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Abstract
Prime partitions are partitions of integers into prime parts. In this paper, we first
consider prime partitions with distinct parts. By using generating functions, we obtain
some inductive formulas to calculate the number of prime partitions with distinct parts.
Our formulas give two generalizations of the Euler’s formula for the integer partition
case. Then, we consider general prime partitions with not necessarily distinct parts.
By keeping track of the recurrence of primes in a partition and finding bijections
between different prime partitions, we get some inductive formulas to calculate the
number of general prime partitions. Finally, by numerical experimentation we find an
approximation of some analytical formulas for the number of general prime partitions.

Keywords Euler’s formula · Combinatorial identities · Partitions · Primes ·
Generating functions

Mathematics Subject Classification 05A19

1 Introduction

Partition theory has a long history. George E. Andrews [8, chapter 9] gives a survey on
the theory of integer partitions. For positive integers m and n, the number of integer
partitions of n intom distinct parts, denoted by D(m, n), satisfies the inductive formula

D(m, n) = D(m, n − m) + D(m − 1, n − m).
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This formula was discovered by Leonhard Euler [8]. In this paper, we focus on the
study of prime partitions. If n = p j1 + p j2 + · · · + p jm and p ji are primes for all
1 ≤ i ≤ m, then we say (p j1, p j2 , . . . , p jm ) is a prime partition of n as m parts. To
avoid duplication, we require p j1 ≤ p j2 ≤ · · · ≤ p jm .

In Sect. 2, we first consider prime partitions with distinct parts with the aim to
generalize Euler’s formula. Let D(m, n) denote the number of prime partitions of n
intom distinct parts.We use two different methods to prove thatD(m, n) = E(m, n)+
E(m−1, n−2), whereE(m, n) is the number of partitions of n intom distinct odd prime
parts. For a givenprimepartitionλm = (p j1, p j2 , . . . , p jm )ofnwith p ji < p ji+1 for all

1 ≤ i ≤ m−1, we can define the corresponding κ-constant κλm
m,n = ∑m

k=1 p jk+1− p jk ,

which measures the sum of the differences between p jk and its next adjacent prime
p jk+1 in the set of primes

P = {p0 = 2, p1 = 3, p2 = 5, p3 = 7, p4 = 11, p5 = 13, p6 = 17, . . .} .

By using generating functions, we prove that for positive integers m and N , if m and
N have the same parity, then

D(m, N ) = #
{
λm � n | κλm

m,n + n = N ,∀n ≤ N − 2m + 1
}
.

If m and N have different parity, then

D(m, N ) = #
{
μm−1 � n | κ

μm−1
m−1,n + n + 2 = N ,∀n ≤ N − 2m + 1

}
.

Next in Sect. 3 we consider general prime partitions with not necessarily distinct
parts. In order to find inductive formulas to calculate the number of general prime
partitions of n intom parts, denoted byY (m, n), we need to keep track of the recurrence
of primes in a partition. Let Sp(r)

m,n denote the set of prime partitions of n as m parts
with the prime p occurring r times, where 0 ≤ r ≤ min{m, � n

p �} is an integer.

Let Yp(r)(m, n) denote the cardinality of the set S p(r)
m,n . We prove that Yp(r)(m, n) =

Yp(r+1)(m + 1, n + p) by constructing a bijective map between the set S p(r)
m,n and the

set S p(r+1)
m+1,n+p. This bijection method is also generalized to consider multiple primes

at the same time in Theorem 3.4. Theorem 3.5 gives an inductive formula to calculate
Y (m, n + (m − 2) × p). The special case of Theorem 3.5 when n = 2 × p recovers
the result in [9].

Finally, in Sect. 4, through numerical experimentation we obtain an approximation
of some analytical formulas for Y (m, n) when m = 4, 5, 6, 7, 8, 9, 10. We find for a
fixed m, the function Y (m, n) is approximately a power function of n when n is large.
We give the parameters for the power functions in Table 1.

