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Abstract

An entropy-stable residual distribution (RD) method is developed for the systems of
two-dimensional shallow water equations (SWE). The construction of entropy stability
for the residual distribution method is derived from finite volume method principles,
albeit using a multidimensional approach. The paper delves into in-depth discussions
on how finite volume methods achieve entropy stability in a “one-dimensional” sense
for two-dimensional systems of SWE unlike the residual distribution methods. Results
herein demonstrate the superiority of the entropy-stable RD methods relative to their
finite volume counterparts, especially on highly irregular triangular grids. The compar-
ative results with other established RD methods are also included, depicting similar
performances with the Lax—Wendroff method for unsteady smooth flows but more
accurate than the multidimensional upwind approaches (N, LDA) on both smooth and
discontinuous test cases.
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1 Introduction

The shallow water or Saint Venant equations were derived as a simplified version of
Navier—Stokes equations to describe fluid flows in an open channel. These equations
have been employed to represent river flows, inundation or any other flows where the
height of the fluid is considerably smaller than the longitudinal length scale of the
fluid flow. Aside from the conventional and well-developed discretization schemes of
finite difference (FD), finite volume (FV) and finite element (FE) methods, the residual
distribution (RD) or fluctuation splitting method has also received considerable atten-
tion by researchers in shallow water equations (SWE) over the last three decades due
to its special features such as multidimensional upwinding [17], compact stencil and
insensitivity against grid irregularities [7]. Since there are very limited applications
of SWE in steady cases, most numerical schemes of SWE were developed with time-
dependent features even in their early stages. This could present a challenge because
most RD methods cannot preserve second-order accuracy for unsteady calculations
without employing special treatments to the time discretization such as using mass
matrix or implicit techniques [1]. These techniques are computationally expensive
relative to explicit methods. It is known that SWE has a mathematical entropy which
coincides with the total energy of the fluid flow [32,33], and to the authors’ best knowl-
edge, there is yet any RD scheme which is designed to discretely control entropy (or
total energy) for the discretized SWE.

Most entropy-stable schemes were developed for the finite volume or finite dif-
ference methods beginning with the work of Tadmor [34], followed by a huge list
of authors [5,6,14,16,18,25] and so forth. Recently, however, Ismail and Chizari [24]
and later Abgrall [2] attempted the construction of different entropy conservative and
dissipative/stable RD schemes with positive results on linear and nonlinear scalar
equations. The properties of numerical entropy control as adopted by some studies
[15,24] have not been analysed in SWE using RD schemes.

In this paper, an explicit time discretization entropy-stable RD scheme will be
developed for the homogeneous shallow water equations based on the work of [24].
The work will focus on first- and second-order accurate solutions and on the inte-
rior computational domain. A comparison of results between the entropy-stable RD
method and its finite volume counterpart together with other RD methods will also be
presented.

Section 1 reviews the concepts of numerical entropy control, which includes
entropy conservation and entropy stability. We present the entropy function of the
two-dimensional homogeneous shallow water equations in Sect. 2. The method
development of an entropy-stable RD method is presented in Sect. 3, in which the
implementation of entropy conservation, entropy stability, positivity and second-order
approaches is thoroughly discussed. Section 4 demonstrates our results with in-depth
discussions. The conclusion and future directions of this research are highlighted in
Sect. 5.
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1.1 Entropy Conservation and Entropy Stability

Following [25], for any hyperbolic system of conservation laws satisfying
w+V-f=0, M
or in integral form
%(udA —f-Ndn =0, )
there is an additional entropy U constraint satisfying

U +V-F <0, 3)

where U is the mathematical entropy and is a convex function with the integral form
f(UdA — F-Ndr) <0. )

The inequality is to cater for a discontinuous flow where entropy is produced. Note
that the entropy is conserved for smooth flows thus equality is achieved. The entropy
production in a domain £2 with boundary 952 can be written as

02// (U, +V - F)dAdt = (UdA — F - Ndt), ©)
Q 082

for which equality of the previous equation implies entropy conservation and that a
negative outcome of the equation denotes that entropy is decreasing (or entropy-stable).

