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Abstract
This paper deals with the inverse problem of determining a space-wise-dependent
heat source in the heat equation. This problem is ill-posed and we apply a Tikhonov
regularization method to solve it. The existence and uniqueness of the minimizer
of the Tikhonov regularization functional are firstly proved. By an optimal control
method, we can obtain a stable solution. The numerical results show that our proposed
procedure yields stable and accurate approximation.

Keywords Inverse problems · Ill-posed problems · Heat source · Regularization ·
Numerical differentiation

Mathematics Subject Classification 65R32

1 Introduction

In many engineering contexts, there are many inverse problems for heat equation. The
inverse problem for heat diffusion equation can be roughly divided into five principal
classes. The first one is backward heat conduction problem. The problem of this kind
is also known as reversed-time problem for determination of the initial temperature
distribution from the known distribution at the final moment of time. The second
one is the identification of the temperature or the flux of temperature at one of the
inaccessible boundaries from the over-posed data at the other one which is accessible.
This problem is also known as inverse heat conduction problem. The third one is the
coefficient identification from over-posed data at the boundaries. The fourth one is
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the determination of the shape of the unknown boundaries or the crack inside the heat
conduction body. The last one is the identification of the heat source, e.g., [1,7].

In this paper, we focus on the problem of identifying the heat source frommeasured
data for heat equation. This model has many important applications in practice, e.g.,
in finding a pollution source intensity and also for designing the final state in melting
and freezing processes. The problem is ill-posed and any small change in the input
data may result in a dramatic change in the solution. Numerical computation is very
difficult. To obtain a stable numerical solution for these kinds of ill-posed problems,
some regularization strategies should be applied.

The problem of identification of space-wise-dependent heat source has been
discussed by many authors. For theoretical papers, we can refer to the refer-
ences [2–4,10,12,20–22]. For computational papers, we can refer to the references
[5,6,11,13–19] and the references therein.

Recently, Johansson and Lesnic proposed an iterative method [8] and a variational
method [9] for solving the problem of this kind numerically. However, these meth-
ods need to solve a direct problem at each iterative step. The computational cost is
very high. In this paper, we present a Tikhonov regularization method for solving this
problem. Following the idea of [23] where the authors deal with the problem of iden-
tifying coefficient, we give some theoretical results. Being different from the work of
numerical parts in [23], we give a new computational method for solving inverse heat
source problem. The method is simple and effective. The main aim of this paper is to
provide a new method for solving the problem of unknown heat source. Furthermore,
our method can be extend to the case of higher dimensions easily.

This paper is organized as follows. In Sect. 2, we present the formulation of the
inverse problem; in Sects. 3 and 4, some theoretical results are obtained; in Sect. 5,
some numerical results are shown. Finally, we give a conclusion in Sect. 6.

2 Inverse Heat Source Problem

We consider the following inverse problem: find the temperature u and the heat source
f which satisfy the heat conduction equation, namely
Problem I

ut (x, t) = uxx (x, t) + f (x), 0 < x < 1, 0 < t < T , (2.1)

with the initial data and boundary conditions

u(x, 0) = ϕ(x), 0 < x < 1, (2.2)

ux (0, t) = ux (1, t) = 0, 0 < t < T , (2.3)

here we need to reconstruct f (x) from the measured data gε(x). Assume the measured
data gε(x) and exact data u(x, T ) := g(x) satisfy

‖g(·) − gε(·)‖ ≤ ε, (2.4)
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where ‖ · ‖ denotes the L2-norm and ε is the known noise level.
Assume that the given functions satisfy the compatibility conditions

ϕx (0) = ϕx (1) = 0,
gx (0) = gx (1) = 0.

(2.5)

We know that the Problem I is ill-posed and the degree of the Problem I is equivalent
to that of second-order numerical differentiation.