2 Prime Partitions with Distinct Parts

In [8] chapter 9 on partitions, George E. Andrews presented an inductive formula
discovered by Leonhard Euler to find the number of partitions into distinct parts. Let
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Table 1 Fitted data

m n ln(Y ) versus ln(n) Y versus n

4 Odd ln(Y ) = 1.460 ln(n) − 3.225 Y = 3.974 × 10−2n1.460

Even ln(Y ) = 2.215 ln(n) − 5.483 Y = 4.153 × 10−3n2.215

5 Odd ln(Y ) = 2.936 ln(n) − 7.969 Y = 3.460 × 10−4n2.936

Even ln(Y ) = 2.227 ln(n) − 5.569 Y = 3.816 × 10−3n2.227

6 Odd ln(Y ) = 2.952 ln(n) − 8.084 Y = 3.084 × 10−4n2.952

Even ln(Y ) = 3.616 ln(n) − 10.514 Y = 2.715 × 10−5n3.616

7 Odd ln(Y ) = 4.249 ln(n) − 13.023 Y = 2.208 × 10−6n4.249

Even ln(Y ) = 3.635 ln(n) − 10.655 Y = 2.359 × 10−5n3.635

8 Odd ln(Y ) = 4.272 ln(n) − 13.186 Y = 1.877 × 10−6n4.272

Even ln(Y ) = 4.843 ln(n) − 15.488 Y = 1.878 × 10−7n4.843

9 Odd ln(Y ) = 5.113 ln(n) − 16.305 Y = 8.298 × 10−8n5.113

Even ln(Y ) = 4.660 ln(n) − 14.522 Y = 4.935 × 10−7n4.660

10 Odd ln(Y ) = 5.151 ln(n) − 16.559 Y = 6.434 × 10−8n5.151

Even ln(Y ) = 5.568 ln(n) − 18.248 Y = 1.188 × 10−8n5.568

D(m, n) be the number of partitions of a given integer n into m distinct parts. Then,
by using generating functions, Euler proved

D(m, n) = D(m, n − m) + D(m − 1, n − m).

In this section, we will present two generalizations of the Euler’s formula to the
case of prime partitions. Theorem 2.1 is a more straightforward generalization, while
Theorem 2.2 is a subtler generalization. Let D(m, n) denote the number of partitions
of a given integer n into m distinct prime parts. Consider the generating function∑

m,n≥1D(m, n)zmqn . Let

P = {p0 = 2, p1 = 3, p2 = 5, p3 = 7, p4 = 11, p5 = 13, p6 = 17, . . .}

be the set of primes. Note that we use p0 to denote the even prime 2 and pi (i ≥ 1) to
denote the i-th odd prime number. Then, we have the identity

∑

m,n≥0

D(m, n)zmqn =
∞∏

j=0

(
1 + zq p j

)
.

This equality holds because a typical term in
∏∞

j=0(1 + zq p j ) has the form

(
zq p j1

) (
zq p j2

) · · · (zq p jm
) = zmq p j1+p j2+···p jm

which arises from the partition of n = p j1 + p j2 + · · · p jm as m distinct prime parts.

123



566 J. Sun, K. Sutela

Theorem 2.1 Let m, n be positive integers. Let E(m, n) be the number of ways to write
n as a sum of m distinct odd prime numbers. Then, we have

D(m, n) = E(m, n) + E(m − 1, n − 2).

Proof Since
∑

m,n≥0 D(m, n)zmqn = ∏∞
j=0(1 + zq p j ), we know

∑

m,n≥0

D(m, n)zmqn = (1 + zq2)
∞∏

j=1

(1 + zq p j ).

Because
∑

m,n≥0 E(m, n)zmqn = ∏∞
j=1(1 + zq p j ), we have

∑

m,n≥0

D(m, n)zmqn = (1 + zq2)
∑

m,n≥0

E(m, n)zmqn

=
∑

m,n≥0

E(m, n)zmqn +
∑

m,n≥0

E(m, n)zm+1qn+2.

Comparing the coefficients for zmqn from both sides of the above equation, we get

D(m, n) = E(m, n) + E(m − 1, n − 2). 	


Note that an alternative proof of Theorem 2.1 can be achieved by discussing the
parity of n and m. In fact, when both n and m are even, we know that any partition
of n as m distinct prime parts cannot contain the prime 2; thus, D(m, n) = E(m, n).
We also know that n − 2 is even and m − 1 is odd, so any partition of n − 2 as
m − 1 distinct prime parts must contain the prime 2; hence, E(m − 1, n − 2) = 0.
Therefore, D(m, n) = E(m, n) + E(m − 1, n − 2). When n is even, m is odd; we
know any partition of n as m distinct prime parts must contain the prime 2; thus,
E(m, n) = 0. Since n−2 is even andm−1 is even, we know any partition of n−2 as
m − 1 distinct prime parts cannot contain the prime 2. Therefore, any prime partition
(p j1, p j2 , . . . , p jm−1) of n − 2 as m − 1 distinct odd prime parts gives rises to a prime
partition (2, p j1 , p j2 , . . . , p jm−1) of n asm distinct prime parts, and vice versa. Hence,
D(m, n) = E(m−1, n−2). Similar discussions show thatD(m, n) = E(m−1, n−2)
and E(m, n) = 0 for n being odd and m being even. For the final case of both n and
m being odd, we have D(m, n) = E(m, n) and E(m − 1, n − 2) = 0.