In a discrete form of the governing equations, the conservation laws of Eq. (2) must
be satisfied and that zero entropy production must be observed for smooth flows. A dis-
crete approach satisfying this proposition is deemed as an entropy-conserved method.
On the other hand, a discrete method solving Eq. (2) is defined as entropy-stable if
it always produces a decreasing entropy production. Entropy stability, however, only
guarantees that the discrete approach produces the correct sign of entropy produc-
tion but not necessarily the correct amount unless the flow is entropy conservative.
Too much of entropy generation would cause a smearing of the discontinuous profile,
while too little entropy production would give rise to oscillatory behaviour around the
discontinuity. To the authors’ best knowledge, there is yet a solid analytical relation
between entropy production and shock quality although some form of approximation
model has been done for the inviscid approach in [25]. Thus, we will focus mainly in
achieving entropy stability in this paper.

@ Springer



1748 W.S. Chang et al.

2 2D Inviscid Shallow Water Equations

Recall that the following represents the 2D SWE.

ou of o

=0, 6
at ax  Jy ©

where
u=(h, hu, hv)", f = (hu, hu* + gh*/2, huv)T, g = (hv, huv, hv* + gh?/2)T

2.1 Entropy Function and Variables for the 2D Shallow Water Equations

Define a convex entropy function (sometimes also referred to as the “total energy”)

2 2 2
U= w satisfying the following inequality

8U+8F+8G<O ™
at ax ay —
and that satisfies the entropy theorem [21]

Waf.g) _I(F,G)

8
ou ou ou ®)

where (f, g) and (F, G) represent vector notations instead of inner products and the
fluxes are given by

F = (hu’)2 + gh®u + huv?/2), G = (hv’ /2 + gh®v + hu*v/2).
The entropy variables are given by
v= (=’ +v")/2+ gh,u,v)7, ©)

and it can be shown via direct computation that

h2
A 0
v-g=G+ >

A similar identity can be found also for the system of Euler equations [25] and for
general systems of hyperbolic equations [34].
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Fig.1 The first-order finite volume cell vertex diagram

3 Entropy-Stable Methods for the Shallow Water Equations
3.1 2D Finite Volume (FV) Method

To highlight the philosophical difference between entropy-stable RD methods and
their FV counterpart, the cell vertex FV method is revisited since this scheme updates
nodal variables, which is comparable to RD schemes. The total integration of Eq. (6)
is performed over the shaded arbitrary Voronoi/containment cell as shown in Fig. 1a.
However, a median-dual cell type is used for this study to account for highly skewed
cells where the details are included in Appendix A. Voronoi cells are used to illustrate
the lack of multidimensional property of FV method in a clearer fashion. The integral
is given by

u

1 - 1 -
E :_A_pﬁfe'nedle:_A_pXe:(feﬂge)' e (11)

1
== D felex + geey), (12)
Poe

where A, is the Voronoi cell area of point p and the subscript e refers to quantities
at the edges of the Voronoi cells. f, and g, represent the flux components across the
edges and 77, denotes the outward normal of the edges. The 7, is scaled by the edge
length(l,) . The fluxes across the edges of Voronoi cells are computed by solving the
1D Riemann problem along the normal direction of the edges. For brevity, the details
of the entropy-stable FV computation are recorded in Appendix B.

For the first-order FV method, the edge fluxes are computed by using only the
variable values stored in two neighbouring points. For instance, in Fig. 1b, the final
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Fig.2 The second-order finite
volume cell vertex stencil

net flux across edge i is a function of only two points on the opposite sides of the
edge, which are points 0 and 1. Hence, f i f (ug, up) and thus this scheme is not
multidimensional.

The second-order cell vertex FV employs the least squares method to reconstruct
the variables of each point as polynomials. In the computation of point 0 in Fig. 2,
the polynomials of points 1 to 6 have to be determined as well. This requires the
computational stencil to be extended to another layer of cells (in dash lines) for the
second-order approach. For instance, the polynomials for point 2 have to involve the
nodal variables from point 0, 1, 8, 9, 10, and 3. Hence, the second or higher-order FV
method is no longer compact since every increment of the order of accuracy has to be
accompanied with the inclusion of another layer of cells.