For the direct problem (2.1)–(2.3), using the results of [Lions, Chapter 3], we have

Lemma 1 Suppose that ϕ and f belong to L2(0, 1). Then the problem (2.1)–(2.3) has
a unique solution u ∈ L2(0, T ; H1

0 (0, 1)) ∩ C([0, T ]; H1
0 (0, 1)) in the distributional

sense and

‖u‖L2(0,T ;H1
0 (0,1)) ≤ C(‖ f ‖L2(0,1) + ‖ϕ‖L2(0,1)), (2.6)

where C is a constant.

3 Tikhonov RegularizationMethod

Consider the following optimal control problem
Problem P Find f ∈ F such that

J ( f ) = min
f ∈F

J ( f ), (3.1)

where

J ( f ) = 1

2

∫ 1

0
(u(x, T ; f ) − gε)

2dx + α

2

∫ 1

0
|∇ f |2dx, (3.2)

F =
{

f (x)|0 < fmin ≤ f ≤ fmax,∇ f ∈ L2(0, 1)
}

, (3.3)

u(x, t; f ) is the solution of Eqs. (2.1)–(2.3) for a given heat source f (x) ∈ F and α

is the regularization parameter.
By using standard method, we can obtain existence of the minimizer of Problem

P.

Theorem 1 There exists a minimizer f ∈ F of J ( f ), i.e.,

J ( f ) = min
f ∈F

J ( f ). (3.4)

The following theorem shows the necessary condition of existence of the minimizer
f :
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Theorem 2 Let f be the solution of the Problem P. Then there exists a triple of
functions (u, v; f ) satisfying the following system:

⎧⎨
⎩

ut = uxx + f , 0 < x < 1, 0 < t < T ,

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,
ux (0, t) = ux (1, t) = 0, 0 < t < T ,

(3.5)

⎧⎨
⎩

vt + vxx = 0, 0 < x < 1, 0 < t < T ,

v(x, T ) = u(x, T ; f ) − gε(x), 0 ≤ x ≤ 1,
vx (0, t) = vx (1, t) = 0, 0 < t < T ,

(3.6)

and

∫ T

0

∫ 1

0
v(h − f )dxdt − α

∫ 1

0
∇ f · ∇( f − h)dx ≥ 0, (3.7)

for all h ∈ F.

Proof For any h ∈ F , 0 ≤ δ ≤ 1, we have

fδ := (1 − δ) f + δh ∈ F . (3.8)

Then

Jδ := J ( fδ) = 1

2

∫ 1

0
(u(x, T ; fδ) − gε(x))2dx + α

2

∫ 1

0
|∇ fδ|2dx . (3.9)

Let uδ be the solution of Eq. (2.1) with f = fδ . Since f is an optimal solution, we
have

d Jδ

dδ

∣∣
δ=0 =

∫ 1

0
(u(x, T ; f ) − gε(x))

∂uδ

∂δ

∣∣
δ=0dx + α

∫ 1

0
∇ f · ∇(h − f )dx ≥ 0.

(3.10)

Denote ũδ := ∂uδ

∂δ
, direct calculations lead to the following system:

⎧⎪⎨
⎪⎩

∂
∂t ũδ = ∂2

∂x2
ũδ + (h − f ),

ũδ(x, 0) = 0,
∂ ũδ

∂x (0, t) = ∂ ũδ

∂x (1, t) = 0.

(3.11)

Denote η = ũδ|δ=0, then η satisfies

⎧⎨
⎩

ηt = ηxx + (h − f ),

η(x, 0) = 0,
ηx (0, t) = ηx (1, t) = 0.