In order to show the next theorem, we introduce the following notations. Let

λm = (p j1, p j2 , . . . , p jm )

with p ji < p ji+1 for all i = 1, . . . ,m − 1. We denote a partition of n as m distinct
prime parts byλm � n. For each partitionλm � n, define the corresponding κ-constant

κλm
m,n =

m∑

k=1

p jk+1 − p jk ,
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Inductive Formulas Related to Prime Partitions 567

which measures the sum of the differences between p jk and its next adjacent prime
p jk+1 in P . For example, when n = 50 and m = 3, we have the following five prime
partitions of 50 into 3 distinct prime parts:

(2, 5, 43); (2, 7, 41); (2, 11, 37); (2, 17, 31); (2, 19, 29).

The corresponding κ-constant for each partition will be

κ
(2,5,43)
3,50 = (3 − 2) + (7 − 5) + (47 − 43) = 7;

κ
(2,7,41)
3,50 = (3 − 2) + (11 − 7) + (43 − 41) = 7;

κ
(2,11,37)
3,50 = (3 − 2) + (13 − 11) + (41 − 37) = 7;

κ
(2,17,31)
3,50 = (3 − 2) + (19 − 17) + (37 − 31) = 9;

κ
(2,19,29)
3,50 = (3 − 2) + (23 − 19) + (31 − 29) = 7.

We notice that these κ-constants may not be the same for a fixed n and m. It depends
on the specific partition λm � n. Taking this into consideration, we have the following
generalization of the Euler’s inductive formula for D(m, n) to the prime partition case.

Theorem 2.2 Let N be a positive integer. Let D(m, N ) be the number of prime parti-
tions of N into m distinct prime parts. Then,

D(m, N ) = #
{
λm � n | κλm

m,n + n = N ,∀n ≤ N − 2m + 1
}

+ #
{
μm−1 � n | κ

μm−1
m−1,n + n + 2 = N ,∀n ≤ N − 2m + 1

}
.

Proof Recall that
∑

m,n≥0 D(m, N )zmqN = ∏∞
j=0(1 + zq p j ); thus,

∑

m,n≥0

D(m, N )zmqN = (1 + zq2)
∞∏

j=1

(
1 + zq p j

)

= (1 + zq2)
∞∏

j=0

(
1 + (

zq p j+1−p j
)
q p j

)
.

A typical term in
∏∞

j=0(1 + (zq p j+1−p j )q p j ) has the form

(
zq p j1+1−p j1

)
q p j1

(
zq p j2+1−p j2

)
q p j2 · · · (zq p jm+1−p jm )q p jm

= zmqκ
λm
m,n+p j1+p j2+···p jm ,

where λm = (p j1 , p j2 , . . . , p jm ) � n is a prime partition of n into m distinct prime
parts. Therefore,
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∞∏

j=0

(
1 + (zq p j+1−p j )q p j

) =
∑

m,n≥0

⎛

⎝
∑

λm�n
qκ

λm
m,n

⎞

⎠ zmqn .

Hence,

∑

m,n≥0

D(m, N )zmqN = (1 + zq2)
∑

m,n≥0

⎛

⎝
∑

λm�n
qκ

λm
m,n

⎞

⎠ zmqn

=
∑

m,n≥0

⎛

⎝
∑

λm�n
qκ

λm
m,n

⎞

⎠ zmqn +
∑

m,n≥0

⎛

⎝
∑

λm�n
qκ

λm
m,n

⎞

⎠ zm+1qn+2.

Comparing the coefficients for zmqN from both sides of the above equation, we get

D(m, N ) = #
{
λm � n | κλm

m,n + n = N ,∀n ≥ 0
}

+ #
{
μm−1 � n | κ

μm−1
m−1,n + n + 2 = N ,∀n ≥ 0

}
.