3.2 2D Entropy-Conserved RD Method

For any RD method in general, the total integration of Eq. (6) is over the median-dual
area node. The difference between RD and FV methods lies in computing the local
elements that surrounds the median-dual area node. From the previous section, we have
shown that FV approach uses a “1D-type” approach in terms of normal to the edge.
However, the RD method computes the integral of the advection term using all three
edges of the triangular element (or cell), utilizing the whole cell in this computation
and defines it as a residual (¢) to achieve a multidimensional feature. The equation is
given by

ou 1 = = 1
— = V. fdA = — ¢ 13
ot Ap// ! APXC: P (13
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Fig.3 The general residual distribution scheme diagram

where A, is the median-dual area of point p and the superscript C refers to quantities
of the neighbouring triangular cells (or elements) of the centre node depicted in cells
I — VI as shown in Fig. 3a. In contrast to the cell vertex FV method which focuses on
determining the net flux across the edge boundary between two points, RD methods
determine the residual (or signals) in a computational cell, which is a function of the
variables from all three nodes of the cells. For instance, focusing on cell / in Fig. 3b,
portion of the total residual from cell 7, ¢IT = f(ug,u1, uy) is distributed towards
node 0 as ¢.

The residual over a certain element (or cell) 7 for a system of equations can be
computed as

br == [[GL+ SEvixay =~ ¢ (ray - gan
%(foJrfl)(M—yo)Jr s+ —yD)+5 (fz+fo)(yo—y2)
—E(go + g1 —xo) — E(gl + 82)(x2 — x1) — E(gz + 80)(xo — x2)
= g 5 gD T
» »

0

1 -
=32 = 8,89 Tp, (14)
P

where p denotes the points (0, 1, 2) and 71’1, is the respective inward normal on the
element edge across of point p as shown in Fig. 3b. The line integral is approximated
with the trapezium rule in Eq. (14). For a closed system, the entropy is only generated
through the fluxes. The key to correctly model the primary fluxes f = (f, g) is by
the introducing degrees of freedom f* and g* such that they would accurately alter
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the entropy fluxes F. The element residual (¢7) can be distributed to each element

node in various ways as discussed by Abgrall [1]. Herein, we propose the distribution

based on an isotropic approach coupled with an artificial signals distribution [24].
Assume that each node has the following isotropic signals

1 - iso
bp=5((fp8)) = ("8 7T, = ). (15)

with (f*, g*) are arbitrary to denote degrees of freedom which are influencing the
signals ¢, within an element. In a scalar advection case for instance, if (f *, g%) are
chosen to be the fluxes based on the velocities of the upwind node, the two-target N
scheme will be recovered. Herein, the (f*, g*) will be calculated over a triangular
element using three nodal values to achieve entropy conservation within that element.
It can be viewed from a more general perspective that the (f*, g*) is evaluated as
a line integral of three edges around a local element, and thus still preserving the
multidimensional sense of an RD method. Note that the line integral of (f*, g*) over
a local element is not trivial in the entropy (U )-space. In addition, the conservation of
the primary variables within a local element is guaranteed by default since any choice
of (f*, g*) will work. However, there is only a certain choice of (f*, g*) that will
ensure conservation of entropy within the local element.

Following the work of [24] in the effort to enforce entropy conservation, the idea is
to locally impose a semi-discrete update of # in Eq. (13) which will update U simulta-
neously. Through the implementation of a mapping function v as already described in
Sect. 2.1, every nodal update on u has a direct local entropy update of U at the nodes.
To achieve entropy conservation, the entropy production within a local element must
be

U= (Fp.Gp)-7p—) (vh¢,)=0. (16)
p p

Rearranging the previous equation and expanding the signals based on Eq. (15) will
yield

D WIS gy W)= (f5 8 W) =) (Fp,Gp) -7y (17)
P P p

Note that
Y h(f 8y T p) =Y (FpGp)- T,
p p

can also be viewed as the multidimensional entropy-potential equation over an arbitrary
element. In our context, Eq. (17) is an exact discrete entropy-conserved condition for
(f*, g*) on the whole element. Applying the identity in Eq. (10) will yield the entropy-
conserved fluxes over a cell for the SWE in 2D,
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E:(xk,yk)

i (i, Yi)

ij 7+ (25, 95)

Fig.4 Arbitrary triangle with three node pairs to mark different edges

h2(u,., e
(" g7y = g e liplp vo) Ty (18)

RO

The previous equation can be approximated with f* as the integration of each element
edges as shown in Fig. 4. In other words, the element’s entropy-conserved flux f* could
be interpreted as an arithmetic average of each edge entropy-conserved conditions
ij+ f ks S ;- The error of this approximation is O (h?) as demonstrated in Appendix
C, so technically it should be accurate enough for up to second-order accurate methods
as done herein.
The previous equation can be written as a discrete divergence operator over the

element such that

V. hf,(up, vp)

* , * — 19
(89 =850 (19)
Putting it all together, it can be shown that at the element level, the entropy-conserved

averaged quantities for the SWE are given by the following.

