For the sake of contradiction, suppose that p1, . . . , pk are k pair-
wise distinct prime numbers such that none of A1, . . . , Ak is dense in Zpi for i =
1, . . . , k. Since A1 is not dense in Zp1 , there exist positive integers c1 and j1 such that

(c1+ p j1
1 N)∩A1 = ∅. Hence, (c1+ p j1

1 N) ⊆ A2∪· · ·∪Ak and, thanks to Lemma 2.2,

there exist positive integers c2 and j2 such that (c2 + p j1
1 p j2

2 N) ⊆ A3 ∪ · · · ∪ Ak .

Continuing this process, we get that (ck−1 + p j1
1 · · · p jk−1

k−1 N) ⊆ Ak , for some positive
integers ck−1, j1, . . . , jk−1. By Lemma 2.3, this last inclusion implies that Ak is dense
in Zpk , but this contradicts the hypotheses. �	
Remark 2.1 In fact, Theorem 2.1 can be strengthened in the following way: For each
partition A1, . . . , Ak of N, there exists a member A j of this partition which is dense
in Zp for all but at most k − 1 prime numbers p.

Indeed, for the sake of contradiction, suppose that each member A j of the partition
A1, . . . , Ak ofN has at least k prime numbers p such that A j is not dense inZp. Then,
we can choose prime numbers p1, . . . , pk such that for each j ∈ {1, . . . , k} the set A j

is not dense in Zp j . Next, we provide the reasoning from the proof of Theorem 2.1 to
reach a contradiction.

The next result shows that the quantity k − 1 in Theorem 2.1 cannot be improved.

Theorem 2.4 Let k ≥ 2 be an integer, and let p1, . . . , pk−1 be pairwise distinct prime
numbers. Then, there exists a partition A1, . . . , Ak of N such that none of A1, . . . , Ak

is dense in Zpi for i = 1, . . . , k − 1.

Proof Let e1, . . . , ek−1 be positive integers such that peii ≥ k for i = 1, . . . , k − 1,
and put

V := {
0, . . . , pe11 − 1

} × · · · × {
0, . . . , pek−1

k−1 − 1
}
.

We shall construct a partition R0, . . . , Rk−1 of V (note that the indices of Ri start from
0) such that if (r1, . . . , rk−1) ∈ R j then none of the components r1, . . . , rk−1 is equal
to j . Then, we define

A j := {
n ∈ N : ∃(r1, . . . , rk−1) ∈ R j−1, ∀i = 1, . . . , k − 1, n ≡ ri (mod peii )

}
,
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for j = 1, . . . , k. At this point, it follows easily that A1, . . . , Ak is a partition of N

and that none of A1, . . . , Ak is dense in Zpi , since A j+1 misses the residue class j
(mod peii ).

The construction of R0, . . . , Rk−1 is algorithmic. We start with R0, . . . , Rk−1 all
empty. Then, we pick a vector x ∈ V which is not already in R0 ∪ · · · ∪ Rk−1. It is
easy to see that there exists some j ∈ {0, . . . , k − 1} such that j does not appear as
a component of x. We thus throw x into R j . We continue this process until all the
vectors in V have been picked.

Now, by the construction it is clear that R0, . . . , Rk−1 is a partition of V satisfying
the desired property. �	

3 Denseness of Ratio Sets of Members of Partitions of N

The result in Corollary 2.1 is not optimal. Let �x� denote the greatest integer not
exceeding x , and write log2 for the base 2 logarithm. Our next result is the following:

Theorem 3.1 Let A1, . . . , Ak be a partition of N into k sets. Then, for all prime num-
bers p but at most �log2 k� exceptions, at least one of R(A1), . . . , R(Ak) is dense in
Qp.

Before proving Theorem 3.1, we need to introduce some notations. For a prime
number p and a positive integer w, we identify the group (Z/pw

Z)∗ with {a ∈
{1, . . . , pw} : p � a}. Moreover, for each a ∈ (Z/pw

Z)∗ we define

(a)pw :=
{
x ∈ Q

∗
p : x/pνp(x) ≡ a mod pw

}
,

where, as usual, νp denotes the p-adic valuation. Note that the family of sets

(a)pw ∩ ν−1
p (s) = {(

a + rpw
)
ps : r ∈ Zp

}

where w is a positive integer, a ∈ (Z/pw
Z)∗, and s ∈ Z, is a basis of the topology of

Q
∗
p. Finally, for all integers t ≤ m and for each set X ⊆ N, we define

Vpw,t,m :=
{
(a)pw ∩ ν−1

p (s) : a ∈ (
Z/pw

Z
)∗

, s ∈ Z ∩ [t,m − 1]
}

and
Vpw,t,m(X) := {

I ∈ Vpw,t,m : X ∩ I �= ∅
}
.

Note that the following trivial upper bound holds

#Vpw,t,m(X) ≤ #Vpw,t,m = (m − t)ϕ
(
pw

)
,

where ϕ is the Euler’s totient function.
Now, we are ready to state a lemma that will be crucial in the proof of Theorem 3.1.
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Lemma 3.2 Fix a prime number p, two positive integers w, t , a real number c > 1/2,
and a set X ⊆ N. Suppose that #Vpw,0,m(X) ≥ cm ϕ(pw) for some positive integer
m > t/(2c − 1). Then, the ratio set R(X) intersects nontrivially with each set in
Vpw,0,t .

Proof Given (a0)pw ∩ ν−1
p (s0) ∈ Vpw,0,t , we have to prove that R(X) ∩ (a0)pw ∩

ν−1
p (s0) �= ∅. For the sake of convenience, define A := Vpw,t,m(X) and

B :=
{
(a0a)pw ∩ ν−1

p (s0 + s) : (a)pw ∩ ν−1
p (s) ∈ Vpw,t−s0,m−s0(X)

}
.