Since κ
λm
m,n ≥ 1 + 2(m − 1) = 2m − 1, in order for κ

λm
m,n + n = N to hold, we will

always have n ≤ N − 2m + 1. Similarly in order for κ
μm−1
m−1,n + n + 2 = N to hold, we

will have the restriction n ≤ N − 2m + 1. Therefore,

D(m, N ) = #
{
λm � n | κλm

m,n + n = N ,∀n ≤ N − 2m + 1
}

+ #
{
μm−1 � n | κ

μm−1
m−1,n + n + 2 = N ,∀n ≤ N − 2m + 1

}
.

	


The following proposition observes that the two sets in the right side of the equation
for D(m, N ) in Theorem 2.2 cannot be nonempty at the same time.

Proposition 2.3 Let m, N be positive integers. If m and N have the same parity, then

D(m, N ) = #
{
λm � n | κλm

m,n + n = N ,∀n ≤ N − 2m + 1
}
.

If m and N have different parity, then

D(m, N ) = #
{
μm−1 � n | κ

μm−1
m−1,n + n + 2 = N ,∀n ≤ N − 2m + 1

}
.

Proof Wewill discuss the case whenm is even and the case whenm is odd separately.
First assume m is even. If n is even, then any λm � n must not contain 2. Thus,

the corresponding κ
λm
m,n must be even because when calculating the summation for the

κ-constant, every gap between successive odd primes is even. So κ
λm
m,n + n is even. If

n is odd, then any λm � n must include 2. Hence, the corresponding κ
λm
m,n must be odd

because the gap between the primes 2 and 3 is 1, which is the only odd gap between
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Inductive Formulas Related to Prime Partitions 569

prime numbers. Again, we see that κ
λm
m,n + n is even. Similar discussions show that

κ
μm−1
m−1,n + n + 2 is always odd. Therefore, if N is even, then by Theorem 2.2 we have

D(m, N ) = #
{
λm � n | κλm

m,n + n = N ,∀n ≤ N − 2m + 1
}
.

If N is odd, then by Theorem 2.2 we have

D(m, N ) = #
{
μm−1 � n | κ

μm−1
m−1,n + n + 2 = N ,∀n ≤ N − 2m + 1

}
.

Next assume m is odd. Similar discussions show that κ
λm
m,n + n is always odd and

κ
μm−1
m−1,n + n + 2 is always even. Therefore, if N is odd, then by Theorem 2.2 we have

D(m, N ) = #
{
λm � n | κλm

m,n + n = N ,∀n ≤ N − 2m + 1
}
.

If N is even, then by Theorem 2.2 we have

D(m, N ) = #
{
μm−1 � n | κ

μm−1
m−1,n + n + 2 = N ,∀n ≤ N − 2m + 1

}
. 	


The following two examples illustrate how to use Proposition 2.3 to calculate
D(m, n).

Example 2.1 Let N = 29 and m = 3. In order to calculate D(3, 29), we check all the
prime partitions λ3 � n such that κλ3

3,n + n = 29 for all n ≤ 29 − 2 × 3 + 1 = 24. It
turns out there are three prime partitions that satisfy this condition

(3, 5, 13) � 21; (3, 7, 11) � 21; (2, 5, 17) � 24,

where the corresponding κ-constants are

κ
(3,5,13)
3,21 = 8; κ

(3,7,11)
3,21 = 8; κ

(2,5,17)
3,24 = 5.

Since m and N have the same parity, by Proposition 2.3 we have

D(3, 29) = #
{
λ3 � n | κ

λ3
3,n + n = 29,∀n ≤ 24

}
= 3.

We can verify usingMathematica code that there are only three prime partitions of 29
into 3 distinct prime parts, namely (3, 7, 19); (5, 7, 17); (5, 11, 13).

Example 2.2 Let N = 43 and m = 4. Since m and N have different parity, we only
need to check all the prime partitions μ3 � n which satisfy κ

μ3
3,n + n + 2 = 43 for

n ≤ 43 − 2 × 4 + 1 = 36. It turns out there are six prime partitions that satisfy this
condition

(3, 5, 23) � 31; (5, 7, 19) � 31; (7, 11, 13) � 31;

123
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(3, 11, 19) � 33; (3, 13, 17) � 33; (2, 5, 29) � 36,

where the corresponding κ-constants are

κ
(3,5,23)
3,31 = 10; κ

(5,7,19)
3,31 = 10; κ

(7,11,13)
3,31 = 10;

κ
(3,11,19)
3,33 = 8; κ

(3,13,17)
3,33 = 8; κ

(2,5,29)
3,36 = 5.

Therefore, by Proposition 2.3 we have

D(4, 43) = #
{
μ3 � n | κ

μ3
3,n + n + 2 = 41,∀n ≤ 36

}
= 6.