1

W= 3 (i +hj 4 i) (20)
1

ut = g(ui +uj +up) 21
1

v = E(vi +vj 4+ vp). (22)

Thus, the element entropy-conserved fluxes within an element are

h*u* h*v*
fE= | muw?+ lgn? |, g€ =| hruror , (23)
hruv* h*p*2 + %gh*z

where (f*, g*) = (f€, g€) in Eq. (15). Unfortunately, this method is probably
unstable and requires some form of entropy dissipation to make it work.
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J
(a) Isotropic signals distributed (b) Artificial diffusion terms
to point ¢ distributed to point ¢

Fig.5 Isotropic and artificial signals going to point i

3.3 Entropy Stability for RD Method via Artificial Signals

Following the work [24], we propose artificial terms to offset the isotropic signals.
The upwinded signals distribution on node i shown in Fig. 5 can be written as,

¢i=%(f_‘)i_f—>)‘ﬁ)i

¢ 24)

A

A~ AT A~ AT A A
—RDaR [U]]l—RD’BR [v]kj—RDyR [v]ik’

o

where " represents averaged values within an element. This is yet another degree of
freedom in which we can explore but for computational economy, we select these
averaged values to be identical with the averaged values required for entropy con-
servation. Note that the artificial signals are also a form of line integral over a local
element which retains the multidimensional approach. For the system of shallow water
equations, its Jacobian can be decomposed into A = RAR ™. The eigenvector matrix
along the streamline is

1 0 1
R=|u—ab; —aby u+ab, |. (25)
v—abty aby v+aby

The streamline direction ¢ can be decomposed in terms of its normalized x- and y-

directions, 0, = u .0, = v . The velocity tangential to the streamline
T Ja@ny 7 T @+ yfang
is given by gg = uy + v6,. The eigenvalues along the streamline are written as,
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qgo—a O 0
A= 0 qo 0 , (26)
0 0 go+a

which denote the acoustic and entropy waves, respectively. As done in [25], we propose
upwinding in terms of the difference in entropy variables v instead of the conserved
variables u. Using Barth—-Merriam identity [26] such that,

o O

R 'du=SR"dv, S= (27)

o Onl—
oR- o

o |—

The S is a normalization scaling matrix. Last but not least, &, § and y are the diagonal
coefficients which are identical for each node within an element. In other words,
these coefficients are element-type of parameters but with different values for each
characteristic wave. These coefficients are written as,

a 0 0 B 0 0 yi 0 0
a=|0 a 0, B=|0 B 0, y»=|0 1y 0. (28
0 0 a3 0 0 B 0 0 »

We define the diagonal matrices,

A

Dy = a|A|Sh, Dg=Bl|AISh, D, = y|A|Sh, (29)

where 4 is the average length of the edges, to ensure proper units and length scales
for the artificial terms.
Subsequently, the signals for the other two nodes in element 7" are written below.

1 /— =2\
¢j:§(fj_fc>'nj
e

A A AT A A AT A A AT
— RDLR' [v);; — RD4R' [v] — RD, R [v];;

(30)

o
(77 - 7€)

L% e r o 31)
— RDy R [v]y, — RDgR [v];; — RD,R [v]y; .

N =

=

¢ Er[

Note that the summation of all the signals due to the artificial terms within element 7 is
zero, whereas the sum of the isotropic signals will yield the exact numerical integral of
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Eq. (15); hence, conservation within an element is obtained by default. However, both
the isotropic signals and artificial terms would affect the nodes from a median-dual
area perspective.

3.3.1 Conditions for Entropy Stability
Define
AT AT

My, =RDyR , Mg=RDsR , M,=RD,R

Since ﬁa, D g and ﬁy are diagonal, M, M g and M, will be symmetric and positive
definite. Using the method in Eq. (24), the entropy production would be,

0= Y T Y,
p p
o SLAAE P SR DL D B U e
p p p p

=0

Therefore,

U=—v (Mg (vi—vj)+ Mg (v; — o) + M, (v —v)))
—v/r(Ma(vj—vk)—l—M,g(vk—vi)—i-My(v,-—vj)) (33)
—va (Ma (vp —v;) + Mg (l),' — vj) +M, (vj — vk)) .
Although we started with a symmetric approach over the element, the 8 terms drop
out since these terms are the differences which does not contain the node of interest

and perhaps does not influence the entropy production. For example, node i will have
B terms for differences in terms of nodes (J, k). Hence,

U= (vi ) ( My) (vi —v))

(v, — vk) ( —M,) (v; —vi) (34)
+ (v —v)T (M, M)(vk—vi),
where
M, - M, =1%(i)a—i)y) R"
And,

Dy — D, = (- p)|A|S.