We have

#A = #Vpw,0,m(X) − #Vpw,0,t (X) ≥ (cm − t)ϕ
(
pw

)
>

1

2
(m − t)ϕ

(
pw

)
, (1)

where we used the inequality m > t/(2c − 1). Similarly,

#B = #Vpw,0,m(X) − #Vpw,0,t−s0(X) − #Vpw,m−s0,m(X)

≥ (cm − (t − s0) − s0)ϕ
(
pw

)
>

1

2
(m − t)ϕ

(
pw

)
. (2)

Now, A and B are both subsets of Vpw,t,m , while #Vpw,t,m = (m−t)ϕ(pw). Therefore,
(1) and (2) imply that A ∩ B �= ∅. That is, there exist (a1)pw ∩ ν−1

p (s1) ∈ A and
(a2)pw ∩ ν−1

p (s2) ∈ Vpw,t−s0,m−s0(X) such that a1/a2 ≡ a0 (mod pw) and s1 − s2 =
s0, so that R(X) ∩ (a0)pw ∩ ν−1

p (s0) �= ∅, as claimed. �	
Proof of Theorem 3.1 For the sake of contradiction, put � := �log2 k� + 1 and
suppose that p1, . . . , p� are � pairwise distinct prime numbers such that none of
R(A1), . . . , R(Ak) is dense in Qpi for i = 1, . . . , �. Hence, there exist positive
integers w and t such that for each i ∈ {1, . . . , k} and each j ∈ {1, . . . , �} we
have R(Ai ) ∩ (ai, j )pw

j
∩ ν−1

p j
(si, j ) = ∅, for some ai, j ∈ (Z/pw

j Z)∗ and some
si, j ∈ {−(t − 1), . . . , t − 1}. Clearly, since ratio sets are closed under taking recip-
rocals, we can assume si, j ≥ 0. Put c := 1/ �

√
k, so that c > 1/2, and pick a positive

integer m > t/(2c − 1). There are

N := m�
�∏

j=1

ϕ
(
pw
j

)

sets of the form
�⋂

j=1

(
(a j )pw

j
∩ ν−1

p j
(s j )

)
, (3)

where a j ∈ (Z/pw
j Z)∗ and s j ∈ {0, . . . ,m−1}. Therefore, there exists i0 ∈ {1, . . . , k}

such that Ai0 intersects nontrivially with at least N/k of the sets of form (3). Con-
sequently, there exists j0 ∈ {1, . . . , �} such that Ai0 intersects nontrivially with at
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least cmϕ(pw
j0
) sets of the form (a)pw

j0
∩ ν−1

p j0
(s), where a ∈ (Z/pw

j0
Z)∗ and s ∈

{0, . . . ,m − 1}. In other words, #Vpw
j0

,0,m(Ai0) ≥ cmϕ(pw
j0
). Hence, by Lemma 3.2,

the set R(Ai0) intersects nontrivially with all the sets of the form (a)pw
j0

∩ ν−1
p j0

(s),

where a ∈ (Z/pw
j0

Z)∗ and s ∈ {0, . . . , t − 1}, but this is in contradiction with the fact
that R(Ai0) ∩ (ai0, j0)pw

j0
∩ ν−1

p j0
(si0, j0) = ∅. �	

The bound �log2 k� in Theorem 3.1 is sharp in the following sense:

Theorem 3.3 Let k ≥ 2 be an integer, and let p1 < · · · < p� be � := �log2 k� pairwise
distinct prime numbers. Then, there exists a partition of N into k sets A1, . . . , Ak such
that none of R(A1), . . . , R(Ak) is dense in Qpi for i = 1, . . . , �.

Proof We give two different constructions. Put h := 2� and let S1, . . . , Sh be all the
subsets of {1, . . . , �}. For j = 1, . . . , h, define

Bj := {n ∈ N : ∀i = 1, . . . , � νpi (n) ≡ χS j (i) (mod 2)},

where χS j denotes the characteristic function of S j . It follows easily that B1, . . . , Bh is
a partition of N and that none of R(B1), . . . , R(Bh) is dense in Qpi , for i = 1, . . . , �,
since each R(Bj ) contains only rational numberswith even pi -adic valuations. Finally,
since h ≤ k, the partition B1, . . . , Bh can be refined to obtain a partition A1, . . . , Ak

satisfying the desired property.
The second construction is similar. For j = 1, . . . , h, define

C j =
⎧
⎨

⎩
n ∈ N :

⎛

⎝n/p
vpi (n)

i

pi

⎞

⎠ = (−1)χS j (i) for each i ∈ {1, . . . , �}
⎫
⎬

⎭
,

where
(
a
p

)
means the Legendre symbol and in case of p1 = 2 we put

( a
2

) = a

(mod 4). It follows easily that C1, . . . ,Ch is a partition of N, and that none of
R(C1), . . . , R(Ch) is dense in Qpi , for i = 1, . . . , �, since each R(C j ) contains
only products of powers of pi and quadratic residues modulo pi (in case of p1 = 2
we have only products of powers of 2 and numbers congruent to 1 modulo 4). Finally,
since h ≤ k, the partition C1, . . . ,Ch can be refined to obtain a partition A1, . . . , Ak

satisfying the desired property. �	
In light of Remark 2.1, it is worth to ask the following question.

Question 3.1 Let us fix a positive integer k. What then is the least number m = m(k)
such that for each partition A1, . . . , Ak of N there exists a member A j of this partition
such that R(A j ) is dense in Qp for all but at most m prime numbers p?

In virtue of Remark 2.1, we know that m(k) exists and m(k) ≤ k − 1. On the other
hand, by Theorem 3.3 the value m(k) is not less than

⌊
log2 k

⌋
.
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