We can verify using Mathematica code that there are only six prime partitions of 43
into 4 distinct prime parts, namely

(2, 3, 7, 31); (2, 5, 7, 29); (2, 5, 13, 23); (2, 5, 17, 19); (2, 7, 11, 23); (2, 11, 13, 17).

3 General Prime Partitions

In this section, we consider general prime partitions whose prime parts are not nec-
essarily distinct. Let Y (m, n) denote the number of prime partitions of n as m parts.
The binary Goldbach conjecture states that Y (2, n) ≥ 1 for every even integer n ≥ 4.
Jingrun Chen’s longstanding results in [1,2] showed that there exists a positive con-
stant N0 such that every even integer greater than N0 can be written as the sum of a
prime and the product of at most two primes. The binary Goldbach conjecture was
verified up to n = 4 × 1018 [7]. The binary Goldbach conjecture implies the ternary
Goldbach conjecture which states that Y (3, n) ≥ 1 for every odd integer n > 5. The
ternary Goldbach conjecture was proved by Helfgott [3,5].

Let λm = (p j1 , p j2 , . . . , p jm ) with p j1 ≤ p j2 ≤ · · · ≤ p jm be a prime partition of
n = p j1 + p j2 + · · · + p jm as m parts. Suppose

p jk < p jk+1 = p jk+2 = · · · = p jk+r = p < p jk+r+1 ,

then we denote the partition as λ
p(r)
m , which means that the prime p appears r times

in the partition λm . Let S
p(r)
m,n denote the set of prime partitions of n as m parts with

the prime p occurring r times. Then, if r1 �= r2, we have

S p(r1)
m,n

⋂
S p(r2)
m,n = ∅.

Let Sm,n denote the set of prime partitions of n as m parts. Then,

Sm,n =
min

{
m,

⌊
n
p

⌋}

⋃

r=0

S p(r)
m,n .
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Inductive Formulas Related to Prime Partitions 571

We observe that if n − � n
p � × p can be written as a sum of primes, then S

p(� n
p �)

m,n �= ∅;
otherwise, we will have S

p(� n
p �)

m,n = ∅. Clearly Y (m, n) equals the cardinality of the set

Sm,n . Let Yp(r)(m, n) denote the cardinality of the set S p(r)
m,n , then

Y (m, n) =
min

{
m,

⌊
n
p

⌋}

∑

r=0

Yp(r)(m, n). (1)

For example, using Mathematica code we can verify that Y (4, 67) = 21, and

Y3(0)(4, 67) = 18, Y3(1)(4, 67) = 2, Y3(2)(4, 67) = 1,

and Y3(r)(4, 67) = 0 for all 3 ≤ r ≤ 4. Therefore,

Y (4, 67) =
4∑

r=0

Y3(r)(4, 67).

The following theorem is an observation of the equality between Yp(r)(m, n) and
Yp(r+1)(m + 1, n + p).

Theorem 3.1 Let 0 ≤ r ≤ min{m, � n
p �} be an integer. Then, we have

Yp(r)(m, n) = Yp(r+1)(m + 1, n + p).

Proof We will show there exists a bijective map between the set Sp(r)
m,n and the set

S p(r+1)
m+1,n+p. Let

λm = (
p j1 , p j2 , . . . , p jk , p, p, . . . , p, p jk+r+1 , . . . , p jm

) ∈ S p(r)
m,n .

Define

λ′
m+1 =

(
p′
j1, p

′
j2 , . . . , p

′
jk , p, p, . . . , p, p

′
jk+r+2

, . . . , p′
jm+1

)
,

where p′
ji

= p ji for i = 1, 2, . . . , k and p′
ji

= p ji−1 for i = k + r + 2, . . . ,m + 1.

Then, λ′
m+1 ∈ S p(r+1)

m+1,n+p. Define fr : S p(r)
m,n → S p(r+1)

m+1,n+p by fr (λm) = λ′
m+1, then fr

is a well-defined map. Conversely, let

μm+1 = (
p j1, p j2 , . . . , p jk , p, p, . . . , p, p jk+r+2 , . . . , p jm+1

) ∈ S p(r+1)
m+1,n+p.