While |1’1\| and S are always positive, in order to satisfy U < 0, the condition of
o — y > 0 should be met. Or in other words,

ag—yva =20, VBseR, d=1,2,3. (35)

@ Springer



An Entropy-Stable Residual Distribution Scheme for the... 1757

In order to simplify the above condition for further analysis, we assume,
og >0, V4 = —aq, d=1,2,3. (36)
Since B does not affect the entropy production, we shall set
Ba =0, d=1,2,3. (37)
3.4 Positivity Conditions for the Entropy-Stable RD Method

The positivity condition is based on the scalar work from [23], and herein itis expanded
to a linearized system of equations. In order to produce a positive solution, we choose
o such that

1
aRAR™' > —3 min ((K),). p=ij.k (38)
where

K, = (RARTY). 77, (39)

N =

Clearly, min (K P) is always negative; hence, « shall be always positive and can be
explicitly determined as agmin. This would be our first-order approach.

3.5 Second-Order Entropy-Stable RD Methods

From the truncation error analysis of a scalar equation [24], the isotropic and artificial
signals have errors of O (h) and O (h), respectively. To create a second-order entropy-
stable method requires a reduction in error for the artificial signals. Based on the
argument from [24], we propose multiplying egmin With a grid size ratio matrix D

p=| o (&) o | (40)

Based on this D, all the waves from axmin are amplified based on a grid size (h)
which is non-dimensionalized with the reference length (L,). From the analysis of
the scalar equations [24], if ¢ = 0 then the solution would be close to first order. By
setting ¢ = 1.0, it would present a second-order spatially accurate method for steady
and unsteady scalar computations. The proof of achieving second-order accuracy for
systems using ¢ = 1.0 can be found in [31] and will be coined as our second-order
approach.
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3.6 Second-Order Limited Approach

To the authors’ best knowledge, there is yet a TVD method for RD approaches. Herein,
a limited approach is proposed by blending the high-order signals ¢"€" from Sect.
3.5 with low-order signals ¢"°" from Sect. 3.4. This is to ensure high-order accuracy
in smooth flows yet monotone solutions around discontinuities. The final residual
directed to a node i is

High

;=0 —Y@)d, " + ¥ @)pr, (41)

where ¥ (1) denotes a blending parameter. A heuristic definition of the blending param-
eter, ¥ (u), by Deconinck [11] is given as

9" |

T (42)
e 165V

¥(u) =

It is noted that this limited scheme does not guarantee positivity requirements but is
reported to have good results in some applications [3,10,30]. There could be a potential
of finding a better limited approach in RD via the work of [13].

3.7 Time Integration

We can use any consistent ODE-type solvers to update node p such that
ou At E
— ) = , 43
( ot > » 24, Z & “43)
E

where gbg is the signals at node p coming from cell (element) E and A, is the median-
dual area of the point p as shown in Fig. 6. Note that the overall RD approach is still
compact even for second-order methods.

4 Results and Discussion

The numerical performance of the proposed schemes is assessed on two test cases on
triangular grids with CFL = 0.1 on all regular grids. The CFL is increased to 10.0 on
highly randomized grids (70% and above) due to the over-constraint d¢ by small and
highly skewed elements. The entropy-stable finite volume method is denoted as ESFV
and entropy-stable residual distribution method as ESRD. Other RD schemes are also
included such as CRD N scheme (N) [27], low diffusion A (LDA), Lax—Friedrichs
(LxF) and Lax—Wendroff (LxW) schemes [35] where their signal distributions are
presented in Appendix D.
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Fig.6 Median-dual area of a
point (A, is the shaded area)