(3.12)
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From (3.10), we have

∫ 1

0
(u(x, T ; f ) − gε(x))η(x, T )dx + α

∫ 1

0
∇ f · ∇(h − f )dx ≥ 0. (3.13)

Let Lη := ηt − ηxx , and suppose v is the solution of the following problem:

⎧⎨
⎩
L∗v = −vt − vxx = 0,
v(x, T ) = u(x, T ; f ) − gε(x),

vx (0, t) = vx (1, t) = 0,
(3.14)

where L∗ is the adjoint operator of the operator L. From (3.12) and (3.14), we have

0 =
∫ T

0

∫ 1

0
ηL∗vdxdt = −

∫ 1

0
η(x, T )(u(x, T ; f ) − gε(x))dx +

∫ T

0

∫ 1

0
vLηdxdt

= −
∫ 1

0
η(x, T )(u(x, T ; f ) − gε(x))dx +

∫ T

0

∫ 1

0
v(h − f )dxdt . (3.15)

Combining (3.13) and (3.15), we can obtain

∫ T

0

∫ 1

0
v(h − f )dxdt − α

∫ 1

0
∇ f · ∇( f − h)dx ≥ 0.

Thus, we completed the proof of Theorem 2. 	


4 Uniqueness of theMinimizer f

Suppose that f1 and f2 are two minimizers of the optimal problem P, and {ui , ηi },
(i = 1, 2) are the solutions of system (3.5) and (3.12) in which f = fi , (i = 1, 2),
respectively.

To establish the result of uniqueness, we need the following lemmas. Since this
result is obvious, here we omit the proof for them.

Lemma 2 For each bounded continuous function l(x) ∈ C(0, 1), we have

max
x∈(0,1)

|l(x)| ≤ |l(x0)| +
(∫ 1

0
|∇l(x)|2dx

) 1
2

, (4.1)

where x0 is a fixed point in the interval (0, 1).

Now the following theorem is the main result of this section.

Theorem 3 Suppose f1 and f2 are two minimizers of the optimal control problem P
corresponding to gε,1 and gε,2, respectively. If there exists a fixed point x0 such that

f1(x0) = f2(x0),
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and assume

gε,1(x) = gε,2(x),

we have

f1(x) = f2(x), ∀ x ∈ (0, 1).

Proof By taking h = f2 when f = f1 and taking h = f1 when f = f2 in (3.13), we
get

∫ 1

0
(u1(x, T ; f ) − gε,1(x))η1(x, T )dx + α

∫ 1

0
∇ f1 · ∇( f1 − f2)dx ≥ 0, (4.2)

∫ 1

0
(u2(x, T ; f ) − gε,2(x))η2(x, T )dx + α

∫ 1

0
∇ f2 · ∇( f2 − f1)dx ≥ 0, (4.3)

where f1 and f2 are two minimizers of the optimal problem P corresponding to gε,1
and gε,2, respectively. And {ui , ηi }, (i = 1, 2) are the solutions of system (3.5) and
(3.12) in which f = fi , (i = 1, 2), respectively. Setting

u1 − u2 = W , η1 + η2 = H ,

then W and H satisfy

⎧⎨
⎩

Wt = Wxx + ( f 1 − f 2),
W (x, 0) = ϕ(x),

Wx (0, t) = Wx (1, t) = 0,
(4.4)

⎧⎨
⎩

Ht = Hxx ,

H(x, 0) = 0,
Hx (0, t) = Hx (1, t) = 0.

(4.5)

By the extremum principle, we know that Eq. (4.5) only has zero solution , thus we
have

η1(x, t) = −η2(x, t). (4.6)

Further, η1 satisfies the following equation

⎧⎨
⎩

η1t = η1xx + ( f 2 − f 1),
η1(x, 0) = 0,
η1x (0, t) = η1x (1, t) = 0.

(4.7)

From (4.4) and (4.7), we get

W (x, t) = −η1(x, t). (4.8)
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Using Lemma 2 , we obtain

max
x∈(0,1)

| f 1 − f 2| ≤ |( f 1 − f 2)(x0)| + (

∫ 1

0
|∇ (

f 1 − f 2
) |2dx)

1
2 . (4.9)

By the assumption of Theorem 3, we have

max
x∈(0,1)

| f 1 − f 2| ≤
(∫ 1

0
|∇( f 1 − f 2)|2dx)

1
2 = ‖∇( f 1 − f 2

)
‖L2(0,1). (4.10)