Define

μ′
m =

(
p′
j1, p

′
j2 , . . . , p

′
jk , p, p, . . . , p, p

′
jk+r+1

, . . . , p′
jm

)
,
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572 J. Sun, K. Sutela

where p′
ji

= p ji for i = 1, 2, . . . , k and p′
ji

= p ji+1 for i = k + r + 1, . . . ,m. Define

gr : S p(r+1)
m+1,n+p → S p(r)

m,n by gr (μm+1) = μ′
m , then gr is a well-defined map. It is easy

to check that

gr ◦ fr = id
S p(r)
m,n

and fr ◦ gr = id
S p(r+1)
m+1,n+p

.

Therefore, fr : S p(r)
m,n → S p(r+1)

m+1,n+p is a bijective map. Thus, we have

Yp(r)(m, n) = Yp(r+1)(m + 1, n + p). 	


Corollary 3.2 Let r ≥ 0 be an integer. Then, we have

Yp(r)(m,m × p) = Yp(r+1)(m + 1, (m + 1) × p).

Proof Let n = m × p. Theorem 3.1 implies that

Yp(r)(m,m × p) = Yp(r+1)(m + 1,m × p + p) = Yp(r+1)(m + 1, (m + 1) × p).

	


Corollary 3.3 Let r ≥ 0 be an integer. Then, we have

Yp(r)(m, n) = Yp(r+p)(m + p, n + p2).

Proof Applying Theorem 3.1 repeatedly for p times, we get

Yp(r)(m, n) = Yp(r+1)(m + 1, n + p)

= Yp(r+2)(m + 2, n + 2p)

= · · ·
= Yp(r+p)(m + p, n + p × p)

= Yp(r+p)(m + p, n + p2). 	


The method we use to prove Theorem 3.1 by constructing a bijective map between
the set S p(r)

m,n and the set S p(r+1)
m+1,n+p can be generalized to consider multiple primes at

the same time. Given a positive integer n, let pl̃ be the biggest prime in P such that
pl̃ < n. Recall that we use p0 to denote the even prime 2 and pi (i ≥ 1) to denote the
i-th odd prime number. Let l ≤ l̃. Let p = (p1, p2, . . . , pl) and r = (r1, r2, . . . , rl),
where pi are primes and 0 ≤ ri ≤ min{m, � n

pi
�} for 1 ≤ i ≤ l. Let Sp(r)

m,n denote the set
of prime partitions of n as m parts with the prime pi occurring ri times for 1 ≤ i ≤ l.
Clearly we have
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Sp(r)
m,n

⋂
Sp

′(r′)
m,n �= ∅ if and only if p = p′ and r = r′.

Let Yp(r)(m, n) denote the cardinality of the set Sp(r)
m,n . The following result generalizes

Theorem 3.1 to consider multiple primes at the same time.

Theorem 3.4 Given a positive integer n, let pl̃ be the biggest prime in P such that

pl̃ < n. Let l ≤ l̃ . Let p = (p1, p2, . . . , pl) and r = (r1, r2, . . . , rl), where pi are
primes and 0 ≤ ri ≤ min{m, � n

pi
�} for 1 ≤ i ≤ l. Let s = (s1, s2, . . . , sl), where

si ≥ 0 are integers for 1 ≤ i ≤ l. Then, we have

Yp(r)(m, n) = Yp(r+s)

(

m +
l∑

i=1

si , n +
l∑

i=1

si pi

)

.

Proof Letm′ = m+∑l
i=1 si and n

′ = n+∑l
i=1 si pi . We can define a bijective map

fr,s : Sp(r)
m,n → Sp(r+s)

m′,n′ .

In fact, let λm = (p1, . . . , p1, p2, . . . , p2, . . . , pl , . . . , pl) be a prime partition of n
as m parts, with pi occurring ri times, then

∑l
i=1 ri pi = n. Let λm′ be the partition

obtained by inserting si copies of pi (for all 1 ≤ i ≤ l) to λm . Then, clearly λm′ is a
prime partition of n′ as m′ parts, with pi occurring ri + si times. Thus, λm′ ∈ Sp(r+s)

m′,n′ .
The map fr,s is bijective because we can easily construct the inverse map

gr,s : Sp(r+s)
m′,n′ → Sp(r)

m,n

by sending a prime partition μm′ ∈ Sp(r+s)
m′,n′ to μm , where μm is obtained by deleting

si copies of pi (for all 1 ≤ i ≤ l) in μm′ . Clearly μm ∈ Sp(r)
m,n and

gr,s ◦ fr,s = id
Sp(r)
m,n

and fr,s ◦ gr,s = id
Sp(r+s)
m′,n′

. 	