0.05
; 005, N
0.04 K 0.04 kK
0.03 0.03f
> >
0.02 002
0.01 001K
00501 60> 003 o004 o005 O =501~ 002 003~ 004 005
X X
(a) Regular isotropic grid (b) 80% randomized

isotropic grid

Fig.7 Isotropic grids used for vortex advection problem

4.1 Unsteady Vortex Advection

This test case is a smooth problem which enables the analysis on the order of accuracy
(OoA) using exact solutions [12,29]. We employ similar flow parameters in [29] where
I' =15, w = 4m, g = 1 in the domain [0, 112 with some differences where the vortex
centre is set at (0.25, 0.25) travelling in the diagonal direction towards the top right
corner of the domain with velocity, Wo = [18, 18] from t = 0 to t = 1/36. The
test case is simulated on five different grids with 3249, 7225, 12,769, 28,561 and
40,401 nodes, respectively, with systematic grid randomization effect. The regular
and randomized isotropic grids are illustrated in Fig. 7a, b, respectively.
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Exact AESFV 15t order X ESFV 2% order
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(a) Regular grid
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(b) Grid with 80% randomization

Fig. 8 Water height profiles across the vortex at streamline direction for various schemes on [200 x 200]
grid

The cross-sectional water height, &, and u velocity, u, profiles are plotted in Figs.
8 and 9, respectively, whereas v velocity, v, is just orthogonal to # and thus omitted.
The x-axis scale represents the distance from (0.5, 0.5) to (1.0, 1.0).

LxW and ESRD second-order scheme are able to recover the peak/trough height
and u and also maintain their second-order accuracy in Fig. 10 (where the summary
is in Table 1) even on grids with 80% randomization. The OoA performances for u
and v are similar to that of 4 and are omitted. The ESFV second-order scheme suffers
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Fig.9 u velocity profiles across the vortex at streamline direction for various schemes on [200 x 200] grid

deterioration from grid randomization. Firstly, there are more noticeable errors of both
h and u at the beginning and also the downstream half of the vortex. Secondly, the L2
errors of the ESFV second-order scheme become erratic with undefined OoA.
Although the LDA is proven to be second-order accurate in space for steady cases
[1], it is obvious here that the LDA is unable to preserve its second-order spatial accu-
racy for unsteady calculations using an explicit time integration technique. However,
the LDA is the most accurate in preserving & and # among the first-order schemes,
while the LxF is the most diffusive. In terms of A, the new ESRD first-order scheme
is comparable to the N scheme but the ESFV first order is slightly more diffusive and
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Fig. 10 L2 error of water height, &, versus the grid distance in logarithmic scale for vortex advection

the difference becomes even greater on highly randomized grids. Considering u, the
result of ESRD first order is better, if not comparable, to that of LDA.

A plot of the entropy rate of decay against time is illustrated in Fig. 11 to assess the
“total energy” preservation of the schemes for this smooth vortex transport case. The
more diffusive first-order methods are entropy-stable (% < 0), and it is highlighted
that the ESRD first-order scheme has the lowest rate of entropy dissipation for this
problem. All of the second-order schemes, including ESRD second-order scheme, are
able to preserve the entropy (or “total energy”’) with %—ltj ~ 0.

4.2 Steady Oblique Hydraulic Jump
The oblique hydraulic jump test case includes a discontinuity to assess monotone

property of numerical schemes in SWEs [20,28,29]. The flow parameters include
Froude number, Fr = 2.74, gravitational acceleration, g = 9.812, initial 2 = 1.0.
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Fig. 12 Exact solutions and 70% randomized isotropic grid used

The domain is [4 x 2.5] with mesh size of 1/42, and the wedge is at an angle of 8.95°.
The exact solution of / is shown in Fig. 12a. The grid used is shown in Fig. 12b.

In Fig. 13, LDA scheme, which is second order for steady case [31], exhibits
numerical oscillations near to the hydraulic jump profile, which confirms that the
scheme is not monotone, while LxW and ESRD second-order schemes diverge. Among
the first-order schemes, N scheme shows the sharpest jump, followed by ESFV first-
order, ESRD first-order and lastly LxF scheme.