On the other hand, combining (4.2), (4.3), (4.6) and (4.8), we obtain

α

∫ 1

0
|∇( f 1 − f 2)|2dx ≤

∫ 1

0
(u1(x, T ; f )

− gε,1(x))η1(x, T )dx +
∫ 1

0
(u2(x, T ; f ) − gε,2(x))η2(x, T )dx

=
∫ 1

0
W (x, T ; f )η1(x, T )dx +

∫ 1

0
(gε,1(x) − gε,2(x))η1(x, T )dx

≤ −
∫ 1

0
|η1(x, T )|2dx

+ 1

2

∫ 1

0
|gε,1(x) − gε,2(x)|2dx + 1

2

∫ 1

0
|η1(x, T )|2dx

≤ 1

2

∫ 1

0
|gε,1(x) − gε,2(x)|2dx − 1

2

∫ 1

0
|η1(x, T )|2dx

≤ 1

2

∫ 1

0
|gε,1(x) − gε,2(x)|2dx

= 1

2
‖gε,1(x) − gε,2(x)‖2L2(0,1).

Combining (4.10), this yields

max
x∈(0,1)

| f 1 − f 2| ≤
(

1

2α

) 1
2 ‖gε,1 − gε,2‖L2(0,1). (4.11)

When

gε,1(x) = gε,2(x),

we have

f1(x) = f2(x), x ∈ (0, 1).

This ends the proof. 	


123



448 S. Yang, X. Xiong

Remark 1 Theorem 3 can be generalized to the following problem:
Problem P1. Find the heat source f (x, t) from extra data u(x, t) = g(x, t) which
satisfy

⎧⎨
⎩

ut − uxx = f (x, t), (x, t) ∈ (0, 1) × (0, T ),

u(x, 0) = ϕ(x), x ∈ (0, 1),
ux (0, t) = ux (1, t) = 0, t ∈ (0, T ).

(4.12)

We want to reconstruct f (x, t), first find f (x, tn) where tn = nh and h = T /n, n =
0, 1, . . . , N such that J ( f (·, tn)) = inf f ∈F Jn( f ). Thus we can obtain the solutions
f (x, tn) for n = 0, 1, . . . , N . Then the f (x, tn) can be taken as an approximate
solution to f (x, t).

5 Numerical Results

In this section, in order to demonstrate the effectiveness of Tikhonov regularization,
we do the numerical experiment by using MATLAB in IEEE double precision with
unit round off 1.1 · 10−16. We consider an example. We try to reconstruct the heat
source defined by

f (x) = π2 cos(πx), x ∈ (0, 1). (5.1)

If we consider homogeneous boundary conditions [see (2.1)–(2.3)]

ux (0, t) = 0 and ux (1, t) = 0 for t ∈ [0, 1]. (5.2)

The initial condition is given by

u(x, 0) = 0 for x ∈ [0, 1]. (5.3)

Then in this case the forward problem given by (2.1)–(2.3) with f given by (5.1) has
the analytical solution

u(x, t) =
∞∑

n=1

1 − e−(nπ)2t

(nπ)2
fn cos(nπx), (5.4)

where

fn = 2
∫ 1

0
f (x) cos(nπx)dx,

is the Fourier coefficient of f (x). From (5.4), we get

g(x) = u(x, 1) =
∞∑

n=1

1 − e−(nπ)2

(nπ)2
fn cos(nπx). (5.5)

123



A Tikhonov Regularization Method for Solving an Inverse… 449

Define a linear operator A : f → g, then the inverse source problem can be rewritten
as the following operator equation:

A f (x) = g(x), 0 < x < 1. (5.6)

Using (5.5), it holds

A f (x) =
∞∑

n=1

1 − e−(nπ)2

(nπ)2
fn cos(nπx). (5.7)

Consequently, A is a linear self-adjoint compact operator, i.e., A∗ = A. For noisy
data gε(x), the Tikhonov regularization is to seek a function f ε,α which minimizes
the Tikhonov function