Example 3.1 Let m = 4 and n = 67. We know Y (4, 67) = 21. The biggest prime
number less than 67 is p17 = 61, the 17-th odd prime. Let l = 3. Let p = (2, 3, 5)
and r = (1, 0, 1). Using Mathematica code, we can see that among the 21 partitions
there are only 6 partitions with 2 occurring only once, 3 occurring zero times, and 5
occurring only once. Therefore, Yp(r)(4, 67) = 6 and the partitions in Sp(r)

4,67 are

(2, 5, 7, 53); (2, 5, 13, 47); (2, 5, 17, 43);
(2, 5, 19, 41); (2, 5, 23, 37); (2, 5, 29, 31).

Let s = (1, 2, 0). Then, r+s = (2, 2, 1). ByTheorem3.4we knowYp(r+s)(7, 75) = 6.
We can verify this by usingMathematica. The total number of prime partitions of 75
as 7 parts is Y (7, 75) = 322. Among these 322 partitions there are only 6 partitions
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with 2 occurring twice, 3 occurring twice, and 5 occurring only once. The partitions
in Sp(r+s)

7,75 are

(2, 2, 3, 3, 5, 7, 53); (2, 2, 3, 3, 5, 13, 47); (2, 2, 3, 3, 5, 17, 43);
(2, 2, 3, 3, 5, 19, 41); (2, 2, 3, 3, 5, 23, 37); (2, 2, 3, 3, 5, 29, 31).

The following theorem provides an inductive formula by using Eq. (1) and Theo-
rem 3.1 to calculate Y (m, n + (m − 2)× p). The formula is more efficient to use than
simply applyingEq. (1) sinceYp(0)( j, n+( j−2)× p), when j = 2, . . . ,m−1, involve
smaller integers and therefore are easier to calculate than Yp(r)(m, n + (m − 2) × p),
when r = 1, . . . ,m − 2.

Theorem 3.5 Let m ≥ 2 be an integer. Then, we have

Y (m, n + (m − 2) × p) =
m∑

j=2

Yp(0)( j, n + ( j − 2) × p)

+
min

{
m,

⌊
n+(m−2)×p

p

⌋}

∑

r=m−1

Yp(r)(m, n + (m − 2) × p).

Proof For r = 0, . . .m − 2, by applying Theorem 3.1 we have

Yp(r)(m, n + (m − 2) × p) = Yp(r−1)(m − 1, n + (m − 3) × p)

= Yp(r−2)(m − 2, n + (m − 4) × p)

= · · ·
= Yp(0)(m − r , n + (m − r − 2) × p).

Therefore,

m−2∑

r=0

Yp(r)(m, n + (m − 2) × p) =
m∑

j=2

Yp(0)( j, n + ( j − 2) × p).

Since we know that

Y (m, n + (m − 2) × p) =
min

{
m,

⌊
n+(m−2)×p

p

⌋}

∑

r=0

Yp(r)(m, n + (m − 2) × p),

we get the following equation

Y (m, n + (m − 2) × p) =
m∑

j=2

Yp(0)( j, n + ( j − 2) × p)
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+
min

{
m,

⌊
n+(m−2)×p

p

⌋}

∑

r=m−1

Yp(r)(m, n + (m − 2) × p).

	


Example 3.2 Letm = 4, n = 61, p = 3. Since we already know that Y3(r)(4, 67) = 0
for all 3 ≤ r ≤ 4, applying Theorem 3.5 yields

Y (4, 67) = Y3(0)(2, 61) + Y3(0)(3, 64) + Y3(0)(4, 67) = 1 + 2 + 18 = 21.

Corollary 3.6 Let m ≥ 2 be an integer. Then, we have

Y (m,m × p) =
m∑

j=2

Yp(0)( j, j × p) + 1.

Proof Let n = 2 × p. Applying Theorem 3.5, we get

Y (m,m × p) =
m∑

j=2

Yp(0)( j, j × p) +
m∑

r=m−1

Yp(r)(m,m × p)

=
m∑

j=2

Yp(0)( j, j × p) + Yp(m−1)(m,m × p) + Yp(m)(m,m × p)

=
m∑

j=2

Yp(0)( j, j × p) + 0 + 1

=
m∑

j=2

Yp(0)( j, j × p) + 1. 	


Note that in [9], properties regarding Y (m, n) where m is a divisor of n are con-
sidered. In this paper, we do not have any restrictions on m. Corollaries 3.2 and 3.6
recover the results of Theorem 3.3 and Corollary 3.1 in [9], respectively.