The limited ESRD scheme is monotone and produces less diffusion to the solution
compared to ESRD first-order, which is qualitatively comparable to N scheme. Quanti-
tatively speaking, it should be highlighted that the error level of limited ESRD scheme
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Fig. 13 Water height profiles across y = 0.85 for various schemes on grid with 70% randomization for
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Fig. 14 Residual plots to achieve convergence for various schemes solving the steady oblique hydraulic
Jjump

is the lowest among all other schemes, even lower than its rival N scheme as shown in
Fig. 14 which denotes the convergence history of the steady oblique hydraulic jump
case. Furthermore, the figure reveals that all the schemes have comparable compu-
tational cost efficiency and take similar number of iterations to produce converged
solutions where the residuals or errors plots flatten.
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Table 1 Summary of the order of accuracy analysis for vortex advection for (a) regular grid and (b) 80 %
randomized grid

Scheme L2 errors for different grid sizes Order of accuracy
1/56 1/84 1/112 1/168 1/200
(a)
ESFV first 1.29989 1.09039 0.92837 0.70498 0.61731 0.590
ESFV second 0.13387 0.05920 0.03374 0.01544 0.01145 1.937
N 1.28097 1.07046 0.90915 0.68883 0.60291 0.597
LxF 1.60161 1.46289 1.33849 1.13196 1.03665 0.344
LDA 1.04249 0.83572 0.69221 0.51033 0.44298 0.677
LxW 0.24918 0.10177 0.05708 0.02694 0.01989 1.978
ESRD first 1.26211 1.03216 0.86604 0.64961 0.56754 0.633
ESRD second 0.26559 0.11061 0.06060 0.02720 0.01965 2.045
(b)
ESFV first 1.36241 1.17988 1.02197 0.81223 0.69708 0.522
ESFV second 0.12312 0.12352 0.02333 0.01733 0.16393 -
N 1.28069 1.07858 0.90196 0.70366 0.60878 0.586
LxF 1.59630 1.47815 1.35790 1.15964 1.06136 0.323
LDA 1.02603 0.78328 0.66001 0.50688 0.42500 0.674
LxW 0.43297 0.17488 0.09033 0.04677 0.03559 1.959
ESRD first 1.33593 1.13090 0.95103 0.73749 0.63870 0.582

ESRD second 0.46647 0.19495 0.09844 0.06193 0.04403 1.814

5 Conclusion

In this paper, an entropy-stable RD (ESRD) method was developed for the system of
SWE. Similar to the philosophy of its FV counterpart, the ESRD method consists of an
entropy-conserved (symmetric) and entropy-generated (asymmetric) portions which
are represented by the isotropic and artificial signals, respectively. However, in the RD
context both signals use a multidimensional approach over an element. For instance, the
entropy-conserved fluxes (f€, g€) are derived from taking the line integral around
a local element using all of its nodal values. The ESFV method is more of a one-
dimensional setting, using only two nodal values to compute the entropy-conserved
fluxes on the interface shared by the two nodes. Nevertheless, a similar arithmetic
mean is found to satisfy entropy conservation in SWE for the RD method except that
it uses three node values compared to two nodal values for FV. The entropy-generated
(numerical diffusion) parts are also multidimensional for the RD method unlike the
FV scheme. Perhaps that explains the accuracy preservation of the ESRD method
on highly irregular grids which is not possible with the ESFV approach, consistent
with reports in the literature [8,19]. On the other hand, the newly developed ESRD
methods performed quite admirably relative to current RD methods in terms of cost
and accuracy. In fact, the second-order ESRD methods preserve most of the spatial
order accuracy even on unsteady problems unlike the LDA method. Extensions to high-
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order (more than second) accurate methods using the principles in [4] are currently
underway. Since the current limited version does not guarantee the total elimination
of spurious oscillations using the blending parameter from [11], we are also looking
into entropy TVD approach such as [13] as part of the future work. The extension to
a more complex 2D systems of equation such as Euler 2D equations has already been
done and is undergoing its final revision stage [9].

Acknowledgements We would like to thank Universiti Sains Malaysia for financially supporting this
research work under the Academic Staff Training Scheme (ASTS) and the USM Research University
Grant (No: 1001/PAERO/8014091).

A Median-Dual Area of FV Method

To account for highly skewed cells which constitutes of obtuse triangles, Voronoi cells
are replaced by median-dual cells in this study of the effect of grid randomization. By
joining the centroids to the midpoints of the edges to form the boundary, median-dual
cells are well defined in any triangulation as shown in Fig. 15a (cf. Fig. 1a).

Each edge in the Voronoi cells that separates the two adjacent points are further split
into two shorter edges in the median-dual cells, e.g. edge i is split into its component
in cell I and cell V I. Consequently, the flux between nodes 0 and 1 is split into f; s
and f; y; with their respective normals, 71; ; and 7; v, as demonstrated in Fig. 15b
(cf. Fig. 1b). While having more edges with different normals, the fluxes are still
computed as functions from variables from only the two adjacent nodes. In another
words, the underlying lack of multidimensional property of FV method remains even
median-dual cells are used.