Jα( f ) =
∫ 1

0
(u(x, T ) − gε(x))2dx + α

∫ 1

0
( f ′(x))2dx (5.8)

= ‖A f − gε‖2L2(0,1) + α‖ f ′‖2L2(0,1), (5.9)

where α > 0 is known as the regularization parameter.
It follows from simple calculation we know its minimizer f ε,α satisfies

A∗ A f − α f ′′ = A∗gε. (5.10)

From (5.7), we know that

A∗ A f =
∞∑

n=1

(
1 − e−(nπ)2

(nπ)2

)2

fn cos(nπx). (5.11)

On the other hand

f (x) =
∞∑

n=1

fn cos(nπx). (5.12)

further

f ′′(x) = −
∞∑

n=1

fn(nπ)2 cos(nπx). (5.13)

From (5.7), we have

A∗gε(x) =
∞∑

n=1

1 − e−(nπ)2

(nπ)2
gε,n cos(nπx), (5.14)
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where gε,n is the Fourier coefficient of gε(x). Applying (5.10), (5.11), (5.13) and
(5.14), we obtain

f ε,α(x) =
∞∑

n=1

(nπ)2(1 − e−(nπ)2)

(1 − e−(nπ)2)2 + α(nπ)6
gε,n cos(nπx). (5.15)

We use the function randn given in MATLAB to generate the noisy data, then its
discrete noisy version is

gε = g + δ · randn(si ze(g)).

xi = i − 1

M − 1
, i = 1, 2, 3, . . . , M .

ε = ‖gε − g‖l2 =
⎛
⎝ 1

N

N∑
j=1

|gε − g|2
⎞
⎠

1
2

. (5.16)

Using this noisy data, we compute the regularizing solution

f ε,α(x) ≈
N∑

n=1

(nπ)2(1 − e−(nπ)2)

(1 − e−(nπ)2)2 + α(nπ)6
gε,n cos(nπx). (5.17)

To show the accuracy of numerical solution, we compute the approximate l2 error
denoted by

e( f , ε) = ‖ f ε,α − f ‖l2 . (5.18)

and the approximate relative error in l2 norm denoted by

er ( f , ε) = ‖ f ε,α − f ‖l2

‖ f ‖l2
. (5.19)

we take the regularization parameter as α = ε2 to observe the convergence of our
regularizing solutions. we choose N = 50, M = 100.

In the numerical experiment, Fig. 1a shows the numerical approximations to f (x)

without regularization have a little large amplitude oscillation, this means the problem
is unstable and ill-posed. From Fig. 1b and Table 1, we can find that the smaller the
ε is, the better the computed approximation is. This indicates that when using the
proposed regularization method, the numerical results are recovered stable.
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Fig. 1 The exact solution and the regularized solutions for example. a No regularization and b Tikhonov
regularization

Table 1 Numerical results of the
example

δ 0.0030 1.0000e−03 5.0000e−04

(a)

ε 0.0182 0.0060 0.0029

α 3.3010e−04 3.6464e−05 8.6283e−06

ε 0.0182 0.0060 0.0029

(b)

e( f , ε) 17.6137 3.3739 2.2832

er ( f , ε) 0.2511 0.0481 0.0326

Remark 2 In our numerical experiments, we take the regularization parameter as α =
ε2 to observe the convergence of our regularizing solutions. We can also choose the
regularizing parameter α using the a priori choice strategy based on the regularity of
f (x) and the a posterior scheme by Morozov’s discrepancy principle to obtain the
convergence rates and better numerical results. This should be future work.

6 Conclusion

In this paper, we investigate an inverse space-dependent source problem for a heat
equation. We regularize it by the Tikhonov regularization method for overcoming
its ill-posedness. The existence and uniqueness of the minimizer of the Tikhonov
regularization functional are obtained. An optimal control method is used to get a
stable solution. Numerical examples show that our proposed regularization methods
are effective and stable.
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