4 Numerical Analysis of General Prime Partition Numbers

In this section, we analyze the general prime partition numbers Y (m, n) using the data
generated byMathematica code. The numbers Y (2, n) for even n and Y (3, n) for odd
n are called the Goldbach partition numbers. We use Mathematica code to produce
the graph of Y (2, n), commonly known as the Goldbach comet, for even n ≤ 100,000
and the graph of Y (3, n) for odd n ≤ 10,000. Figure 1 shows the graph of Y (2, n)

on the left and the graph of Y (3, n) on the right. The sequence Y (2, n) or Y (3, n) can
be converted into a binary sequence by mapping each odd integer to 1 and each even
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Goldbach Comet: Prime partitions of even n with 2 parts
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Fig. 1 Goldbach partition numbers Y (2, n) for even n ≤ 100,000 and Y (3, n) for odd n ≤ 10,000
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Y 10,n
Prime partitions of n with 10 parts

Fig. 2 Graphs of Y (5, n) for n ≤ 1000 and Y (10, n) for n ≤ 500

integer to 0. The resulting binary sequences have applications in cryptography [6].
The estimate in [4] shows that

Y (2, n) ≈ 2π2

⎛

⎝
∏

p|n;p≥3

p − 1

p − 2

⎞

⎠ n

ln2 n
,

where π2 is the twin prime constant

∏

p≥3

(

1 − 1

(p − 1)2

)

= 0.6601618158 . . . .

We observe that on the graph of Y (3, n) for odd n, the upper branch corresponds to
those n ≡ 1 or 2 (mod) 3 and the lower branch corresponds to those n ≡ 0 (mod) 3.

We use Mathematica code to obtain Y (m, n) for n ≤ 1000 when m = 4, 5, 6, 7, 8
and Y (m, n) for n ≤ 500 whenm = 9, 10. Figure 2 shows the graph of Y (5, n) on the
left and the graph of Y (10, n) on the right. The phenomenon of ramification into two
branches occurs in all the graphs of Y (m, n) for 4 ≤ m ≤ 10. In the case of m being
even, the upper branch corresponds to the case when n is even and the lower branch
corresponds to the case when n is odd. In the case of m being odd, the upper branch
corresponds to the case when n is odd and the lower branch corresponds to the case
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Fig. 3 Graphs of ln Y (m, n) as a function of ln n. The graph of n being even is on the left, and the graph of
n being odd is on the right

Fig. 4 Least square fitting for ln Y (m, n) and ln n. The green lines are for the data, and the red lines are for
the fit. (Color figure online)

when n is even. Our goal is to find an approximation of some analytical formulas for
Y (m, n) when m = 4, 5, 6, 7, 8, 9, 10.

In the following analysis, we will deal with the case of n being even and the case
of n being odd separately. We take the natural logarithm of n and Y (m, n) and obtain
Fig. 3 with the case of n being even on the left and the case of n being odd on the right.
We notice that the graph of ln Y (m, n) as a function of ln n represents a line. Thus, we
conclude that for a fixed m, the function Y (m, n) is approximately a power function
of n when n is large. We also notice that there are overlaps on the graphs in Fig. 3. The
green line is for the smallerm, and the red line is for the largerm. The overlaps are due
to the fact that when n and m have different parity, one of the prime parts in a prime
partition of n as m parts must be 2; therefore, Y (n,m) = Y (n − 2,m − 1). When n
grows larger, the differences between ln n and ln(n − 2) become smaller. Finally, we
notice that there are some random noises in Fig. 3 when n is even and m = 5. The
random noises are more significant when m = 3, 4; thus, we omit the graphs of the
cases when m = 3, 4 in Fig. 3.
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Fig. 5 Data fitting for Y (m, n) and n. The green curves are for the data, and the red curves are for the fit.
(Color figure online)

Using the least square methods, we can fit the data of ln Y (m, n) and ln n by using
a straight line. The results are shown in Fig. 4. We can see that the fitted graphs (red
lines) and the data graphs (green lines) match very well. Assume we are given an
equation of a line

ln Y (m, n) = a ln n + b,

then by taking exponentials we will get a power function

Y (m, n) = ebna .

Using the parameters for the fitted lines in Fig. 4, we can get the fitted power functions
for the data of Y (m, n) and n. The fitting results are shown in Fig. 5. We can see that
the fitted curves (in red color) match well with the data curves (in green color). The
parameters in the fitted data are listed in Table 1.
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