(a) Median-dual cell area of point 0 and (b) Net flux along edge i
the normal of each edge

Fig. 15 The first-order finite volume cell vertex diagram
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Fig. 16 A sample median-dual
edge with normal and tangential
velocities (¢, ) in an arbitrary
grid

B Entropy-Stable FV Formulation

Following the work of [22] on Euler, the entropy-stable FV for SWE can be derived
in a similar approach. The FV formulation starts with the semi-discretized SWE on
arbitrary grids in 2D, and it is in the form of Eq. (12). With the definition of the length

of a particular edge as [, = \/(Ax)2 + (Ay)? as illustrated in Fig. 16, the normal and
tangential velocities at e are given by

uAy — vAx

Ge = ——F— (44)
le
A A
o= AT EVAY, 45)
e

Substituting the new definitions into Eq. (12), the normal flux through the edge will
be

hq

A
fene,x + 8olle,y = hug + ng_ey le = F,l,, (46)

th Ax
hvg — 557~

We consider the two neighbouring points’ variables separated by the common median-
dual edge to be subscripted by L and R. The net flux across edge e is the summation
of the symmetric entropy conserving flux, F ¢, and an entropy-stable (or consistent)
dissipative flux, which is given by

A An AT
Fe(up,ugr) = Fc(up,ug) — -R|AS|R [v]. 47

The entropy conservative flux is computed with arithmetic averaged quantities from
the neighbouring two points, and it is defined as
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hq
PN WA
Fc(up,ug) = | hig + 53+ (48)
ran gfzzA
th — Tl_ex

where a = % (ar, + ag). It should be noted that the right eigenvectors, ii, the eigen-

values, /Al, and the scaling matrix, S, in the dissipative flux are of similar forms as
Egs. (25), (26), (27), respectively. However, the components of these matrices in Eq.
(47) are also arithmetic averaged values of the two points. Besides, the streamline
direction @ is replaced by the edge outward normal, 7. [v] is defined as the change of
the entropy variables between the left and right points, [v] = vg — v

C Edge-Based Fluxes

Consider any system of hyperbolic equations as given in Eq. (1) with the fluxes in the
x-direction given as f. We intend to determine the difference between the flux over
the element f* and the arithmetic average flux over the edge of the particular element

?‘j, jfk, f7; as shown in Fig. 4. Assume that this particular element has f* located

at (0, 0). Thus, the centre of the triangle is at the (0, 0) or,
Xi+xj+x=0,  yi+yj+y=0 (49)
and the coordinates are,
i1 (xih,yih), j:(xjh,yjh), k:(xkh, ych) (50)
The three entropy-conserved fluxes can be calculated for each edge
i Fie fii (51)
as given in Eq. (18). Using Taylor analysis, we can estimate the error as

Gt i

Error = f* — 3
h2 82f* ) )
92 f* (52)
“xdy (—xi Qi + yj) — xj (i +2))

P, 2 3
-5 (» +)’iyj+yj)>+0<h )

which demonstrates error of O (h?).
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D Classic RD Schemes

In the context of RD methods, there are various approaches to distribute the total
residual or signals to each node of the element. Considering system of conservation
laws in Eq. (1), the upwind parameter for a certain node i in an element is introduced
as

1l fo>o
ki=3 ( AR—I) T, (53)

where 77; is the inward normal of the edge opposite of node i scaled with the respective
edge. To differentiate the fluxes flowing in or out of the cell, define

(54)

S
v

0
0

where k;" represents flux flowing into the element at edge opposite of node i and on
the same note, k;  represents outflowing flux. Then nodal signal distributions for the
classic RD schemes are defined as the following.

— Narrow (N) scheme

-1
O =k w—a), a= (k) (Tkw) (55)
— Lax—Friedrichs (LxF) scheme
¢ = b7 +awi — ), a>max(kil, [k;|, ki) (56)

where & and ¢ are the arithmetic average of  and ¢ over the element.
— Low diffusion advection (LDA) scheme

PN = gEPAg, A et (Y k) 57)

— Lax—Wendroff (LxW) scheme

1 Ar 2A;
O =tibr Gi=gt ok A= () 68
i A TV Pt > op lkpl

where A; is the median-dual area of node i and v is the CFL number.
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